JP4628284B2 - Secondary battery charging method and apparatus - Google Patents

Secondary battery charging method and apparatus Download PDF

Info

Publication number
JP4628284B2
JP4628284B2 JP2006054992A JP2006054992A JP4628284B2 JP 4628284 B2 JP4628284 B2 JP 4628284B2 JP 2006054992 A JP2006054992 A JP 2006054992A JP 2006054992 A JP2006054992 A JP 2006054992A JP 4628284 B2 JP4628284 B2 JP 4628284B2
Authority
JP
Japan
Prior art keywords
voltage
charging
full charge
cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006054992A
Other languages
Japanese (ja)
Other versions
JP2007236115A (en
Inventor
和典 小澤
隆雄 高崎
浩典 小澤
正 大茂
哲也 二口
幸雄 坂井
弘樹 森野
茂 元平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Enax Inc
KEC Corp
Original Assignee
Hokuriku Electric Power Co
Enax Inc
KEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co, Enax Inc, KEC Corp filed Critical Hokuriku Electric Power Co
Priority to JP2006054992A priority Critical patent/JP4628284B2/en
Publication of JP2007236115A publication Critical patent/JP2007236115A/en
Application granted granted Critical
Publication of JP4628284B2 publication Critical patent/JP4628284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、複数のセルを直列接続した二次電池の充電方法及び装置に関する。   The present invention relates to a secondary battery charging method and apparatus in which a plurality of cells are connected in series.

上述した二次電池の各セルを充電する場合、図5に示すように、セルの両端電圧が満充電電圧V1に達すると、それ以上充電しても過充電となり、充電容量は殆ど向上しないばかりか性能が劣化する。満充電電圧を少し上回る範囲であれば、劣化傾向は比較的小さく、また、全てのセルを満充電電圧に精度良く一致させて充電するのは困難であることから、かかる範囲を過充電許容電圧としている。一方、過充電許容電圧の上限である過充電限界電圧を超えると、劣化が多大であるため、過充電限界電圧を超えないように充電することが求められている。   When charging each cell of the secondary battery described above, as shown in FIG. 5, when the voltage across the cell reaches the full charge voltage V1, overcharging occurs even if the battery is further charged, and the charging capacity is hardly improved. Or the performance deteriorates. If the range is slightly higher than the full charge voltage, the deterioration tendency is relatively small, and it is difficult to charge all the cells with the full charge voltage accurately. It is said. On the other hand, if the overcharge limit voltage, which is the upper limit of the overcharge allowable voltage, is exceeded, the deterioration is so great that charging is required so as not to exceed the overcharge limit voltage.

上述した二次電池の充電方法としては、始めに定電流で充電する工程の後に、いずれかのセルの電圧が目標電圧(通常,過充電限界電圧)に達すると、該当するセルを放電させながら充電電流を設定分だけ下げて充電を継続する処理を繰り返し、充電電流が設定電流となった場合に充電を終了する方法が知られている(特許文献1)。
特開2002−369398号公報
As a method for charging the secondary battery described above, when the voltage of any cell reaches the target voltage (usually, the overcharge limit voltage) after the step of initially charging with a constant current, the corresponding cell is discharged. A method is known in which charging is continued by continuing the charging by reducing the charging current by a set amount, and the charging is terminated when the charging current reaches the set current (Patent Document 1).
JP 2002-369398 A

二次電池は充電する際に全セルの最大許容容量が同じということは通常有りえず、過電圧によって劣化具合にバラツキが生じている。このため、図5に示すように、特定のセルAが満充電電圧V1に達し、セルA自身の最大許容容量Q−Aに達したときに、他のセルBが満充電電圧V1に達せず、セルB自身の最大許容容量Q−Bよりも小さい容量Q−B’にまでしか達しないことがある。この場合、上述した方法は特定のセルAが過充電限界電圧V2を超えないように放電させながら充電電流を下げて、他のセルBを満充電電圧V1に近づけて、最大許容容量になるように充電している。   When the secondary battery is charged, the maximum allowable capacity of all the cells is usually not the same, and the deterioration degree varies due to the overvoltage. For this reason, as shown in FIG. 5, when the specific cell A reaches the full charge voltage V1 and reaches the maximum allowable capacity Q-A of the cell A itself, the other cells B do not reach the full charge voltage V1. In some cases, the capacity reaches only a capacity QB ′ smaller than the maximum allowable capacity QB of the cell B itself. In this case, the above-described method reduces the charging current while discharging the specific cell A so as not to exceed the overcharge limit voltage V2, and brings the other cell B close to the full charge voltage V1 so that the maximum allowable capacity is obtained. Is charging.

しかしながら、上述した方法は、充電電流が設定電流となった場合には充電を終了するものなので、全セルが満充電に達していないケースも想定され、この場合、二次電池全体での充電量は最大許容容量よりも少ないことになる。一方、充電終了時には全セルが満充電に達しているケースも想定される。ところが、セルの両端電圧は、充放電電流の変化に対して緩慢に応答する性質を有しているので、充電停止時には満充電であったのに、所定時間経過後には満充電に達していないことがある。従って、いずれのケースであっても、充電量が、二次電池全体の最大許容容量に達していないケースが大半であると考えられる。   However, since the method described above terminates charging when the charging current reaches the set current, there is a case where all the cells have not reached full charge. In this case, the amount of charge in the entire secondary battery Will be less than the maximum allowable capacity. On the other hand, a case where all the cells have fully charged at the end of charging is also assumed. However, the voltage across the cell has the property of responding slowly to changes in the charge / discharge current, so it was fully charged when charging was stopped, but did not reach full charge after a predetermined time. Sometimes. Therefore, in any case, it is considered that the charge amount does not reach the maximum allowable capacity of the entire secondary battery in most cases.

それ故、理論的には二次電池全体の最大許容容量まで充電することのできる二次電池の充電方法及び装置が望ましい。
Therefore, theoretically, a secondary battery charging method and apparatus capable of charging up to the maximum allowable capacity of the entire secondary battery are desirable.

また、二次電池全体の最大許容容量まで充電した場合であっても、二次電池のセルの中に過充電許容電圧範囲内のものがあると、少なくとも2つの不具合がある。一つ目は、過充電許容電圧範囲のセルは劣化するということである。二つ目は、例えばハイブリッド自動車の走行モーター用に二次電池が用いられた場合に、二次電池での走行可能距離の表示よりも実際の走行可能距離が短くなるということである。つまり、二次電池全体の両端電圧によって走行可能距離が算出されるからである。ここでセルの中に、過充電許容電圧範囲にあるものが存在すると、セルは満充電電圧を越えている分は殆ど放電されないにも関わらず、走行可能距離の算出に加味されて、本来よりも長い距離走行できるかのように表示されるのである。   Even when the secondary battery is charged up to the maximum allowable capacity, there are at least two problems if there are cells in the secondary battery within the overcharge allowable voltage range. The first is that cells in the overcharge allowable voltage range deteriorate. Second, for example, when a secondary battery is used for a travel motor of a hybrid vehicle, the actual travelable distance is shorter than the display of the travelable distance with the secondary battery. That is, the travelable distance is calculated by the voltage across the secondary battery. Here, if there is a cell in the overcharge allowable voltage range among the cells, the cell will not be discharged as much as it exceeds the full charge voltage, but it will be taken into account in the calculation of the travelable distance. Is displayed as if it can travel a long distance.

本出願に係る発明は上記実情を考慮してなされたもので、全セルの中に過充電許容電圧のセルがある場合に、該当するセルを理論的には満充電電圧まで放電することのできる二次電池の充電方法及び装置を提供することを目的とする。
The invention according to the present application has been made in consideration of the above situation, and when there is an overcharge allowable voltage cell among all the cells, the corresponding cell can theoretically be discharged to a full charge voltage. An object of the present invention is to provide a method and an apparatus for charging a secondary battery.

請求項1の発明は、二次電池として直列接続された複数の各セルに向かって初期設定された定電流を流して充電する定充電工程と、充電の進行に従って上昇するセルの両端電圧が過充電限界電圧に該当する毎に充電電流を減少する手順を繰り返す多段充電工程と、を順次行うと共に、セルの両端電圧が上昇して過充電限界電圧よりも低い満充電電圧に該当する毎に該当セルに流れる充電電流を該当セルに並列接続された放電抵抗にも流す動作をし且つ該当セルの両端電圧が満充電復帰電圧(満充電電圧よりも低い電圧であって時間経過に伴って電圧が安定した場合には満充電電圧に復帰する電圧。)にまで低下した場合には該当セルにのみ充電電流を流す動作をする容量調整工程を他工程とは独立して設けてある二次電池の充電方法を前提とする。そして、多段充電工程でセルに向かって送られる充電電流が設定電流に達した場合には満充電促進工程に移行し、満充電促進工程では、容量調整工程を行いながら、満充電電圧を放電抵抗の理論値で割り算した満充電促進電流で各セルを充電し、設定時間経過後に満充電促進工程を終了して微調整工程に移行し、微調整工程では、容量調整工程を行いながら各セルに対する充電電流の供給を停止することによって、充電停止時点で満充電電圧以上に該当するセルを放電抵抗で放電し、該当セルが満充電復帰電圧にまで低下した場合には放電を停止することを特徴とする。
According to the first aspect of the present invention, there is provided a constant charging step of charging by flowing a constant current that is initially set toward a plurality of cells connected in series as a secondary battery, and a voltage across the cell that rises as the charging progresses. A multi-stage charging process that repeats the procedure of reducing the charging current every time the charging limit voltage is met, and the voltage at both ends of the cell rises to meet the full charging voltage lower than the overcharge limit voltage. The operation is such that the charging current flowing through the cell also flows through the discharge resistor connected in parallel to the cell, and the voltage across the cell is the full-charge recovery voltage (the voltage is lower than the full-charge voltage and the voltage is stable when the voltage returns to the full-charge voltage. if decreased to) of a secondary battery is provided with a capacity adjustment step of the operation flow only charge current to the corresponding cell independently of other processes Assuming charging method That. When the charging current sent toward the cell in the multi-stage charging process reaches the set current, the process proceeds to the full charge promotion process. In the full charge promotion process, the full charge voltage is changed to the discharge resistance while performing the capacity adjustment process. Each cell is charged with the full charge acceleration current divided by the theoretical value of , and after the set time elapses, the full charge acceleration process is terminated and the process proceeds to the fine adjustment process. In the fine adjustment process, the capacity adjustment process is performed for each cell. By stopping the supply of the charging current, the cell corresponding to the full charge voltage or higher is discharged by the discharge resistor at the time of the charge stop, and the discharge is stopped when the corresponding cell falls to the full charge recovery voltage. And

満充電電圧、過充電限界電圧は必ずしも特定の値に限らず、いずれも多少幅のある数値であっても良い。満充電促進工程の時間を長く取ると、全てのセルが満充電となるが、ある程度の時間以上長くしても効率が悪いので、数時間を目途とすることが望ましい。
また、満充電促進工程を長く取って終了すると、理論的にはセルは満充電電圧となる。しかし、放電抵抗には製品ばらつき(誤差)があるので、満充電促進工程中に過充電許容電圧に至るセルも現れる。過充電許容電圧のセルは満充電電圧以下のセルに比べて劣化することが知られている。従って、劣化を防止するには、上述したように、設定時間経過後に満充電促進工程を終了して微調整工程に移行し、微調整工程では容量調整工程を行いながら各セルに対する充電電流の供給を停止することによって、充電停止時点で満充電電圧以上に該当するセルを放電抵抗で放電し、該当セルが満充電復帰電圧にまで低下した場合には放電を停止することが望ましい。ここでは、充電停止時点で満充電電圧以上に該当するセルが一つの場合にはその一つのセルが満充電復帰電圧にまで低下した場合には放電を停止し、該当するセルが複数の場合には、少なくとも一つのセル(理想的には全セル)が満充電復帰電圧にまで低下した場合には放電を停止する。
The full charge voltage and the overcharge limit voltage are not necessarily limited to specific values, and both may be numerical values having a certain range. If the full charge promotion process takes a long time, all the cells are fully charged. However, it is desirable to set a few hours as the efficiency is poor even if it is made longer than a certain time.
In addition, when the full charge promotion step is completed for a long time, theoretically, the cell reaches a full charge voltage. However, since there is a product variation (error) in the discharge resistance, some cells reach the overcharge allowable voltage during the full charge promotion process. It is known that a cell having an overcharge allowable voltage deteriorates compared to a cell having a full charge voltage or less. Therefore, in order to prevent the deterioration, as described above, after the set time elapses, the full charge promotion process is terminated and the process proceeds to the fine adjustment process. In the fine adjustment process, the charging current is supplied to each cell while performing the capacity adjustment process. It is desirable to stop the discharge when the cell corresponding to the full charge voltage or higher is discharged by the discharge resistor when the charge is stopped, and when the corresponding cell drops to the full charge return voltage. Here, when there is one cell that is above the full charge voltage at the time of charging stop, the discharge is stopped when that cell falls to the full charge return voltage, and when there are multiple corresponding cells. Stops discharging when at least one cell (ideally all cells) drops to the full charge recovery voltage.

満充電復帰電圧は、一旦は満充電電圧よりも低下しているが、ある程度時間が経過して電圧が安定すると、満充電電圧に復帰する電圧であって、試験結果等により把握される。微調整工程開始時に全てのセルが満充電電圧以上であれば、全てのセルが満充電復帰電圧にまで低下したときに一連の充電処理を終了することが望ましい。ただし、微調整工程開始時に全てのセルのうちいくつかが満充電電圧未満の場合もあり、この場合は、満充電電圧以上の全セルが満充電復帰電圧にまで低下したときに一連の充電処理を終了することが望ましい。なお、満充電電圧以上のセルのうちそのうちの少なくても一つの該当セルが満充電復帰電圧にまで低下した場合には放電を停止しても良い。The full charge return voltage is once lower than the full charge voltage. However, when the voltage stabilizes after a certain amount of time, the full charge return voltage is restored to the full charge voltage and is grasped from the test result or the like. If all the cells are equal to or higher than the full charge voltage at the start of the fine adjustment process, it is desirable to end the series of charging processes when all the cells are reduced to the full charge return voltage. However, at the start of the fine adjustment process, some of all the cells may be less than the full charge voltage. In this case, a series of charging processes will be performed when all the cells having the full charge voltage or more have dropped to the full charge return voltage. It is desirable to end. The discharge may be stopped when at least one of the cells having the full charge voltage or higher falls to the full charge return voltage.

請求項2の発明は、二次電池はその両端電圧によってそれが駆動する装置の現状能力を算出する用途に用いられるものであることを特徴とする。The invention of claim 2 is characterized in that the secondary battery is used for calculating the current capability of the device driven by the voltage across the secondary battery.

請求項3の発明は、二次電池として直列接続された複数の各セルに向かって初期設定された定電流を流して充電する定充電装置と、充電の進行に従って上昇するセルの両端電圧が満充電電圧に該当するに至ったときには該当セルに向かう充電電流を該当セルに並列接続された放電抵抗にも流す動作をし且つ該当セルの両端電圧が満充電復帰電圧(満充電電圧よりも低い電圧であって時間経過に伴って電圧が安定した場合には満充電電圧に復帰する電圧。)にまで低下した場合には該当セルにのみ充電電流を流す動作をする容量調整装置と、充電の進行に従ってセルの両端電圧が上昇して満充電電圧よりも高い過充電限界電圧に該当するに至る毎に充電電流を減少する手順を繰り返す多段充電装置と、を備える二次電池の充電装置を前提とする。そして、多段充電装置の動作中にセルに向かって送られる充電電流が設定電流に達した場合には満充電促進装置を作動し、満充電促進装置は、容量調整装置の動作を伴いながら満充電電圧を放電抵抗の理論値で割り算した値の満充電促進電流で各セルを充電し、設定時間経過後に満充電促進装置の動作を停止して微調整装置を作動し、微調整装置は充電を停止し、充電停止時点で満充電電圧以上に該当するセルを容量調整装置の動作によって放電抵抗で放電し、該当セルの両端電圧が満充電復帰電圧にまで低下した場合には該当セルの放電抵抗による放電を停止することを特徴とする。
The invention of claim 3 is such that a constant charging device that charges by charging a constant current that is initially set toward each of a plurality of cells connected in series as a secondary battery, and a voltage across the cell that rises as the charging progresses. When it reaches the charge voltage , it operates to flow the charging current toward the cell to the discharge resistor connected in parallel with the cell, and the voltage across the cell is the full charge return voltage (voltage lower than the full charge voltage) If the voltage stabilizes over time, the voltage will return to the full charge voltage. and assumptions charging device for a secondary battery and a multi-stage charger to repeat the procedure to reduce the charging current to each leading to the voltage across the cell corresponds to a high overcharge limit voltage than the full charge voltage increases as the Do When the charging current sent to the cell during the operation of the multistage charging device reaches the set current, the full charge promoting device is activated, and the full charging promoting device is fully charged with the operation of the capacity adjusting device. Each cell is charged with a full charge acceleration current obtained by dividing the voltage by the theoretical value of the discharge resistance.After the set time has elapsed, the operation of the full charge acceleration device is stopped and the fine adjustment device is activated. When a cell corresponding to the full charge voltage or higher is discharged and discharged at the discharge resistance by the operation of the capacity adjustment device, and the voltage across the cell drops to the full charge return voltage, the discharge resistance of the corresponding cell Discharging by is stopped .

請求項4の発明は、二次電池はその両端電圧によってそれが駆動する装置の現状能力を算出する用途に用いられるものであることを特徴とする。
The invention of claim 4 is characterized in that the secondary battery is used for calculating the current capability of the device driven by the voltage across the secondary battery.

請求項1、3の発明であれば、満充電促進電流によって満充電電圧以下のセルが徐々に満充電となり、満充電促進電流が満充電電圧となったセルには流れず放電抵抗に流れ、過充電を防止できるので、満充電促進電流を長時間とれば理論的には、充電を停止しても電圧が満充電電圧で安定し、二次電池全体の最大許容容量まで充電することができる。その上で、満充電電圧以上の過充電許容電圧に該当するセル、つまり、過充電のセルを放電抵抗によって放電して満充電復帰電圧までに低下させれば、セルの性能の劣化を食い止めることができる。
If it is invention of Claim 1, 3, the cell below a full charge voltage becomes full charge gradually by a full charge acceleration | stimulation electric current, it flows into a discharge resistance, without flowing into the cell by which the full charge acceleration | stimulation current became a full charge voltage, Since overcharging can be prevented, if the full charge acceleration current is taken for a long time, the voltage is theoretically stabilized at the full charge voltage even if the charging is stopped, and the secondary battery can be charged up to the maximum allowable capacity. . On top of that, if a cell that corresponds to an overcharge permissible voltage that is equal to or higher than the full charge voltage, that is, an overcharged cell is discharged by a discharge resistor and lowered to the full charge return voltage, the deterioration of the cell performance is stopped. Can do.

請求項2,4の発明であれば、二次電池を例えば、ハイブリッド自動車の走行モータに使用するので、二次電池の総電圧から把握される走行可能距離を正確に算出できる
According to the second and fourth aspects of the invention, since the secondary battery is used, for example, as a travel motor of a hybrid vehicle, the travelable distance grasped from the total voltage of the secondary battery can be accurately calculated .

二次電池1は図2に示すように、複数のセルC1〜Cnを直列接続したリチウム電池である。二次電池の充電装置は、電源部2と、充電管理部3から構成される。電源部2は、CPUが内蔵されたコントローラ4に各種の情報信号を取り込み、情報信号に基づいてコントローラ4が直流電流電源5の電流値を設定すると共にスイッチ6を開閉して二次電池1への通電を制御する。ここで各種の情報信号とは、総電圧検出回路V3’から得られる二次電池1の総電圧V3、電流検出回路A1から得られる直流電流電源5の電流値、充電管理部3から得られるセルC1〜Cnの両端電圧に関する情報である。コントローラ4に初期設定された充電電流は一定値であるので、電源部2が定充電装置となる。   As shown in FIG. 2, the secondary battery 1 is a lithium battery in which a plurality of cells C1 to Cn are connected in series. The secondary battery charging device includes a power supply unit 2 and a charge management unit 3. The power supply unit 2 captures various information signals into the controller 4 in which the CPU is built, and the controller 4 sets the current value of the DC current power source 5 based on the information signals and opens and closes the switch 6 to the secondary battery 1. Control energization. Here, the various information signals include the total voltage V3 of the secondary battery 1 obtained from the total voltage detection circuit V3 ′, the current value of the DC current power source 5 obtained from the current detection circuit A1, and the cell obtained from the charge management unit 3. It is the information regarding the both-ends voltage of C1-Cn. Since the charging current initially set in the controller 4 is a constant value, the power supply unit 2 becomes a constant charging device.

充電管理部3は、電源部2からの電流を二次電池1の両端に導くと共に、各セルC1〜Cnに対して容量調整装置7と多段指令回路8の双方を、並列接続するものである。   The charge management unit 3 guides the current from the power supply unit 2 to both ends of the secondary battery 1 and connects both the capacity adjustment device 7 and the multistage command circuit 8 in parallel to the cells C1 to Cn. .

容量調整装置(容量調整回路)7は、放電抵抗R1と第一トランジスタTr1を直列接続してバイパス回路を形成すると共に、ICからなる満充電電圧検出回路V1’をバイパス回路に対して並列接続したものである。満充電電圧検出回路V1’は並列接続されたセルCnの両端電圧が満充電電圧V1以上に該当するに至ると、第一トランジスタTr1を動作させて、放電抵抗R1に電源部2からの電流を流し、その分だけ該当セルCnの両端電圧を低下させる。満充電電圧V1以上に該当するに至るセルが全くない場合には、セルに電源部2から供給される電流を全部流してセルを充電する。また、満充電電圧検出回路V1’はそのヒステリシス特性によって満充電復帰電圧検出回路としても機能し、満充電電圧V1から低下したセルの両端電圧が満充電復帰電圧V0(=V1−ΔV)に至ると、第一トランジスタTr1の動作を停止してセルCnへの充電を継続する。   The capacity adjustment device (capacitance adjustment circuit) 7 forms a bypass circuit by connecting the discharge resistor R1 and the first transistor Tr1 in series, and also connects a full charge voltage detection circuit V1 ′ composed of an IC in parallel to the bypass circuit. Is. When the voltage across the cell Cn connected in parallel reaches the full charge voltage V1 or more, the full charge voltage detection circuit V1 ′ operates the first transistor Tr1 to supply the current from the power supply unit 2 to the discharge resistor R1. The voltage across the corresponding cell Cn is lowered by that amount. When no cell reaches the full charge voltage V1 or higher, the current supplied from the power supply unit 2 is supplied to the cell to charge the cell. Further, the full charge voltage detection circuit V1 ′ also functions as a full charge return voltage detection circuit due to its hysteresis characteristics, and the voltage across the cell that has dropped from the full charge voltage V1 reaches the full charge return voltage V0 (= V1−ΔV). Then, the operation of the first transistor Tr1 is stopped and the charging of the cell Cn is continued.

多段指令回路8は、ICからなる過充電限界電圧検出回路V2’と第二トランジスタTr2を並列接続すると共に、第二トランジスタTr2にはホトカプラからなる第三トランジスタTr3の発光素子9を直列接続し、ホトカプラの受光素子側10を充電管理部3のコントローラ4に接続してある。過充電限界電圧検出回路V2’は、並列接続されたセルの両端電圧が過充電限界電圧V2以上に該当するに至ると、第二トランジスタTr2を動作させて、ホトカプラの発光素子9を点灯させ、その点灯時間をコントローラ4で計測し、第一設定時間A秒継続するとコントローラ4から直流電流電源5に指令を送って電流を設定分ΔIだけ下げて、充電を継続する。同様にして、全セルのうちいずれかが過充電限界電圧V2に達すると、電流を設定分ΔIだけ下げる操作を繰り返す。設定分ΔIは、必ずしも毎回同じでなくとも良い。電源部2からの充電電流は多段階的に下がるので、多段指令回路8及び電源部2が多段充電装置となる。   The multi-stage command circuit 8 has an overcharge limit voltage detection circuit V2 ′ made of IC and a second transistor Tr2 connected in parallel, and a light emitting element 9 of a third transistor Tr3 made of a photocoupler is connected in series to the second transistor Tr2. The light receiving element side 10 of the photocoupler is connected to the controller 4 of the charge management unit 3. The overcharge limit voltage detection circuit V2 ′ operates the second transistor Tr2 to turn on the light emitting element 9 of the photocoupler when the voltage across the cells connected in parallel reaches the overcharge limit voltage V2 or more. The lighting time is measured by the controller 4, and when the first set time A seconds continues, a command is sent from the controller 4 to the DC current power source 5 to reduce the current by the set amount ΔI and the charging is continued. Similarly, when any one of the cells reaches the overcharge limit voltage V2, the operation of decreasing the current by the set amount ΔI is repeated. The set amount ΔI is not necessarily the same every time. Since the charging current from the power supply unit 2 decreases in a multistage manner, the multistage command circuit 8 and the power supply unit 2 become a multistage charging device.

また、電流を設定分ΔIだけ下げる操作を繰り返すうちに、電流が設定電流Imin+αに達すると、電流検出回路A1からの検出結果を受けてコントローラ4が直流電流電源5に指令を送って充電電流を満充電促進電流Iminに落として、充電を設定時間C(数時間、例えば1,2時間)継続する。満充電促進電流とは、セルの満充電電圧値を容量調整回路の抵抗値で割った値であって、この値を採用することによって、セルが満充電電圧未満の場合には満充電に達するまで充電が継続され、セルが過充電許容電圧の場合には充電されずに満充電電圧に落ちるまで容量調整装置7で放電が継続される。セルが満充電電圧の場合には充電されないことになる。これは、セルに拡散抵抗が含まれていることに起因するものと思われる。ちなみに、セルCnを電気回路で表すと、図4に示すように、抵抗と拡散抵抗の直列回路と、コンデンサとから構成される並列回路で表される。上述したように充電を継続している間に、全てのセルの充電電圧が満充電の付近に集中していくので、容量調整装置7、多段指令回路8及び電源部2が満充電促進装置となる。   When the current reaches the set current Imin + α while repeating the operation of decreasing the current by the set amount ΔI, the controller 4 sends a command to the DC current power supply 5 in response to the detection result from the current detection circuit A1 to reduce the charging current. The charging is continued for a set time C (several hours, for example, 1 to 2 hours) by dropping to the full charge acceleration current Imin. The full charge acceleration current is a value obtained by dividing the full charge voltage value of the cell by the resistance value of the capacity adjustment circuit. By using this value, the full charge is reached when the cell is less than the full charge voltage. In the case where the cell is at the overcharge allowable voltage, the capacity adjustment device 7 continues to discharge until the voltage drops to the full charge voltage. If the cell is fully charged, it will not be charged. This seems to be due to the fact that the cell includes a diffused resistor. Incidentally, when the cell Cn is represented by an electric circuit, as shown in FIG. 4, it is represented by a parallel circuit composed of a series circuit of a resistor and a diffused resistor and a capacitor. As described above, since the charging voltage of all the cells is concentrated near the full charge while continuing the charging, the capacity adjusting device 7, the multistage command circuit 8 and the power supply unit 2 are Become.

前述した容量調整装置7は、満充電促進電流による充電終了後にも機能するもので、過充電許容電圧のセルC1〜Cnに対しては、容量調整装置7の第一トランジスタTr1が動作していることにより、放電が継続され、満充電復帰電圧V0にまで低下した場合には満充電電圧検出回路V1’が満充電復帰電圧検出機能によって第一トランジスタTr1を停止して、放電を停止する。充電を停止すると共に放電によって、セルの充電電圧が微調整されるので、コントローラ4を含む電源部2及び容量調整装置7が微調整装置となる。   The capacity adjustment device 7 described above functions even after the end of charging by the full charge acceleration current, and the first transistor Tr1 of the capacity adjustment device 7 operates for the cells C1 to Cn having the overcharge allowable voltage. As a result, when the discharge is continued and drops to the full charge return voltage V0, the full charge voltage detection circuit V1 ′ stops the first transistor Tr1 by the full charge return voltage detection function and stops the discharge. Since the charging voltage of the cell is finely adjusted by stopping charging and discharging, the power supply unit 2 including the controller 4 and the capacity adjusting device 7 become the fine adjusting device.

二次電池の充電装置の充電処理のうち、上述した説明で足りない分を、図2又は図3のフローチャートに基づいて詳細に説明する。まず、二次電池1を充電しても良いか否かの初期チェックを行う。例えば、二次電池1付近に配置した温度センサで検出される二次電池の温度と、総電圧検出回路V3’で検出される二次電池の総電圧V3に基づいて、充電不可と判定されると充電を行わずに、終了する。例えば、二次電池の温度が設定範囲を超えている場合である。一方、充電可と判定されると、コントローラ4がスイッチ6を閉じて定充電工程に移行する。   Of the charging process of the secondary battery charging device, a part that is not sufficient in the above description will be described in detail based on the flowchart of FIG. 2 or FIG. First, an initial check is performed as to whether or not the secondary battery 1 may be charged. For example, it is determined that charging is not possible based on the temperature of the secondary battery detected by a temperature sensor arranged near the secondary battery 1 and the total voltage V3 of the secondary battery detected by the total voltage detection circuit V3 ′. And finish without charging. For example, this is a case where the temperature of the secondary battery exceeds the set range. On the other hand, if it is determined that charging is possible, the controller 4 closes the switch 6 and shifts to the constant charging process.

定充電工程では、初期設定された定電流を流す。次に、容量調整工程と多段充電工程に移行する。容量調整工程は、各セルの両端電圧を検出する。満充電電圧V1未満のセルについては、そのまま定電流での充電を継続する。そして、例えば特定のセルC1が満充電電圧V1以上に該当するに至ると、該当セル専用の容量調整装置7を作動させ、放電抵抗R1に電流を導き、電流の減少に伴って該当セルの充電電圧が低下する。低下した充電電圧が満充電復帰電圧V0以下にならない場合にはそのままの状態を維持し、満充電復帰電圧V0以下に落ちると容量調整装置7を停止して、再度、該当セルを定電流で充電する。   In the constant charging process, an initially set constant current is passed. Next, the process proceeds to a capacity adjustment process and a multistage charging process. In the capacity adjustment step, the voltage across each cell is detected. For cells having a full charge voltage of less than V1, charging at a constant current is continued. For example, when a specific cell C1 reaches the full charge voltage V1 or higher, the capacity adjustment device 7 dedicated to the cell is activated, a current is guided to the discharge resistor R1, and the current cell is charged as the current decreases. The voltage drops. If the lowered charge voltage does not become the full charge return voltage V0 or lower, the state is maintained as it is, and when it falls below the full charge return voltage V0, the capacity adjustment device 7 is stopped and the cell is charged again with a constant current. To do.

多段充電工程では、いずれかのセルが過充電限界電圧V2以上をA秒(例えば2秒)継続することを確認すると、充電電流を設定分ΔIだけ下げる。充電電流を下げてもセルが、過充電限界電圧V2以上をB秒(>A例えば8秒)継続することを確認すると、コントローラ4がスイッチ6を開いて充電を強制停止する。過充電限界電圧V2がB秒継続しない場合には、コントローラ4が充電電流を検出して、設定電流Imin+α未満にまで落ち込んだか否かを判定する。設定電流未満に落ち込んでいない場合には、再度、セルが過充電限界電圧V2以上をA秒(例えば2秒)継続することを確認するステップに戻る。次にいずれかのセルが過充電限界電圧V2以上をA秒継続することを確認すると、同様のループ処理が行われる。このループ処理を繰り返すうちに、充電電流が設定電流Imin+α未満にまで落ち込んだ場合には、満充電促進工程に移行する。   In the multi-stage charging process, when it is confirmed that any cell continues the overcharge limit voltage V2 or more for A seconds (for example, 2 seconds), the charging current is lowered by a set amount ΔI. When it is confirmed that the cell continues the overcharge limit voltage V2 or higher for B seconds (> A, for example, 8 seconds) even if the charging current is lowered, the controller 4 opens the switch 6 to forcibly stop charging. When the overcharge limit voltage V2 does not continue for B seconds, the controller 4 detects the charging current and determines whether or not it falls below the set current Imin + α. If it has not fallen below the set current, the process returns to the step of confirming that the cell continues the overcharge limit voltage V2 or higher for A seconds (for example, 2 seconds). Next, when it is confirmed that any cell continues the overcharge limit voltage V2 or higher for A seconds, a similar loop process is performed. If the charging current falls below the set current Imin + α while repeating this loop processing, the process proceeds to the full charge promoting step.

満充電促進工程では、まず、充電電流を満充電促進電流Imin(初期の定電流に対して1/10程度)に落として充電を継続する。満充電促進工程の初期段階では、通常の各セルの充電電圧は満充電復帰電圧V0以上であるので容量調整装置7の放電抵抗R1に電流が流れている。故に、各セルは満充電電圧以上に充電されようとすると、放電抵抗R1で放電される。従って、各セルは満充電電圧V1にまで充電される。また、仮にいくつかのセルの充電電圧が満充電促進工程の初期段階では満充電復帰電圧V0以下であったとしても、満充電促進電流を流しているうちに通常、満充電電圧V1となり、この場合も満充電電圧V1を超えて充電されることは理論的にはない。但し、図1のグラフではセルC2の充電電圧は最終的に満充電電圧V1を超え過充電許容電圧にまで上昇しているが、これは放電抵抗R1が理論値よりも大きい場合、即ち放電抵抗R1の製品ばらつきによるものである。満充電促進工程での充電開始後、設定時間Cだけ経過すると、微調整工程に移行する。 In the full charge promoting step, first, charging is continued by dropping the charging current to a full charging promoting current Imin (about 1/10 of the initial constant current). In the initial stage of the full charge promotion step, the normal charging voltage of each cell is equal to or higher than the full charging return voltage V0, so that a current flows through the discharge resistor R1 of the capacity adjusting device 7. Therefore, each cell is discharged by the discharge resistor R1 when it is going to be charged above the full charge voltage. Accordingly, each cell is charged to the full charge voltage V1. Further, even if the charging voltage of some cells is equal to or lower than the full charge recovery voltage V0 in the initial stage of the full charge promotion process, the full charge voltage V1 is normally obtained while the full charge promotion current is flowing. In this case, it is not theoretically charged beyond the full charge voltage V1. However, in the graph of FIG. 1, the charge voltage of the cell C2 eventually exceeds the full charge voltage V1 and rises to the overcharge allowable voltage. This is when the discharge resistance R1 is larger than the theoretical value, that is, the discharge resistance. This is due to product variations in R1. After the start of charging in the full charge promotion process, when the set time C has elapsed, the process proceeds to the fine adjustment process.

微調整工程では、放電抵抗R1の誤差(製品ばらつき)を吸収して全てのセルを最終的に満充電電圧V1にできるだけ等しくするために、コントローラ4がスイッチ6を開いて充電を停止する。前述した容量調整工程は微調整工程中も行われており、充電停止時には通常全セルが満充電電圧V1以上になっているので、全セルは放電抵抗R1によって放電を継続している。そして、各セルの両端電圧が満充電復帰電圧V0以下か否かを判定し、満充電復帰電圧V0よりも大きい場合には再度判定処理に戻り、その間、容量調整工程による放電を継続する。以上により、全セルが順番に満充電復帰電圧V0以下に落ち込んでいき、各々の容量調整回路7を停止して放電を停止する。なお、微調整工程を始める際に充電電圧が満充電復帰電圧V0よりも小さいものについては、容量調整工程での放電抵抗R1への通電は停止しており、充電電圧は維持されている。   In the fine adjustment step, the controller 4 opens the switch 6 to stop charging in order to absorb the error (product variation) of the discharge resistor R1 and make all the cells finally equal to the full charge voltage V1 as much as possible. The capacity adjustment process described above is also performed during the fine adjustment process. Since all the cells are normally at or above the full charge voltage V1 when charging is stopped, all the cells continue to be discharged by the discharge resistor R1. Then, it is determined whether or not the both-end voltage of each cell is equal to or lower than the full charge return voltage V0. When the voltage is higher than the full charge return voltage V0, the determination process is returned to the determination process. As described above, all the cells sequentially drop below the full charge return voltage V0, and each capacity adjustment circuit 7 is stopped to stop discharging. When the fine adjustment process is started, energization to the discharge resistor R1 in the capacity adjustment process is stopped for the charge voltage smaller than the full charge return voltage V0, and the charge voltage is maintained.

充電装置による充電電流、セルの両端電圧の時間推移を示すグラフである。It is a graph which shows the time transition of the charging current by a charging device, and the both-ends voltage of a cell. 充電装置を示すブロック図である。It is a block diagram which shows a charging device. 充電方法を示すフローチャートである。It is a flowchart which shows a charging method. セルの回路図である。It is a circuit diagram of a cell. セルの充電容量と両端電圧との関係を示すグラフである。It is a graph which shows the relationship between the charging capacity of a cell, and both-ends voltage.

符号の説明Explanation of symbols

1 二次電池、2 電源部、3 充電管理部、4 コントローラ、5 直流電流電源、6 スイッチ、7 容量調整装置(容量調整回路)、8 多段指令回路、9 発光素子、10 受光素子側、V0 満充電復帰電圧、V1 満充電電圧、V2 過充電限界電圧、V3 総電圧、V1’ 満充電電圧検出回路、V2’ 過充電限界電圧検出回路、V3’ 総電圧検出回路、R1 放電抵抗、Tr1 第一トランジスタ、Tr2 第二トランジスタ、Tr3 第三トランジスタ、A1 電流検出回路、C1〜Cn セル、Imin+α 設定電流、Imin 満充電促進電流 DESCRIPTION OF SYMBOLS 1 Secondary battery, 2 Power supply part, 3 Charge management part, 4 Controller, 5 DC current power supply, 6 Switch, 7 Capacity adjustment apparatus (capacity adjustment circuit), 8 Multistage command circuit, 9 Light emitting element, 10 Light receiving element side, V0 Full charge release voltage, V1 full charge voltage, V2 overcharge limit voltage, V3 total voltage, V1 ′ full charge voltage detection circuit, V2 ′ overcharge limit voltage detection circuit, V3 ′ total voltage detection circuit, R1 discharge resistance, Tr1 1 transistor, Tr2 2nd transistor, Tr3 3rd transistor, A1 current detection circuit, C1-Cn cell, Imin + α set current, Imin full charge acceleration current

Claims (4)

二次電池(1)として直列接続された複数の各セル(C1〜Cn)に向かって初期設定された定電流を流して充電する定充電工程と、充電の進行に従って上昇するセルの両端電圧が過充電限界電圧(V2)に該当する毎に充電電流を減少する手順を繰り返す多段充電工程と、を順次行うと共に、セルの両端電圧が上昇して過充電限界電圧よりも低い満充電電圧(V1)に該当する毎に該当セルに流れる充電電流を該当セルに並列接続された放電抵抗(R1)にも流す動作をし且つ該当セルの両端電圧が満充電復帰電圧(満充電電圧よりも低い電圧であって時間経過に伴って電圧が安定した場合には満充電電圧に復帰する電圧。)にまで低下した場合には該当セルにのみ充電電流を流す動作をする容量調整工程を他工程とは独立して設けてある二次電池の充電方法において、
多段充電工程でセルに向かって送られる充電電流が設定電流(Imin+α)に達した場合には満充電促進工程に移行し、満充電促進工程では、容量調整工程を行いながら、満充電電圧(V1)を放電抵抗(R1)の理論値で割り算した満充電促進電流(Imin)で各セルを充電し、
設定時間(C)経過後に満充電促進工程を終了して微調整工程に移行し、微調整工程では、容量調整工程を行いながら各セルに対する充電電流の供給を停止することによって、充電停止時点で満充電電圧以上に該当するセルを放電抵抗(R1)で放電し、該当セルが満充電復帰電圧(V0)にまで低下した場合には放電を停止することを特徴とする二次電池の充電方法。
A constant charging step of charging by flowing a constant current that is initially set toward a plurality of cells (C1 to Cn) connected in series as a secondary battery (1), and a voltage across the cell that rises as the charging progresses A multi-stage charging step that repeats the procedure of decreasing the charging current every time the overcharge limit voltage (V2) is met is sequentially performed, and the full-charge voltage (V1) that is lower than the overcharge limit voltage due to an increase in voltage across the cell ) Is applied to the discharge resistor (R1) connected in parallel to the corresponding cell, and the voltage at both ends of the corresponding cell is lower than the full charge return voltage (voltage lower than the full charge voltage). When the voltage stabilizes over time, the voltage is reset to the full charge voltage. there are provided independently In the charging method of the next battery,
When the charging current sent to the cell in the multi-stage charging process reaches the set current (Imin + α), the process proceeds to the full charge promoting process. In the full charging promoting process, the full charge voltage (V1 ) By the full charge acceleration current (Imin) obtained by dividing the discharge resistance (R1) by the theoretical value ,
After the set time (C) elapses, the full charge promotion process is terminated and the process proceeds to the fine adjustment process. In the fine adjustment process, the supply of the charging current to each cell is stopped while performing the capacity adjustment process. A method for charging a secondary battery, wherein a cell corresponding to a full charge voltage or higher is discharged by a discharge resistor (R1), and the discharge is stopped when the corresponding cell drops to a full charge return voltage (V0). .
二次電池はその両端電圧によってそれが駆動する装置の現状能力を算出する用途に用いられるものであることを特徴とする請求項1記載の二次電池の充電方法。The secondary battery charging method according to claim 1, wherein the secondary battery is used for calculating a current capacity of a device driven by the voltage across the secondary battery. 二次電池(1)として直列接続された複数の各セル(C1〜Cn)に向かって初期設定された定電流を流して充電する定充電装置(2)と、充電の進行に従って上昇するセルの両端電圧が満充電電圧(V1)に該当するに至ったときには該当セルに向かう充電電流を該当セルに並列接続された放電抵抗(R1)にも流す動作をし且つ該当セルの両端電圧が満充電復帰電圧(満充電電圧よりも低い電圧であって時間経過に伴って電圧が安定した場合には満充電電圧に復帰する電圧。)にまで低下した場合には該当セルにのみ充電電流を流す動作をする容量調整装置(7)と、充電の進行に従ってセルの両端電圧が上昇して満充電電圧よりも高い過充電限界電圧(V2)に該当するに至る毎に充電電流を減少する手順を繰り返す多段充電装置(8,2)と、を備える二次電池の充電装置において、
多段充電装置の動作中にセルに向かって送られる充電電流が設定電流(Imin+α)に達した場合には満充電促進装置(7,8,2)を作動し、
満充電促進装置(7,8,2)は、容量調整装置(7)の動作を伴いながら満充電電圧(V1)を放電抵抗(R1)の理論値で割り算した値の満充電促進電流(Imin)で各セルを充電し、
設定時間(C)経過後に満充電促進装置(7,8,2)の動作を停止して微調整装置(3,7)を作動し、
微調整装置(3,7)は充電を停止し、充電停止時点で満充電電圧以上に該当するセルを容量調整装置(7)の動作によって放電抵抗(R1)で放電し、該当セルの両端電圧が満充電復帰電圧(V0)にまで低下した場合には該当セルの放電抵抗(R1)による放電を停止することを特徴とする二次電池の充電装置。
A constant charging device (2) that charges by charging a constant current that is initially set toward a plurality of cells (C1 to Cn) connected in series as a secondary battery (1), and a cell that rises as the charging progresses When the voltage at both ends reaches the full charge voltage (V1), the charging current directed to the corresponding cell is also passed through the discharge resistor (R1) connected in parallel to the corresponding cell, and the voltage at both ends of the corresponding cell is fully charged. When the voltage drops to the return voltage (the voltage that is lower than the full charge voltage and returns to the full charge voltage when the voltage stabilizes over time), the charge current flows only to the corresponding cell. The capacity adjustment device (7) that performs charging and the procedure for decreasing the charging current each time the voltage across the cell rises as the charging progresses and the overcharge limit voltage (V2) that is higher than the full charging voltage is reached. Multistage charger (8 In the charging device for a secondary battery including a 2), a,
When the charging current sent to the cell during the operation of the multistage charging device reaches the set current (Imin + α), the full charge promoting device (7, 8, 2) is activated,
The full charge promoting device (7, 8, 2) is a full charge promoting current (Imin) having a value obtained by dividing the full charge voltage (V1) by the theoretical value of the discharge resistance (R1) with the operation of the capacity adjusting device (7). ) To charge each cell ,
After the set time (C) has elapsed, the operation of the full charge promoting device (7, 8, 2) is stopped and the fine adjustment device (3, 7) is activated
The fine adjustment devices (3, 7) stop charging, and when the charge is stopped, the cells corresponding to the full charge voltage or more are discharged by the discharge resistance (R1) by the operation of the capacity adjustment device (7), and the voltage across the corresponding cells is discharged. When the battery voltage drops to the full charge recovery voltage (V0), the discharge by the discharge resistance (R1) of the corresponding cell is stopped .
二次電池はその両端電圧によってそれが駆動する装置の現状能力を算出する用途に用いられるものであることを特徴とする請求項3記載の二次電池の充電装置。4. The secondary battery charging device according to claim 3, wherein the secondary battery is used for calculating a current capacity of a device driven by the voltage across the secondary battery.
JP2006054992A 2006-03-01 2006-03-01 Secondary battery charging method and apparatus Expired - Fee Related JP4628284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054992A JP4628284B2 (en) 2006-03-01 2006-03-01 Secondary battery charging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054992A JP4628284B2 (en) 2006-03-01 2006-03-01 Secondary battery charging method and apparatus

Publications (2)

Publication Number Publication Date
JP2007236115A JP2007236115A (en) 2007-09-13
JP4628284B2 true JP4628284B2 (en) 2011-02-09

Family

ID=38556133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054992A Expired - Fee Related JP4628284B2 (en) 2006-03-01 2006-03-01 Secondary battery charging method and apparatus

Country Status (1)

Country Link
JP (1) JP4628284B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227484B2 (en) * 2006-06-06 2013-07-03 大和ハウス工業株式会社 Charging method for series-connected secondary batteries
JP4499164B2 (en) * 2008-02-25 2010-07-07 岩崎電気株式会社 Charging apparatus and charging method
US20110025272A1 (en) * 2008-03-25 2011-02-03 Takeaki Nagashima Charging method, charging device, and battery pack
JP5525743B2 (en) 2009-03-30 2014-06-18 株式会社日本総合研究所 Battery control device, battery control method, and vehicle
JP5361529B2 (en) * 2009-05-19 2013-12-04 株式会社Nttファシリティーズ Lithium-ion battery charge control device and lithium-ion battery system
JP5771842B2 (en) * 2009-10-01 2015-09-02 新電元工業株式会社 Failure detection device for charge control device and failure detection method in charge control device
US9866050B2 (en) * 2010-05-21 2018-01-09 The Boeing Company Battery cell charge equalization
JP2012183958A (en) * 2011-03-07 2012-09-27 Hokuriku Electric Power Co Inc:The Method and system for heating interior of electric vehicle
JP6081320B2 (en) * 2012-09-05 2017-02-15 株式会社東芝 Power supply apparatus, battery pack control method and control program
JP5890341B2 (en) * 2013-02-26 2016-03-22 東芝三菱電機産業システム株式会社 Power storage device
CN105206886B (en) * 2015-09-17 2018-02-13 浙江天能动力能源有限公司 A kind of charging method of batteries of electric automobile
KR102014451B1 (en) 2015-11-13 2019-08-26 주식회사 엘지화학 System of Adjusting Power Parameter of Secondary Battery and Method thereof
JP6692210B2 (en) * 2016-05-16 2020-05-13 セイコーインスツル株式会社 Electronic equipment and wireless power supply system
KR20190025320A (en) * 2017-09-01 2019-03-11 주식회사 엘지화학 Method for improving a lifetime characteristics and charge rate of lithium-sulfur secondary battery
CN111509320A (en) * 2019-01-30 2020-08-07 北京小米移动软件有限公司 Charging method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308126A (en) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd Charger
JP2002369398A (en) * 2001-06-01 2002-12-20 Nissan Motor Co Ltd Method and apparatus for charging
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2004236474A (en) * 2003-01-31 2004-08-19 Itochu Corp Charger and discharger of secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308126A (en) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd Charger
JP2002369398A (en) * 2001-06-01 2002-12-20 Nissan Motor Co Ltd Method and apparatus for charging
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2004236474A (en) * 2003-01-31 2004-08-19 Itochu Corp Charger and discharger of secondary battery

Also Published As

Publication number Publication date
JP2007236115A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4628284B2 (en) Secondary battery charging method and apparatus
JP4379480B2 (en) Charger and charging method
TWI762522B (en) Control device, balance correction device, and power storage system
US9350177B2 (en) Equalization circuit, power supply system, and vehicle
US8928174B2 (en) Battery control apparatus, battery control method, and vehicle
US9444285B2 (en) Charge controller for vehicle
US20100057385A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20180152028A1 (en) Battery active balancing system
JP5737207B2 (en) Voltage balance control device
EP2838175A1 (en) Balance correction device and power storage system
KR20120024738A (en) Charge control device and method for secondary battery module
CN103548233A (en) Power storage unit control circuit
KR20130031858A (en) Battery charging apparatus and battery charging method
WO1998038721A1 (en) Power supply device
US11635469B2 (en) Power supply device
JP5814056B2 (en) Power converter
US11476688B2 (en) Power supply device having sequentially connected battery modules
JP2007124750A (en) Charge control method of battery
JP2010252474A (en) Method of charging secondary battery
JP2006352970A (en) Controller of power supply device
JP2014054143A (en) Power supply device, charging method, and program
JP2009296699A (en) Charging control circuit, power supply, and charging control method
JP2004028861A (en) Method and detector for detecting voltage in batteries connected in parallel
JP4064580B2 (en) Charging system
JP5691924B2 (en) Battery cell voltage balance control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees