JP4627499B2 - Eddy current flaw detection sensor - Google Patents

Eddy current flaw detection sensor Download PDF

Info

Publication number
JP4627499B2
JP4627499B2 JP2006002207A JP2006002207A JP4627499B2 JP 4627499 B2 JP4627499 B2 JP 4627499B2 JP 2006002207 A JP2006002207 A JP 2006002207A JP 2006002207 A JP2006002207 A JP 2006002207A JP 4627499 B2 JP4627499 B2 JP 4627499B2
Authority
JP
Japan
Prior art keywords
coil
eddy current
inspection surface
current flaw
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006002207A
Other languages
Japanese (ja)
Other versions
JP2007183197A (en
Inventor
将史 成重
亮 西水
哲也 松井
正浩 小池
功 吉田
光男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006002207A priority Critical patent/JP4627499B2/en
Publication of JP2007183197A publication Critical patent/JP2007183197A/en
Application granted granted Critical
Publication of JP4627499B2 publication Critical patent/JP4627499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、渦電流探傷センサの構造に関する。   The present invention relates to the structure of an eddy current flaw detection sensor.

発電プラントの熱交換器伝熱管等の鋼管を保守点検するために、渦電流探傷試験(Eddy Current Testing : ECT)が行われてきた。近年では、鋼管母材部だけでなく、溶接部の探傷技術としての開発が進められている。渦電流探傷試験では、検査箇所にセンサを近接させて機械的な走査が行われる。センサは励磁コイルと検出コイルで構成され、コイルの配置は検査対象・部位に応じて様々である。管形状の検査対象には、管の内側にコイルを挿入する内挿コイルあるいは管の外面にコイルを巻く貫通コイルと呼ばれるタイプのセンサが用いられている。平板形状の検査対象には、コイルの軸が平板に対して垂直となるように配置した上置コイルや一様渦電流センサが利用されている。   Eddy Current Testing (ECT) has been performed to maintain and inspect steel pipes such as heat exchanger tubes in power plants. In recent years, development has been promoted as a flaw detection technique not only for steel pipe base materials but also for welds. In the eddy current flaw detection test, a mechanical scanning is performed by bringing a sensor close to an inspection location. The sensor is composed of an excitation coil and a detection coil, and the arrangement of the coils varies depending on the inspection object / part. For a tube-shaped inspection object, a sensor called an insertion coil that inserts a coil inside a tube or a penetration coil that winds a coil around the outer surface of the tube is used. For the inspection object having a flat plate shape, an upper coil and a uniform eddy current sensor arranged so that the axis of the coil is perpendicular to the flat plate are used.

特許文献1には、両端に磁極を有する永久磁石の回りに絶縁体を介してコイルを巻回した構造を持つECTセンサが開示されている。この永久磁石の磁場により管内表層部の磁化を一様にして磁気ノイズを低減している。   Patent Document 1 discloses an ECT sensor having a structure in which a coil is wound through an insulator around a permanent magnet having magnetic poles at both ends. Magnetic field noise is reduced by making the magnetization of the surface layer of the tube uniform by the magnetic field of the permanent magnet.

特開平8−136509号公報JP-A-8-136509

上記従来技術は、管形状の試験体を対象とする内層コイルあるいは貫通コイルを用いたタイプのECTセンサの構造である。しかしながら、磁性材の平板を検査対象とする場合、永久磁石(或いは電磁石)により磁気ノイズを抑制するセンサ構造は開発されておらず、管形状に適用するセンサ構造では対応できない。   The above prior art is a structure of an ECT sensor using an inner layer coil or a through coil for a tube-shaped test body. However, when a flat plate made of a magnetic material is to be inspected, a sensor structure that suppresses magnetic noise by a permanent magnet (or electromagnet) has not been developed, and cannot be handled by a sensor structure applied to a tube shape.

本発明の目的は、上記従来技術の問題点に鑑み、平板を対象として磁気ノイズを抑制できる渦電流探傷センサを提供することにある。   An object of the present invention is to provide an eddy current flaw detection sensor capable of suppressing magnetic noise targeting a flat plate in view of the above-mentioned problems of the prior art.

本発明の目的は、平板材の検査面に対し永久磁石または電磁石の磁極を向けて、検査範囲内の平板材の磁化方向が一様となるようにすることで達成される。   The object of the present invention is achieved by directing the magnetic poles of a permanent magnet or an electromagnet to the inspection surface of the flat plate so that the magnetization direction of the flat plate within the inspection range is uniform.

本発明は、励磁コイルと検出コイルを有し、平面の検査面の欠陥を検査する渦電流探傷装置において、前記検出コイルは法線軸が前記検査面に垂直となるように検査面側に配置し、前記励磁コイルは法線軸が検査面と水平となるように前記検出コイルの上に配置し、前記励磁コイルの法線軸と平行に永久磁石または電磁石を配置したことを特徴とする。   The present invention provides an eddy current flaw detector having an excitation coil and a detection coil, and inspecting a defect on a flat inspection surface, and the detection coil is disposed on the inspection surface side so that a normal axis is perpendicular to the inspection surface. The excitation coil is arranged on the detection coil so that the normal axis is parallel to the inspection surface, and a permanent magnet or an electromagnet is arranged in parallel with the normal axis of the excitation coil.

また、本発明は、励磁コイルと検出コイルを有し、平面の検査面の欠陥を検査する渦電流探傷装置において、前記検出コイルは法線軸が前記検査面に垂直となるように検査面側に配置し、前記励磁コイルは法線軸が前記検査面と水平となるように前記検出コイルの上に配置し、かつ前記励磁コイルのコアとして永久磁石を配置し、該永久磁石の磁極の向きを前記励磁コイルの法線軸方向となるように配置したことを特徴とする。   Further, the present invention provides an eddy current flaw detector having an exciting coil and a detection coil, and inspecting a defect on a flat inspection surface. The excitation coil is disposed on the detection coil so that the normal axis is parallel to the inspection surface, and a permanent magnet is disposed as a core of the excitation coil, and the direction of the magnetic pole of the permanent magnet is It is characterized by being arranged so as to be in the direction of the normal axis of the exciting coil.

また、本発明は、前記検出コイルは法線軸が前記検査面に垂直となるように検査面側に配置し、前記励磁コイルは法線軸が検査面と水平となるように前記検出コイルの上に配置し、かつ、前記励磁コイルおよび前記検出コイルをアーチ状に覆う電磁石を配置したことを特徴とする。   Further, according to the present invention, the detection coil is disposed on the inspection surface side so that a normal axis is perpendicular to the inspection surface, and the excitation coil is disposed on the detection coil so that the normal axis is horizontal to the inspection surface. And an electromagnet that covers the excitation coil and the detection coil in an arch shape.

本発明によれば、磁性材の平板を検査対象とする場合に、磁気ノイズを抑制できるのでECT信号のS/N比を改善する効果がある。   According to the present invention, when a magnetic flat plate is to be inspected, magnetic noise can be suppressed, so that there is an effect of improving the S / N ratio of the ECT signal.

まず、渦電流探傷センサの基本構成である一様渦電流センサについて説明する。図2は一様渦電流センサの構造を示している。一様渦電流センサは、フェライトコア等の磁性材の周りに導線を縦巻きにした励磁コイル4とその下方に配置された平面型の検出コイル5で構成されている。   First, a uniform eddy current sensor, which is a basic configuration of an eddy current flaw detection sensor, will be described. FIG. 2 shows the structure of a uniform eddy current sensor. The uniform eddy current sensor includes an exciting coil 4 in which a conductive wire is wound around a magnetic material such as a ferrite core and a planar detection coil 5 disposed below the exciting coil 4.

図3は一様渦電流センサの渦電流分布を示している。検出コイル5の縦横寸法が励磁コイル4より相対的に小さいため、検出コイル5の直下の渦電流は大きさと向きの一様な分布となっている。   FIG. 3 shows the eddy current distribution of the uniform eddy current sensor. Since the vertical and horizontal dimensions of the detection coil 5 are relatively smaller than those of the excitation coil 4, the eddy current immediately below the detection coil 5 has a uniform distribution of magnitude and direction.

励磁コイル4に任意周波数の交流電流を流すと、励磁コイル4と鎖交する磁束が発生する。この磁束が試験体6に侵入すると、電磁誘導により試験体6に渦電流8が生じる。渦電流8の分布は試験体6の導電率や透磁率等の材料特性に影響される。すなわち、欠陥(空隙)のある場所で、渦電流8の分布は大きく変化する。その変化分を検出コイル5との鎖交磁束量の変化として捕らえ、電気信号(ETC信号)に変換して観測する。   When an alternating current having an arbitrary frequency is passed through the exciting coil 4, a magnetic flux interlinking with the exciting coil 4 is generated. When this magnetic flux enters the test body 6, an eddy current 8 is generated in the test body 6 by electromagnetic induction. The distribution of the eddy current 8 is affected by material properties such as conductivity and magnetic permeability of the test body 6. That is, the distribution of the eddy current 8 changes greatly at a place where there is a defect (void). The change is captured as a change in the amount of magnetic flux linkage with the detection coil 5, and is converted into an electric signal (ETC signal) and observed.

渦電流探傷試験は上記の検査原理を用いるため、試験体6の物理状態が空間的にバラツキをもつ場合にもECT信号が観測される。検査対象が非磁性材である場合には材料特性のバラツキは無視できる程度に小さいが、炭素鋼等の磁性材を検査対象とした場合、試験体6の磁化状態にECT信号は強く影響される。これが、磁気ノイズと呼ばれる擾乱ノイズとなる。このため、本発明では検査面を永久磁石(または電磁石)により一様に磁化して磁気ノイズを低減する。   Since the eddy current test uses the above-described inspection principle, an ECT signal is observed even when the physical state of the test body 6 varies spatially. When the inspection object is a non-magnetic material, the variation in material characteristics is negligibly small. However, when a magnetic material such as carbon steel is the inspection object, the ECT signal is strongly influenced by the magnetization state of the specimen 6. . This is disturbance noise called magnetic noise. For this reason, in the present invention, the inspection surface is uniformly magnetized by a permanent magnet (or electromagnet) to reduce magnetic noise.

本発明の最良の実施形態は、励磁コイルと検出コイルを有し、平面の検査面の欠陥を検査する渦電流探傷装置である。検出コイルは法線軸が検査面に垂直となるように検査面側に配置し、励磁コイルは法線軸が検査面と水平となるように検出コイルの上に配置し、励磁コイルの法線軸と平行に永久磁石または電磁石を配置する。また、検出コイルの法線軸からの視点で、励磁コイルの縦、横の寸法は検出コイルのそれより相対的に大きくされる。
(実施例1)
図4は本発明の実施例1に係る渦電流探傷システムの構成図である。渦電流探傷システムはECTセンサ14の位置制御駆動系と探傷制御系に大別できる。位置制御系は、ECTセンサ14を装着したXYZステージ12を位置制御回路11を介してコンピュータ10で制御する。XYZステージ12、位置制御回路11及びコンピュータ10は市販品で代用できる。探傷制御系では、ECTセンサ14と渦電流探傷器13が電気的に接続されており、コンピュータ10により制御する。コンピュータ10による制御の状態はモニタ9で監視される。
The best embodiment of the present invention is an eddy current flaw detector that has an excitation coil and a detection coil and inspects a defect on a flat inspection surface. The detection coil is arranged on the inspection surface side so that the normal axis is perpendicular to the inspection surface, and the excitation coil is arranged on the detection coil so that the normal axis is horizontal to the inspection surface and parallel to the normal axis of the excitation coil. A permanent magnet or an electromagnet is disposed on the surface. In addition, from the viewpoint of the normal axis of the detection coil, the vertical and horizontal dimensions of the excitation coil are relatively larger than that of the detection coil.
Example 1
FIG. 4 is a configuration diagram of the eddy current flaw detection system according to the first embodiment of the present invention. The eddy current flaw detection system can be roughly divided into a position control drive system of the ECT sensor 14 and a flaw detection control system. The position control system controls the XYZ stage 12 equipped with the ECT sensor 14 by the computer 10 via the position control circuit 11. The XYZ stage 12, the position control circuit 11, and the computer 10 can be replaced with commercially available products. In the flaw detection control system, the ECT sensor 14 and the eddy current flaw detector 13 are electrically connected and controlled by the computer 10. The state of control by the computer 10 is monitored by a monitor 9.

次に、ECTセンサの構造を説明する。図1は実施例1によるECTセンサの構造を示している。永久磁石3をコアとしてその周りに導線を縦巻きにした励磁コイル4と、その下方に配置された平面型の検出コイル5で構成されている。励磁コイル4の法線軸と検出コイル5の法線軸は垂直となる。励磁コイル4の縦横寸法は検出コイル5のそれより十分に大きく構成される。   Next, the structure of the ECT sensor will be described. FIG. 1 shows the structure of an ECT sensor according to the first embodiment. It is composed of an exciting coil 4 having a permanent magnet 3 as a core and a conductive wire vertically wound around it, and a planar detection coil 5 arranged below the exciting coil 4. The normal axis of the excitation coil 4 and the normal axis of the detection coil 5 are perpendicular. The vertical and horizontal dimensions of the excitation coil 4 are sufficiently larger than that of the detection coil 5.

永久磁石3の磁束2の方向は平面型の検出コイル5の面に対して垂直な方向で、平面の試験体6に作用する。永久磁石3のN極とS極が反対向きの場合も同様である。永久磁石3及び励磁コイル4と検出コイル5は電磁的に遮蔽されたケース1に封入されており、励磁コイル4および検出コイル5の末端が外部入出力端子と接続されている。   The direction of the magnetic flux 2 of the permanent magnet 3 is a direction perpendicular to the surface of the planar detection coil 5 and acts on the planar specimen 6. The same applies when the N pole and S pole of the permanent magnet 3 are in opposite directions. The permanent magnet 3, excitation coil 4 and detection coil 5 are enclosed in an electromagnetically shielded case 1, and the ends of the excitation coil 4 and detection coil 5 are connected to external input / output terminals.

本渦電流探傷システムの動作について説明する。全ての制御は、モニタ9で状態を監視して、コンピュータ10で設定を変更する。コンピュータ10での設定情報(XYZ移動距離と移動速度等)が位置制御回路11に送信され、位置制御回路はその情報をもとにXYZステージ12を制御し、各方向にステージが移動する。探傷制御系においては、コンピュータ10での設定情報(送信周波数や電圧等)が渦電流探傷器13に送信される。渦電流探傷器13からECTセンサ14の励磁コイル4の外部入力端子に設定周波数の電圧が印加される。ECTセンサ14の検出コイル5の外部出力端子からの信号電圧は渦電流探傷器13に送られる。渦電流探傷器13は、コンピュータ10による設定情報(位相や利得等)をもとに信号処理を行い、デジタル信号(ECT信号)としてコンピュータ10に送信する。ECT信号はモニタ9で観測される。上記の位置制御系及び探傷制御系の制御は時間的に並行処理され、各移動位置でのECT信号がモニタされる。   The operation of the eddy current flaw detection system will be described. In all controls, the monitor 9 monitors the state and the computer 10 changes the setting. Setting information (XYZ moving distance, moving speed, etc.) in the computer 10 is transmitted to the position control circuit 11, and the position control circuit controls the XYZ stage 12 based on the information, and the stage moves in each direction. In the flaw detection control system, setting information (transmission frequency, voltage, etc.) in the computer 10 is transmitted to the eddy current flaw detector 13. A voltage having a set frequency is applied from the eddy current flaw detector 13 to the external input terminal of the exciting coil 4 of the ECT sensor 14. The signal voltage from the external output terminal of the detection coil 5 of the ECT sensor 14 is sent to the eddy current flaw detector 13. The eddy current flaw detector 13 performs signal processing based on setting information (phase, gain, etc.) by the computer 10 and transmits it to the computer 10 as a digital signal (ECT signal). The ECT signal is observed on the monitor 9. The above control of the position control system and the flaw detection control system are processed in parallel in time, and the ECT signal at each moving position is monitored.

本実施例のECTセンサによる試験結果を説明する。図5は検査対象とする試験体の説明図である。SUS304材を母材とする試験体上にクラッド材16で肉盛溶接したものである。母材17にはスリット15が図示のように配置してある。この試験体上を従来の渦電流センサ及び本発明の一様渦電流センサで走査し、それぞれのECT信号を観測した。走査範囲は80mm×100mmである。   Test results using the ECT sensor of this example will be described. FIG. 5 is an explanatory diagram of a specimen to be inspected. This is a build-up weld with a clad material 16 on a specimen made of SUS304 as a base material. The base material 17 is provided with slits 15 as shown. The specimen was scanned with a conventional eddy current sensor and the uniform eddy current sensor of the present invention, and each ECT signal was observed. The scanning range is 80mm x 100mm.

図6に従来のECTセンサによるECT信号、図7に本実施例によるECT信号を示す。図6では、磁気ノイズの影響が大きくスリット15によるECT信号は明瞭には観測できなかった。一方、図7では磁気ノイズが抑制され、スリット15からのECT信号の観測が可能になっている。
(実施例2)
実施例1にあっては、永久磁石3の周囲に励磁コイル4を巻きつけた構造を持つ一様渦電流センサであったが、他の配置であってもよい。
FIG. 6 shows an ECT signal by a conventional ECT sensor, and FIG. 7 shows an ECT signal according to this embodiment. In FIG. 6, the influence of magnetic noise is large, and the ECT signal from the slit 15 cannot be clearly observed. On the other hand, in FIG. 7, the magnetic noise is suppressed, and the ECT signal from the slit 15 can be observed.
(Example 2)
In the first embodiment, the uniform eddy current sensor has a structure in which the exciting coil 4 is wound around the permanent magnet 3, but other arrangements may be used.

図8は実施例2によるECTセンサの構造を示している。空芯の励磁コイル4の上方に永久磁石3を配置し、励磁コイル4の下方には平面型の検出コイル5を配置している。永久磁石3による磁束2の方向は平面型の検出コイル5に対して垂直な方向で、N極とS極が反対向きとなる場合も同様である。永久磁石3、励磁コイル4及び検出コイル5は電磁的に遮蔽されたケース1に封入されている。その他の構成や作用は実施例1と同様である。   FIG. 8 shows the structure of an ECT sensor according to the second embodiment. A permanent magnet 3 is disposed above the air-core excitation coil 4, and a planar detection coil 5 is disposed below the excitation coil 4. The direction of the magnetic flux 2 by the permanent magnet 3 is a direction perpendicular to the planar detection coil 5, and the same applies when the N pole and the S pole are opposite to each other. The permanent magnet 3, the excitation coil 4 and the detection coil 5 are enclosed in an electromagnetically shielded case 1. Other configurations and operations are the same as those in the first embodiment.

図8の構成においても、永久磁石3による磁束2は試験体6内に浸透している。その結果、実施例1と同様の作用効果を発揮し、磁気ノイズが抑制できる。
(実施例3)
図9は実施例1を変形した実施例3によるECTセンサの構造を示す。永久磁石3の磁極の向きを励磁コイル4の軸方向とし、永久磁石3の両端部に磁性材のヨーク20を取り付け、試験体6との間に磁路を構成している。その他の構成や作用は実施例1と同様である。
Also in the configuration of FIG. 8, the magnetic flux 2 by the permanent magnet 3 penetrates into the test body 6. As a result, the same effects as those of the first embodiment can be exhibited and magnetic noise can be suppressed.
(Example 3)
FIG. 9 shows the structure of the ECT sensor according to the third embodiment, which is a modification of the first embodiment. The direction of the magnetic pole of the permanent magnet 3 is set to the axial direction of the exciting coil 4, magnetic yokes 20 are attached to both ends of the permanent magnet 3, and a magnetic path is formed between the test piece 6. Other configurations and operations are the same as those in the first embodiment.

図9の構成によれば、永久磁石3の磁束2はヨーク20を介して試験体6内に浸透するので、浸透する磁束の効率が高い。その結果、実施例1よりも小容量の永久磁石でも同様の作用効果を発揮でき、ECTセンサを小型化できる。
(実施例4)
実施例1−3にあっては、永久磁石を用いたECTセンサであったが、電磁石を用いてもよい。図10は実施例4によるECTセンサの構造を示す。コア7の周りに導線を縦巻きにした励磁コイル4とその下方に配置された矩形平面型の検出コイル5で構成された一様渦電流センサの上方に、馬蹄形状の電磁石18を配置している。この場合も電磁石18による磁束2の方向は試験体6の面に対して水平な方向で、磁極が反対向きとなる場合も同様である。
According to the configuration of FIG. 9, the magnetic flux 2 of the permanent magnet 3 penetrates into the test body 6 through the yoke 20, so the efficiency of the penetrating magnetic flux is high. As a result, even with a permanent magnet having a smaller capacity than that of the first embodiment, the same effect can be exhibited, and the ECT sensor can be miniaturized.
Example 4
In Example 1-3, the ECT sensor uses a permanent magnet, but an electromagnet may be used. FIG. 10 shows the structure of an ECT sensor according to the fourth embodiment. A horseshoe-shaped electromagnet 18 is disposed above a uniform eddy current sensor composed of an exciting coil 4 having a conducting wire wound vertically around a core 7 and a rectangular planar detection coil 5 disposed below the exciting coil 4. Yes. In this case as well, the direction of the magnetic flux 2 by the electromagnet 18 is horizontal with respect to the surface of the test body 6, and the same applies to the case where the magnetic poles are opposite.

図11は実施例4における渦電流探傷システムの構成を示す。実施例4では電磁石駆動装置19が追加され、センサの外部入出力端子を介して電磁石18の配線と接続されている。電磁石駆動装置19により電力が供給されると、電磁石18より磁束が発生する。電磁石18による磁束は図10のように試験体6の表層部に浸透して、磁気ノイズが抑制される。   FIG. 11 shows a configuration of an eddy current flaw detection system according to the fourth embodiment. In the fourth embodiment, an electromagnet driving device 19 is added and connected to the wiring of the electromagnet 18 via an external input / output terminal of the sensor. When electric power is supplied from the electromagnet driving device 19, magnetic flux is generated from the electromagnet 18. The magnetic flux by the electromagnet 18 penetrates into the surface layer portion of the test body 6 as shown in FIG. 10, and the magnetic noise is suppressed.

本発明の実施例1による渦電流探傷センサの構造図。1 is a structural diagram of an eddy current flaw detection sensor according to Embodiment 1 of the present invention. 一様渦電流センサの構造図。1 is a structural diagram of a uniform eddy current sensor. 一様渦電流センサによる渦電流分布を表す模式図。The schematic diagram showing the eddy current distribution by a uniform eddy current sensor. 実施例1による渦電流探傷システムの構成を示すブロック図。1 is a block diagram showing a configuration of an eddy current flaw detection system according to Embodiment 1. FIG. 試験体の構成図。The block diagram of a test body. 従来の渦電流探傷センサによる測定結果を表す観測図。The observation figure showing the measurement result by the conventional eddy current flaw detection sensor. 実施例1の渦電流探傷センサによる測定結果を表す観測図。FIG. 3 is an observation diagram showing measurement results obtained by the eddy current flaw detection sensor according to Example 1. 本発明の実施例2による渦電流探傷センサの構造図。FIG. 6 is a structural diagram of an eddy current flaw detection sensor according to Embodiment 2 of the present invention. 本発明の実施例3による渦電流探傷センサの構造図。FIG. 6 is a structural diagram of an eddy current flaw detection sensor according to Embodiment 3 of the present invention. 本発明の実施例4による渦電流探傷センサの構造図。FIG. 6 is a structural diagram of an eddy current flaw detection sensor according to Example 4 of the present invention. 実施例4による渦電流探傷システムの構成を表すブロック図。FIG. 6 is a block diagram illustrating a configuration of an eddy current flaw detection system according to a fourth embodiment.

符号の説明Explanation of symbols

1…ケース、2…磁束、3…永久磁石、4…励磁コイル、5…検出コイル、6…試験体、7…コア、8…渦電流、9…モニタ、10…コンピュータ、11…位置制御回路、12…XYZステージ、13…渦電流探傷器、14…ECTセンサ、15…スリット、16…クラッド材、17…母材、18…電磁石、19…電磁石駆動装置、20…ヨーク。   DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Magnetic flux, 3 ... Permanent magnet, 4 ... Excitation coil, 5 ... Detection coil, 6 ... Test body, 7 ... Core, 8 ... Eddy current, 9 ... Monitor, 10 ... Computer, 11 ... Position control circuit , 12 ... XYZ stage, 13 ... Eddy current flaw detector, 14 ... ECT sensor, 15 ... slit, 16 ... clad material, 17 ... base material, 18 ... electromagnet, 19 ... electromagnet drive device, 20 ... yoke.

Claims (4)

励磁コイルと検出コイルを有し、平面の検査面の欠陥を検査する渦電流探傷装置において、
前記検出コイルは法線軸が前記検査面に垂直となるように検査面側に配置し、前記励磁コイルは法線軸が検査面と水平となるように前記検出コイルの上に配置し、かつ前記励磁コイルのコアとして永久磁石を配置し、該永久磁石の磁極の向きを前記検査面に対して垂直方向となるように配置したことを特徴とする渦電流探傷センサ。
In an eddy current flaw detector that has an excitation coil and a detection coil and inspects a defect on a flat inspection surface,
The detection coil is arranged on the inspection surface side so that the normal axis is perpendicular to the inspection surface, the excitation coil is arranged on the detection coil so that the normal axis is horizontal to the inspection surface, and the excitation An eddy current flaw detection sensor characterized in that a permanent magnet is disposed as a core of a coil, and a magnetic pole direction of the permanent magnet is disposed in a direction perpendicular to the inspection surface .
請求項1において、前記検出コイルの法線軸からの視点で、前記励磁コイルの縦、横の寸法は前記検出コイルのそれより相対的に大きいことを特徴とする渦電流探傷センサ。   2. The eddy current flaw detection sensor according to claim 1, wherein the vertical and horizontal dimensions of the excitation coil are relatively larger than those of the detection coil from the viewpoint of the normal axis of the detection coil. 励磁コイルと検出コイルを有し、平面の検査面の欠陥を検査する渦電流探傷装置において、
前記検出コイルは法線軸が前記検査面に垂直となるように検査面側に配置し、前記励磁コイルは法線軸が前記検査面と水平となるように前記検出コイルの上に配置し、かつ前記励磁コイルのコアとして永久磁石を配置し、該永久磁石の磁極の向きを前記励磁コイルの法線軸方向となるように配置したことを特徴とする渦電流探傷センサ。
In an eddy current flaw detector that has an excitation coil and a detection coil and inspects a defect on a flat inspection surface,
The detection coil is disposed on the inspection surface side so that the normal axis is perpendicular to the inspection surface, the excitation coil is disposed on the detection coil so that the normal axis is horizontal to the inspection surface, and An eddy current flaw detection sensor characterized in that a permanent magnet is disposed as a core of an exciting coil, and a magnetic pole direction of the permanent magnet is disposed in a normal axis direction of the exciting coil.
請求項において、前記永久磁石の端部に前記検査面との磁路を構成する磁性材のヨークを設けたことを特徴とする渦電流探傷センサ。 4. The eddy current flaw detection sensor according to claim 3 , wherein a yoke of a magnetic material that forms a magnetic path with the inspection surface is provided at an end of the permanent magnet.
JP2006002207A 2006-01-10 2006-01-10 Eddy current flaw detection sensor Expired - Fee Related JP4627499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002207A JP4627499B2 (en) 2006-01-10 2006-01-10 Eddy current flaw detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002207A JP4627499B2 (en) 2006-01-10 2006-01-10 Eddy current flaw detection sensor

Publications (2)

Publication Number Publication Date
JP2007183197A JP2007183197A (en) 2007-07-19
JP4627499B2 true JP4627499B2 (en) 2011-02-09

Family

ID=38339419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002207A Expired - Fee Related JP4627499B2 (en) 2006-01-10 2006-01-10 Eddy current flaw detection sensor

Country Status (1)

Country Link
JP (1) JP4627499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017871A1 (en) * 2012-09-06 2014-03-06 Institut Dr. Foerster Gmbh & Co. Kg Differential sensor and method for detecting anomalies in electrically conductive materials
EP2960669B1 (en) * 2013-02-25 2022-04-06 Nissan Motor Co., Ltd. Magnet evaluating device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357097A (en) * 1976-11-02 1978-05-24 Furukawa Electric Co Ltd:The Detection of magnetic foreign substance in non-magnetic metal wire
JPS63235854A (en) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd Flaw detector
JPH01110251A (en) * 1987-10-23 1989-04-26 Sumitomo Metal Ind Ltd Evaluation of integrity for one-side weld part
JPH05196607A (en) * 1992-01-17 1993-08-06 Hitachi Building Syst Eng & Service Co Ltd Flaw detecting device for magnetic material
JPH05281198A (en) * 1992-04-01 1993-10-29 Hitachi Building Syst Eng & Service Co Ltd Eddy current flaw detection device
JPH0694682A (en) * 1992-09-09 1994-04-08 Toshiba Corp Electromagnetic induction flaw detection probe
JPH07218473A (en) * 1994-01-27 1995-08-18 Asahi Chem Ind Co Ltd Interpolation type enveloped eddy current probe for magnetic pipe
JPH08136509A (en) * 1994-11-09 1996-05-31 Nikko Kensa Service Kk Eddy current flaw detection method and apparatus for inner surface layer of pipe
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357097A (en) * 1976-11-02 1978-05-24 Furukawa Electric Co Ltd:The Detection of magnetic foreign substance in non-magnetic metal wire
JPS63235854A (en) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd Flaw detector
JPH01110251A (en) * 1987-10-23 1989-04-26 Sumitomo Metal Ind Ltd Evaluation of integrity for one-side weld part
JPH05196607A (en) * 1992-01-17 1993-08-06 Hitachi Building Syst Eng & Service Co Ltd Flaw detecting device for magnetic material
JPH05281198A (en) * 1992-04-01 1993-10-29 Hitachi Building Syst Eng & Service Co Ltd Eddy current flaw detection device
JPH0694682A (en) * 1992-09-09 1994-04-08 Toshiba Corp Electromagnetic induction flaw detection probe
JPH07218473A (en) * 1994-01-27 1995-08-18 Asahi Chem Ind Co Ltd Interpolation type enveloped eddy current probe for magnetic pipe
JPH08136509A (en) * 1994-11-09 1996-05-31 Nikko Kensa Service Kk Eddy current flaw detection method and apparatus for inner surface layer of pipe
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector

Also Published As

Publication number Publication date
JP2007183197A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
KR101679446B1 (en) Eddy current flaw detection probe
US9030198B2 (en) Magnetic field sensor and method for producing a magnetic field sensor
JP6818977B2 (en) Electromagnetic ultrasonic sensor
WO2017158898A1 (en) Inspection device, inspection method and non-contact sensor
EP3749951A1 (en) Probe for eddy current non-destructive testing
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP4627499B2 (en) Eddy current flaw detection sensor
US4331919A (en) Apparatus for magnetic testing ferromagnetic sheet or strip material using rectangular coils
GB2031155A (en) Isotropic magnetising system
Prabhu Gaunkar et al. Optimization of sensor design for Barkhausen noise measurement using finite element analysis
KR101254300B1 (en) Apparatus for detecting thickness of the conductor using dual core
JPH07280774A (en) High-resolution eddy current probe
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP4336724B2 (en) Metal detector
JP6079648B2 (en) Foreign object detection device and detection method thereof
JP2010266277A (en) Eddy-current flaw detection system
JP5233835B2 (en) Eddy current flaw detection probe
Maruyama et al. Developments of flat∞ coil for defect searching in the curved surfaces
JP7387105B2 (en) electromagnetic ultrasound probe
JPH11295275A (en) Eddy current flaw detecting method and device
JP3223991U (en) Nondestructive inspection equipment
JP2011053160A (en) Magnetic detection sensor
JPH07113788A (en) Probe coil for eddy current flaw detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees