JP4626887B2 - Thermal insulation structure - Google Patents

Thermal insulation structure Download PDF

Info

Publication number
JP4626887B2
JP4626887B2 JP2005274733A JP2005274733A JP4626887B2 JP 4626887 B2 JP4626887 B2 JP 4626887B2 JP 2005274733 A JP2005274733 A JP 2005274733A JP 2005274733 A JP2005274733 A JP 2005274733A JP 4626887 B2 JP4626887 B2 JP 4626887B2
Authority
JP
Japan
Prior art keywords
heat insulating
layer
bag
heat
long material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005274733A
Other languages
Japanese (ja)
Other versions
JP2007087755A (en
Inventor
徹 岡崎
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005274733A priority Critical patent/JP4626887B2/en
Publication of JP2007087755A publication Critical patent/JP2007087755A/en
Application granted granted Critical
Publication of JP4626887B2 publication Critical patent/JP4626887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、冷媒によって冷却された超電導体の断熱構造に関する。特に、本発明は、超電導ケーブルのような長尺材に適用する場合であっても、断熱空間を長時間かけて真空引きする必要のない断熱構造に関する。   The present invention relates to a heat insulating structure of a superconductor cooled by a refrigerant. In particular, the present invention relates to a heat insulating structure that does not need to be evacuated for a long time even when applied to a long material such as a superconducting cable.

近年、超電導材料を積極的に利用して電気機器の性能を大幅に向上させる試みがなされている。特に、電力線に超電導材料を使用した超電導ケーブルは、常電導材料を使用したケーブルと同容量の電力を送電するときにケーブルの径を大幅に小さくすることができる。   In recent years, attempts have been made to significantly improve the performance of electrical equipment by actively using superconducting materials. In particular, a superconducting cable using a superconducting material for a power line can greatly reduce the diameter of the cable when transmitting electric power having the same capacity as a cable using a normal conducting material.

しかし、現在、常温で超電導状態にある超電導材料は存在しないため、超電導材料(超電導体)を使用した電気機器(超電導機器)は、超電導転移温度以下の極低温に冷却する必要がある。従って、超電導モータや超電導ケーブルなどの超電導機器は、超電導体を配置した低温部を断熱構造により断熱して、極低温を維持する、すなわち、超電導状態を維持するようにして運転しなければならない。   However, since there is no superconducting material that is in a superconducting state at room temperature, electrical equipment (superconducting equipment) using a superconducting material (superconductor) needs to be cooled to a cryogenic temperature lower than the superconducting transition temperature. Therefore, superconducting equipment such as a superconducting motor and a superconducting cable must be operated in such a manner that the low temperature portion where the superconductor is disposed is insulated by a heat insulating structure to maintain an extremely low temperature, that is, to maintain a superconducting state.

一般に超電導機器を断熱する場合、断熱構造は、超電導体(または、超電導体を具える機器)を内区画・外区画により二重に区画して、内区画の内部に超電導体が配置されるように形成するとともに、内外区画間を真空引きすることで構成されている。このような断熱構造として、代表的には超電導ケーブルにおける断熱構造が挙げられる(特許文献1)。   In general, when insulating a superconducting device, the heat insulating structure is such that the superconductor (or a device having a superconductor) is divided into two parts by an inner compartment and an outer compartment, and the superconductor is arranged inside the inner compartment. And forming a vacuum between the inner and outer compartments. A typical example of such a heat insulating structure is a heat insulating structure in a superconducting cable (Patent Document 1).

図6は、3心のケーブルコア10を有する超電導ケーブル1の概略断面図である。超電導ケーブル1は、ケーブルコア10を断熱管20の内管21内に収納した構成である。コア10は、中心から順にフォーマ11、超電導導体層12、絶縁層13、超電導シールド層14、保護層15により構成されている。一方、断熱管20は、断熱内管21と断熱外管22からなる二重管であり、この断熱管20のうちコア10が配置される内管21内を冷媒16が流通することで、コア10全体が冷却される。   FIG. 6 is a schematic cross-sectional view of a superconducting cable 1 having a three-core cable core 10. The superconducting cable 1 has a configuration in which the cable core 10 is accommodated in the inner tube 21 of the heat insulating tube 20. The core 10 includes a former 11, a superconducting conductor layer 12, an insulating layer 13, a superconducting shield layer 14, and a protective layer 15 in order from the center. On the other hand, the heat insulation pipe 20 is a double pipe composed of a heat insulation inner pipe 21 and a heat insulation outer pipe 22, and the refrigerant 16 circulates in the inner pipe 21 in which the core 10 is arranged in the heat insulation pipe 20. 10 The whole is cooled.

従来の断熱構造において、断熱管20を構成する内管21と外管22との間には、例えば、スーパーインシュレーションなどの断熱材(図示せず)が配置され、且つ、その内管21と外管22との間は真空引きされている。このような構造により、この断熱管20を境にして熱の出入が抑制され、コア10が極低温に維持される。   In the conventional heat insulating structure, a heat insulating material (not shown) such as super insulation is disposed between the inner tube 21 and the outer tube 22 constituting the heat insulating tube 20, and the inner tube 21 and The outer tube 22 is evacuated. With such a structure, heat input / output is suppressed at the heat insulating pipe 20, and the core 10 is maintained at an extremely low temperature.

特開2005−100777号公報Japanese Patent Laid-Open No. 2005-100777

しかし、上記のような断熱構造は、断熱構造を形成する二重の区画部材のうち、外区画が損傷して内外区画間の真空が破られるなどして、急激に断熱性能が低下することがあった。また、長尺の内・外区画間を真空引きする場合、この二重の区画の間を真空引きする作業に非常に時間がかかった。特に、超電導ケーブルなどの長尺の断熱管を真空引きする場合、ケーブルコアを取り囲む断熱内管と断熱外管との間をケーブルの全長に亘って真空引きしなければならず、この真空引き作業に真空ポンプを使用しても、数ヶ月の時間を要していた。また、真空引き作業の間、真空ポンプを駆動し続けるために、電気代が非常にかかっていた。   However, the heat insulating structure as described above may rapidly deteriorate the heat insulating performance due to the outer partition being damaged and the vacuum between the inner and outer sections being broken among the double partition members forming the heat insulating structure. there were. Further, when evacuating between long inner and outer compartments, it took a very long time to evacuate between the double compartments. In particular, when evacuating long insulated pipes such as superconducting cables, it is necessary to evacuate the entire length of the cable between the insulated inner pipe and the insulated outer pipe surrounding the cable core. Even if a vacuum pump was used, it took several months. In addition, during the evacuation operation, it was very expensive to keep driving the vacuum pump.

一方、真空引きすることなく超電導ケーブルの断熱内管と外管との間に断熱材を配置した場合、例えば、ポリウレタンフォームを断熱材として配置した場合、厚さ約50mmのポリウレタンフォームで内管の外周を覆っても所望の断熱性能を達成できない。しかも、超電導ケーブルの断熱内管の外周に上記のような厚さの断熱材を配置した場合、超電導ケーブルの外径が非常に大きくなる。このように超電導ケーブルの外径が大きくなると、ケーブルを曲げることが困難になり、ケーブルを配置する際の自由度が低下したり、通常の常電導の電力ケーブルに比べて外径を小さくすることができるという超電導ケーブルの利点を失ったりする。   On the other hand, when a heat insulating material is disposed between the heat insulating inner tube and the outer tube of the superconducting cable without evacuation, for example, when polyurethane foam is disposed as the heat insulating material, the polyurethane tube having a thickness of about 50 mm is used as the inner tube. Even if the outer periphery is covered, the desired heat insulation performance cannot be achieved. Moreover, when the heat insulating material having the above thickness is arranged on the outer periphery of the heat insulating inner tube of the superconducting cable, the outer diameter of the superconducting cable becomes very large. When the outer diameter of the superconducting cable becomes larger in this way, it becomes difficult to bend the cable, and the degree of freedom in arranging the cable is reduced, or the outer diameter is made smaller than that of a normal normal conducting power cable. Or lose the advantage of superconducting cables.

そこで、本発明の主目的は、従来の断熱構造よりも大きな断熱構造とすることなく、簡単且つ安価に形成することのできる断熱構造を提供することにある。   Therefore, a main object of the present invention is to provide a heat insulating structure that can be formed easily and inexpensively without using a heat insulating structure larger than the conventional heat insulating structure.

本発明は、熱伝導率を限定するとともに、複数の小さな真空領域に区切られた断熱材を使用して断熱構造を形成することにより上記の目的を達成する。   The present invention achieves the above object by limiting the thermal conductivity and forming a heat insulating structure using a heat insulating material partitioned into a plurality of small vacuum regions.

本発明は、低温部を区画する内区画と、内区画の外周側を区画する外区画との間に断熱材を配置してなる断熱構造である。ここで、低温部には超電導体が配置されており、断熱材は、シート状に形成した袋状部材を複数つなぎ合わせて形成されている。そして、各袋状部材は、その内部に芯材が充填され、且つ、真空引きされた構造を有し、前記断熱材の熱伝導率は、0.0030W/(m・K)以下であることを特徴とする。   This invention is a heat insulation structure formed by arrange | positioning a heat insulating material between the inner division which divides a low-temperature part, and the outer division which divides the outer peripheral side of an inner division. Here, a superconductor is disposed in the low temperature part, and the heat insulating material is formed by connecting a plurality of bag-shaped members formed in a sheet shape. Each bag-like member has a structure in which the core material is filled and evacuated, and the thermal conductivity of the heat insulating material is 0.0030 W / (m · K) or less. Features.

断熱構造は、低温部を内区画・外区画により二重に区画して構成される。これら内・外区画は、超電導体を具える機器の形態に応じて適宜選択すれば良い。例えば、超電導ケーブルでは内・外区画ともにステンレス製のコルゲート管が好適に利用できる。その他、外区画はステンレスラミネートテープなどの区画性の高いテープを巻回することで形成しても良い。いずれにしても、熱・気体・液体などの出入を制限し、断熱材を機械的に補強することができるように形成することが好ましい。   The heat insulating structure is configured by dividing a low temperature portion into two by an inner compartment and an outer compartment. These inner and outer compartments may be appropriately selected according to the form of the device having the superconductor. For example, in a superconducting cable, a corrugated pipe made of stainless steel can be suitably used for both the inner and outer compartments. In addition, the outer compartment may be formed by winding a highly compartmentalized tape such as a stainless laminate tape. In any case, it is preferable that the heat insulating material can be mechanically reinforced by restricting the entry and exit of heat, gas and liquid.

低温部に配置される超電導体としては、超電導ケーブルのケーブルコアや超電導コイル、超電導マグネット、超電導モータのコイルなどが挙げられ、これら超電導体は、液体窒素や液体水素などの冷媒で極低温に冷却されている。   Superconductors placed in the low-temperature part include superconducting cable cable cores, superconducting coils, superconducting magnets, superconducting motor coils, etc., and these superconductors are cooled to cryogenic temperatures with refrigerants such as liquid nitrogen and liquid hydrogen. Has been.

そして、断熱材は、芯材を充填した袋状部材を複数つなぎ合わせて形成されており、各袋状部材の内部を真空引きしてある。このような断熱材の熱伝導率が、0.0030W/(m・K)以下になるようにすると、超電導体を冷却する低温部に適用する断熱材として十分な性能を発揮する。好ましくは、断熱材の熱伝導率は0.0025W/(m・K)以下である。より好ましくは、断熱材の熱伝導率は0.0020W/(m・K)以下である。   The heat insulating material is formed by connecting a plurality of bag-shaped members filled with a core material, and the inside of each bag-shaped member is evacuated. When the thermal conductivity of such a heat insulating material is 0.0030 W / (m · K) or less, sufficient performance is exhibited as a heat insulating material applied to a low temperature portion for cooling the superconductor. Preferably, the heat conductivity of the heat insulating material is 0.0025 W / (m · K) or less. More preferably, the heat conductivity of the heat insulating material is 0.0020 W / (m · K) or less.

断熱材を構成する袋状部材は、プラスチック層に金属層をラミネートした構造を有することが好ましい。プラスチック層は、袋状部材の内部を真空引きしたときの圧力や物理的外力により損傷しにくい材料で形成すると良い。例えば、フッ素系樹脂などが挙げられるが、これらに限定されない。また、金属層は、輻射線を反射するために設けられており、例えば、アルミニウムなどが好適に利用できる。上記のようなプラスチック層と金属層は交互に複数積層しても良いし、種類の異なるプラスチックを複数層積層したプラスチック層に金属層をラミネートしても良い。   The bag-like member constituting the heat insulating material preferably has a structure in which a metal layer is laminated on a plastic layer. The plastic layer may be formed of a material that is not easily damaged by pressure or physical external force when the bag-like member is evacuated. For example, fluororesin etc. are mentioned, but it is not limited to these. Moreover, the metal layer is provided in order to reflect a radiation ray, for example, aluminum etc. can be utilized suitably. A plurality of plastic layers and metal layers as described above may be alternately laminated, or a metal layer may be laminated on a plastic layer in which a plurality of different types of plastics are laminated.

袋状部材に充填される芯材は、袋状部材の内部を真空にしたときに袋状部材の形態を保持するために充填されている。ここで、芯材は、繊維状であっても、シリカなどの粉末状であっても良い。繊維状のものを使用する場合は、繊維を層状に配向して袋状部材の厚さ方向に熱が伝導することを抑制したり、繊維長を一定範囲に規定して芯材の強度を確保しつつ繊維間の熱の伝達経路が分断されるようにすることが好ましい。   The core material filled in the bag-like member is filled in order to maintain the shape of the bag-like member when the inside of the bag-like member is evacuated. Here, the core material may be in the form of fibers or powder such as silica. When using a fibrous material, orient the fibers in layers to prevent heat conduction in the thickness direction of the bag-shaped member, or to ensure the strength of the core material by regulating the fiber length to a certain range However, it is preferable that the heat transfer path between the fibers is cut off.

断熱材を構成する袋状部材の大きさは、特に限定されない。好ましくは、袋状部材の内部を短時間で真空引きすることができる程度の大きさに形成する。このような大きさに形成すると、内区画全体を覆うことができない場合があるが、このような問題は、内区画全体を覆うように複数の袋状部材をつなぎ合わせて配置し、各袋状部材の端部を重なるように配置することで解決できる。また、上記の問題は、袋状部材をつなぎ合わせて形成した長尺材を内区画の外周に螺旋状に巻回することでも解決することができる。特に、長尺材を螺旋状に巻回する方法は、超電導ケーブルなど、長尺な内・外区画を有する断熱構造において、好適に利用することができる。また、長尺材を螺旋状に巻回すると、巻き始めと巻き終わりの2箇所を固定するだけでも長尺材を内区画に十分保持することができる。そして、長尺材を内区画に螺旋状に巻回するときは、あるターンとそのターンに隣接するターンの一部が重なる重ね巻きにより形成すると内区画が露出する可能性が低く好ましいが、後述するように長尺材を多層に巻回するのであれば、あるターンの側縁とそのターンに隣接するターンの側縁が一致する突合わせ巻きでも良いし、あるターンの側縁とそのターンに隣接するターンの側縁との間に間隔が設けられているピッチ巻きでもかまわない。いずれの巻回方法を選択するにしても、内区画の外周を余すところ無く覆うように形成する。   The magnitude | size of the bag-shaped member which comprises a heat insulating material is not specifically limited. Preferably, the inside of the bag-like member is formed to a size that can be evacuated in a short time. If it is formed in such a size, the entire inner compartment may not be covered, but such a problem is that a plurality of bag-like members are connected and arranged so as to cover the entire inner compartment. This can be solved by arranging the end portions of the members so as to overlap each other. Moreover, said problem can be solved also by winding the elongate material formed by connecting the bag-shaped member around the outer periphery of the inner section in a spiral manner. In particular, the method of spirally winding a long material can be suitably used in a heat insulating structure having a long inner / outer section such as a superconducting cable. Further, when the long material is wound in a spiral shape, the long material can be sufficiently held in the inner compartment only by fixing the two places of the start and end of winding. And when winding a long material spirally around the inner compartment, it is preferable that the inner compartment is exposed if it is formed by lap winding in which a certain turn and a part of the turn adjacent to the turn overlap, which will be described later. If a long material is wound in multiple layers, the side edge of a turn and the side edge of the turn adjacent to the turn may be matched, or the side edge of a turn and the turn Pitch winding may be used in which a gap is provided between the side edges of adjacent turns. Whichever winding method is selected, the winding is formed so as to cover the outer periphery of the inner section without leaving a surplus.

袋状部材をつなぎ合わせるときは、袋状部材の真空領域が重なるようにしても良いし、真空領域が重ならないようにしてもかまわない。袋状部材の真空領域が重なるように袋状部材をつなぎ合わせると、即ち、ある袋状部材と隣接する袋状部材が重なるように形成すると、つなぎ合わせた袋状部材の厚さ方向に常に真空領域が存在することになるので、袋状部材をつなぎ合わせた断熱材の断熱性能が良い。一方、袋状部材の真空領域が重ならないように形成する場合、即ち、複数の袋状部材をつき合わせて、この突き合わせ部分を直接接合したり、突き合わせ部分の間をシート状の部材で橋渡しするように接合したりする場合、接合した部分が関節のように屈曲するので、袋状部材をつなぎ合わせて形成した断熱材を内区画の形状に合わせて曲げやすくなる。上記の接合方法に加えて、特に、袋状部材をつなぎ合わせて長尺材にするときに、袋状部材が長辺と短辺を有する長方形ならば長辺同士または短辺同士を接合すると、長尺材の幅方向に凹凸が形成されないので、長尺材を内区画に配置しやすくなる。   When the bag-like members are joined together, the vacuum regions of the bag-like members may overlap or the vacuum regions may not overlap. When the bag-like members are joined so that the vacuum regions of the bag-like members overlap, that is, when a bag-like member adjacent to a certain bag-like member is formed to overlap, a vacuum is always applied in the thickness direction of the joined bag-like members. Since the region exists, the heat insulating performance of the heat insulating material obtained by connecting the bag-like members is good. On the other hand, when forming so that the vacuum region of a bag-like member may not overlap, in other words, a plurality of bag-like members are put together and this butting part is directly joined, or a bridging part is bridged by a sheet-like member In the case of joining, the joined portion is bent like a joint, so that the heat insulating material formed by joining the bag-like members can be easily bent according to the shape of the inner compartment. In addition to the above joining method, in particular, when joining the bag-like members to make a long material, if the bag-like member is a rectangle having a long side and a short side, joining the long sides or short sides, Since unevenness is not formed in the width direction of the long material, it becomes easy to arrange the long material in the inner section.

上記のように形成した断熱材、特に、長尺材を内区画に巻回するときは、複数層になるように行なうことが好ましい。すでに述べたように長尺材は単位寸法を有する単位断熱部材(内部に芯材を充填し、真空引きした一つの袋状部材)をつなぎ合わせて形成しているので、このつなぎ合わせた部分の断熱性能が低下して断熱の弱点となる場合がある。そこで、長尺材を複数層に亘って巻回すると、ある層における断熱部材同士のつなぎ目を他の層(特に、隣接する層)の断熱部材が覆うように配置することが可能になり、つなぎ目の断熱性能の低下を補うことができる。また、長尺材を螺旋に巻回したときに隣接する長尺材のターンの境目も、前述のつなぎ目と同様に断熱の弱点となり得るが、前述したつなぎ目の断熱性能の低下を補う場合と同様に、ある層における長尺材のターンの境目を他の層の断熱部材が覆うようにすることで断熱性能の低下を補うことができる。このように、ある層におけるつなぎ目や境目を他の層(特に、隣接する層)の断熱部材が覆うようにすると、断熱構造の断熱性能が向上する。具体的には、ある層における隣接する長尺材をまたぐように次の層の長尺材を配置したり、ある層における断熱部材のつなぎ目と、この層に隣接する層における断熱部材のつなぎ目がずれるように断熱部材を配置したりする。上記のように、長尺材の巻回を複数層に亘って行なうことにより、高い断熱性能を有する断熱構造とすることができるだけでなく、長尺材の巻回が、突合せ巻きか重ね巻きかピッチ巻きかを問わない構成とすることができる。   When the heat insulating material formed as described above, in particular, a long material is wound around the inner compartment, it is preferable to carry out a plurality of layers. As already mentioned, the long material is formed by joining unit heat insulation members (units filled with core material and evacuated into one bag-like member) having unit dimensions. Insulation performance may be reduced, which may be a weak point of insulation. Therefore, when a long material is wound over a plurality of layers, it becomes possible to arrange the joints between the heat insulation members in a certain layer so as to cover the heat insulation members of other layers (especially adjacent layers). This can compensate for the decrease in heat insulation performance. In addition, when the long material is wound in a spiral, the border between the turns of the adjacent long material can be a weak point of heat insulation similarly to the above-mentioned joint, but it is the same as the case where the above-described decrease in the heat insulation performance of the joint is compensated. Moreover, the fall of heat insulation performance can be compensated by making the heat insulation member of another layer cover the boundary of the turn of the elongate material in a certain layer. Thus, if the heat insulation member of another layer (especially adjacent layer) covers the joint and boundary in a certain layer, the heat insulation performance of the heat insulation structure is improved. Specifically, a long material of the next layer is arranged so as to straddle adjacent long materials in a layer, or a joint of a heat insulating member in a layer and a joint of a heat insulating member in a layer adjacent to this layer A heat insulating member is arranged so as to be displaced. As described above, by winding a long material over a plurality of layers, it is possible not only to obtain a heat insulating structure having high heat insulating performance, but also whether the winding of the long material is a butt winding or a lap winding. It can be set as the structure which does not ask | require pitch winding.

長尺材を多層に巻回する場合の巻回方法は、全ての層において螺旋のピッチが同一であっても良いし、各層によって螺旋のピッチが異なっていても良い。例えば、巻回方向が同じでピッチが異なるようにしたり、巻回方向を異なるようにしたりする。いずれの巻回方法を選択するにしても前述のように境目やつなぎ目による断熱の弱点を補強するような構成とする。   In the winding method in the case of winding a long material in multiple layers, the spiral pitch may be the same in all layers, or the spiral pitch may be different for each layer. For example, the winding direction is the same and the pitch is different, or the winding direction is different. Regardless of which winding method is selected, it is configured to reinforce the weak point of heat insulation due to the boundary or joint as described above.

ここで、超電導ケーブルの断熱管のように長尺の区画部材を有する場合は、その外周に長尺材を螺旋に巻回すれば良いが、例えば、立方状の区画部材の場合、長尺材を螺旋に巻回すると、周方向に連続する4面を覆うことができるが、残りの2面を覆うことができない。そこで、立方状の区画部材を断熱する場合は、断熱材を区画部材の形状に合わせた展開図のように形成すると、区画部材に断熱材を無駄なく、且つ、簡単に配置することができる。もちろん、断熱材を展開図のように形成する方法は、立方状の区画部材に限定されず、多面体状の区画部材にも適用できる。ところで、立方状の区画部材を断熱する場合、長尺材を使用することもできる。具体的には、立方状の区画部材の周方向に連続する4面に長尺材を螺旋に巻回するとともに、残りの2面の形状に合わせた別の断熱部材を配置する。また、他の巻回方法として、2つの長尺材を用意して、この2つの長尺材の巻回軸がねじれの関係になるように巻回して、立方状の区画部材の全体を覆うようにしても良い。上記のように複数の長尺材をねじれの関係になるように巻回する方法は、立方状以外の多面体状の区画部材に関しても適用できる。   Here, in the case of having a long partition member like a heat insulation tube of a superconducting cable, a long member may be wound around the outer periphery in a spiral manner. For example, in the case of a cubic partition member, a long member is used. Can be covered in the circumferential direction, but can cover the remaining two surfaces. Therefore, in the case of insulating the cubic partition member, if the heat insulating material is formed as shown in a developed view in accordance with the shape of the partition member, the heat insulating material can be easily disposed on the partition member without waste. Of course, the method of forming the heat insulating material as shown in the development view is not limited to the cubic partition member, and can be applied to a polyhedral partition member. By the way, when insulating a cubic division member, a long material can also be used. Specifically, a long material is spirally wound on four surfaces that are continuous in the circumferential direction of the cubic partition member, and another heat insulating member that matches the shape of the remaining two surfaces is disposed. As another winding method, two long materials are prepared and wound so that the winding shafts of the two long materials are in a torsional relationship, thereby covering the entire cubic partition member. You may do it. The method of winding a plurality of long materials so as to have a twisted relationship as described above can also be applied to a polyhedral partition member other than a cubic shape.

その他、断熱構造は、以下に示すような構成を単独で、あるいは組み合わせて具えることで、その断熱性能を向上させることができる。   In addition, a heat insulation structure can improve the heat insulation performance by providing the structure as shown below independently or in combination.

[1] 袋状部材の金属層の少なくとも一部を分断する
袋状部材の金属層を分断する構成としては、主として、以下に示す2つの構成が挙げられる。1つ目の構成は、金属層における渦電流の発生を抑制するための構成である。区画部材に巻回する断熱部材は、金属層をラミネートした構造であることはすでに述べたが、例えば、交流が流れる超電導体を有する超電導機器の近傍に金属が存在すると、金属の表面に渦電流が発生する。渦電流が発生すると、この渦電流が原因で発生する磁場が超電導体の磁場を乱したり、金属が発熱して低温部の温度を上昇させたりするなどの問題が生じる。このような渦電流の発生を抑制する構成として、例えば、袋状部材の一面において、プラスチック層にラミネートする金属層を部分的に分断するように形成する。渦電流は、金属層において磁束を打ち消すように同心状に発生するため、渦電流が同心状に広がらないように金属層を分断すると良い。具体的には、プラスチック層上に存在する金属層を縞状に分断することや、レンガ壁の目地パターンのように分断することが挙げられる。また、袋状部材の表面と裏面で金属層の分断のパターンを異ならせることが好ましい。例えば、金属層を縞状にする場合は、この縞が表面と裏面で交差するようにしたり、表面において金属層が設けられていない部分に対応する裏面の部分に金属層を設けたりする。このように構成すれば、袋状部材の一方の面からの縞状の金属層の隙間を通り抜けて入射する輻射線の大部分を、他方の面の金属層で反射することができる。即ち、袋状部材を通り抜ける輻射線を減らすことができる。ここで、長尺材を多層に巻回して断熱構造を形成する場合は、各層において縞状の金属層がずれるように配置することで、断熱構造の外部から入射する輻射線を、多層に巻回した層のうちの少なくとも一層において反射させるようにしても良い。
[1] Separating at least a part of the metal layer of the bag-shaped member As the configuration of dividing the metal layer of the bag-shaped member, there are mainly the following two configurations. The first configuration is a configuration for suppressing the generation of eddy currents in the metal layer. Although it has already been described that the heat insulating member wound around the partition member has a structure in which a metal layer is laminated, for example, when a metal exists in the vicinity of a superconducting device having a superconductor through which an alternating current flows, an eddy current is generated on the surface of the metal. Will occur. When an eddy current is generated, the magnetic field generated by the eddy current disturbs the magnetic field of the superconductor, or the metal generates heat and raises the temperature of the low temperature part. As a configuration for suppressing the generation of such eddy currents, for example, a metal layer laminated on a plastic layer is formed so as to be partially divided on one surface of a bag-like member. Since the eddy current is generated concentrically so as to cancel the magnetic flux in the metal layer, the metal layer is preferably divided so that the eddy current does not spread concentrically. Specifically, the metal layer existing on the plastic layer may be divided into stripes or divided like a joint pattern on a brick wall. Moreover, it is preferable to make the pattern of dividing the metal layer different between the front surface and the back surface of the bag-shaped member. For example, when the metal layer is striped, the stripes intersect at the front surface and the back surface, or the metal layer is provided at a portion of the back surface corresponding to a portion where the metal layer is not provided on the surface. If comprised in this way, most radiation rays which inject through the clearance gap between the striped metal layers from one surface of a bag-shaped member can be reflected by the metal layer of the other surface. That is, the radiation that passes through the bag-like member can be reduced. Here, when a long material is wound in multiple layers to form a heat insulation structure, the radiation rays incident from the outside of the heat insulation structure are wound in multiple layers by arranging the striped metal layers so that they are shifted in each layer. You may make it reflect in at least one of the rotated layers.

袋状部材の金属層を分断するための2つ目の構成は、袋状部材の表面と裏面とで熱の伝達を抑制するための構成である。即ち、表面と裏面との境界部分を分断して、表面と裏面の金属層が接続しないようにする。このようになすことで、例えば、ある層の表面が外区画側に、裏面が内区画側に配置されている場合、渦電流などにより外区画側である表面に発生した熱が裏面(即ち、低温部のある内区画側)に伝達することを防止することができる。   The second configuration for dividing the metal layer of the bag-shaped member is a configuration for suppressing heat transfer between the front surface and the back surface of the bag-shaped member. That is, the boundary portion between the front surface and the back surface is divided so that the metal layers on the front surface and the back surface are not connected. By doing in this way, for example, when the surface of a certain layer is disposed on the outer partition side and the back surface is disposed on the inner partition side, the heat generated on the surface on the outer partition side due to eddy current or the like is the back surface (that is, It is possible to prevent transmission to the inner compartment side having the low temperature part.

上述したような袋状部材を分断する2つの構成は、組み合わせて用いることができる。例えば、袋状部材の表面と裏面とで金属層の分断のパターンを異ならせるときに、表面と裏面の金属層が接続しないようにすると、金属層において渦電流が発生することを抑制することができるだけでなく、渦電流などにより金属層に発生した熱や外区画側から伝達してきた熱の伝達経路を分断することができる。   The two configurations for dividing the bag-shaped member as described above can be used in combination. For example, if the metal layer separation pattern is made different between the front and back surfaces of the bag-like member, the generation of eddy currents in the metal layer can be suppressed by preventing the connection between the front and back metal layers. Not only can the heat transfer path of the heat generated in the metal layer by the eddy current or the heat transmitted from the outer section side be cut off.

[2] 金属層で発生した熱が内区画に伝達しないようにする
袋状部材に金属層があると、この金属層で輻射線を反射することができるが、金属層の熱伝導率が高いために、渦電流により金属層に発生した熱が内区画に伝達しやすい。そこで、この金属層に発生した熱が内区画に伝達しないように、袋状部材における内区画に接触する部分には金属層がラミネートされていない箇所を設けることが好ましい。例えば、袋状部材の一方の面に金属層をラミネートし、他方の面には金属層をラミネートしないようにする。内区画に当接する袋状部材の一方の面に金属層がないことで、この一方の面において、渦電流の発生源がないため渦電流に起因する熱が発生しないばかりか、袋状部材の他方の面の金属層において発生した熱が袋状部材の一方の面に伝達し難くなる。上記のような構成として、例えば、袋状部材をつなぎ合わせて長尺材とし、この長尺材を多層に巻回して断熱構造を形成する場合には、内区画に当接する第一層のみ金属層がラミネートされていないものを使用したりする。もちろん、第一層以外の層において金属層をラミネートされていない部分を設けてもかまわない。金属層がラミネートされていない層を複数設けた場合、外層側の金属層で発生した熱が内層側に伝わる経路を分断することができるので好ましい。その他、長尺材の最外層の外区画に当接する面において金属層がラミネートされていない部分を設けることで、断熱構造の外部から外区画に伝達された熱が長尺材の金属層に伝達することを抑制してもかまわない。
[2] Prevent heat generated in the metal layer from being transferred to the inner compartment. If there is a metal layer in the bag-like member, the metal layer can reflect radiation, but the metal layer has high thermal conductivity. Therefore, the heat generated in the metal layer due to the eddy current is easily transferred to the inner compartment. Therefore, it is preferable to provide a portion where the metal layer is not laminated in a portion of the bag-like member that contacts the inner compartment so that heat generated in the metal layer is not transmitted to the inner compartment. For example, a metal layer is laminated on one surface of the bag-like member, and a metal layer is not laminated on the other surface. Since there is no metal layer on one surface of the bag-shaped member that contacts the inner compartment, there is no source of eddy current on this one surface, so heat generated by eddy current is not generated, Heat generated in the metal layer on the other surface is hardly transmitted to one surface of the bag-like member. As a configuration as described above, for example, when a bag-like member is joined to form a long material, and this long material is wound in multiple layers to form a heat insulating structure, only the first layer contacting the inner compartment is made of metal. Or use a non-laminated layer. Of course, a portion other than the first layer where the metal layer is not laminated may be provided. It is preferable to provide a plurality of layers on which the metal layer is not laminated because a path through which heat generated in the outer metal layer is transmitted to the inner layer can be divided. In addition, by providing a part where the metal layer is not laminated on the surface that contacts the outer section of the outermost layer of the long material, the heat transferred from the outside of the heat insulating structure to the outer section is transmitted to the metal layer of the long material You can suppress this.

[3] 断熱材の外周側空間と内周側空間との間で流体の流通を抑制する
本発明断熱構造では、内・外区画間を真空引きすることはないので、断熱材の内周側空間と外周側空間に存在する空気が流通することがある。このとき、熱の交換が起こって(主に、シート状断熱材の外周側の空気から内周側の空気に熱が伝わる)、低温部の温度が上昇する可能性がある。そこで、少なくとも内区画と断熱材との間に流通防止剤を配置することが好ましい。例えば、断熱材を内区画の外周に一層配置するときは、単位断熱部材の接合部分に流通防止材を配置する。もちろん、内区画に接触する断熱材の面全体、即ち、内区画の外周面全体に流通防止材を配置してもかまわない。また、長尺材を複数層になるように巻回して断熱構造を形成する場合は、内区画の外周面全体とともに、各層の間にも流通防止材を配置するようにするとより確実に流体の流通を防止することができる。上記の流通防止剤としては、例えば、発泡樹脂や・通常の樹脂一般・ワックス・グリースなどが使用できるがこれらに限定されない。特に、流通防止剤としては、発泡ポリウレタンなどの気泡を有する発泡樹脂が断熱性能の点で好ましい。
[3] The flow of fluid between the outer peripheral space and the inner peripheral space of the heat insulating material is suppressed. In the heat insulating structure of the present invention, the inner and outer compartments are not evacuated, so the inner peripheral side of the heat insulating material. The air existing in the space and the outer peripheral space may circulate. At this time, heat exchange occurs (mainly, heat is transferred from the air on the outer peripheral side of the sheet-like heat insulating material to the air on the inner peripheral side), and the temperature of the low temperature portion may increase. Therefore, it is preferable to arrange an anti-circulation agent at least between the inner compartment and the heat insulating material. For example, when one layer of heat insulating material is arranged on the outer periphery of the inner compartment, a flow preventing material is arranged at the joint portion of the unit heat insulating member. Of course, the flow preventing material may be disposed on the entire surface of the heat insulating material in contact with the inner section, that is, on the entire outer peripheral surface of the inner section. In addition, when forming a heat insulation structure by winding a long material into a plurality of layers, it is more reliable to arrange a flow prevention material between each layer together with the entire outer peripheral surface of the inner compartment. Distribution can be prevented. Examples of the anti-circulation agent include, but are not limited to, foamed resins, general resins, wax, grease, and the like. In particular, as a distribution inhibitor, a foamed resin having bubbles such as foamed polyurethane is preferable in terms of heat insulation performance.

本発明の構成によれば、簡単且つ安価に形成することのできる断熱構造とすることができる。特に、超電導ケーブルなどの長尺な二重の区画部材を具えた断熱構造において、この長尺な空間を長時間かけて真空引きすることなく所定の断熱性能を発揮することができる。   According to the structure of this invention, it can be set as the heat insulation structure which can be formed easily and cheaply. In particular, in a heat insulating structure including a long double partition member such as a superconducting cable, a predetermined heat insulating performance can be exhibited without evacuating the long space over a long period of time.

また、本発明の構造を超電導ケーブルの断熱構造に適用した場合、真空引きした従来の断熱構造を有する超電導ケーブルの外径と同等かそれ以下の外径を有する超電導ケーブルとすることができる。   Further, when the structure of the present invention is applied to a heat insulating structure of a superconducting cable, a superconducting cable having an outer diameter equal to or less than the outer diameter of a superconducting cable having a conventional heat insulating structure that is evacuated can be obtained.

さらに、断熱材が複数の小さな単位断熱部材から形成され、この単位断熱部材毎に真空領域が形成されているため、外力などにより一部の単位断熱部材が損傷して真空状態を維持することができなくなっても、損傷していない単位断熱部材により断熱材全体の断熱性能が大幅に低下することを防止することができる。   Furthermore, since the heat insulating material is formed of a plurality of small unit heat insulating members and a vacuum region is formed for each unit heat insulating member, some unit heat insulating members may be damaged by an external force or the like to maintain a vacuum state. Even if it becomes impossible, it can prevent that the heat insulation performance of the whole heat insulating material falls significantly by the unit heat insulating member which is not damaged.

<実施例1>
以下、超電導ケーブルの断熱構造を例に挙げて本発明の実施例を説明する。まず初めに、本例の超電導ケーブルの全体構造を図1に基づいて説明し、次に、各構成部材を図2〜4に基づいて説明する。
<Example 1>
Examples of the present invention will be described below by taking the heat insulation structure of a superconducting cable as an example. First, the overall structure of the superconducting cable of this example will be described with reference to FIG. 1, and each component will be described with reference to FIGS.

図1は、3心のケーブルコア10を有する本例の超電導ケーブルを示す概略断面図である。超電導ケーブル1は、ケーブルコア10を断熱管20の内管21内に収納した構成である。そして、断熱管20の外周には防食層17を設けた。前述のコア10は、中心から順にフォーマ11、超電導導体層12、絶縁層13、超電導シールド層14、保護層15により構成した。一方、断熱管20は、内管21と外管22からなる二重管であり、この断熱管20のうち、コア10が配置される内管21内に冷媒16を流通させてコア10全体を冷却した。   FIG. 1 is a schematic cross-sectional view showing a superconducting cable of this example having a three-core cable core 10. The superconducting cable 1 has a configuration in which the cable core 10 is accommodated in the inner tube 21 of the heat insulating tube 20. And the anticorrosion layer 17 was provided in the outer periphery of the heat insulation pipe | tube 20. As shown in FIG. The aforementioned core 10 was composed of a former 11, a superconducting conductor layer 12, an insulating layer 13, a superconducting shield layer 14, and a protective layer 15 in order from the center. On the other hand, the heat insulating pipe 20 is a double pipe made up of an inner pipe 21 and an outer pipe 22, and the refrigerant 10 is circulated in the inner pipe 21 in which the core 10 is disposed, and the entire core 10 is circulated. Cooled down.

ケーブルコア10を収納する断熱管20は、内管21と外管22とからなるSUSコルゲート二重管により構成し、この二重管の間に複数の袋状部材をつなぎ合わせてなる長尺材を多層に巻回して形成した断熱材30を設けた。また、断熱材30の外周にはステンレスラミネートテープを巻回して補強部40を形成し、断熱材30の形状を維持するとともに、外部からの因子により断熱材30が損傷しないように補強した。   The heat insulating tube 20 that houses the cable core 10 is constituted by a SUS corrugated double tube composed of an inner tube 21 and an outer tube 22, and a long material formed by connecting a plurality of bag-like members between the double tubes. Was provided with a heat insulating material 30 formed by winding in a multilayer. Further, a stainless laminate tape was wound around the outer periphery of the heat insulating material 30 to form a reinforcing portion 40, and the shape of the heat insulating material 30 was maintained, and the heat insulating material 30 was reinforced so as not to be damaged by external factors.

長尺材は、単位寸法を有する複数のシート状断熱部材をつなぎ合わせることにより形成した。図2(A)は、長尺材の上面を、図2(B)は、長尺材の側面を示す図である。各断熱部材32は、その側端部同士を接合することにより長尺材31に形成した。側端部同士を接合してつなぎ目32aを形成することで、断熱部材32を長尺材31に形成したときに、このつなぎ目32aで折り曲げ易くなるので長尺材31を断熱内管に巻回しやすくなる。ここで、断熱部材32同士のつなぎ目32aにおいては、図2(B)に示すように断熱部材32が薄く、つなぎ目32a以外の箇所と比較して断熱性能が低いが、このような問題は後述するように長尺材31を多層に巻回することや、各断熱部材32を接合するときに、その端部が重なるように形成することで解決できる。   The long material was formed by joining a plurality of sheet-like heat insulating members having unit dimensions. FIG. 2 (A) is a diagram showing the top surface of the long material, and FIG. 2 (B) is a diagram showing the side surface of the long material. Each heat insulating member 32 was formed on the long material 31 by joining the side end portions thereof. By joining the side ends to form the joint 32a, when the heat insulating member 32 is formed on the long material 31, it becomes easy to bend at the joint 32a, so the long material 31 can be easily wound around the heat insulating inner tube. Become. Here, in the joint 32a between the heat insulation members 32, the heat insulation member 32 is thin as shown in FIG. 2 (B), and the heat insulation performance is low as compared with locations other than the joint 32a. Such a problem will be described later. As described above, the problem can be solved by winding the long material 31 in multiple layers, or by forming the end portions to overlap each other when the heat insulating members 32 are joined.

本例においては、シート状断熱部材32として、市販のシート状断熱部材を使用した。このシート状断熱部材32は、厚さ1mmの袋状の部材であり、その熱伝導率は、0.0020W/(m・K)である。このような熱伝導率を有するシート状断熱部材32を使用して、従来の超電導ケーブルに使用されていた断熱構造と同様の断熱性能を有する断熱構造を形成するには、断熱内管の外周から厚さ方向に16mmのシート状断熱部材32があれば良い。ここで、後述するシート状断熱部材32のつなぎ目や境目における断熱性能の低下を考慮して、シート状断熱部材32は、厚さ方向に16層になるように巻回した。   In this example, a commercially available sheet-like heat insulating member was used as the sheet-like heat insulating member 32. The sheet-like heat insulating member 32 is a bag-like member having a thickness of 1 mm, and its thermal conductivity is 0.0020 W / (m · K). In order to form a heat insulating structure having the same heat insulating performance as the heat insulating structure used in the conventional superconducting cable using the sheet-like heat insulating member 32 having such thermal conductivity, from the outer periphery of the heat insulating inner tube It suffices if there is a sheet-like heat insulating member 32 of 16 mm in the thickness direction. Here, the sheet-like heat insulating member 32 was wound so as to have 16 layers in the thickness direction in consideration of a decrease in heat insulation performance at joints and boundaries of the sheet-like heat insulating member 32 described later.

シート状断熱部材32は、袋状部材の内部に繊維状の芯材を充填して構成される。また、シート状断熱部材32は、図3(A)〜(B)に示すように、プラスチック層320に金属層(アルミニウム層)331,332をラミネートした構成である。一方、繊維状の芯材は、シート状断熱部材32の厚さ方向に平行な配向性を有し、且つ、各繊維の長さが所定の長さの範囲内にある。そして、シート状断熱部材32の内部は、真空引きされており、これらの構成により、このシート状断熱部材32は、0.0020W/(m・K)の熱伝導率を達成している。   The sheet-like heat insulating member 32 is configured by filling a fibrous core material inside a bag-like member. The sheet-like heat insulating member 32 has a configuration in which metal layers (aluminum layers) 331 and 332 are laminated on a plastic layer 320 as shown in FIGS. On the other hand, the fibrous core material has an orientation parallel to the thickness direction of the sheet-like heat insulating member 32, and the length of each fiber is within a predetermined length range. The inside of the sheet-like heat insulating member 32 is evacuated. With these configurations, the sheet-like heat insulating member 32 achieves a thermal conductivity of 0.0020 W / (m · K).

シート状断熱部材32に設けられるアルミニウム層331,332は、縞状に分断されている。このようになすことにより、渦電流経路を短くすることができるので、この渦電流による熱の発生を抑制することができる。また、アルミニウム層331,332はシート状断熱部材32の表面(図3(A)の縦縞と横縞を参照)と裏面(図3(B)を参照)とで互いに直交するように分断されている。このようになすことにより、袋状部材の表面と裏面とでアルミニウム層331と332が接続することがないので(図3(C)を参照)、一方のアルミニウム層331と他方のアルミニウム層332との間で熱が伝導することを防止することができる。また、一方の面(表面または裏面)を透過した輻射線の大部分を他方の面(裏面または表面)により反射することができる。その他、図4(A)〜(C)に示すように、表面において金属層が設けられていない部分に対応する裏面の部分に金属層を設けるようにしても良い。この場合も図4(C)に示すように表面の金属層331と裏面の金属層332が接続しないようにすると良い。   The aluminum layers 331 and 332 provided on the sheet-like heat insulating member 32 are divided into stripes. By doing in this way, since an eddy current path can be shortened, generation | occurrence | production of the heat by this eddy current can be suppressed. The aluminum layers 331 and 332 are divided so as to be orthogonal to each other on the front surface (see vertical stripes and horizontal stripes in FIG. 3A) and the back surface (see FIG. 3B) of the sheet-like heat insulating member 32. By doing so, the aluminum layers 331 and 332 are not connected to the front and back surfaces of the bag-like member (see FIG. 3 (C)), so that one aluminum layer 331 and the other aluminum layer 332 Heat can be prevented from being conducted between the two. Further, most of the radiation transmitted through one surface (front surface or back surface) can be reflected by the other surface (back surface or front surface). In addition, as shown in FIGS. 4A to 4C, a metal layer may be provided on a portion of the back surface corresponding to a portion where the metal layer is not provided on the surface. Also in this case, it is preferable that the metal layer 331 on the front surface and the metal layer 332 on the back surface are not connected as shown in FIG.

以上、説明した長尺材31を超電導ケーブルコア10を収納する断熱内管21の外周に合計16層となるよう螺旋状に巻回した(図1を参照:但し、図1では一部の層のみを示す)。長尺材31は、図5(A)に示すように、断熱内管の外周に突合せ巻きした。図5(A)は、断熱内管の外周に第1層を巻回した状態の一部を、図5(B)は、第1層の外周にさらに第2層を巻回した状態の一部を示す概略図である。このとき、第1層100における袋状部材31のつなぎ目110や長尺材31のターンの境目120が、極力、第2層200のつなぎ目210や境目220と重ならないようにした。どうしてもつなぎ目や境目が重なってしまう箇所(図5(B)の交点150)が生じた場合は、図示しない第3層においてこの交点150を断熱部材32が覆うようにすれば良い。また、第3層と第4層においても同様につなぎ目や境目が重ならないようにしたり、交点150を断熱部材32が覆うようにする。上記のように、一の層とその層に隣接する他の層との間で生じる交点と、他の層とその他の層に隣接する別の層との間で生じる交点とがずれるように配置することで断熱材の性能を大幅に向上させることができる。   As described above, the long material 31 described above is spirally wound on the outer periphery of the heat insulating inner tube 21 that accommodates the superconducting cable core 10 so as to form a total of 16 layers (see FIG. 1; however, some layers in FIG. 1) Only). As shown in FIG. 5 (A), the long material 31 was butt-wound around the outer periphery of the heat insulating inner tube. Fig. 5 (A) shows a part of the state in which the first layer is wound around the outer periphery of the heat insulating inner tube, and Fig. 5 (B) shows one of the states in which the second layer is further wound around the outer periphery of the first layer. It is the schematic which shows a part. At this time, the joint 110 of the bag-like member 31 in the first layer 100 and the border 120 of the turn of the long material 31 were prevented from overlapping with the joint 210 and the border 220 of the second layer 200 as much as possible. If there is a place where the joints and borders overlap (intersection 150 in FIG. 5B), the heat insulation member 32 may cover the intersection 150 in the third layer (not shown). Similarly, in the third layer and the fourth layer, joints and boundaries are not overlapped, and the intersection 150 is covered by the heat insulating member 32. As described above, the intersections that occur between one layer and another layer adjacent to that layer are offset from the intersections that occur between the other layer and another layer adjacent to the other layer. By doing so, the performance of the heat insulating material can be significantly improved.

そして、断熱内管と長尺材の最内層との間、前記長尺材の各層の間、前記長尺材の最外層と後述するステンレスラミネートテープとの間に発泡ポリウレタンを充填した。このようになすことにより、巻回した長尺材の外周側に存在する空気が断熱内管の外周表面に触れることをなくすることができるので、常温の空気による熱伝達を防止することができる。   Then, polyurethane foam was filled between the heat insulating inner tube and the innermost layer of the long material, between each layer of the long material, and between the outermost layer of the long material and a stainless steel laminate tape described later. By doing so, it is possible to prevent the air existing on the outer peripheral side of the wound long material from touching the outer peripheral surface of the heat-insulated inner tube, so that heat transfer by air at normal temperature can be prevented. .

長尺材を断熱内管に巻回した後に断熱外管の内部に配置する方法は、代表的には2種類ある。1つは、断熱内管に長尺材を巻回したものをその径よりも大きな内径を有する断熱外管の内部に挿入する方法である。もう1つは、断熱内管に長尺材を巻回したものに金属板を巻きつけて、この金属板を円筒状に形成し、さらに、円筒状を維持するように溶接作業を行なって、波付け加工などを施す方法である。挿入する方法では、断熱外管の突出部などが長尺材の外周を損傷したりしないように、金属板を巻きつけて溶接する方法では、溶接作業により長尺材が溶けてしまったりしないように長尺材の外周を保護することが好ましい。本例においては、長尺材の最外周にはステンレスラミネートテープを巻回し、次いで、断熱外管に挿入する方法を選択したが、このような組み合わせに限定されない。なお、断熱外管を設けることなくステンレスラミネートテープの巻回する回数を多くして機械強度を向上させ、断熱外管の代わりとしても良い。この場合、もちろん、ステンレスラミネートテープの外周を防食層で覆うことが好ましい。   There are typically two types of methods for placing the long material around the heat insulating inner tube and then placing the long material inside the heat insulating outer tube. One is a method in which a long material wound around an insulated inner tube is inserted into an insulated outer tube having an inner diameter larger than the diameter. The other is to wind a metal plate around a long material wound around a heat-insulated inner tube, to form this metal plate in a cylindrical shape, and to perform a welding operation to maintain the cylindrical shape, It is a method of applying corrugation. In the method of insertion, the long material is not melted by the welding work in the method of wrapping and welding the metal plate so that the protruding part of the heat insulating outer tube does not damage the outer periphery of the long material. It is preferable to protect the outer periphery of the long material. In this example, a method of winding a stainless steel laminate tape around the outermost periphery of the long material and then inserting it into the heat insulating outer tube is selected, but it is not limited to such a combination. In addition, it is good also as a substitute of a heat insulation outer tube | pipe by increasing the frequency | count of winding of a stainless steel laminate tape without providing a heat insulation outer tube | pipe and improving mechanical strength. In this case, of course, it is preferable to cover the outer periphery of the stainless steel laminate tape with an anticorrosion layer.

以上、説明したように構成した超電導ケーブルにおける断熱構造によれば、断熱内管と断熱外管との間の長尺な空間を真空引きすることなく所望の断熱性能を得ることができる。   As described above, according to the heat insulating structure in the superconducting cable configured as described above, desired heat insulating performance can be obtained without evacuating the long space between the heat insulating inner tube and the heat insulating outer tube.

<変形例1−1>
本変形例では、超電導ケーブルの断熱内管に巻回する長尺材の層のうち、断熱内管に当接する層の長尺材において、長尺材の断熱内管に当接する長尺材の面に金属層を設けていない。上記の構成以外は、実施例1と同様であるため、共通する構成の説明は省略する。
<Modification 1-1>
In this modification, among the long material layers wound around the heat insulating inner tube of the superconducting cable, in the long material of the layer contacting the heat insulating inner tube, the long material contacting the long heat insulating inner tube There is no metal layer on the surface. Since the configuration other than the above is the same as that of the first embodiment, description of the common configuration is omitted.

本例において使用する単位断熱部材は、実施例1(図3を参照)のものと同じであるが、この単位断熱部材をつなぎ合わせて形成される長尺材を断熱内管に巻回するときに、断熱内管に当接する長尺材の部分に金属層を設けないようにした。具体的には、図5に示すように、断熱内管に当接する第1層100の裏面(即ち、断熱内管に当接する長尺材の面)全体に金属層が設けられていないようにする。このようになすことにより、断熱内管に当接する部分(裏面)に金属層がないために、この断熱内管に当接する長尺材の部分において渦電流により熱が発生することをなくすることができる。また、第1層100の表面(断熱内管に当接しない長尺材の面)で発生した渦電流による熱が、第1層100の裏面に伝達し難くすることができる。   The unit heat insulating member used in this example is the same as that of Example 1 (see FIG. 3), but when a long material formed by joining the unit heat insulating members is wound around the heat insulating inner pipe In addition, the metal layer is not provided on the portion of the long material that contacts the heat insulating inner tube. Specifically, as shown in FIG. 5, the metal layer is not provided on the entire back surface of the first layer 100 that contacts the heat insulating inner pipe (that is, the surface of the long material that contacts the heat insulating inner pipe). To do. By doing so, since there is no metal layer on the portion (back surface) that contacts the heat insulating inner tube, heat is not generated by eddy current in the portion of the long material that contacts the heat insulating inner tube. Can do. Further, heat due to eddy current generated on the surface of the first layer 100 (the surface of the long material that does not come into contact with the heat insulating inner tube) can be made difficult to transfer to the back surface of the first layer 100.

<試験例>
本試験例では、単位長さの超電導ケーブルを使用して、3つの異なる断熱構造を有する模擬構造体を作製し、各模擬構造体の断熱性能を比較した。断熱性能は、時間の経過に伴う超電導ケーブルコアを冷却する液体冷媒の温度変化により評価した。
<Test example>
In this test example, using a superconducting cable of unit length, a simulated structure having three different heat insulation structures was produced, and the heat insulation performance of each of the simulated structures was compared. The heat insulation performance was evaluated by the temperature change of the liquid refrigerant that cools the superconducting cable core over time.

模擬構造体として、以下に示すような超電導ケーブルの模擬構造体を作製した。各模擬構造体における断熱内管と断熱外管は同一のものを使用した。
[1] 従来の断熱構造
図6に示すように、超電導ケーブルコアを断熱内管および断熱外管で覆って、内・外管の間にスーパーインシュレーションを配置した従来の断熱構造。この断熱構造においては、内・外管の間を真空引きした。
[2] 本発明の断熱構造
図1に示すように、超電導ケーブルコアを断熱内管および断熱外管で覆って、内・外管の間に上述の熱伝導率0.0020W/(m・K)のシート状断熱部材をつなぎ合わせて形成した長尺材を16層になるように巻回した実施例1の断熱構造。この断熱構造においては、内・外管の間を真空引きしていない。
[3] 参考用の断熱構造
超電導ケーブルコアを断熱内管および断熱外管で覆って、内・外管の間に熱伝導率0.0045W/(m・K)のシート状断熱部材をつなぎ合わせて形成した長尺材を16層になるように巻回した断熱構造。このシート状断熱部材は、[2]のシート状断熱部材と同じ構成で熱伝導率のグレードが異なる市販品である。この断熱構造においては、内・外管の間を真空引きしていない。
上記各模擬構造体において断熱内管の内部に70Kの液体窒素を充填して、34.5kV-800Aの送電を行なった。試験の間、液体窒素の再冷却は行なわず冷媒の流通のみを行い、液体窒素の温度が所定の温度(74K)に達した時点で送電を停止した。そして、各断熱構造において、時間の経過に伴う液体窒素の温度をX-Y平面にプロットし、その傾きを比較することで断熱性能を評価した。
As a simulated structure, a simulated structure of a superconducting cable as shown below was produced. The same heat-insulating inner tube and heat-insulating outer tube in each simulated structure were used.
[1] Conventional heat insulation structure As shown in Fig. 6, a conventional heat insulation structure in which a superconducting cable core is covered with a heat insulating inner pipe and a heat insulating outer pipe, and a super insulation is arranged between the inner and outer pipes. In this heat insulating structure, a vacuum was drawn between the inner and outer tubes.
[2] Heat insulation structure of the present invention As shown in FIG. 1, the superconducting cable core is covered with a heat insulation inner tube and a heat insulation outer tube, and the above-mentioned thermal conductivity between the inner and outer tubes is 0.0020 W / (m · K). The heat insulation structure of Example 1 which wound the long material formed by joining the sheet-like heat insulation members of the above to 16 layers. In this heat insulating structure, no vacuum is drawn between the inner and outer tubes.
[3] Thermal insulation structure for reference Cover the superconducting cable core with a heat insulation inner tube and heat insulation outer tube, and connect a sheet-like heat insulation member with a thermal conductivity of 0.0045W / (m · K) between the inner and outer tubes. A heat insulating structure in which the formed long material is wound into 16 layers. This sheet-like heat insulating member is a commercial product having the same configuration as that of the sheet-like heat insulating member of [2] but having a different thermal conductivity grade. In this heat insulating structure, no vacuum is drawn between the inner and outer tubes.
In each of the simulated structures, 70K liquid nitrogen was filled inside the heat insulating inner tube, and 34.5 kV-800A was transmitted. During the test, liquid nitrogen was not re-cooled, only the refrigerant was circulated, and power transmission was stopped when the temperature of the liquid nitrogen reached a predetermined temperature (74K). And in each heat insulation structure, the temperature of liquid nitrogen with progress of time was plotted on XY plane, and the heat insulation performance was evaluated by comparing the inclination.

本試験の結果、実施例1の構成を有する断熱構造([2]の断熱構造)は、断熱内管と断熱外管との間を真空引きせずに複数の袋状部材からなる長尺材を配置しただけであるにも関わらず従来の断熱構造([1]の断熱構造)と同等の断熱性能を示した。一方、[3]の断熱構造では断熱材の厚さが足らず、従来の断熱構造および実施例1の断熱構造と比較して短時間で送電を停止しなければならなかった。   As a result of this test, the heat insulating structure having the configuration of Example 1 (the heat insulating structure of [2]) is a long material composed of a plurality of bag-like members without evacuating the heat insulating inner tube and the heat insulating outer tube. Despite the fact that it was only placed, it showed the same thermal insulation performance as the conventional thermal insulation structure ([1] thermal insulation structure). On the other hand, in the heat insulating structure [3], the thickness of the heat insulating material was insufficient, and it was necessary to stop power transmission in a short time as compared with the conventional heat insulating structure and the heat insulating structure of Example 1.

本発明断熱構造は、超電導体を内部に配置した低温部を断熱する断熱構造に好適に利用することができる。特に、超電導ケーブルの断熱構造に好適に利用することができる。   The heat insulating structure of the present invention can be suitably used for a heat insulating structure that insulates a low temperature portion in which a superconductor is disposed. In particular, it can be suitably used for a heat insulating structure of a superconducting cable.

図1は、実施例1に記載の超電導ケーブルの断熱構造を示す概略図である。FIG. 1 is a schematic diagram showing a heat insulation structure of a superconducting cable described in Example 1. FIG. 図2は、実施例1に記載の長尺材の模式図であり、(A)は長尺材の上面図を、(B)は長尺材の側面図を示す。FIG. 2 is a schematic view of the long material described in Example 1, wherein (A) shows a top view of the long material and (B) shows a side view of the long material. 図3は、実施例1に記載のシート状断熱部材の模式図であり、(A)はシート状断熱材の表面を、(B)はシート状断熱材の裏面を、(C)はシート状断熱材の側面を示す。FIG. 3 is a schematic view of the sheet-like heat insulating member described in Example 1. (A) is the surface of the sheet-like heat insulating material, (B) is the back surface of the sheet-like heat insulating material, and (C) is the sheet shape. The side of a heat insulating material is shown. 図4は、実施例1に記載の他のシート状断熱部材の模式図であり、(A)はシート状断熱材の表面を、(B)はシート状断熱材の裏面を、(C)はシート状断熱材の側面を示す。FIG. 4 is a schematic diagram of another sheet-like heat insulating member described in Example 1, (A) is the surface of the sheet-like heat insulating material, (B) is the back surface of the sheet-like heat insulating material, (C) is The side of a sheet-like heat insulating material is shown. 図5は、実施例1に記載の長尺材を超電導ケーブルの断熱内管に巻回した部分概略図であり、(A)は第1層を巻回した状態を、(B)は第1層の上に第2層を巻回した状態を示す。FIG. 5 is a partial schematic view of the long material described in Example 1 wound around a heat-insulated inner tube of a superconducting cable. FIG. 5A shows a state in which the first layer is wound, and FIG. The state which wound the 2nd layer on the layer is shown. 図6は、従来の超電導ケーブルの断熱構造を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a heat insulation structure of a conventional superconducting cable.

符号の説明Explanation of symbols

1 超電導ケーブル
10 ケーブルコア 11 フォーマ 12 超電導導体層 13 絶縁層
14 超電導シールド層 15 保護層 16 冷媒 17 防食層
20 断熱管 21 断熱内管 22 断熱外管
30 断熱材 31 長尺材 40 補強部
32 断熱部材 320 プラスチック層 331,332 金属層 32a つなぎ目
100 第1層 110 つなぎ目 120 境目
200 第2層 210 つなぎ目 220 境目
150 交点
1 Superconducting cable
10 Cable core 11 Former 12 Superconducting conductor layer 13 Insulating layer
14 Superconducting shield layer 15 Protective layer 16 Refrigerant 17 Anticorrosive layer
20 Insulated pipe 21 Insulated inner pipe 22 Insulated outer pipe
30 Insulation 31 Long material 40 Reinforcement
32 Thermal insulation member 320 Plastic layer 331,332 Metal layer 32a Joint
100 1st layer 110 joint 120 boundary
200 2nd layer 210 seam 220 border
150 intersection

Claims (8)

低温部を区画する内区画と、内区画の外周側を区画する外区画との間に断熱材を配置してなる断熱構造であって、
前記低温部に超電導体が配置され、
前記断熱材は、シート状に形成した袋状部材を複数つなぎ合わせて形成され、
各袋状部材は、その内部に芯材が充填され、且つ、真空引きされた構造を有し、
この断熱材の熱伝導率が、0.0030W/(m・K)以下であることを特徴とする断熱構造。
A heat insulating structure in which a heat insulating material is disposed between an inner compartment that divides the low temperature portion and an outer compartment that divides the outer peripheral side of the inner compartment,
A superconductor is disposed in the low temperature part,
The heat insulating material is formed by connecting a plurality of bag-shaped members formed in a sheet shape,
Each bag-like member has a structure in which the core is filled and vacuumed,
A heat insulating structure characterized in that the heat conductivity of the heat insulating material is 0.0030 W / (m · K) or less.
前記断熱材は、複数の袋状部材をつなぎ合わせた長尺材であり、この長尺材を内区画の外周側に螺旋状に巻回してなることを特徴とする請求項1に記載の断熱構造。   The heat insulating material according to claim 1, wherein the heat insulating material is a long material obtained by connecting a plurality of bag-like members, and the long material is spirally wound around the outer peripheral side of the inner compartment. Construction. 前記長尺材は、内区画の外周側に複数層巻回されており、且つ、ある層において隣接する長尺材のターンの境目をまたぐように次の層の長尺材が配置されてなることを特徴とする請求項2に記載の断熱構造。   The long material is wound on a plurality of layers on the outer peripheral side of the inner section, and the long material of the next layer is arranged so as to straddle the boundary of the turn of the adjacent long material in a certain layer. The heat insulation structure according to claim 2. 前記長尺材は、内区画の外周側に複数層巻回されており、且つ、ある層における袋状部材のつなぎ目と、この層に隣接する層における袋状部材のつなぎ目とがずれるように配置されてなることを特徴とする請求項2に記載の断熱構造。   The long material is wound around a plurality of layers on the outer peripheral side of the inner compartment, and is arranged so that the joint of the bag-like member in a certain layer and the joint of the bag-like member in a layer adjacent to this layer are shifted. The heat insulation structure according to claim 2, wherein the heat insulation structure is formed. 前記超電導体は、超電導ケーブルに用いられる超電導層であることを特徴とする請求項1に記載の断熱構造。   The heat insulating structure according to claim 1, wherein the superconductor is a superconducting layer used for a superconducting cable. 前記袋状部材は、プラスチック層に金属層をラミネートした構造を有し、この金属層は、少なくとも一部が分断されていることを特徴とする請求項1に記載の断熱構造。   The heat insulation structure according to claim 1, wherein the bag-like member has a structure in which a metal layer is laminated on a plastic layer, and the metal layer is divided at least partially. 前記袋状部材は、プラスチック層に金属層をラミネートした構造を有し、袋状部材のうち、内区画に接触する部分には金属層がラミネートされていないことを特徴とする請求項1に記載の断熱構造。   2. The bag-like member has a structure in which a metal layer is laminated on a plastic layer, and the metal layer is not laminated on a portion of the bag-like member that contacts the inner compartment. Insulation structure. 前記断熱材の外周側空間と内周側空間との間で流体の流通を防止するために、少なくとも内区画と断熱材との間に流通防止剤を配置したことを特徴とする請求項1に記載の断熱構造。   The flow preventing agent is disposed at least between the inner compartment and the heat insulating material in order to prevent the flow of fluid between the outer peripheral space and the inner peripheral space of the heat insulating material. The insulation structure described.
JP2005274733A 2005-09-21 2005-09-21 Thermal insulation structure Expired - Fee Related JP4626887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274733A JP4626887B2 (en) 2005-09-21 2005-09-21 Thermal insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274733A JP4626887B2 (en) 2005-09-21 2005-09-21 Thermal insulation structure

Publications (2)

Publication Number Publication Date
JP2007087755A JP2007087755A (en) 2007-04-05
JP4626887B2 true JP4626887B2 (en) 2011-02-09

Family

ID=37974527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274733A Expired - Fee Related JP4626887B2 (en) 2005-09-21 2005-09-21 Thermal insulation structure

Country Status (1)

Country Link
JP (1) JP4626887B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262089A (en) * 1985-09-09 1987-03-18 松下冷機株式会社 Heat-insulating plate
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH11237456A (en) * 1998-02-23 1999-08-31 Hitachi Ltd Heat shield body
JP2004060712A (en) * 2002-07-26 2004-02-26 Kiyoshi Inaizumi Vacuum heat insulator
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262089A (en) * 1985-09-09 1987-03-18 松下冷機株式会社 Heat-insulating plate
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH11237456A (en) * 1998-02-23 1999-08-31 Hitachi Ltd Heat shield body
JP2004060712A (en) * 2002-07-26 2004-02-26 Kiyoshi Inaizumi Vacuum heat insulator
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007087755A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US8354591B2 (en) Superconducting cable
JP2006221877A (en) Intermediate connection structure of superconductive cable
WO2006059446A1 (en) Super-conducting cable
JP6062378B2 (en) Superconducting cable former connection structure and connection method
JP2019129583A (en) Terminal structure of superconductor cable
JP2016133200A (en) Heat insulation pipe for superconductive cable, and superconductive cable line
JP4826797B2 (en) Superconducting cable line design method and superconducting cable line
EP1441367A2 (en) Superconducting cable
JP6889634B2 (en) Superconducting cable and liquefied natural gas transportation system
JP6761829B2 (en) Superconducting cable
JP4626887B2 (en) Thermal insulation structure
KR102011151B1 (en) Superconducting cable
RU2379777C2 (en) Superconducting cable
JP2016065629A (en) Adiabatic pipe insulation unit and superconductive cable track
KR101118747B1 (en) Superconducting power cable which is cooled by multiple cryogen
JP4517879B2 (en) Superconducting cable
KR102351544B1 (en) Superconducting cable and superconducting power system having the same
KR20170009552A (en) Decompression type cooling system for Superconducting cable
JP7231778B1 (en) Superconducting power transmission heat insulation multiple pipe and superconducting cable construction method
JP2020119769A (en) Method for installing heat insulation material for superconductive cable, and superconductive cable
US10330239B2 (en) Flexible pipeline
JP2009077594A (en) Heat insulation structure of superconducting cable connection part and its construction method
JP2015141803A (en) Superconductive conductor and superconductive cable
Gouge et al. Vacuum-insulated, flexible cryostats for long HTS cables: requirements, status and prospects
KR102608512B1 (en) Superconducting Cable And Manufacturing Method Of The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101031

LAPS Cancellation because of no payment of annual fees