JP4626762B2 - Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method - Google Patents

Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method Download PDF

Info

Publication number
JP4626762B2
JP4626762B2 JP2005303466A JP2005303466A JP4626762B2 JP 4626762 B2 JP4626762 B2 JP 4626762B2 JP 2005303466 A JP2005303466 A JP 2005303466A JP 2005303466 A JP2005303466 A JP 2005303466A JP 4626762 B2 JP4626762 B2 JP 4626762B2
Authority
JP
Japan
Prior art keywords
soil
noble metal
groundwater
purification
iron complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005303466A
Other languages
Japanese (ja)
Other versions
JP2006142285A (en
Inventor
敏樹 松井
健二 沖中
泰彦 藤井
朋子 沖田
雅之 上神
潤一 河野
浩司 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005303466A priority Critical patent/JP4626762B2/en
Publication of JP2006142285A publication Critical patent/JP2006142285A/en
Application granted granted Critical
Publication of JP4626762B2 publication Critical patent/JP4626762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、土壌又は地下水中に含まれるジクロロメタン、四塩化炭素、1、2−ジクロロエタン、1、1−ジクロロエチレン、シス−1、2−ジクロロエチレン、1、1、1−トリクロロエタン、1、1、2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン及び1、3−ジクロロプロペン等の脂肪族有機ハロゲン化合物、ダイオキシン類、PCB等の芳香族有機ハロゲン化合物を効率よく、持続的に、しかも経済的に分解できる浄化剤を提供するものである。   The present invention relates to dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2, contained in soil or groundwater. -Provides a purifying agent capable of efficiently, continuously and economically decomposing aliphatic organic halogen compounds such as trichloroethane, trichlorethylene, tetrachloroethylene and 1,3-dichloropropene, and aromatic organic halogen compounds such as dioxins and PCB. To do.

トリクロロエチレン、テトラクロロエチレン等の脂肪族有機ハロゲン化合物は、半導体工場での洗浄用や金属加工金属の脱脂用として幅広く用いられている。   Aliphatic organic halogen compounds such as trichlorethylene and tetrachloroethylene are widely used for cleaning in semiconductor factories and for degreasing metalworking metals.

また、都市ごみや産業廃棄物を焼却するごみ焼却炉から発生する排ガスや飛灰、主灰中には、微量ではあるが人体に対して極めて強い毒性を持つ芳香族有機ハロゲン化合物であるダイオキシン類が含まれている。ダイオキシン類は、ジベンゾ−p−ジオキシン、ジベンゾフラン等の水素が塩素で置換された化合物の総称である。排ガスや飛灰はごみ焼却炉周辺に滞留し周辺地域の土壌中にダイオキシン類が残存することとなる。   Dioxins, which are aromatic organic halogen compounds that are extremely toxic to the human body, even in trace amounts, are contained in exhaust gas, fly ash, and main ash generated from incinerators that incinerate municipal waste and industrial waste. It is included. Dioxins are a general term for compounds in which hydrogen is substituted with chlorine, such as dibenzo-p-dioxin and dibenzofuran. Exhaust gas and fly ash stay around the waste incinerator and dioxins remain in the surrounding soil.

更に、PCB(ポリ塩化ビフェニル)は化学的、熱的に安定であり、電気絶縁性にも優れており、トランス、コンデンサーの絶縁油、可塑剤、熱媒体として多用されていたが、有害であることから製造及び使用が禁止されている。しかしながら、過去において使用されていたPCBの有効な処理方法は確立されておらず、大部分が処理されずにそのまま保存されている。   In addition, PCB (polychlorinated biphenyl) is chemically and thermally stable, has excellent electrical insulation properties, and has been frequently used as an insulating oil, plasticizer, and heat medium for transformers and capacitors, but is harmful. Therefore, production and use are prohibited. However, an effective processing method for PCBs used in the past has not been established, and most of them are stored without being processed.

脂肪族有機ハロゲン化合物及び芳香族有機ハロゲン化合物等の有機ハロゲン化合物は難分解性である上に発癌性物質又は強い毒性を有する物質であるため、土壌・地下水の有機ハロゲン化合物による汚染が深刻な環境問題になっている。   Organohalogen compounds such as aliphatic organohalogen compounds and aromatic organohalogen compounds are difficult to decompose and are also carcinogenic or highly toxic. It is a problem.

即ち、前記有機ハロゲン化合物が排出された場合、有機ハロゲン化合物は難分解性であるため、排出された土壌中に蓄積され有機ハロゲン化合物で汚染された状態となり、また、地下水も有機ハロゲン化合物によって汚染されることとなる。更に、地下水は汚染土壌以外の周辺地域についても広がるため、広範な領域で有機ハロゲン化合物による汚染が問題となる。   That is, when the organic halogen compound is discharged, the organic halogen compound is hardly decomposable, so it accumulates in the discharged soil and becomes contaminated with the organic halogen compound, and the groundwater is also contaminated with the organic halogen compound. Will be. Furthermore, since groundwater spreads also in surrounding areas other than contaminated soil, the contamination by organic halogen compounds becomes a problem in a wide area.

有機ハロゲン化合物によって汚染された土壌では土地の再利用・再開発を行うことができないため、有機ハロゲン化合物によって汚染された土壌・地下水の浄化処理方法として様々な技術手段の提案がなされているが、有機ハロゲン化合物は難分解性であり、しかも、多量の土壌・地下水が処理対象となるため、効率的、且つ、経済的な浄化技術は未だ十分に確立されていない。   Since soil cannot be reused or redeveloped in soil contaminated with organohalogen compounds, various technical means have been proposed as purification methods for soil and groundwater contaminated with organohalogen compounds. Since organic halogen compounds are hardly decomposable, and a large amount of soil and groundwater are to be treated, an efficient and economical purification technology has not yet been sufficiently established.

有機ハロゲン化合物によって汚染された土壌の浄化方法として、各種触媒を用いて浄化処理する方法、有機ハロゲン化合物の揮発性を利用して吸引除去する方法、土壌を掘削して加熱処理によって無害化する熱分解法、微生物を利用する方法等が知られている。また、有機ハロゲン化合物によって汚染された地下水の浄化方法として、汚染地下水を土壌外に抽出して無害化する方法、地下水を揚水することによって有機ハロゲン化合物を除去する方法等が知られている。   As a purification method for soil contaminated with organohalogen compounds, a purification method using various catalysts, a suction removal method using the volatility of organohalogen compounds, and heat that is detoxified by excavating the soil and heat treatment Degradation methods, methods using microorganisms, and the like are known. Further, as a method for purifying groundwater contaminated with organic halogen compounds, a method for extracting contaminated groundwater from the soil to render it harmless, a method for removing organic halogen compounds by pumping groundwater, and the like are known.

有機ハロゲン化合物で汚染された土壌・地下水の浄化方法として提案されている技術手段のうち、有機ハロゲン化合物で汚染された土壌・地下水と鉄系粒子を用いた浄化剤とを混合接触させて無害化する技術手段が提案されている(特許文献1乃至9、非特許文献1)。   Of the technical means proposed as a purification method for soil and groundwater contaminated with organohalogen compounds, soil and groundwater contaminated with organohalogen compounds and decontamination using iron-based particles are mixed and made harmless. Technical means have been proposed (Patent Documents 1 to 9, Non-Patent Document 1).

特開平11−235577号公報Japanese Patent Application Laid-Open No. 11-235577 特開2000−5740号公報JP 2000-5740 A 特開2000−334063号公報JP 2000-334063 A 特開2001−38341号公報JP 2001-38341 A 特開2001−198567号公報JP 2001-198567 A 特開2002−161263号公報JP 2002-161263 A 特開2002−210452号公報JP 2002-210452 A 特開2002−317202号公報JP 2002-317202 A 特開2004−083086号公報JP 2004-083086 A CHUAN−BAO WANG AND WEI−XIAN ZHANG,「Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs」,ENVIRONMENTAL SCIENCE & TECHNOLOGY,1997,Vol.31,No.7,p.2154−2156CHUAN-BAO WANG AND WEI-XIAN ZHANG, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Decoding of TCE and PCBE. 31, no. 7, p. 2154-2156

土壌又は地下水中に含まれる有機ハロゲン化合物類を効率よく、持続的に、しかも経済的に分解できる浄化剤は、現在最も要求されているところであるが、未だ得られていない。   A purification agent capable of efficiently, continuously and economically decomposing organohalogen compounds contained in soil or groundwater is currently most demanded, but has not yet been obtained.

即ち、前出特許文献1には0.1重量%以上の炭素を含有する鉄粉を土壌に添加・混合して土壌中の有機ハロゲン化合物を無害化する技術が開示されているが、鉄粉の比表面積及び粒度は記載されているものの粒子サイズが大きいため、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   That is, Patent Document 1 discloses a technique for detoxifying organic halogen compounds in soil by adding and mixing iron powder containing 0.1% by weight or more of carbon to the soil. Although the specific surface area and particle size are described, since the particle size is large, it cannot be said that the organic halogen compound can be sufficiently reduced.

また、前出特許文献2には銅を含有した鉄粉を用いて土壌中の有機ハロゲン化合物を無害化する技術が開示されているが、有機ハロゲン化合物の分解に長時間を必要とするため効率よく有機ハロゲン化合物を無害化できるとは言い難いものである。   In addition, Patent Document 2 discloses a technique for detoxifying organic halogen compounds in soil using iron powder containing copper. However, since it requires a long time to decompose the organic halogen compounds, efficiency is improved. It is difficult to say that organic halogen compounds can be rendered harmless.

また、前出特許文献3にはダイオキシン類と製鉄所における熱間圧延鋼板の製造工程から生じるミルスケールを含む塩酸酸性水溶液とを100℃より低温で接触させてダイオキシン類を無害化する技術が開示されているが、無害化を促進させる塩酸酸性水溶液が必須であり、ミルスケール自体の分解反応が十分とは言い難いものである。   Patent Document 3 discloses a technique for detoxifying dioxins by bringing dioxins into contact with an acidic aqueous hydrochloric acid solution containing mill scale generated from a hot-rolled steel sheet manufacturing process at a steel mill at a temperature lower than 100 ° C. However, an aqueous hydrochloric acid solution that promotes detoxification is essential, and it is difficult to say that the decomposition reaction of the mill scale itself is sufficient.

また、前出特許文献4には平均粒子径1〜500μmの鉄粒子を含む水懸濁液からなる土壌浄化剤が開示されているが、粒子サイズが大きく、有機ハロゲン化合物を十分に分解することが困難となる。
また、前出特許文献5には平均粒子径が10μm未満の球状鉄粒子を含有する水懸濁液を用いる技術が開示されているが、該球状鉄粒子を含有する水懸濁液は製鋼用の酸素吹転炉から精錬中に発生する排ガスを集塵し、ガスを除去して得られる水懸濁液であり、有機ハロゲン化合物を十分に低減できるとは言い難いものである。
Moreover, although the above-mentioned patent document 4 discloses a soil purifier comprising an aqueous suspension containing iron particles having an average particle diameter of 1 to 500 μm, the particle size is large and the organic halogen compound is sufficiently decomposed. It becomes difficult.
In addition, Patent Document 5 discloses a technique using an aqueous suspension containing spherical iron particles having an average particle diameter of less than 10 μm. The aqueous suspension containing spherical iron particles is used for steelmaking. It is a water suspension obtained by collecting exhaust gas generated during refining from an oxygen blowing converter and removing the gas, and it is difficult to say that organic halogen compounds can be sufficiently reduced.

また、前出特許文献6には、ニッケル、銅、コバルト及びモリブデンから選ばれる金属が表面に付着し、付着金属以外の表面が鉄酸化被膜で覆われている有機ハロゲン化合物分解用鉄粉が記載されているが、ミルスケールで得られた鉄粉や溶鋼を水アトマイズした鉄粉を用いており、記載されている鉄粉の比表面積から、鉄粉の粒子サイズが大きいと思われ、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   In addition, the aforementioned Patent Document 6 describes an iron powder for decomposing an organic halogen compound in which a metal selected from nickel, copper, cobalt, and molybdenum is attached to the surface, and the surface other than the attached metal is covered with an iron oxide film. However, the iron powder obtained by mill scale and the iron powder obtained by water atomization of the molten steel are used. From the specific surface area of the iron powder described, the particle size of the iron powder seems to be large. It is difficult to say that the compound can be sufficiently reduced.

また、前出特許文献7には、Sを含有する鉄粉を有機ハロゲン化合物で汚染された土壌・地下水の浄化処理に用いることが記載されているが、粒子サイズが大きく、有機ハロゲン化合物を十分に低減できるとは言い難い。   Further, in the above-mentioned Patent Document 7, it is described that iron powder containing S is used for purification treatment of soil / groundwater contaminated with an organic halogen compound, but the particle size is large and the organic halogen compound is sufficient. It is hard to say that it can be reduced.

また、前出特許文献8には、マグネタイトを含有する鉄複合粒子粉末を有機ハロゲン化合物で汚染された土壌・地下水の浄化処理に用いることが記載されているが、Sを含有しておらず、有機ハロゲン化合物を十分に低減できるとは言い難い。   In addition, in the aforementioned Patent Document 8, it is described that the iron composite particle powder containing magnetite is used for the purification treatment of soil / groundwater contaminated with an organic halogen compound, but does not contain S, It is difficult to say that organic halogen compounds can be sufficiently reduced.

また、前出特許文献9には、マグネタイトと鉄との複合体を有機ハロゲン化合物で汚染された土壌・地下水に用いて浄化処理を行うことが記載されているが、短期間で効率よく分解するためには未だ十分とは言い難いものであった。   Further, in the above-mentioned Patent Document 9, it is described that a purification treatment is performed using a complex of magnetite and iron on soil / groundwater contaminated with an organic halogen compound, but it is efficiently decomposed in a short period of time. It was still not enough for that.

また、前出非特許文献1には、1〜100nmのFe粒子表面にPdを被覆した複合粒子粉末を用いることで、水溶液中のPCBを常温で分解できることを開示しているが、短時間で効率よく、PCBを分解できるとは言い難いものである。   In addition, Non-Patent Document 1 described above discloses that PCB in an aqueous solution can be decomposed at room temperature by using a composite particle powder in which Pd is coated on the surface of Fe particles of 1 to 100 nm. It is difficult to say that PCB can be decomposed efficiently.

そこで、本発明は、土壌・地下水中に含まれる有機ハロゲン化合物、特に難分解性の芳香族有機ハロゲン化合物を効率よく持続的に、且つ経済的に処理できる鉄複合粒子を用いた浄化方法を提供することを技術的課題とする。   Accordingly, the present invention provides a purification method using iron composite particles capable of efficiently and continuously and economically treating organic halogen compounds contained in soil and groundwater, particularly persistent organic organic halogen compounds. Doing this is a technical issue.

前記技術的課題は以下の通りの本発明により達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、有機ハロゲン化合物で汚染された土壌・地下水の浄化処理に用いる貴金属担持鉄複合体であり、該貴金属担持鉄複合体はα−Fe及びマグネタイトからなる鉄複合粒子とルテニウム、ロジウム及びパラジウムから選択した1種以上の貴金属とからなる貴金属担持鉄複合体であって、前記貴金属担持鉄複合体のX線回折スペクトルにおいてα−Feの(110)面の回折強度D110とマグネタイトの(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30〜0.95であり、Al含有量0.10〜1.50重量%であってS含有量3500〜10000ppmであり、貴金属の含有量が0.01〜5.0重量%であることを特徴とする土壌・地下水の浄化処理用貴金属担持鉄複合体である(本発明1)。 That is, the present invention is a noble metal-supported iron composite used for purification treatment of soil and groundwater contaminated with an organic halogen compound, and the noble metal-supported iron composite is composed of iron composite particles composed of α-Fe and magnetite, ruthenium, rhodium. and a noble metal loaded iron complex comprising one or more noble metal selected from palladium, said noble metal-supported iron complex of alpha-Fe in the X-ray diffraction spectrum of the (110) plane diffraction intensity D 110 and magnetite The intensity ratio (D 110 / (D 311 + D 110 )) with the diffraction intensity D 311 of the (311) plane is 0.30 to 0.95, and the Al content is 0.10 to 1.50% by weight. Noble metal-supported iron composite for purification treatment of soil and groundwater, wherein S content is 3500-10000 ppm and noble metal content is 0.01-5.0 wt% Is (present invention 1).

また、本発明は、前記貴金属担持鉄複合体の平均粒子径が0.05〜0.50μmであることを特徴とする前記土壌・地下水の浄化処理用貴金属担持鉄複合体である(本発明2)。   Further, the present invention is the noble metal-supported iron composite for purification treatment of soil and groundwater, wherein the noble metal-supported iron composite has an average particle size of 0.05 to 0.50 μm (Invention 2) ).

また、本発明は、飽和磁化値が85〜190Am/kgであり、BET比表面積が5〜60m/gであり、α−Feの(110)面の結晶子サイズが20〜40nmであることを特徴とする前記土壌・地下水の浄化処理用貴金属担持鉄複合体である(本発明3)。
In the present invention, the saturation magnetization value is 85 to 190 Am 2 / kg, the BET specific surface area is 5 to 60 m 2 / g, and the crystallite size of the (110) plane of α-Fe is 20 to 40 nm . This is a noble metal-supporting iron complex for purification treatment of soil and groundwater (Invention 3).

また、本発明は、本発明1乃至3のいずれかに記載の土壌・地下水の浄化処理用貴金属担持鉄複合体を10〜40重量%含有する水懸濁液からなる土壌・地下水の浄化処理用浄化剤である(本発明4)。
Further, the present invention is for soil / groundwater purification treatment comprising a water suspension containing 10-40% by weight of the precious metal-supported iron complex for soil / groundwater purification treatment according to any one of the present inventions 1 to 3. It is a purification agent (Invention 4).

また、本発明は、有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水に対して、本発明1乃至3のいずれかに記載の土壌・地下水の浄化処理用貴金属担持鉄複合体又は本発明4記載の土壌・地下水浄化処理用浄化剤を用いて浄化処理を行うことを特徴とする土壌・地下水の浄化処理方法である(本発明5)。   In addition, the present invention provides a precious metal-supported iron for soil / groundwater purification treatment according to any one of the present invention 1 to 3 for soil contaminated with organic halogen compounds or groundwater contaminated with organic halogen compounds. The present invention is a soil / groundwater purification treatment method characterized by performing purification treatment using the composite or the soil / groundwater purification agent according to the present invention 4 (Invention 5).

また、本発明は、有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水に対して、原位置で、本発明4の土壌・地下水の浄化処理用浄化剤を直接、注入することを特徴とする土壌・地下水の浄化処理方法である(本発明6)。   Further, the present invention directly injects the soil / groundwater purification agent of the present invention 4 directly into the soil contaminated with organic halogen compounds or the groundwater contaminated with organic halogen compounds. The present invention is a method for purifying soil and groundwater (Invention 6).

本発明に係る浄化処理用貴金属担持鉄複合体は、有機ハロゲン化合物、特に芳香族有機ハロゲン化合物を効率よく分解できるので、有機ハロゲン化合物によって汚染された土壌・地下水の浄化剤として好適である。   The noble metal-supported iron complex for purification treatment according to the present invention is suitable as a purification agent for soil and groundwater contaminated with organic halogen compounds because it can efficiently decompose organic halogen compounds, particularly aromatic organic halogen compounds.

本発明の構成を詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in detail as follows.

まず、本発明1乃至3に係る土壌・地下水の浄化処理用貴金属担持鉄複合体(以下、「貴金属担持鉄複合体」という。)について述べる。   First, the noble metal-supported iron complex for soil / groundwater purification treatment (hereinafter referred to as “noble metal-supported iron complex”) according to the first to third aspects of the present invention will be described.

本発明に係る貴金属担持鉄複合体は、α−Fe及びマグネタイトからなる鉄複合粒子に、ルテニウム、ロジウム及びパラジウムから選択した1種以上の貴金属を存在させたものである。   The noble metal-supported iron composite according to the present invention is one in which one or more kinds of noble metals selected from ruthenium, rhodium and palladium are present in iron composite particles made of α-Fe and magnetite.

本発明に係る貴金属担持鉄複合体のFeの含有量は、該貴金属担持鉄複合体のX線回折スペクトルにおいて、α−Feの(110)面の回折強度D110とFeの(311)面の回折強度D311との強度比(D110/(D311+D110))で示した場合に、0.30〜0.95である。製造直後の強度比が0.30未満の場合、α−Fe相の存在比率が低いため有機ハロゲン化合物の浄化性能が十分ではなく、本発明の目的とする効果を容易に得ることが困難となる。強度比が0.95を超える場合には、α−Fe相の存在比率は十分であるが本発明で生成されたFe相の存在比率が低くなり、触媒活性の早期劣化、持続性の低下を招く為、本発明の目的とする効果が得られない。好ましくは0.32〜0.95である。また、Feは鉄複合粒子の粒子表面に存在することが好ましい。 The content of Fe 3 O 4 in the noble metal-supported iron composite according to the present invention is such that the (110) plane diffraction intensity D 110 of α-Fe and Fe 3 O 4 in the X-ray diffraction spectrum of the noble metal-supported iron composite. In the case of the intensity ratio (D 110 / (D 311 + D 110 )) with the diffraction intensity D 311 of the (311) plane, it is 0.30 to 0.95. When the strength ratio immediately after production is less than 0.30, the α-Fe phase existing ratio is low, so the purification performance of the organic halogen compound is not sufficient, and it is difficult to easily obtain the intended effect of the present invention. . When the strength ratio exceeds 0.95, the abundance ratio of the α-Fe phase is sufficient, but the abundance ratio of the Fe 3 O 4 phase produced in the present invention is lowered, and the catalyst activity is prematurely deteriorated and sustained. Therefore, the intended effect of the present invention cannot be obtained. Preferably it is 0.32-0.95. Also, Fe 3 O 4 is preferably present on the particle surfaces of the iron composite particles.

本発明に係る貴金属担持鉄複合体のS含有量は3500〜10000ppmである。S含有量が3500ppm未満の場合には、有機ハロゲン化合物の浄化性能が十分ではなく本発明の目的とする効果が得られない。10000ppmを越える場合には、有機ハロゲン化合物の浄化性能はあるが、多量に含有しても効果が飽和し経済的ではない。好ましくは3800〜10000ppmであり、より好ましくは3800〜9500ppmである。   The S content of the noble metal-supported iron complex according to the present invention is 3500 to 10,000 ppm. When the S content is less than 3500 ppm, the purification performance of the organic halogen compound is not sufficient, and the intended effect of the present invention cannot be obtained. When it exceeds 10,000 ppm, there is a purification performance of the organic halogen compound, but even if it is contained in a large amount, the effect is saturated and it is not economical. Preferably it is 3800-10000 ppm, More preferably, it is 3800-9500 ppm.

本発明に係る貴金属担持鉄複合体のAl含有量は0.10〜1.50重量%である。Al含有量が0.10重量%未満の場合には、造粒物の体積収縮により硬い造粒物になり易い為、湿式粉砕を行う場合に労力を要する。1.50重量%を越える場合には、還元反応の進行が遅く、還元反応に長時間を要する。また結晶成長を十分に行うことができず、α−Fe相が不安定となり粒子表面に酸化皮膜が厚く形成されたり、また加熱還元時におけるFe相からα−Fe相への相変化が不十分のため、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることができない。好ましくは0.20〜1.20重量%である。 The Al content of the noble metal-supported iron complex according to the present invention is 0.10 to 1.50% by weight. When the Al content is less than 0.10% by weight, it tends to be a hard granulated product due to volume shrinkage of the granulated product, and therefore labor is required when performing wet grinding. When the amount exceeds 1.50% by weight, the reduction reaction proceeds slowly and requires a long time for the reduction reaction. Also, the crystal growth cannot be sufficiently performed, the α-Fe phase becomes unstable, and a thick oxide film is formed on the particle surface, or the phase change from the Fe 3 O 4 phase to the α-Fe phase during the heating reduction Is insufficient, it becomes difficult to increase the abundance ratio of the α-Fe phase, and the intended effect of the present invention cannot be obtained. Preferably it is 0.20 to 1.20% by weight.

本発明に係る貴金属担持鉄複合体の貴金属含有量は0.01〜5.0重量%である。貴金属が0.01重量%未満の場合は、貴金属の担持効果が小さくなり、触媒活性が低下し、5.0重量%を超える場合には、貴金属を増やした効果がなく、経済的でない。好ましくは0.05〜4.0重量%、より好ましくは0.05〜3.0重量%である。   The noble metal content of the noble metal-supported iron complex according to the present invention is 0.01 to 5.0% by weight. When the precious metal is less than 0.01% by weight, the effect of supporting the precious metal is reduced, and the catalytic activity is lowered. When the precious metal exceeds 5.0% by weight, there is no effect of increasing the precious metal, which is not economical. Preferably it is 0.05 to 4.0 weight%, More preferably, it is 0.05 to 3.0 weight%.

本発明に係る貴金属担持鉄複合体の粒子形状は粒状が好ましい。本発明では紡錘状又は針状のゲータイト粒子粉末又はヘマタイト粒子をそのまま加熱還元処理するので、α−Fe相へ結晶変態する際、粒子形状が崩れ、等方的に成長する過程を経るので粒状形状となる。一方、球状では粒子サイズが同じであれば、BET比表面積が小さくなり触媒活性が低くなるため、球状粒子が存在しないことが好ましい。   The particle shape of the noble metal-supported iron composite according to the present invention is preferably granular. In the present invention, the spindle-shaped or needle-shaped goethite particle powder or hematite particles are subjected to heat reduction treatment as they are, so that when undergoing crystal transformation to the α-Fe phase, the particle shape collapses and undergoes an isotropic growth process, so It becomes. On the other hand, if the particle size is the same in the spherical shape, the BET specific surface area is decreased and the catalytic activity is decreased.

本発明に係る貴金属担持鉄複合体の平均粒子径は0.05〜0.50μmが好ましい。平均粒子径が0.05μm未満の場合にはα−Fe相が不安定であるため表面に厚い酸化被膜が形成され、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果が得られない。製造直後に0.50μmを越える場合にはα−Fe相の存在比率は高くできるが、相対的にFe相の存在比率が低くなり、触媒活性の早期劣化、維持性の低下を招く為、本発明の目的とする課題を容易に解決することができない。より好ましくは0.05〜0.30μmである。 The average particle size of the noble metal-supported iron complex according to the present invention is preferably 0.05 to 0.50 μm. When the average particle size is less than 0.05 μm, the α-Fe phase is unstable, so that a thick oxide film is formed on the surface, making it difficult to increase the abundance ratio of the α-Fe phase. The effect is not obtained. If it exceeds 0.50 μm immediately after production, the abundance ratio of the α-Fe phase can be increased, but the abundance ratio of the Fe 3 O 4 phase is relatively lowered, leading to early deterioration of catalytic activity and deterioration of maintainability. For this reason, the object of the present invention cannot be easily solved. More preferably, it is 0.05-0.30 micrometer.

本発明に係る貴金属担持鉄複合体の結晶子サイズ(α−Feの(110)面)は20〜40nm(200〜400Åが好ましい。20nm(200Å未満の場合にはα−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることが困難となる。40nm(400Åを越える場合には、α−Fe相の存在比率は高くできるが、本発明で生成したFe相の存在比率を本発明の目的とする効果が得られる程度に保持することが困難となる。より好ましくは20〜35nm(200〜350Åである。
The crystallite size (α-Fe (110) plane) of the noble metal-supported iron complex according to the present invention is preferably 20 to 40 nm ( 200 to 400 mm ) . If it is less than 20 nm ( 200 Å ), it is difficult to increase the abundance ratio of the α-Fe phase, and it becomes difficult to obtain the intended effect of the present invention. If it exceeds 40 nm ( 400 Å ) , the abundance ratio of the α-Fe phase can be increased, but the abundance ratio of the Fe 3 O 4 phase produced in the present invention is maintained to such an extent that the intended effect of the present invention is obtained. It becomes difficult. More preferably, it is 20-35 nm ( 200-350 mm ) .

本発明に係る貴金属担持鉄複合体のBET比表面積値は5〜60m/gが好ましい。5m/g未満の場合には、接触面積が小さくなり触媒活性が発現しにくい。60m/gを越える場合には、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることが困難となる。より好ましくは7〜55m/gである。 The BET specific surface area value of the noble metal-supported iron complex according to the present invention is preferably 5 to 60 m 2 / g. When it is less than 5 m 2 / g, the contact area is small, and the catalytic activity is hardly exhibited. When it exceeds 60 m 2 / g, it is difficult to increase the abundance ratio of the α-Fe phase, and it becomes difficult to obtain the intended effect of the present invention. More preferably, it is 7-55 m < 2 > / g.

本発明に係る貴金属担持鉄複合体の飽和磁化値は85〜190Am/kg(85〜190emu/g)が好ましい。製造直後の貴金属担持鉄複合体の飽和磁化値が85Am/kg未満の場合には、α−Fe相の存在比率が低いものであり、本発明の目的とする課題を容易に解決することができない。190Am/kgを越える場合にはα−Fe相の存在比率は高くできるが、本発明で得られるFe相の存在比率を本発明の目的とする効果が得られる程度に保持することが困難となる。結果相対的にFe相の存在比率が低くなり、触媒活性の早期劣化、維持性の低下を招く為、本発明の目的とする効果を得ることが困難となる。より好ましくは90〜190Am/kg(90〜190emu/g)である。 The saturation magnetization value of the noble metal-supported iron complex according to the present invention is preferably 85 to 190 Am 2 / kg (85 to 190 emu / g). When the saturation magnetization value of the noble metal-supported iron composite immediately after production is less than 85 Am 2 / kg, the abundance ratio of the α-Fe phase is low, and the object of the present invention can be easily solved. Can not. If it exceeds 190 Am 2 / kg, the abundance ratio of the α-Fe phase can be increased, but the abundance ratio of the Fe 3 O 4 phase obtained in the present invention should be maintained to the extent that the intended effect of the present invention can be obtained. It becomes difficult. As a result, the abundance ratio of the Fe 3 O 4 phase is relatively reduced, leading to early deterioration of catalyst activity and a decrease in maintainability, making it difficult to obtain the intended effect of the present invention. More preferably, it is 90-190 Am < 2 > / kg (90-190 emu / g).

本発明に係る貴金属担持鉄複合体のFeの含有量は全粒子粉末に対して70重量%以上が好ましい。製造直後のFeの含有量が70重量%未満の場合には触媒活性が低下するため、本発明の目的とする効果を容易に得ることが困難となる。より好ましくは70〜98重量%であり、更により好ましくは70〜90重量%である。   The Fe content in the noble metal-supported iron complex according to the present invention is preferably 70% by weight or more based on the total particle powder. When the Fe content immediately after the production is less than 70% by weight, the catalytic activity is lowered, so that it is difficult to easily obtain the intended effect of the present invention. More preferably, it is 70-98 weight%, More preferably, it is 70-90 weight%.

本発明に係る貴金属担持鉄複合体は、Pb、Cd、As、Hg、Sn、Sb、Ba、Zn、Cr、Nb、Co、Bi等のFe及び貴金属以外の金属元素は毒性のある金属であるため極力含有しないことが好ましい。   In the noble metal-supported iron composite according to the present invention, Fe and other metal elements such as Pb, Cd, As, Hg, Sn, Sb, Ba, Zn, Cr, Nb, Co, and Bi are toxic metals. Therefore, it is preferable not to contain as much as possible.

なお、貴金属担持鉄複合体は、造粒物の形態であってもよい。   The noble metal-supported iron complex may be in the form of a granulated product.

次に、本発明4に係る有機ハロゲン化合物で汚染された土壌・地下水の浄化剤(以下、「浄化剤」という)について述べる。   Next, the soil / groundwater purification agent contaminated with the organic halogen compound according to the present invention 4 (hereinafter referred to as “purification agent”) will be described.

本発明4に係る浄化剤は、本発明1乃至3のいずれかに係る貴金属担持鉄複合体を有効成分として含有する水懸濁液であり、貴金属担持鉄複合体の水懸濁液中の含有量は10〜40重量%の範囲内で適宜選択することができ、より好ましくは10〜30重量部である。40重量%を越える場合、浄化剤が増粘するため、撹拌時の機械的負荷が伝わりにくく、均一に混合することが難しいため、濃度の調整が困難となる。   The purification agent according to the present invention 4 is a water suspension containing the noble metal-supported iron complex according to any one of the present inventions 1 to 3 as an active ingredient, and the precious metal-supported iron complex is contained in the aqueous suspension. The amount can be appropriately selected within the range of 10 to 40% by weight, and more preferably 10 to 30 parts by weight. When the amount exceeds 40% by weight, the viscosity of the cleaning agent increases, so that the mechanical load during stirring is difficult to be transmitted, and it is difficult to uniformly mix, so it is difficult to adjust the concentration.

本発明に係る浄化剤においては、ポリアクリル酸又はその塩、ポリアスパラギン酸又はその塩及びポリマレイン酸又はその塩から選ばれる1種以上の分散剤を含有させることによって、従来に比べて格段に土壌への浸透性を向上させることができる。マレイン酸又はその塩でも生分解性は有すが、特に、ポリアスパラギン酸又はその塩は、生分解性が非常に良好であり、土壌・地下水への注入後、微生物によって生分解を起こすため、環境に蓄積されることがほとんど認められないことから、原位置浄化処理用浄化剤の分散剤としてより好適である。   In the purifier according to the present invention, the soil is markedly more soiled than before by containing at least one dispersant selected from polyacrylic acid or a salt thereof, polyaspartic acid or a salt thereof and polymaleic acid or a salt thereof. Can be improved. Maleic acid or its salt is also biodegradable, but especially polyaspartic acid or its salt is very good in biodegradability and causes biodegradation by microorganisms after injection into soil / groundwater. Since it is hardly recognized that it accumulates in the environment, it is more suitable as a dispersant for the cleaning agent for in-situ purification treatment.

本発明に係る浄化剤の比重は1.2〜1.4が好ましい。1.2未満では浄化剤の輸送、土壌等への添加量を考えると固形分が少なく経済的でなく、1.4を超える場合は本発明の一次粒子径、二次粒子径を考慮すると浄化剤が増粘し、工業的に製造するのは困難である。   The specific gravity of the purifier according to the present invention is preferably 1.2 to 1.4. If less than 1.2, considering the transport amount of the cleaning agent and the amount added to the soil, etc., the solid content is low and not economical, and if it exceeds 1.4, the purification is performed considering the primary particle size and the secondary particle size of the present invention. The agent thickens and is difficult to manufacture industrially.

次に、本発明に係る有機ハロゲン化合物で汚染された土壌・地下水の浄化処理用貴金属担持鉄複合体の製造法について述べる。   Next, a method for producing a noble metal-supported iron composite for purification treatment of soil and groundwater contaminated with an organic halogen compound according to the present invention will be described.

本発明に係る貴金属担持鉄複合体は、常法に従って、ゲータイト粒子を製造し、必要により加熱してヘマタイト粒子とした後、前記ゲータイト粒子又は前記ヘマタイト粒子を加熱還元して鉄粒子粉末とした後、該鉄粒子粉末を気相中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成して水中に取り出す又は該鉄粒子粉末を水中に取り出して水中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成してα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液を製造した後、前記鉄複合粒子の粒子表面に貴金属を担持・被覆させた後、ろ過、水洗、乾燥して得ることができる。   The noble metal-supported iron complex according to the present invention is produced by producing goethite particles according to a conventional method and heating them to hematite particles if necessary, and then heating and reducing the goethite particles or the hematite particles to obtain iron particle powders. The iron particle powder is taken out in water by forming a surface oxide film on the particle surface of the iron particle powder in the gas phase, or the iron particle powder is taken out in water and surface oxidized on the particle surface of the iron particle powder in water. After forming a coating and producing an aqueous suspension containing iron composite particles composed of α-Fe and magnetite, the surface of the iron composite particles is supported and coated with a noble metal, then filtered, washed with water, and dried. Can be obtained.

本発明におけるα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液は、平均長軸径が0.05〜0.50μmであってAl含有量が0.06〜1.00重量%であり、S含有量が2200〜5500ppmであるゲータイト粒子粉末又は平均長軸径が0.05〜0.50μmであってAl含有量が0.07〜1.13重量%であり、S含有量が2400〜8000ppmのヘマタイト粒子粉末を、350〜600℃の温度範囲で加熱還元して鉄粒子粉末とした後、該鉄粒子粉末を気相中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成して水中に取り出す又は該鉄粒子粉末を水中に取り出して水中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成することによって得ることができる。   The aqueous suspension containing iron composite particles composed of α-Fe and magnetite in the present invention has an average major axis diameter of 0.05 to 0.50 μm and an Al content of 0.06 to 1.00% by weight. The S content is from 2200 to 5500 ppm, and the average major axis diameter is from 0.05 to 0.50 μm, the Al content is from 0.07 to 1.13 wt%, and the S content is 2400-8000 ppm hematite particle powder is heated and reduced in the temperature range of 350-600 ° C. to form iron particle powder, and then the iron particle powder is coated with a surface oxide film on the surface of the iron particle powder in the gas phase. It can be obtained by forming and taking out in water, or taking out the iron particle powder into water and forming a surface oxide film on the particle surface of the iron particle powder in water.

ゲータイト粒子粉末は、常法に従って、例えば、第一鉄塩を含有する水溶液と、水酸化アルカリ、炭酸アルカリ又はアンモニアから選ばれる1種又は2種以上とを反応させて得られる鉄の水酸化物や炭酸鉄等の第一鉄含有沈殿物を含む懸濁液中に空気等の酸素含有ガスを通気することにより得ることができる。   The goethite particle powder is obtained by reacting, for example, an aqueous solution containing a ferrous salt with one or more selected from alkali hydroxide, alkali carbonate or ammonia according to a conventional method. It can be obtained by ventilating an oxygen-containing gas such as air through a suspension containing a ferrous iron-containing precipitate such as iron carbonate.

なお、不純物含有量の少ない浄化処理用鉄複合粒子粉末を得るためには、前記第一鉄塩を含有する水溶液として、重金属等の不純物を低減し、純度の高いものを使用することが好ましい。   In addition, in order to obtain the iron composite particle powder for purification processing with a small impurity content, it is preferable to use a high-purity one that reduces impurities such as heavy metals as the aqueous solution containing the ferrous salt.

第一鉄塩を含有する水溶液の不純物量を低減するためには、例えば、鋼板を硫酸で酸洗し、鋼板の表層に析出している不純物、防錆の油分等を溶解除去した後の不純物の少ない鋼板を溶解して得られた第一鉄塩水溶液を用いる方法がある。鉄以外の金属不純物の多い屑鉄やスクラップ鉄、耐蝕性を向上させる為に行なわれるめっき処理、リン酸塩処理及びクロム酸処理等を行った鋼板並びに防錆の油分を塗布した鋼板等の酸洗液を用いた場合には、鉄複合粒子粉末中に不純物が残存し、浄化する土壌・地下水に溶出する恐れがあり好ましくない。また、酸化チタン製造工程等から副生する硫酸第一鉄溶液に水酸化アルカリ等のアルカリを添加し、pH調整によりチタン、その他の不純物を水酸化物として不溶化して沈殿除去、限外ろ過除去等を行い使用する方法がある。不純物の少ない鋼板を硫酸溶解して使用するのが好ましく、引き続きpH調整による不純物除去を行うのが更に好ましい。何れの方法も工業的に問題が無く、経済的にも有利である。   In order to reduce the amount of impurities in the aqueous solution containing the ferrous salt, for example, the steel sheet is pickled with sulfuric acid, and impurities that have precipitated on the surface layer of the steel sheet and dissolved and removed rust preventive oil are removed. There is a method using an aqueous ferrous salt solution obtained by dissolving a steel sheet with a small amount of iron. Pickling of scrap iron and scrap iron with a lot of metal impurities other than iron, steel plates with plating treatment, phosphate treatment and chromic acid treatment to improve corrosion resistance, and steel plates with anti-rust oil applied When the liquid is used, impurities remain in the iron composite particle powder, and there is a possibility that it may elute into the soil or groundwater to be purified. Also, alkali such as alkali hydroxide is added to the ferrous sulfate solution by-produced from the titanium oxide production process, etc., and titanium and other impurities are insolubilized as hydroxides by pH adjustment to remove precipitates and ultrafiltration There is a method to use it. It is preferable to use a steel plate with few impurities dissolved in sulfuric acid, and it is further preferable to remove impurities by pH adjustment. Either method has no industrial problems and is economically advantageous.

ゲータイト粒子粉末の平均長軸径は0.05〜0.50μmであり、S含有量が2200〜5500ppmである。粒子形状は紡錘状又は針状のどちらでも良い。軸比は4〜30が好ましく、より好ましくは5〜25であり、BET比表面積は20〜200m/gが好ましく、より好ましくは25〜180m/gである。 The average major axis diameter of the goethite particle powder is 0.05 to 0.50 μm, and the S content is 2500 to 5500 ppm. The particle shape may be either spindle-shaped or needle-shaped. Axial ratio is preferably from 4 to 30, more preferably from 5 to 25, BET specific surface area is preferably 20 to 200 m 2 / g, more preferably 25~180m 2 / g.

本発明においては、前記ゲータイト粒子中にAlを含有させるか、又は、ゲータイト粒子にAl被覆することが重要である。Alを含有または被覆することによって造粒物の体積収縮を抑制することより造粒物の硬さを制御することができる。したがって湿式粉砕を行う場合の労力も小さくすることができる。また相対的に一次粒子の大きさを小さくすることができ、比表面積も相対的に大きくなり、性能が向上する。   In the present invention, it is important that the goethite particles contain Al or the goethite particles are coated with Al. The hardness of the granulated product can be controlled by suppressing the volume shrinkage of the granulated product by containing or coating Al. Therefore, the labor for wet pulverization can be reduced. Further, the size of the primary particles can be relatively reduced, the specific surface area is also relatively increased, and the performance is improved.

ゲータイト粒子粉末のAl含有量又はAl被覆量は0.06〜1.00重量%が好ましい。   The Al content or the Al coating amount of the goethite particle powder is preferably 0.06 to 1.00% by weight.

なお、ゲータイト粒子粉末は、常法に従って、造粒しておくことが好ましい。造粒することによって、固定層方式の還元炉を使用できるほか、鉄複合粒子とした場合でも還元条件によってはそのまま造粒物の形態を保つことが可能となり、カラム等に充填して使用する場合には好ましい。   The goethite particle powder is preferably granulated according to a conventional method. By granulating, a fixed bed type reduction furnace can be used, and even when iron composite particles are used, it is possible to maintain the shape of the granulated product as it is depending on the reducing conditions. Is preferred.

得られたゲータイト粒子粉末は250〜350℃の温度範囲で加熱脱水したヘマタイト粒子粉末にすることが好ましい。   The obtained goethite particle powder is preferably a hematite particle powder that has been heat-dehydrated in a temperature range of 250 to 350 ° C.

本発明におけるヘマタイト粒子粉末は、あらかじめS含有量が高いゲータイト粒子を用いるか、又は、S含有量が低いゲータイト粒子の場合には、ヘマタイト粒子粉末の水懸濁液に硫酸を添加することで、ヘマタイト粒子粉末のS含有量を制御する。   The hematite particle powder in the present invention uses goethite particles having a high S content in advance, or in the case of goethite particles having a low S content, by adding sulfuric acid to an aqueous suspension of the hematite particle powder, The S content of the hematite particle powder is controlled.

ヘマタイト粒子粉末の平均長軸径は0.05〜0.50μmであり、S含有量が2400〜8000ppmである。ヘマタイト粒子粉末のAl含有量又はAl被覆量は0.07〜1.13重量%が好ましい。   The average major axis diameter of the hematite particle powder is 0.05 to 0.50 μm, and the S content is 2400 to 8000 ppm. The Al content or the Al coating amount of the hematite particle powder is preferably 0.07 to 1.13% by weight.

前記ゲータイト粒子粉末又は前記ヘマタイト粒子粉末を350〜600℃の温度範囲で加熱還元することによって鉄粒子(α−Fe)粉末とする。   The goethite particle powder or the hematite particle powder is heated and reduced in a temperature range of 350 to 600 ° C. to obtain iron particle (α-Fe) powder.

加熱還元温度が350℃未満である場合には、還元反応の進行が遅く、還元反応に長時間を要する。また、BET比表面積を大きくすることができるが、結晶成長を十分に行うことができず、α−Fe相が不安定となり粒子表面に酸化被膜が厚く形成されたり、またFe相からα−Fe相への相変化が不十分のため、α−Fe相の存在比率を高くすることができない。600℃を超える場合には、還元反応が急激に進行して粒子及び粒子相互間の焼結が過度に促進され粒子径が大きくなり、BET比表面積も小さくなるため好ましくない。 When the heating reduction temperature is less than 350 ° C., the reduction reaction proceeds slowly and takes a long time for the reduction reaction. Moreover, although the BET specific surface area can be increased, crystal growth cannot be sufficiently performed, the α-Fe phase becomes unstable, and a thick oxide film is formed on the particle surface, or from the Fe 3 O 4 phase. Since the phase change to the α-Fe phase is insufficient, the abundance ratio of the α-Fe phase cannot be increased. When the temperature exceeds 600 ° C., the reduction reaction proceeds rapidly, the sintering between the particles and the particles is excessively promoted, the particle diameter is increased, and the BET specific surface area is also decreased.

なお、還元反応の昇温時の雰囲気は水素ガス、窒素ガス等が利用できるが、工業的には水素ガスが好ましい。   In addition, although hydrogen gas, nitrogen gas, etc. can utilize the atmosphere at the time of temperature increase of a reductive reaction, hydrogen gas is preferable industrially.

加熱還元後の鉄粒子粉末は冷却した後、該鉄粒子粉末を気相中でFeの表面酸化被膜を形成し、水中に取り出す、或いは水中に取り出して該鉄粒子粉末の粒子表面に表面酸化皮膜を形成する。 The iron particle powder after the heat reduction is cooled, and then the iron particle powder is formed with a surface oxide film of Fe 3 O 4 in the gas phase and taken out in water, or taken out into water and put on the particle surface of the iron particle powder. A surface oxide film is formed.

表面酸化被膜の形成方法は、還元後の雰囲気を一旦不活性ガスに置換した後、不活性ガス中の酸素含有量を徐々に増加させながら最終的に空気とする方法、酸素と水蒸気を混合したガスを使用して徐々に酸化する方法等により空気中に取り出すことができる。なお、気相中での表面酸化被膜の形成温度は、150℃以下が好ましいさらに、水中に取り出す時には100℃以下まで冷却されていることが好ましい。   The method of forming the surface oxide film is a method in which the atmosphere after reduction is once replaced with an inert gas, and then the oxygen content in the inert gas is gradually increased to air, and oxygen and water vapor are mixed. It can be taken out into the air by a method of gradually oxidizing using gas. In addition, the formation temperature of the surface oxide film in the gas phase is preferably 150 ° C. or lower, and is preferably cooled to 100 ° C. or lower when taken out in water.

一方、気相中で酸化被膜を形成することなく水中に取り出す場合には、100℃以下まで冷却されていることが好ましい。加熱還元した後、気相中で表面酸化被膜を形成することなく、直接、水中に取り出した場合、α−Feの触媒活性により水を分解して水素と酸素を生成し、発生した酸素によりα−Feが酸化され、粒子表面にFeからなる酸化被膜が形成されるものと推定している。 On the other hand, when taking out in water, without forming an oxide film in a gaseous phase, it is preferable to cool to 100 degrees C or less. After heat reduction, when taken directly into water without forming a surface oxide film in the gas phase, water is decomposed by the catalytic activity of α-Fe to generate hydrogen and oxygen, and α is generated by the generated oxygen. It is presumed that -Fe is oxidized and an oxide film composed of Fe 3 O 4 is formed on the particle surface.

なお、加熱還元後の冷却時の雰囲気は窒素又は水素のいずれでもよいが、最終的には窒素に切り替えることが好ましい。   In addition, although the atmosphere at the time of cooling after heat reduction may be either nitrogen or hydrogen, it is preferable to finally switch to nitrogen.

次いで、得られたα−Fe及びマグネタイトからなる鉄複合粒子粉末の水懸濁液を湿式粉砕装置を用いて粉砕・分散する。   Next, the obtained aqueous suspension of iron composite particle powder made of α-Fe and magnetite is pulverized and dispersed using a wet pulverizer.

湿式粉砕に用いる粉砕装置としては、メディアを用いる場合、転動ミル(ポットミル、チューブミル、コニカルミル)や振動ミル(ファイン・バイブレーションミル)等の容器駆動式、塔型(タワーミル)、攪拌槽型(アトライター)、流通管型(サンドグラインドミル)及びアニュラー型(アニュラーミル)等の媒体攪拌式を用いることができる。メディアを用いない場合、容器回転型(オングミル)、湿式高速回転型(コロイドミル、ホモミキサー、ラインミキサー)等のせん断・摩擦式を用いることができる。   As a pulverizer used for wet pulverization, when media is used, a container driven type such as a rolling mill (pot mill, tube mill, conical mill) or vibration mill (fine vibration mill), tower type (tower mill), stirring tank type ( Medium stirring types such as an attritor), a distribution pipe type (sand grind mill), and an annular type (annular mill) can be used. When the medium is not used, a shear / friction type such as a container rotation type (Ang mill) or a wet high-speed rotation type (colloid mill, homomixer, line mixer) can be used.

湿式粉砕時の懸濁液中の該鉄粒子濃度は20〜40重量%が好ましい。20重量%未満の場合は、粉砕時にせん断等の応力が掛かり難く所定の粉砕粒度が得られないか長時間を要し、また粉砕に必要なメディアが著しく摩耗する為好ましくない。40重量%を超える場合には、水懸濁液が増粘し、機械的な負荷が大きく工業的に製造するのは困難である。   The iron particle concentration in the suspension during wet pulverization is preferably 20 to 40% by weight. When the amount is less than 20% by weight, stress such as shearing is hardly applied during pulverization, and a predetermined pulverized particle size cannot be obtained or it takes a long time, and the media necessary for pulverization is significantly worn. If it exceeds 40% by weight, the aqueous suspension will thicken, and the mechanical load is large, making it difficult to produce industrially.

粉砕後のα−Fe及びマグネタイトからなる鉄複合粒子の粒子表面に貴金属を担持・被覆させた後、濾過・水洗し、乾燥することによって、本発明に係る貴金属担持鉄複合体を得る。   The precious metal-supported iron composite according to the present invention is obtained by supporting the precious metal on the surface of the ground iron composite particles composed of α-Fe and magnetite, covering the precious metal, filtering, washing with water, and drying.

また、貴金属の担持・被覆方法としては、加熱還元前のゲーサイト粒子粉末或いはヘマタイト粒子粉末に、予め貴金属の硝酸塩、酢酸塩、塩化物を含浸させた後、加熱還元処理以降の処理を行うことも可能であり、例えば、予めゲータイト粒子粉末或いはヘマタイト粒子粉末に、貴金属の硝酸塩、酢酸塩、塩化物を含浸させた後、加熱還元処理して得られた貴金属を担持した鉄粒子粉末を冷却し、気相中で表面酸化被膜を形成し、貴金属担持鉄複合体とする方法、前記加熱還元処理して得られた貴金属を担持した鉄粒子粉末を水中に取り出して水中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成して貴金属を担持したα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液を製造した後、ろ過、水洗、乾燥して得ることができる。   In addition, as a method for supporting and coating a noble metal, a goethite particle powder or a hematite particle powder before heat reduction is impregnated with a nitrate, acetate or chloride of the noble metal in advance, and then the treatment after the heat reduction treatment is performed. For example, after impregnating goethite particle powder or hematite particle powder with noble metal nitrate, acetate or chloride in advance, the iron particle powder carrying the noble metal obtained by heat reduction treatment is cooled. , A method of forming a surface oxide film in a gas phase to form a noble metal-supported iron complex, and taking out the iron particle powder supporting the noble metal obtained by the heat reduction treatment in water, and the particles of the iron particle powder in water It can be obtained by forming a surface oxide film on the surface and producing an aqueous suspension containing iron composite particles composed of α-Fe and magnetite supporting noble metal, followed by filtration, washing and drying. .

α−Fe及びマグネタイトからなる鉄複合粒子の粒子表面へ貴金属を担持・被覆させる方法としては、該鉄複合粒子を含有する水懸濁液に、貴金属塩水溶液を添加混合して、鉄複合粒子表面のFe又はFe2+と貴金属イオンを置換めっきする方法や、該鉄複合粒子を含有する水懸濁液に貴金属コロイド液を添加混合して、該鉄複合粒子表面にコロイド状の貴金属を担持させる方法等が挙げられる。 As a method of loading and coating the noble metal on the particle surface of the iron composite particles composed of α-Fe and magnetite, an aqueous noble metal salt solution is added to and mixed with the aqueous suspension containing the iron composite particles, and the surface of the iron composite particles A method of performing displacement plating of Fe 0 or Fe 2+ and noble metal ions, or adding and mixing a noble metal colloid solution to an aqueous suspension containing the iron composite particles to support the colloidal noble metal on the surface of the iron composite particles Methods and the like.

貴金属塩としては、ルテニウム、ロジウム、パラジウムの硝酸塩、酢酸塩、塩化物等が使用できる。   As the noble metal salt, ruthenium, rhodium, palladium nitrate, acetate, chloride and the like can be used.

また、濾過・水洗後の乾燥雰囲気は、窒素、空気中、真空中等適宜選択できるが、温度は100℃以下が好ましい。   The drying atmosphere after filtration and washing with water can be selected as appropriate, such as nitrogen, air, or vacuum, but the temperature is preferably 100 ° C. or lower.

次に、本発明4に係る土壌・地下水の浄化処理用浄化剤の製造法について述べる。   Next, the manufacturing method of the purification agent for soil / groundwater purification treatment according to the present invention 4 will be described.

本発明に係る土壌・地下水の浄化処理用浄化剤の製造法は、前記貴金属担持鉄複合体の製造法において、該α−Fe及びマグネタイトからなる鉄複合粒子の粒子表面に貴金属を担持・被覆させた後、デカンテーションによって水洗したものを、そのまま貴金属担持鉄複合体を含有する水懸濁液からなる浄化剤とするものである。   The method for producing a purification agent for soil / groundwater purification treatment according to the present invention is the method for producing a noble metal-supported iron composite, wherein the surface of the iron composite particles composed of α-Fe and magnetite is supported / coated with a noble metal. Then, what was washed with water by decantation is used as a purification agent consisting of an aqueous suspension containing the noble metal-supported iron complex as it is.

或いは、予めゲータイト粒子粉末或いはヘマタイト粒子粉末に、貴金属の硝酸塩、酢酸塩、塩化物を含浸させた後、加熱還元処理して得られた貴金属−鉄粒子粉末を冷却し、気相中で表面酸化被膜を形成し水中に取り出す又は水中に取り出して水中で該鉄粒子粉末の粒子表面に表面酸化被膜を形成した後、さらに湿式粉砕装置にて水懸濁液を調製し、デカンテーションにて水洗したものを、そのまま貴金属担持鉄複合体を含有する水懸濁液からなる浄化剤としてもよい。   Alternatively, the noble metal-iron particle powder obtained by impregnating goethite particle powder or hematite particle powder with noble metal nitrate, acetate or chloride in advance and then heat reduction treatment is cooled and surface oxidized in the gas phase. A film is formed and taken out in water or taken out into water and a surface oxide film is formed on the surface of the iron particle powder in water, and then a water suspension is prepared with a wet pulverizer and washed with decantation. The product may be used as a purification agent consisting of a water suspension containing the noble metal-supported iron complex.

なお、本発明においては、前記製造法に従ってあらかじめα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液を製造した後、該懸濁液を土壌・地下水の浄化処理を行う施工現場に輸送し、施工現場において、α−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液に対して前記方法に従って、鉄複合粒子に貴金属を担持・被覆させることもできる。   In the present invention, after producing an aqueous suspension containing iron composite particles composed of α-Fe and magnetite in advance according to the production method, the suspension is applied to a construction site where the soil / groundwater is purified. The iron composite particles can be supported and coated with the noble metal according to the above method for the aqueous suspension containing the iron composite particles composed of α-Fe and magnetite at the construction site.

本発明4に係る浄化剤は、必要により、ポリアクリル酸又はその塩、ポリアスパラギン酸又はその塩及びポリマレイン酸又はその塩から選ばれる1種以上の分散剤を含有させても良く、前記各分散剤は水溶性であるので、貴金属担持鉄複合体を含有する水懸濁液中に、粉末或いは水溶液で添加し、攪拌混合すればよい。   The cleaning agent according to the present invention 4 may contain one or more dispersants selected from polyacrylic acid or a salt thereof, polyaspartic acid or a salt thereof, and polymaleic acid or a salt thereof, if necessary. Since the agent is water-soluble, it may be added as a powder or an aqueous solution to an aqueous suspension containing the noble metal-supported iron complex and mixed with stirring.

ポリマレイン酸としては、無水マレイン酸、マレイン酸の重合体又は無水マレイン酸、マレイン酸と他のモノマーとの共重合体(例えば、オレフィン・マレイン酸共重合体など)であり、前記重合体又は共重合体のナトリウム塩などのポリマレイン酸塩も用いることができる。ポリマレイン酸は、例えば、日本油脂株式会社、BASFジャパン株式会社等のメーカーが製造したポリマーを使用することができる。   Examples of the polymaleic acid include maleic anhydride, a polymer of maleic acid or a maleic anhydride, and a copolymer of maleic acid and another monomer (for example, an olefin / maleic acid copolymer). Polymerate salts such as sodium salts of polymers can also be used. As the polymaleic acid, for example, a polymer produced by a manufacturer such as Nippon Oil & Fat Co., Ltd. or BASF Japan Co., Ltd. can be used.

次に、本発明5又は6に係る有機ハロゲン化合物で汚染された土壌・地下水の浄化処理方法ついて述べる。   Next, the purification method for soil and groundwater contaminated with the organic halogen compound according to the present invention 5 or 6 will be described.

有機ハロゲン化合物で汚染された土壌・地下水の浄化処理は、一般的に、含有される汚染物質を直接地下で分解する原位置分解法と掘削又は抽出した土壌・地下水中の汚染物質を分解する原位置抽出法とがあり、本発明においてはいずれの方法でも行うことができるが、好ましくは原位置分解法である。   In general, purification of soil and groundwater contaminated with organic halogen compounds is generally performed by in-situ decomposition methods that decompose the contained pollutants directly in the ground, and raw materials that decompose excavated or extracted soil and groundwater. In the present invention, any method can be used, but the in-situ decomposition method is preferred.

原位置分解法においては、貴金属担持鉄複合体又は浄化剤を高圧の空気、窒素等のガスあるいは水を媒体にしてそのまま浸透もしくはボーリング孔から地下に導入する方法が取られる。特に本発明の浄化剤は水懸濁液であるのでそのまま使用するか必要に応じて希釈すれば良い。   The in-situ decomposition method employs a method in which a noble metal-supported iron complex or a purification agent is permeated or introduced into a basement through a borehole as it is using high-pressure air, a gas such as nitrogen, or water as a medium. In particular, since the purification agent of the present invention is an aqueous suspension, it can be used as it is or diluted as necessary.

原位置抽出法においては、掘削した土壌と貴金属担持鉄複合体又は浄化剤を、サンドミル、ヘンシェルミキサー、コンクリートミキサー、ナウターミキサー、一軸又は二軸式のニーダー型混合器等を用いて混合攪拌すれば良い。また、揚水した地下水においては貴金属担持鉄複合体が充填されたカラム等に通水することができる。   In the in-situ extraction method, the excavated soil and the precious metal-supported iron complex or cleaning agent are mixed and stirred using a sand mill, Henschel mixer, concrete mixer, nauter mixer, uniaxial or biaxial kneader mixer, etc. It ’s fine. In addition, the pumped groundwater can be passed through a column or the like filled with a noble metal-supporting iron complex.

本発明に係る浄化剤は、浄化処理に用いる際に鉄複合粒子の固形分濃度が0.01〜20重量%となるように希釈することが好ましい。   The purification agent according to the present invention is preferably diluted so that the solid content concentration of the iron composite particles is 0.01 to 20% by weight when used in the purification treatment.

また、本発明においては、土壌への浸透性向上のために、希釈浄化剤中に炭酸水素ナトリウム、硫酸ナトリウム、炭酸ナトリウム、亜硫酸ナトリウム及び亜硫酸水素ナトリウム等を添加してもよい。   In the present invention, sodium hydrogen carbonate, sodium sulfate, sodium carbonate, sodium sulfite, sodium hydrogen sulfite and the like may be added to the diluted purification agent in order to improve the permeability to soil.

本発明に係る浄化剤の添加量は、土壌、地下水および排水中の有機ハロゲン化合物の濃度に応じて適宜選択することができるが、土壌を対象とする場合には、通常土壌100重量部に対して、固形分の貴金属担持鉄複合体として、0.01〜50重量部が好ましく、より好ましくは0.05〜20重量部である。0.01重量部未満の場合には、本発明の目的とする効果が充分得られない。50重量部を超える場合には、浄化効果は向上するが経済的ではない。また、地下水および排水を対象とする場合には、地下水100重量部に対して0.01〜50重量部添加することが好ましく、より好ましくは0.05〜20重量部である。   The amount of the purification agent according to the present invention can be appropriately selected according to the concentration of the organic halogen compound in the soil, groundwater and drainage. However, when the soil is a target, the amount is usually 100 parts by weight of the soil. In addition, the solid noble metal-supported iron composite is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight. When the amount is less than 0.01 parts by weight, the intended effect of the present invention cannot be obtained sufficiently. If it exceeds 50 parts by weight, the purification effect is improved, but it is not economical. When groundwater and drainage are targeted, it is preferably added in an amount of 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of groundwater.

土壌、地下水および排水中の有機ハロゲン化合物に対する本発明に係る浄化剤の添加量は、有機ハロゲン化合物1重量部に対して、固形分の貴金属担持鉄複合体として、10〜1000重量部が好ましく、より好ましくは10〜500重量部である。1重量部未満の場合には、本発明の目的とする効果が充分得られない。500重量部を超える場合には、有機ハロゲン化合物の分解性能は向上するが経済的ではない。   The amount of the purification agent according to the present invention to the organic halogen compound in the soil, groundwater and wastewater is preferably 10 to 1000 parts by weight as a noble metal-supported iron complex with a solid content with respect to 1 part by weight of the organic halogen compound, More preferably, it is 10-500 weight part. When the amount is less than 1 part by weight, the intended effect of the present invention cannot be obtained sufficiently. When it exceeds 500 parts by weight, the decomposition performance of the organic halogen compound is improved, but it is not economical.

本発明に係る分解触媒を用いた場合には、後述する評価法において、土壌中の芳香族有機ハロゲン化合物の残存率を25%以下、好ましくは20%以下にすることができ、地下水および排水中の芳香族有機ハロゲン化合物の残存率を25%以下、好ましくは20%以下にすることができる。   When the decomposition catalyst according to the present invention is used, in the evaluation method described later, the residual ratio of the aromatic organic halogen compound in the soil can be 25% or less, preferably 20% or less. The residual ratio of the aromatic organic halogen compound can be 25% or less, preferably 20% or less.

<作用>
本発明において重要な点は、本発明に係る貴金属担持鉄複合体あるいは浄化剤を用いることによって、土壌・地下水の有機ハロゲン化合物を効率よく、経済的に分解処理できるという点である。
<Action>
The important point in the present invention is that the organic halogen compound of soil and groundwater can be efficiently and economically decomposed by using the noble metal-supported iron complex or the purifying agent according to the present invention.

本発明者は、土壌・地下水中の有機ハロゲン化合物を効果的に分解できる理由は未だ明らかではないが、下記のように推定している。   The present inventor has not yet clarified the reason why organic halogen compounds in soil and groundwater can be effectively decomposed, but has estimated as follows.

即ち、本発明に係る浄化処理用貴金属担持鉄複合体は、α−Fe相(0価)とFe相とが特定の割合で存在するとともに、一部の硫黄が加熱還元工程を経て0価の状態で存在することによって、鉄複合粒子として高い還元作用を有することができ、有機ハロゲン化合物の分解反応に寄与するものと推定している。更に、有機ハロゲン化合物を分解する際に、α−Fe相(0価)及びFe相と水が反応して生成した活性水素が、スピルオーバー現象によって貴金属担持鉄複合体の粒子表面を移動し、貴金属相表面に吸着した有機ハロゲン化合物と水素化脱ハロゲン反応するものと推定している。 That is, in the noble metal-supported iron composite for purification treatment according to the present invention, the α-Fe phase (zero valence) and the Fe 3 O 4 phase are present in a specific ratio, and part of sulfur undergoes the heat reduction step. It is presumed that, when present in a zero-valent state, the iron composite particles can have a high reducing action and contribute to the decomposition reaction of the organic halogen compound. Furthermore, when decomposing the organic halogen compound, the active hydrogen generated by the reaction of the α-Fe phase (zero-valent) and the Fe 3 O 4 phase with water moves on the particle surface of the noble metal-supported iron complex due to the spillover phenomenon. However, it is presumed that the organic halogen compound adsorbed on the surface of the noble metal phase undergoes hydrodehalogenation reaction.

本発明においては、浄化処理用貴金属担持鉄複合体にAl化合物を特定量添加することによって、有機ハロゲン化合物の分解性能を向上させることができる。この理由は未だ明らかではないが、Alを含有することによって、一次粒子をより微細化することができ、しかも、鉄複合粒子粉末の凝集体の強度従来に比較して小さくなるので、湿式粉砕に労力を要さず、同様に粉砕した場合より微細に粉砕することが可能となる。その結果、土壌中又は地下水中で容易に浸透・分散することができるので、鉄複合粒子が本来有する有機ハロゲン化合物に対する分解活性を十分に発揮できたことによるものと本発明者は推定している。
In the present invention, the decomposition performance of the organic halogen compound can be improved by adding a specific amount of Al compound to the precious metal-supporting iron composite for purification treatment. The reason is not yet clear, by containing Al, can be finer primary particles, moreover, the strength of the agglomerates of the iron composite particles is reduced as compared with the prior art, wet grinding Therefore, it is possible to pulverize more finely than when pulverizing in the same manner. As a result, the present inventor presumes that the iron composite particles can sufficiently exhibit the decomposition activity for the organic halogen compounds inherent in the iron composite particles because they can easily penetrate and disperse in soil or groundwater. .

以上のように、触媒活性効果が高いため、効率的に短期間で浄化処理を行うことが可能となり、特に高濃度の脂肪族有機ハロゲン化合物や難分解性の芳香族有機ハロゲン化合物で汚染された土壌・地下水の浄化に好適である。   As described above, since the catalytic activity effect is high, it is possible to efficiently perform the purification treatment in a short period of time, and particularly, it is contaminated with a high concentration of an aliphatic organic halogen compound or a hardly decomposable aromatic organic halogen compound. Suitable for purification of soil and groundwater.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

ゲータイト粒子粉末の平均長軸径及び軸比は透過型電子顕微鏡写真(倍率30000倍)で測定した。ヘマタイト粒子粉末及び鉄複合粒子粉末の平均粒子径は走査型電子顕微鏡写真(倍率30000倍)を用いて測定した。   The average major axis diameter and the axial ratio of the goethite particle powder were measured with a transmission electron micrograph (magnification 30000 times). The average particle diameter of the hematite particle powder and the iron composite particle powder was measured using a scanning electron micrograph (magnification 30000 times).

鉄複合粒子粉末のFe量、Al量及び貴金属量は、貴金属担持鉄複合体0.20gを濃硝酸/濃塩酸(1/3容積比)溶液をイオン交換水で2倍に希釈した溶液30mlに煮沸溶解した後、イオン交換水を加えて2リットルに希釈して、「誘導結合プラズマ発光分光分析装置SPS4000」(セイコー電子工業(株)製)を使用して測定した。   The amount of Fe, Al, and noble metal in the iron composite particle powder was adjusted to 30 ml of a solution obtained by diluting 0.20 g of a noble metal-supported iron composite with concentrated nitric acid / concentrated hydrochloric acid (1/3 volume ratio) solution twice with ion-exchanged water. After boiling and dissolving, ion-exchanged water was added to dilute to 2 liters, and measurement was performed using an “inductively coupled plasma emission spectrometer SPS4000” (manufactured by Seiko Denshi Kogyo Co., Ltd.).

各粒子粉末のS含有量は、「カーボン・サルファーアナライザー:EMIA−2200」(HORIBA製)を使用して測定した。   The S content of each particle powder was measured using “Carbon Sulfur Analyzer: EMIA-2200” (manufactured by HORIBA).

各粒子粉末の結晶相はX線回折によって10〜90°の範囲で測定して同定した。   The crystalline phase of each particle powder was identified by measuring in the range of 10 to 90 ° by X-ray diffraction.

鉄複合粒子粉末のピーク強度比は、前記の通りX線回折の結果から、α−Feの(110)面の回折強度D110及びマグネタイトの(311)面の回折強度D311を測定し、D110/(D311+D110)として強度比を求めた。 As described above, the peak intensity ratio of the iron composite particle powder was determined by measuring the diffraction intensity D 110 of the (110) plane of α-Fe and the diffraction intensity D 311 of the (311) plane of magnetite from the result of X-ray diffraction. The intensity ratio was determined as 110 / (D 311 + D 110 ).

鉄複合粒子粉末の結晶子サイズ(α−Feの(110)面)は、X線回折法で測定される結晶粒子の大きさを、各粒子の結晶面のそれぞれに垂直な方向における結晶粒子の厚さを表したものであり、各結晶面についての回折ピーク曲線から、下記シェラーの式を用いて計算した値で示したものである。
結晶子サイズ=Kλ/βcosθ
但し、β=装置に起因する機械幅を補正した真の回折ピークの半値幅(ラジアン単位)。
K=シェラー定数(=0.9)。
λ=X線の波長(Cu Kα線 0.1542nm)。
θ=回折角(各結晶面の回折ピークに対応)。
The crystallite size (α-Fe (110) plane) of the iron composite particle powder is the size of the crystal particle measured by X-ray diffractometry, and the crystal particle size in the direction perpendicular to the crystal plane of each particle. The thickness is expressed by a value calculated from the diffraction peak curve for each crystal plane using the following Scherrer equation.
Crystallite size = Kλ / βcosθ
Where β = half-value width (in radians) of the true diffraction peak corrected for machine width due to the device.
K = Scherrer constant (= 0.9).
λ = wavelength of X-ray (Cu Kα ray 0.1542 nm).
θ = Diffraction angle (corresponding to the diffraction peak of each crystal plane).

各粒子粉末の比表面積は、「モノソーブMS−11」(カンタクロム(株)製)を使用し、BET法により測定した値で示した。   The specific surface area of each particle powder was represented by a value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

鉄複合粒子粉末の飽和磁化値は、「振動試料磁力計VSM−3S−15」(東英工業(株)製)を使用し、外部磁場795.8kA/m(10kOe)で測定した。   The saturation magnetization value of the iron composite particle powder was measured using an “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Industry Co., Ltd.) with an external magnetic field of 795.8 kA / m (10 kOe).

<模擬土壌中クロロベンゼンの浄化処理評価>
<模擬土壌用検量線の作製:クロロベンゼンの定量>
クロロベンゼンの濃度は下記手順に従ってあらかじめ検量線を作成し、得られた検量線に基づいて濃度を算出した。
クロロベンゼン(CCl):分子量112.56
試薬特級(99.5%)、密度(20℃)1.115g/ml
クロロベンゼンを0.05μl、0.1μl及び1.0μlの3水準とし、褐色バイアル瓶50ml(実容積68ml)にイオン交換水30mlを添加し、砂質土壌20g(目開き2mmの篩い下)を封印し、次いで、クロロベンゼンを各水準量注入し、直ちにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付ける。バイアル瓶のヘッドスペースのガスをシリンジで50μl分取し、「GC−MS−QP5050」(島津製作所製)を用いてクロロベンゼンを測定する。クロロベンゼンは全く分解されないものとして、添加量とピーク面積との関係を求める。このときのカラムはキャピラリーカラム(DB−1:J&W Scientific社製、液相:ジメチルポリシロキサン)とし、キャリアガスにはHeガス(143l/min)を使用し、40℃、2分間保持した後、10℃/minの速度で250℃まで昇温してガスを分析する。
<Evaluation of purification treatment of chlorobenzene in simulated soil>
<Preparation of a calibration curve for simulated soil: Determination of chlorobenzene>
The concentration of chlorobenzene was prepared in advance according to the following procedure, and the concentration was calculated based on the obtained calibration curve.
Chlorobenzene (C 6 H 5 Cl): molecular weight 112.56
Reagent grade (99.5%), density (20 ° C.) 1.115 g / ml
Chlorobenzene was made into three levels of 0.05 μl, 0.1 μl and 1.0 μl, and 30 ml of ion-exchanged water was added to 50 ml of brown vial (actual volume 68 ml), and 20 g of sandy soil (under 2 mm mesh sieve) was sealed. Next, each level of chlorobenzene is injected, immediately covered with a rubber stopper with a fluororesin liner, and firmly tightened with an aluminum seal from above. 50 μl of the gas in the head space of the vial is taken with a syringe, and chlorobenzene is measured using “GC-MS-QP5050” (manufactured by Shimadzu Corporation). Assuming that chlorobenzene is not decomposed at all, the relationship between the added amount and the peak area is determined. The column at this time is a capillary column (DB-1: manufactured by J & W Scientific, liquid phase: dimethylpolysiloxane), He gas (143 l / min) is used as a carrier gas, and the temperature is maintained at 40 ° C. for 2 minutes. The gas is analyzed by raising the temperature to 250 ° C at a rate of ° C / min.

<試料調整>
あらかじめ湿った砂質土壌20g(目開き2mm篩い下)にクロロベンゼン1.0μlを添加し、クロロベンゼンで汚染された土壌を作製した。褐色バイアル瓶50ml(実容積68ml)に貴金属担持鉄複合体0.3g又は浄化剤(貴金属担持鉄複合体0.3g相当)を入れ、さらにイオン交換水を浄化剤中の水量と合わせて30mlとなるように注入し、次いで、前記汚染土壌を添加し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Sample preparation>
1.0 g of chlorobenzene was added to 20 g of wet sandy soil in advance (under 2 mm mesh sieve) to prepare soil contaminated with chlorobenzene. Put 0.3 g of noble metal-supported iron complex or purification agent (corresponding to 0.3 g of noble metal-supported iron complex) into 50 ml of brown vial (actual volume 68 ml), and add ion exchange water to the amount of water in the purification agent to 30 ml. Then, the contaminated soil is added, and the lid is immediately covered with a rubber stopper with a fluororesin liner, and firmly clamped with an aluminum seal from above to allow a stationary reaction.

<評価方法>
クロロベンゼン残存量は、前記バイアル瓶のヘッドスペースのガスを、反応時間100時間後にシリンジで50μl分取し、前記「GC−MS−QP5050」(島津製作所製)を用いて測定する。
<Evaluation method>
The residual amount of chlorobenzene is measured using the above-mentioned “GC-MS-QP5050” (manufactured by Shimadzu Corporation) by taking 50 μl of the gas in the headspace of the vial bottle with a syringe after a reaction time of 100 hours.

<模擬地下水、排水中クロロベンゼンの浄化処理評価>
<模擬地下水、排水用検量線の作製:クロロベンゼンの定量>
砂質土壌を添加しない以外は前記<土壌用検量線の作製:クロロベンゼンの定量>と同様にして地下水、排水用検量線を作成した。
<Evaluation of purification treatment of chlorobenzene in simulated groundwater and wastewater>
<Simulation of groundwater and drainage calibration curves: Determination of chlorobenzene>
A calibration curve for groundwater and drainage was prepared in the same manner as described above in <Preparation of calibration curve for soil: Determination of chlorobenzene> except that sandy soil was not added.

<試料調整>
前記褐色バイアル瓶50ml(実容積68ml)に貴金属担持鉄複合体0.3g又は浄化剤(貴金属担持鉄複合体0.3g相当)を入れ、さらにイオン交換水を浄化剤中の水量と合わせて30mlとなるように注入し、次いで、クロロベンゼン1μlを添加し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Sample preparation>
Into 50 ml of the brown vial (actual volume 68 ml), 0.3 g of a noble metal-supported iron complex or a purification agent (corresponding to 0.3 g of noble metal-supported iron complex) is added, and ion exchange water is combined with the amount of water in the purification agent to 30 ml. Then, 1 μl of chlorobenzene is added, and the cap is immediately covered with a rubber stopper with a fluororesin liner, and firmly clamped with an aluminum seal from above and allowed to react.

<評価方法>
クロロベンゼン残存量は前記<評価方法>と同様にして測定した。
<Evaluation method>
The residual amount of chlorobenzene was measured in the same manner as in the above <Evaluation method>.

<模擬土壌中ダイオキシン類の浄化処理評価>
<試料調整>
褐色バイアル瓶50ml(実容積68ml)に、あらかじめ湿った砂質土壌20g(目開き2mm篩い下)、貴金属担持鉄複合体0.3g又は浄化剤(鉄複合粒子粉末0.3g相当)及びイオン交換水30mlを注入し、次いで、表1に示すダイオキシン類混合標準液(CIL社製EDF−4943)をアセトンで100倍に希釈した希釈標準液(41ng−TEQ/ml)を0.2ml(8.2ng−TEQに相当する)注入し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Evaluation of purification treatment of dioxins in simulated soil>
<Sample preparation>
In a 50 ml brown vial (actual volume 68 ml), 20 g of pre-moistened sandy soil (under 2 mm mesh sieve), 0.3 g of precious metal-supported iron complex or purification agent (corresponding to 0.3 g of iron composite particle powder) and ion exchange 30 ml of water was injected, and then 0.2 ml (8 ng-TEQ / ml) of a diluted standard solution (41 ng-TEQ / ml) obtained by diluting the dioxin mixed standard solution shown in Table 1 (EDF-4943 manufactured by CIL) 100 times with acetone. (Corresponding to 2 ng-TEQ), and immediately covered with a rubber stopper with a fluororesin liner, and firmly clamped with an aluminum seal from above to allow a stationary reaction.

Figure 0004626762
Figure 0004626762

<評価方法>
反応時間200時間後に、バイエル瓶中の溶液、砂質土壌および貴金属担持鉄複合体に含まれるダイオキシン類を常法によって抽出し、抽出液中のダイオキシン類をガスクロマトグラフィー質量分析計(MICROMASS社製AUTOSPEC ULTIMA)で定量した。残存量は毒性等量にて計算した。
<Evaluation method>
After 200 hours of reaction time, dioxins contained in the solution in the Bayer bottle, sandy soil and the noble metal-supported iron complex were extracted by a conventional method, and the dioxins in the extract were gas chromatograph mass spectrometer (manufactured by MICROMASS) Quantified by AUTOSPEC ULTIMA). The remaining amount was calculated as the equivalent amount of toxicity.

<模擬地下水、排水中ダイオキシン類の浄化処理評価>
<試料調整>
褐色バイアル瓶50ml(実容積68ml)に貴金属担持鉄複合体0.3g又は浄化剤(貴金属担持鉄複合体0.3g相当)とイオン交換水30mlを注入し、次いで、表1に示すダイオキシン類混合標準液(CIL社製EDF−4943)をアセトンで100倍に希釈した希釈標準液(41ng−TEQ/ml)を0.2ml(8.2ng−TEQに相当する)注入し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Evaluation of purification treatment of simulated groundwater and wastewater dioxins>
<Sample preparation>
Inject 50 ml of a brown vial (actual volume 68 ml) 0.3 g of the noble metal-supported iron complex or a purifying agent (corresponding to 0.3 g of the noble metal-supported iron complex) and 30 ml of ion-exchange water, and then mix the dioxins shown in Table Inject 0.2 ml (equivalent to 8.2 ng-TEQ) of a diluted standard solution (41 ng-TEQ / ml) obtained by diluting a standard solution (CIL EDF-4943) 100 times with acetone and immediately with a fluororesin liner. Cover with a rubber stopper, and fasten it tightly with an aluminum seal to allow it to react.

<評価方法>
ダイオキシン類残存量は前記<評価方法>と同様にして測定した。
<Evaluation method>
The residual amount of dioxins was measured in the same manner as in the above <evaluation method>.

実施例1<貴金属担持鉄複合体1及び浄化剤1の製造>
毎秒3.4cmの割合でNガスを流すことによって非酸化性雰囲気に保持された反応容器中に、1.16mol/lのNaCO水溶液704lを添加した後、Fe2+1.35mol/lを含む硫酸第一鉄水溶液296lを添加、混合(NaCO量は、Feに対し2.0倍当量に該当する。)し、温度47℃においてFeCOを生成させた。
Example 1 <Production of noble metal-supported iron complex 1 and purification agent 1>
Into a reaction vessel maintained in a non-oxidizing atmosphere by flowing N 2 gas at a rate of 3.4 cm per second, 704 l of a 1.16 mol / l Na 2 CO 3 aqueous solution was added, and then Fe 2+ 1.35 mol / l. 296 l of ferrous sulfate aqueous solution containing l was added and mixed (the amount of Na 2 CO 3 corresponds to 2.0 times equivalent to Fe), and FeCO 3 was produced at a temperature of 47 ° C.

ここに得たFeCOを含む水溶液中に、引き続き、Nガスを毎秒3.4cmの割合で吹き込みながら、温度47℃で70分間保持した後、当該FeCOを含む水溶液中に、温度47℃において毎秒2.8cmの空気を5.0時間通気してゲータイト粒子1を生成させた。なお、空気通気中におけるpHは8.5〜9.5であった。 In an aqueous solution containing FeCO 3 obtained here, subsequently, while blowing N 2 gas at a rate per second 3.4cm, it was held 70 minutes at temperature 47 ° C., in an aqueous solution containing the FeCO 3, temperature 47 ° C. Then, 2.8 cm of air per second was vented for 5.0 hours to generate goethite particles 1. The pH during air ventilation was 8.5 to 9.5.

ここに得たゲータイト粒子1を含有する懸濁液に、Al3+0.3mol/lを含む硫酸Al水溶液20lを添加、十分撹拌した後フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末1の造粒物とした。 To the suspension containing the obtained goethite particles 1, 20 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added, stirred well, washed with a filter press, and the resulting press cake was compressed into a compression molding machine. Was extruded with a molding plate having a pore diameter of 4 mm and dried at 120 ° C. to obtain a granulated product of goethite particle powder 1.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.30μm、軸比(長軸径/短軸径)12.5の紡錘状を呈した粒子であった。BET比表面積は85m/g、Al含有量は0.40重量%、S含有量は400ppmであった。 The goethite particles contained in the granulated product thus obtained were particles having a spindle shape with an average major axis diameter of 0.30 μm and an axial ratio (major axis diameter / minor axis diameter) of 12.5. The BET specific surface area was 85 m 2 / g, the Al content was 0.40% by weight, and the S content was 400 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子とし乾式粉砕する。その後水に邂逅し70%硫酸を10ml/kgの割合で添加し攪拌する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。   The granulated product is heated at 330 ° C. to form hematite particles and dry pulverized. Then, it is poured into water and 70% sulfuric acid is added at a rate of 10 ml / kg and stirred. Thereafter, it was dehydrated into a press cake, extruded using a molding plate having a pore diameter of 3 mm using a compression molding machine, and dried at 120 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.24μm、軸比(長軸径/短軸径)10.7の紡錘形を呈した粒子であった。S含有量は3300ppmであった。   The hematite particle powder constituting the granulated product obtained here was a spindle-shaped particle having an average major axis diameter of 0.24 μm and an axial ratio (major axis diameter / minor axis diameter) of 10.7. The S content was 3300 ppm.

前記ヘマタイト粒子粉末の造粒物100gを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、窒素ガスに切り替えて90℃まで冷却し、次いで、酸素分圧を徐々に増加させて空気と同じ比率として粒子表面に安定な酸化被膜を形成した。次いでイオン交換水300mlを直接還元炉に導入し、そのまま鉄粒子粉末を含有する水懸濁液として取り出した。
その水懸濁液をバッフルを取り付けたステンレスビーカーに移し、中速回転型攪拌機として動力0.2kWのT.Kホモディスパー2.5型(直径40mmφのエッジタービン翼、特殊機化工業(株)製)を挿入し、回転数3600rpmで30分間攪拌した。
100 g of the granulated product of the hematite particle powder was introduced into a fixed bed reducing device, and reduced to complete α-Fe at 450 ° C. for 180 minutes while allowing H 2 gas to flow. Next, after switching to N 2 gas and cooling to room temperature, switching to nitrogen gas and cooling to 90 ° C., then gradually increasing the oxygen partial pressure to form a stable oxide film on the particle surface at the same ratio as air Formed. Next, 300 ml of ion-exchanged water was directly introduced into the reduction furnace and taken out as a water suspension containing iron particle powder as it was.
The aqueous suspension was transferred to a stainless beaker equipped with a baffle, and a T.W. K homodisper type 2.5 (edge turbine blade having a diameter of 40 mmφ, manufactured by Tokushu Kika Kogyo Co., Ltd.) was inserted, and stirred at a rotational speed of 3600 rpm for 30 minutes.

次いで、連続せん断式分散機として、動力0.55kWのT.Kホモミックラインミル(PL−SL型、特殊機化工業(株)製)で、回転数4000rpmで分散処理した。   Next, as a continuous shearing type disperser, a T.I. power of 0.55 kW is used. Dispersion treatment was performed at a rotational speed of 4000 rpm using a K homomic line mill (PL-SL type, manufactured by Tokushu Kika Kogyo Co., Ltd.).

その後、メディア式分散機として、動力1.5kWの四筒式サンドグラインダー(4TSG−(1/8G)型、特殊機化工業(株)製)に、直径2mmのガラスビーズを0.25l充填し、回転数500rpmで分散処理し、固形分濃度30重量%の水懸濁液300mlを得た。   After that, as a media-type disperser, 0.25 l of glass beads with a diameter of 2 mm were filled into a four-cylinder sand grinder (4TSG- (1 / 8G) type, manufactured by Special Machine Industries Co., Ltd.) with a power of 1.5 kW. The dispersion was carried out at a rotational speed of 500 rpm to obtain 300 ml of an aqueous suspension having a solid content concentration of 30% by weight.

この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、1.25mmol/lのルテニウムコロイド水溶液(戸田工業(株)製TCU−611、平均粒子径5nm)710mlを羽根攪拌下にて添加し、さらに30分間攪拌混合した後、デカンテーションにて上澄み液の伝導度が100μS/cm以下になるまで水洗して、比重1.25、固形分濃度30重量%の浄化剤300mlとした(浄化剤1とする)。   This aqueous suspension was transferred to a stainless beaker equipped with a baffle, and 710 ml of a 1.25 mmol / l aqueous ruthenium colloid solution (TCU-611 manufactured by Toda Kogyo Co., Ltd., average particle size 5 nm) was added under blade stirring. The mixture was further stirred and mixed for 30 minutes, and then washed with decantation until the supernatant had a conductivity of 100 μS / cm or less to obtain 300 ml of a purification agent having a specific gravity of 1.25 and a solid concentration of 30% by weight (purification agent 1 And).

得られた浄化剤中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.09μmであって軸比が1.4であった。   The iron composite particles contained in the obtained cleaning agent were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a rice grain shape and an average major axis diameter of 0.09 μm. The ratio was 1.4.

次いで、濾過し、40℃で3時間、大気中で乾燥し、浄化処理用鉄複合粒子粉末を得た(貴金属担持鉄複合体1とする)。   Subsequently, it filtered, and it dried in air | atmosphere at 40 degreeC for 3 hours, and obtained the iron composite particle powder for a purification process (it is set as the noble metal carrying | support iron composite 1).

ここに得た鉄複合粒子は、α−Feを主体としており、飽和磁化値132Am/kg(132emu/g)、BET比表面積27m/g、結晶子サイズ29.5nm(295Å、Fe含有量は82.9重量%、S含有量は4000ppm、ルテニウム含有量0.10重量%であった。X線回折の結果、α−FeのD110とFeのD311との強度比D110/(D110+D311)は0.84であった。
The iron composite particles obtained here are mainly composed of α-Fe, have a saturation magnetization value of 132 Am 2 / kg (132 emu / g), a BET specific surface area of 27 m 2 / g, a crystallite size of 29.5 nm ( 295Å ) , and contain Fe. The amount was 82.9% by weight, the S content was 4000 ppm, and the ruthenium content was 0.10% by weight. As a result of X-ray diffraction, the intensity ratio D 110 / (D 110 + D 311 ) between D 110 of α-Fe and D 311 of Fe 3 O 4 was 0.84.

実施例2<貴金属担持鉄複合体2及び浄化剤2の製造>
Fe2+1.50mol/lを含む硫酸第一鉄水溶液12.8lと0.44−NのNaOH水溶液30.2l(硫酸第一鉄水溶液中のFe2+に対し0.35当量に該当する。)とを混合し、pH6.7、温度38℃においてFe(OH)を含む硫酸第一鉄水溶液の生成を行なった。次いで、Fe(OH)を含む硫酸第一鉄水溶液に温度40℃において毎分130lの空気を3.0時間通気してゲータイト核粒子を生成させた。
Example 2 <Production of noble metal-supported iron composite 2 and purification agent 2>
12.8 l of ferrous sulfate aqueous solution containing Fe 2+ 1.50 mol / l and 30.2 l of 0.44-N NaOH aqueous solution (corresponding to 0.35 equivalent to Fe 2+ in ferrous sulfate aqueous solution) mixing the door, pH 6.7, was carried out the production of an aqueous ferrous sulfate solution containing Fe (OH) 2 at a temperature 38 ° C.. Next, 130 l of air per minute was passed through a ferrous sulfate aqueous solution containing Fe (OH) 2 at a temperature of 40 ° C. for 3.0 hours to generate goethite core particles.

前記ゲータイト核粒子を含む硫酸第一鉄水溶液(ゲータイト核粒子の存在量は生成ゲータイト粒子に対し35mol%に該当する。)に、5.4NのNaCO水溶液7.0l(残存硫酸第一鉄水溶液中のFe2+に対し1.5当量に該当する。)を加え、pH9.4、温度42℃において毎分130lの空気を4時間通気してゲータイト粒子粉末を生成させた。ここに得たゲータイト粒子を含有する懸濁液にAl3+0.3mol/lを含む硫酸Al水溶液を0.96lを添加、十分撹拌した後をフィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末2の造粒物とした。 The ferrous sulfate aqueous solution containing the goethite core particles (the amount of the goethite core particles corresponds to 35 mol% with respect to the produced goethite particles) was added to 7.0 l of 5.4N Na 2 CO 3 aqueous solution (residual ferrous sulfate). 1.5 equivalents of Fe 2+ in the aqueous iron solution) was added, and 130 liters of air was aerated for 4 hours at a pH of 9.4 and a temperature of 42 ° C. to produce goethite particle powder. 0.96 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added to the suspension containing the goethite particles obtained here, and after sufficient stirring, the mixture was washed with a filter press and the resulting press cake was compressed. Extrusion molding was performed with a molding plate having a hole diameter of 4 mm using a molding machine and dried at 120 ° C. to obtain a granulated product of goethite particle powder 2.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.33μm、軸比(長軸径/短軸径)25.0の針状を呈した粒子であった。BET比表面積は70m/g、Al含有量は0.42重量%、S含有量は4000ppmであった。 The goethite particle powder contained in the granulated product thus obtained was a needle-like particle having an average major axis diameter of 0.33 μm and an axial ratio (major axis diameter / minor axis diameter) of 25.0. The BET specific surface area was 70 m 2 / g, the Al content was 0.42% by weight, and the S content was 4000 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子とし乾式粉砕する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。   The granulated product is heated at 330 ° C. to form hematite particles and dry pulverized. Thereafter, it was dehydrated into a press cake, extruded using a molding plate having a pore diameter of 3 mm using a compression molding machine, and dried at 120 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.25μm、軸比(長軸径/短軸径)21.4の針状を呈した粒子であった。S含有量は4500ppmであった。   The hematite particle powder constituting the granulated product obtained here was a needle-like particle having an average major axis diameter of 0.25 μm and an axial ratio (major axis diameter / minor axis diameter) of 21.4. The S content was 4500 ppm.

前記ヘマタイト粒子粉末の造粒物100gを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、イオン交換水300mlを直接還元炉に導入し、そのまま約20重量%の鉄粒子粉末を含有する水懸濁液として取り出した。 100 g of the granulated product of the hematite particle powder was introduced into a fixed bed reducing device, and reduced to complete α-Fe at 450 ° C. for 180 minutes while allowing H 2 gas to flow. Next, after switching to N 2 gas and allowing it to cool to room temperature, 300 ml of ion-exchanged water was directly introduced into the reduction furnace, and was directly taken out as a water suspension containing about 20 wt% iron particle powder.

その水懸濁液をバッフルを取り付けたステンレスビーカーに移し、中速回転型攪拌機として動力0.2kWのT.Kホモディスパー2.5型(直径40mmφのエッジタービン翼、特殊機化工業(株)製)を挿入し、回転数3600rpmで30分間攪拌した。   The aqueous suspension was transferred to a stainless beaker equipped with a baffle, and a T.W. K homodisper type 2.5 (edge turbine blade having a diameter of 40 mmφ, manufactured by Tokushu Kika Kogyo Co., Ltd.) was inserted, and stirred at a rotational speed of 3600 rpm for 30 minutes.

次いで、連続せん断式分散機として、動力0.55kWのT.Kホモミックラインミル(PL−SL型、特殊機化工業(株)製)で、回転数4000rpmで分散処理した。   Next, as a continuous shearing type disperser, a T.I. power of 0.55 kW is used. Dispersion treatment was performed at a rotational speed of 4000 rpm using a K homomic line mill (PL-SL type, manufactured by Tokushu Kika Kogyo Co., Ltd.).

その後、メディア式分散機として、動力1.5kWの四筒式サンドグラインダー(4TSG−(1/8G)型、特殊機化工業(株)製)に、直径2mmのガラスビーズを0.25l充填し、回転数500rpmで分散処理し、固形分濃度30重量%の水懸濁液300mlを得た。   After that, as a media-type disperser, 0.25 l of glass beads with a diameter of 2 mm were filled into a four-cylinder sand grinder (4TSG- (1 / 8G) type, manufactured by Special Machine Industries Co., Ltd.) with a power of 1.5 kW. The dispersion was carried out at a rotational speed of 500 rpm to obtain 300 ml of an aqueous suspension having a solid content concentration of 30% by weight.

この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、5.0mmol/lの硝酸パラジウム水溶液340mlを羽根攪拌下にて添加し、さらに30分間攪拌混合した後、デカンテーションにて上澄み液の伝導度が100μS/cm以下になるまで水洗し、さらに、羽根攪拌下にて、ポリマレイン酸水溶液(日本油脂(株)製ポリスターOM)を固形分として15g添加し、比重1.25、固形分濃度30重量%の浄化剤(浄化処理用浄化剤2)300mlとした。   This aqueous suspension was transferred to a stainless beaker equipped with a baffle, and 340 ml of a 5.0 mmol / l palladium nitrate aqueous solution was added with stirring by a blade, and further stirred and mixed for 30 minutes, and then the supernatant was conducted by decantation. Washing is performed until the degree reaches 100 μS / cm or less, and 15 g of a polymaleic acid aqueous solution (Polystar OM manufactured by Nippon Oil & Fats Co., Ltd.) is added as a solid component under stirring with a blade, a specific gravity of 1.25, a solid component concentration of 30 The weight% of the purification agent (purification agent 2 for purification treatment) was 300 ml.

得られた浄化剤中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.11μmであって軸比が1.4であった。   The iron composite particles contained in the obtained cleaning agent were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a grain shape of rice grains and an average major axis diameter of 0.11 μm. The ratio was 1.4.

浄化剤の一部を抜き取り、濾過・水洗し、40℃で3時間、大気中で乾燥し、貴金属担持鉄複合体を得た(貴金属担持鉄複合体2とする)。   A part of the cleaning agent was extracted, filtered and washed with water, and dried in the air at 40 ° C. for 3 hours to obtain a noble metal-supported iron complex (referred to as a noble metal-supported iron complex 2).

ここに得た鉄複合粒子粉末は、α−Feを主体としており、飽和磁化値140Am/kg(140emu/g)、BET比表面積20m/g、結晶子サイズ29.8nm(298Å、Fe含有量は85.9重量%、S含有量は5500ppmであった。X線回折の結果、α−FeとFeとが存在することが確認された。そのD110(α−Fe)とD311(Fe)との強度比D110/(D110+D311)は0.88であった。
The obtained iron composite particle powder is mainly composed of α-Fe, a saturation magnetization value of 140 Am 2 / kg (140 emu / g), a BET specific surface area of 20 m 2 / g, a crystallite size of 29.8 nm ( 298 2 ) , Fe The content was 85.9% by weight and the S content was 5500 ppm. As a result of X-ray diffraction, it was confirmed that α-Fe and Fe 3 O 4 were present. The intensity ratio D 110 / (D 110 + D 311 ) between D 110 (α-Fe) and D 311 (Fe 3 O 4 ) was 0.88.

実施例3〜4、比較例1〜3
貴金属担持鉄複合体及び浄化剤:
ゲータイト粒子の種類、加熱脱水の温度、ヘマタイト粒子を含有する懸濁液への硫酸の添加の有無及び添加量、加熱還元の温度、浄化剤の固形分濃度、貴金属の種類及び添加量を種々変化させた以外は、前記実施例1と同様にして、それぞれ貴金属担持鉄複合体及び浄化剤を得た。
Examples 3-4, Comparative Examples 1-3
Noble metal-supported iron complex and purification agent:
Various types of goethite particles, temperature of heat dehydration, presence / absence and amount of sulfuric acid added to suspension containing hematite particles, temperature of heat reduction, solid content concentration of purifier, type of precious metal and amount added A noble metal-supported iron complex and a purifier were obtained in the same manner as in Example 1 except that the above were performed.

なお、ゲータイト粒子3は、添加する硫酸Al水溶液の量を種々変化させた以外は前記実施例1と同様にしてゲータイト粒子粉末の造粒物を得たものである。   In addition, the goethite particles 3 are obtained by obtaining a granulated product of goethite particles in the same manner as in Example 1 except that the amount of the aqueous solution of Al sulfate to be added is variously changed.

ゲータイト粒子の諸特性を表2に、製造条件を表3に、得られた貴金属担持鉄複合体の諸特性を表4に示す。   Various characteristics of the goethite particles are shown in Table 2, production conditions are shown in Table 3, and various characteristics of the obtained noble metal-supported iron composite are shown in Table 4.

実施例5<貴金属担持鉄複合体5及び浄化剤5の製造>
Fe2+1.50mol/lを含む硫酸第一鉄水溶液12.8lと0.44−NのNaOH水溶液30.2l(硫酸第一鉄水溶液中のFe2+に対し0.35当量に該当する。)とを混合し、pH6.7、温度38℃においてFe(OH)を含む硫酸第一鉄水溶液の生成を行なった。次いで、Fe(OH)を含む硫酸第一鉄水溶液に温度40℃において毎分130lの空気を3.0時間通気してゲータイト核粒子を生成させた。
Example 5 <Production of noble metal-supported iron composite 5 and purification agent 5>
12.8 l of ferrous sulfate aqueous solution containing Fe 2+ 1.50 mol / l and 30.2 l of 0.44-N NaOH aqueous solution (corresponding to 0.35 equivalent to Fe 2+ in ferrous sulfate aqueous solution) mixing the door, pH 6.7, was carried out the production of an aqueous ferrous sulfate solution containing Fe (OH) 2 at a temperature 38 ° C.. Next, 130 l of air per minute was passed through a ferrous sulfate aqueous solution containing Fe (OH) 2 at a temperature of 40 ° C. for 3.0 hours to generate goethite core particles.

前記ゲータイト核粒子を含む硫酸第一鉄水溶液(ゲータイト核粒子の存在量は生成ゲータイト粒子に対し35mol%に該当する。)に、5.4NのNaCO水溶液7.0l(残存硫酸第一鉄水溶液中のFe2+に対し1.5当量に該当する。)を加え、pH9.4、温度42℃において毎分130lの空気を4時間通気してゲータイト粒子を生成させた。ここに得たゲータイト粒子を含有する懸濁液にAl3+0.3mol/lを含む硫酸Al水溶液を0.96lを添加、十分撹拌した後、Ru2+0.05mol/lを含む塩化Ru水溶液0.94lを添加、十分攪拌した後、フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子4の造粒物とした。 The ferrous sulfate aqueous solution containing the goethite core particles (the amount of the goethite core particles corresponds to 35 mol% with respect to the produced goethite particles) was added to 7.0 l of 5.4N Na 2 CO 3 aqueous solution (residual ferrous sulfate). 1.5 equivalents of Fe 2+ in the iron aqueous solution) was added, and 130 liters of air was aerated for 4 hours at pH 9.4 and a temperature of 42 ° C. to generate goethite particles. 0.96 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added to the suspension containing the goethite particles obtained here, and after sufficiently stirring, an aqueous Ru chloride solution containing Ru 2+ 0.05 mol / l was added. .94 l was added, sufficiently stirred, washed with water using a filter press, and the resulting press cake was extruded using a compression molding machine with a molded plate having a pore diameter of 4 mm and dried at 120 ° C. to granulate goethite particles 4 It was a thing.

ここに得た造粒物を構成する含有するゲータイト粒子は、平均長軸径0.33μm、軸比(長軸径/短軸径)25.0の針状を呈した粒子であった。BET比表面積は70m/g、Al含有量は0.40重量%、Ru含有量は0.25重量%、S含有量は3500ppmであった。 The goethite particles contained in the granulated product thus obtained were needle-shaped particles having an average major axis diameter of 0.33 μm and an axial ratio (major axis diameter / minor axis diameter) of 25.0. The BET specific surface area was 70 m 2 / g, the Al content was 0.40 wt%, the Ru content was 0.25 wt%, and the S content was 3500 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子の造粒物とした。   The granulated product was heated at 330 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子は、平均長軸径0.25μm、軸比(長軸径/短軸径)22.0の針状を呈した粒子であった。S含有量は4000ppmであった。   The hematite particles constituting the granulated product obtained here were particles having a needle shape with an average major axis diameter of 0.25 μm and an axial ratio (major axis diameter / minor axis diameter) of 22.0. The S content was 4000 ppm.

前記ヘマタイト粒子の造粒物100gを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、窒素ガスに切り替えて70℃まで冷却し、次いで、酸素分圧を徐々に増加させて空気と同じ比率として粒子表面に安定な酸化皮膜を形成し、α-Fe−Fe−アルミニウム−ルテニウム複合粒子を得た(貴金属担持鉄複合体5)。 100 g of the granulated product of the hematite particles was introduced into a fixed bed reducing device, and reduced to completely α-Fe at 450 ° C. for 180 minutes while allowing H 2 gas to flow. Next, after switching to N 2 gas and cooling to room temperature, switching to nitrogen gas and cooling to 70 ° C., then gradually increasing the oxygen partial pressure to form a stable oxide film on the particle surface at the same ratio as air The α-Fe—Fe 3 O 4 -aluminum-ruthenium composite particles were obtained (noble metal-supported iron composite 5).

前記鉄複合粒子11をイオン交換水300mlへ投入し、約20重量%の鉄複合粒子を含有する水懸濁液とした後、その水懸濁液をバッフルを取り付けたステンレスビーカーに移し、中速回転型攪拌機として動力0.2kWのT.Kホモディスパー2.5型(直径40mmφのエッジタービン翼、特殊機化工業(株)製)を挿入し、回転数3600rpmで30分間攪拌した。   The iron composite particles 11 are put into 300 ml of ion-exchanged water to form an aqueous suspension containing about 20% by weight of iron composite particles, and then the aqueous suspension is transferred to a stainless steel beaker equipped with a baffle. As a rotary stirrer, a T.I. K homodisper type 2.5 (edge turbine blade having a diameter of 40 mmφ, manufactured by Tokushu Kika Kogyo Co., Ltd.) was inserted, and stirred at a rotational speed of 3600 rpm for 30 minutes.

次いで、連続せん断式分散機として、動力0.55kWのT.Kホモミックラインミル(PL−SL型、特殊機化工業(株)製)で、回転数4000rpmで分散処理した。   Next, as a continuous shearing type disperser, a T.I. power of 0.55 kW is used. Dispersion treatment was performed at a rotational speed of 4000 rpm using a K homomic line mill (PL-SL type, manufactured by Tokushu Kika Kogyo Co., Ltd.).

その後、メディア式分散機として、動力1.5kWの四筒式サンドグラインダー(4TSG−(1/8G)型、特殊機化工業(株)製)に、直径2mmのガラスビーズを0.25l充填し、回転数500rpmで分散処理し、この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、羽根攪拌下にて、ポリマレイン酸水溶液(日本油脂(株)製ポリスターOM)を固形分として10.8g添加し、比重1.20、固形分濃度20重量%の浄化剤(浄化処理用浄化剤5)300mlとした。   After that, as a media-type disperser, 0.25 l of glass beads with a diameter of 2 mm were filled in a four-cylinder sand grinder (4TSG- (1 / 8G) type, manufactured by Special Machine Industries Co., Ltd.) with a power of 1.5 kW. The dispersion was processed at a rotational speed of 500 rpm, and the aqueous suspension was transferred to a stainless beaker equipped with a baffle. It was made 300 ml of a purification agent (purification agent 5 for purification treatment) having a specific gravity of 1.20 and a solid content concentration of 20% by weight.

得られた浄化剤中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.10μmであって軸比が1.4であった。   The iron composite particles contained in the obtained cleaning agent were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a rice grain shape and an average major axis diameter of 0.10 μm. The ratio was 1.4.

ここに得た鉄複合粒子は、α−Feを主体としており、飽和磁化値152Am/kg(152emu/g)、BET比表面積27m/g、結晶子サイズ26.2nm(262Å、Fe含有量は87.7重量%、S含有量は4700ppmであった。X線回折の結果、α−FeとFeとが存在することが確認された。そのD110(α−Fe)とD311(Fe)との強度比D110/(D110+D311)は0.87であった。 The iron composite particles obtained here are mainly composed of α-Fe, have a saturation magnetization value of 152 Am 2 / kg (152 emu / g), a BET specific surface area of 27 m 2 / g, a crystallite size of 26.2 nm ( 262Å ) , and Fe content The amount was 87.7% by weight, and the S content was 4700 ppm. As a result of X-ray diffraction, it was confirmed that α-Fe and Fe 3 O 4 were present. The intensity ratio D 110 / (D 110 + D 311 ) between D 110 (α-Fe) and D 311 (Fe 3 O 4 ) was 0.87.

ゲータイト粒子の諸特性を表2に、製造条件を表3に、得られた貴金属担持鉄複合体の諸特性を表4に示す。   Various characteristics of the goethite particles are shown in Table 2, production conditions are shown in Table 3, and various characteristics of the obtained noble metal-supported iron composite are shown in Table 4.

Figure 0004626762
Figure 0004626762

Figure 0004626762
Figure 0004626762

Figure 0004626762
Figure 0004626762

<模擬汚染土壌または汚染地下水、排水の浄化処理>
使用例1
<土壌中クロロベンゼンの浄化処理結果>
前記評価方法によれば、前記貴金属担持鉄複合体1を用いた場合、土壌用試料中のクロロベンゼンの残存率は、100時間後で4.5%であった。反応生成物としては、ベンゼンおよびシクロヘキサンが確認できた。
<Purification treatment of simulated contaminated soil or contaminated groundwater and wastewater>
Example 1
<Results of purification treatment of chlorobenzene in soil>
According to the evaluation method, when the noble metal-supported iron complex 1 was used, the residual rate of chlorobenzene in the soil sample was 4.5% after 100 hours. As the reaction product, benzene and cyclohexane were confirmed.

使用例2〜9、比較使用例1〜4
貴金属担持鉄複合体又は浄化剤の種類、反応対象物質を種々変化させて、前記の模擬汚染土壌または汚染地下水、排水の処理を行った。
Use Examples 2-9, Comparative Use Examples 1-4
The kind of the precious metal-supported iron complex or the purification agent and the reaction target substance were changed in various ways, and the simulated contaminated soil or contaminated groundwater and waste water were treated.

評価結果を表5に示す。   The evaluation results are shown in Table 5.

なお、実施例3で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体3、浄化剤3とし、実施例4で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体4、浄化剤4とし、実施例5で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体5、浄化剤5とし、比較例1で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体6、浄化剤6とし、比較例2で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体7、浄化剤7とし、比較例3で得られた貴金属担持鉄複合体及び浄化剤を、それぞれ、鉄複合体8、浄化剤8とした。   In addition, the noble metal-supported iron complex and the purifying agent obtained in Example 3 were used as the iron complex 3 and the purifying agent 3, respectively, and the noble metal-supported iron complex and the purifying agent obtained in Example 4 were respectively The noble metal-supported iron composite obtained in Example 5 was used as the iron composite 4 and the purifier 4, and the noble metal-supported iron composite obtained in Example 5 was used as the iron complex 5 and the purifier 5, respectively. The body and the purifying agent were the iron complex 6 and the purifying agent 6, respectively. The noble metal-supported iron complex and the purifying agent obtained in Comparative Example 2 were the iron complex 7 and the purifying agent 7, respectively. Comparative Example 3 The noble metal-supported iron complex and the purification agent obtained in the above were designated as an iron complex 8 and a purification agent 8, respectively.

Figure 0004626762
Figure 0004626762

本発明に係る浄化処理用鉄複合粒子粉末は、有機ハロゲン化合物、特に芳香族有機ハロゲン化合物を効率よく分解できるので、有機ハロゲン化合物によって汚染された土壌・地下水の浄化剤として好適である。
Since the iron composite particle powder for purification treatment according to the present invention can efficiently decompose organic halogen compounds, particularly aromatic organic halogen compounds, it is suitable as a purification agent for soil and groundwater contaminated with organic halogen compounds.

Claims (6)

有機ハロゲン化合物で汚染された土壌・地下水の浄化処理に用いる貴金属担持鉄複合体であり、該貴金属担持鉄複合体はα−Fe及びマグネタイトからなる鉄複合粒子とルテニウム、ロジウム及びパラジウムから選択した1種以上の貴金属とからなる貴金属担持鉄複合体であって、前記貴金属担持鉄複合体のX線回折スペクトルにおいてα−Feの(110)面の回折強度D110とマグネタイトの(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30〜0.95であり、Al含有量0.10〜1.50重量%であってS含有量3500〜10000ppmであり、貴金属の含有量が0.01〜5.0重量%であることを特徴とする土壌・地下水の浄化処理用貴金属担持鉄複合体。 A noble metal-supported iron composite used for purification treatment of soil and groundwater contaminated with an organic halogen compound, the noble metal-supported iron composite selected from iron composite particles composed of α-Fe and magnetite, and ruthenium, rhodium and palladium a noble metal-supported iron complex consisting of seeds more noble metals, the noble metal-supported iron complex of alpha-Fe in the X-ray diffraction spectrum of the (110) plane of the diffraction intensity D 110 and magnetite (311) plane diffraction the intensity ratio between the intensity D 311 (D 110 / (D 311 + D 110)) is 0.30 to 0.95, S content 3500~10000ppm a Al content of 0.10 to 1.50 wt% A noble metal-supporting iron complex for purification treatment of soil and groundwater, wherein the noble metal content is 0.01 to 5.0% by weight. 前記貴金属担持鉄複合体の平均粒子径が0.05〜0.50μmであることを特徴とする請求項1記載の土壌・地下水の浄化処理用貴金属担持鉄複合体。 2. The noble metal-supported iron composite for purification treatment of soil and groundwater according to claim 1, wherein the noble metal-supported iron composite has an average particle size of 0.05 to 0.50 μm. 飽和磁化値が85〜190Am/kgであり、BET比表面積が5〜60m/gであり、α−Feの(110)面の結晶子サイズが20〜40nmであることを特徴とする請求項1又は2記載の土壌・地下水の浄化処理用貴金属担持鉄複合体。 The saturation magnetization value is 85 to 190 Am 2 / kg, the BET specific surface area is 5 to 60 m 2 / g, and the crystallite size of the (110) plane of α-Fe is 20 to 40 nm. Item 3. The precious metal-supported iron complex for purification treatment of soil and groundwater according to item 1 or 2. 請求項1乃至3のいずれかに記載の土壌・地下水の浄化処理用貴金属担持鉄複合体を10〜40重量%含有する水懸濁液からなる土壌・地下水の浄化処理用浄化剤。 A purification agent for soil / groundwater purification treatment comprising a water suspension containing 10 to 40% by weight of the precious metal-supported iron complex for soil / groundwater purification treatment according to any one of claims 1 to 3. 有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水に対して、請求項1乃至3のいずれかに記載の土壌・地下水の浄化処理用貴金属担持鉄複合体又は請求項4記載の土壌・地下水浄化処理用浄化剤を用いて浄化処理を行うことを特徴とする土壌・地下水の浄化処理方法。 The noble metal-supported iron complex for purification treatment of soil / groundwater according to any one of claims 1 to 3 for soil contaminated with organic halogen compounds or groundwater contaminated with organic halogen compounds or claim 4 A method for purifying soil / groundwater, wherein the purification treatment is performed using the soil / groundwater purifier described above. 有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水に対して、原位置で、請求項4記載の土壌・地下水の浄化処理用浄化剤を直接、注入することを特徴とする土壌・地下水の浄化処理方法。
The soil or groundwater purification agent according to claim 4 is directly injected into soil contaminated with organic halogen compounds or groundwater contaminated with organic halogen compounds in situ. Soil and groundwater purification method.
JP2005303466A 2004-10-19 2005-10-18 Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method Active JP4626762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303466A JP4626762B2 (en) 2004-10-19 2005-10-18 Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004304842 2004-10-19
JP2005303466A JP4626762B2 (en) 2004-10-19 2005-10-18 Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method

Publications (2)

Publication Number Publication Date
JP2006142285A JP2006142285A (en) 2006-06-08
JP4626762B2 true JP4626762B2 (en) 2011-02-09

Family

ID=36622564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303466A Active JP4626762B2 (en) 2004-10-19 2005-10-18 Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method

Country Status (1)

Country Link
JP (1) JP4626762B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755159B2 (en) * 2007-09-28 2011-08-24 株式会社神戸製鋼所 Treatment agent and treatment method for contaminated water containing heavy metals
CN109702006A (en) * 2018-12-26 2019-05-03 美丽国土(北京)生态环境工程技术研究院有限公司 Soil heavy metal passivant variable applies integrated processes and device
CN111362396A (en) * 2020-03-12 2020-07-03 哈尔滨工业大学 Preparation method and application of polyurethane composite carrier self-generating functional material for in-situ enhanced biological dehalogenation of underground water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513103A (en) * 1994-12-23 1998-12-15 リサーチ コーポレイション テクノロジーズ インコーポレイテッド Dechlorination of TCE using paradised iron
JP2001269673A (en) * 1999-08-09 2001-10-02 Nippon Shokubai Co Ltd Method for processing liquid containing dioxins
JP2004082102A (en) * 2002-07-03 2004-03-18 Toda Kogyo Corp Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide
JP2005525210A (en) * 2001-08-03 2005-08-25 パース・エンバイロメンタル・インコーポレーテツド Media for transporting environmental improvers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513103A (en) * 1994-12-23 1998-12-15 リサーチ コーポレイション テクノロジーズ インコーポレイテッド Dechlorination of TCE using paradised iron
JP2001269673A (en) * 1999-08-09 2001-10-02 Nippon Shokubai Co Ltd Method for processing liquid containing dioxins
JP2005525210A (en) * 2001-08-03 2005-08-25 パース・エンバイロメンタル・インコーポレーテツド Media for transporting environmental improvers
JP2004082102A (en) * 2002-07-03 2004-03-18 Toda Kogyo Corp Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide

Also Published As

Publication number Publication date
JP2006142285A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
Duan et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
EP1661864B1 (en) Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same
US20060081811A1 (en) Iron composite particles for purifying soil or ground water, purifying agent containing the iron composite particles, and method for purifying soil or ground water
Lee et al. Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins
US20060070958A1 (en) Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same
KR101107450B1 (en) Iron composite particles for purifying soil or ground water, process for producing the same, purifying agent containing the same, process for producing the purifying agent and method for purifying soil or ground water
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP4258622B2 (en) Purification agent for soil and groundwater contaminated with organic halogen compounds, its production method, and purification method for soil and groundwater contaminated with organic halogen compounds
JP2012210559A (en) Clarifying agent for clarification treatment of soil/ground water, method for producing the same, method for transporting the same and method for clarification treatment of soil/ground water
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP2005021882A (en) Iron composite particle powder for cleaning soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method and cleaning method for soil and underground water
JP4639029B2 (en) Soil contaminated with toxic substances such as heavy metals, iron composite particle powder for purification treatment of soil and groundwater, its manufacturing method, purification agent containing the iron composite particle powder, its manufacturing method and soil contaminated with toxic substances such as heavy metals Groundwater purification method
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
Dai et al. Application of heterogeneous nanocatalysis-based advanced oxidation processes in water purification: an introduction
JP4479902B2 (en) Iron composite particle powder for purification treatment of waste water, its production method, purification agent containing the iron composite particle powder, its production method and waste water purification treatment method
JP5479006B2 (en) Soil and groundwater purification methods
JP4106545B2 (en) Iron composite particle powder for the purification treatment of soil and groundwater containing an organic halogen compound, its production method, a purification agent containing the iron composite particle powder, its production method and a purification method for soil and groundwater containing an organic halogen compound
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
Dai et al. Current Water Treatment Technologies: An Introduction
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it
JP4324771B2 (en) Organic halogen compound decomposition catalyst and organic halogen compound decomposition aqueous dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350