JP4625931B2 - Resistive oxygen sensor element without temperature dependency of output - Google Patents

Resistive oxygen sensor element without temperature dependency of output Download PDF

Info

Publication number
JP4625931B2
JP4625931B2 JP2006147491A JP2006147491A JP4625931B2 JP 4625931 B2 JP4625931 B2 JP 4625931B2 JP 2006147491 A JP2006147491 A JP 2006147491A JP 2006147491 A JP2006147491 A JP 2006147491A JP 4625931 B2 JP4625931 B2 JP 4625931B2
Authority
JP
Japan
Prior art keywords
resistance
temperature compensation
compensation material
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006147491A
Other languages
Japanese (ja)
Other versions
JP2007315979A (en
Inventor
伊豆  典哉
涼香 西▲崎▼
敏雄 伊藤
申  ウソク
一郎 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006147491A priority Critical patent/JP4625931B2/en
Publication of JP2007315979A publication Critical patent/JP2007315979A/en
Application granted granted Critical
Publication of JP4625931B2 publication Critical patent/JP4625931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

本発明は、温度依存性を無くした抵抗型酸素センサ素子に関するものであり、更に詳しくは、雰囲気ガスの酸素分圧に応じて抵抗値が変化する酸化物半導体からなるガス検出材を有している抵抗型酸素センサであって、温度依存性を抑えた抵抗型酸素センサに関するものである。本発明は、例えば、排ガスの浄化率向上や燃費向上のための、自動車用燃焼機関等の空燃比を制御するための空燃比フィードバック制御システム等に使われる酸素センサ装置において、センサ出力の温度依存性を無くして、酸素分圧を高精度で測定することを可能とする新しい酸素センサ装置を提供するものである。   The present invention relates to a resistance-type oxygen sensor element that eliminates temperature dependency, and more specifically, includes a gas detection material made of an oxide semiconductor whose resistance value changes according to the oxygen partial pressure of an atmospheric gas. In particular, the present invention relates to a resistance type oxygen sensor with reduced temperature dependency. The present invention, for example, in an oxygen sensor device used for an air-fuel ratio feedback control system for controlling an air-fuel ratio of an automobile combustion engine or the like for improving the purification rate of exhaust gas and improving fuel efficiency, The present invention provides a new oxygen sensor device capable of measuring the oxygen partial pressure with high accuracy without the possibility of loss.

従来の酸化物半導体を使った抵抗型酸素センサでは、ガス検出材である酸化物半導体の抵抗値が、酸素分圧だけでなく、温度に対しても強い依存性を示すために、センサ出力の温度依存性が極めて大きいという問題点があった。従来、センサの温度補償材として必要な、抵抗が酸素分圧に依存しないという特性、すなわち、抵抗の酸素不感応性を実現する手法として、次の4つが知られている。それらを以下に列挙する。   In a conventional resistance type oxygen sensor using an oxide semiconductor, the resistance value of the oxide semiconductor, which is a gas detection material, shows a strong dependence not only on oxygen partial pressure but also on temperature. There was a problem that the temperature dependence was very large. Conventionally, the following four methods are known as methods for realizing the characteristic that the resistance is not dependent on the oxygen partial pressure, that is, the oxygen insensitivity of the resistance, which is necessary as a temperature compensation material of the sensor. They are listed below.

第1に、その一つは、M.J.Esperらによって報告されているものであり、彼らは、酸素ガスに不感応な温度補償材として、高密度な酸化チタニウムを使用した(非特許文献1)。この場合、短期的には、不感応であるが、長期的には酸素分圧に依存してしまうという問題点がある。また、第2に、ガス検出材の一部をガス不透過層で被覆し、このことによって、酸素ガスに不感応である温度補償材を持つガスセンサが報告されている(特許文献1、2)。この場合、ガス検出材を被覆するための本来のガス不透過性の層が、経時劣化や熱衝撃などによりひび割れてしまい、ガスが透過してしまうという問題点がある。   First, one is M.I. J. et al. As reported by Esper et al., They used high-density titanium oxide as a temperature compensation material insensitive to oxygen gas (Non-patent Document 1). In this case, there is a problem that it is insensitive in the short term but depends on the partial pressure of oxygen in the long term. Secondly, a gas sensor having a temperature compensation material that is insensitive to oxygen gas has been reported (see Patent Documents 1 and 2). . In this case, the original gas-impermeable layer for covering the gas detection material is cracked due to deterioration with time, thermal shock, etc., and there is a problem that the gas permeates.

また、第3に、ガス感応性を失うほどに金属原子、例えば、金をドーピングすることにより、不感応材を得る方法が報告されている(特許文献3、4)が、この方法の不利な点は、金属原子をドーピングした部分が安定性を持たないことである。   Thirdly, a method of obtaining a non-sensitive material by doping a metal atom, for example, gold so as to lose gas sensitivity has been reported (Patent Documents 3 and 4), but this method is disadvantageous. The point is that the portion doped with metal atoms has no stability.

更に、第4に、最近の報告では、温度補償材として、p型とn型の酸化物半導体の混合物が使われており(特許文献5)、また、p型とn型の酸化物半導体の薄膜を積層したものが用いられている(特許文献6)。しかし、これらの温度補償材は、センサの作動温度において、p型とn型の酸化物半導体が反応し、長期的な安定性が得られないという問題点や、材料の熱膨張係数の違いによりクラックなど生じるという問題点がある。   Fourthly, in a recent report, a mixture of p-type and n-type oxide semiconductors is used as a temperature compensation material (Patent Document 5), and p-type and n-type oxide semiconductors are also used. A laminate of thin films is used (Patent Document 6). However, these temperature compensation materials have problems in that long-term stability cannot be obtained due to the reaction between the p-type and n-type oxide semiconductors at the sensor operating temperature, and the difference in the thermal expansion coefficient of the materials. There is a problem that cracks occur.

また、不感応材料として、p型とn型の酸化物半導体を積層したものを作る場合、整合よく積層させるには、薄膜作製条件を精度良くコントロールする必要があり、また、温度補償部分として、p型とn型の酸化物半導体の混合物を作る場合、両方の酸化物半導体がきれいに分散するように混合を制御する必要があり、不感応材の作製プロセスが複雑であるという問題点もある。   In addition, when making a p-type and n-type oxide semiconductor laminated as a non-sensitive material, it is necessary to control the thin film production conditions with high precision in order to make a good lamination, and as a temperature compensation part, When a mixture of p-type and n-type oxide semiconductors is made, it is necessary to control the mixing so that both oxide semiconductors are neatly dispersed, and there is also a problem that the process for producing the insensitive material is complicated.

更に、これらの文献には、温度補償材が酸素分圧に依存しないことが示されておらず、あるいは、示されているとしても、酸素分圧の範囲は2桁しか示されていない。これらの従来技術の場合、原理的には温度補償部分の抵抗が酸素分圧に依存しない範囲は小さいものであることが推察される。また、これらの文献では、酸素センサの出力が温度に依存しないこと、あるいは温度依存性が小さいことが示されていない。   Furthermore, these documents do not indicate that the temperature compensation material does not depend on the oxygen partial pressure, or even if indicated, the range of the oxygen partial pressure is shown only in two digits. In the case of these prior arts, it is presumed that the range in which the resistance of the temperature compensation portion does not depend on the oxygen partial pressure is small in principle. In addition, these documents do not indicate that the output of the oxygen sensor does not depend on temperature or that temperature dependency is small.

これらの問題点を解決する技術が先行文献に開示されている(特許文献7)。その技術とは、温度補償材として酸素イオン伝導体を用いるというものである。このときの酸素センサの回路を図1に示す。これにより、酸素センサの出力の温度依存性が抑制され、温度補償材の作製プロセスが簡便であり、温度補償材の耐久性が向上した。   A technique for solving these problems is disclosed in a prior document (Patent Document 7). The technique uses an oxygen ion conductor as a temperature compensation material. A circuit of the oxygen sensor at this time is shown in FIG. As a result, the temperature dependence of the output of the oxygen sensor was suppressed, the process for producing the temperature compensation material was simple, and the durability of the temperature compensation material was improved.

しかしながら、温度補償材に酸素イオン伝導体を用いる場合、ある特殊な条件下では、温度補償材がうまく機能しないという問題が生じた。この問題は、本発明者らが独自に明らかにしたものである。それについて、以下に簡単に説明する。酸素イオン伝導体の電極としては、一般には、多孔質電極が用いられる。これは、イオン伝導体とその電極での界面の抵抗を小さくするためである。一般に、配線などは緻密体を用いている。これは、多孔質体よりも緻密体は強度があるためである。多孔質電極を用いる場合、配線の作製工程と電極の作製工程とを分ける必要があった。一方、電極として緻密体を用いることができれば、電極と配線とを同時に作製できるため、製造コストを抑えることができると予想された。   However, when an oxygen ion conductor is used as the temperature compensation material, there arises a problem that the temperature compensation material does not function well under certain special conditions. This problem has been clarified by the present inventors. This will be briefly described below. In general, a porous electrode is used as an electrode of the oxygen ion conductor. This is to reduce the resistance at the interface between the ion conductor and its electrode. In general, a dense body is used for the wiring. This is because a dense body is stronger than a porous body. When a porous electrode is used, it is necessary to separate the wiring manufacturing process from the electrode manufacturing process. On the other hand, if a dense body can be used as the electrode, it is expected that the manufacturing cost can be reduced because the electrode and the wiring can be manufactured at the same time.

そこで、本発明者らは、緻密電極を用いたセンサを試作したが、次のような問題が生じた。温度補償材とガス検出材の抵抗を実測し、その実測値から、電気回路計算を行うことにより、出力を求めると、500℃から800℃の広範囲で出力の温度依存性をなくすことができるという計算結果となったが、実際に実験を行うと、計算結果とは大きく異なった(図2及び実施例参照)。ここで、計算は、センサ出力をVout、印加電圧をE、温度補償材の抵抗をR、ガス検出材の抵抗をRとすると、 Therefore, the inventors made a prototype of a sensor using a dense electrode, but the following problems occurred. When the resistance of the temperature compensation material and the gas detection material is measured, and the output is obtained by performing an electric circuit calculation from the measured value, the temperature dependence of the output can be eliminated in a wide range from 500 ° C. to 800 ° C. Although it became a calculation result, when it actually experimented, it differed greatly from the calculation result (refer FIG. 2 and an Example). Here, in the calculation, if the sensor output is V out , the applied voltage is E, the resistance of the temperature compensation material is R O , and the resistance of the gas detection material is R G ,

Figure 0004625931
Figure 0004625931

の式を用いて行った。印加電圧を10Vとした計算した結果、500℃から800℃の広い範囲で温度依存性はほとんど無かった。図1の回路を用いて、実際にセンサ出力を求めたところ、印加電圧が10Vの場合、650℃から800℃以上で出力の温度依存性は無かったが、650℃以下では大きく温度に依存した。本発明者らの詳細な調査の結果、低温では、温度補償材とその電極との界面での抵抗が大きくなり、界面抵抗を無視できなくなるため、温度依存性が大きくなることが分かった。 The following equation was used. As a result of calculation with the applied voltage being 10 V, there was almost no temperature dependence in a wide range from 500 ° C to 800 ° C. When the sensor output was actually obtained using the circuit of FIG. 1, when the applied voltage was 10 V, there was no temperature dependence of the output from 650 ° C. to 800 ° C. or more, but at 650 ° C. or less, it was greatly dependent on the temperature . As a result of detailed investigations by the present inventors, it has been found that, at low temperatures, the resistance at the interface between the temperature compensation material and its electrode increases, and the interface resistance cannot be ignored.

ヨーロッパ特許出願第0464243号公開公報European Patent Application No. 0464243 ヨーロッパ特許出願第0464244号公開公報Published European Patent Application No. 0464244 ドイツ特許第4210397号明細書German Patent No. 4210397 ドイツ特許第4210398号明細書German Patent No. 4210398 特開平6−222026号公報JP-A-6-222026 特表平10−505164号公報Japanese National Patent Publication No. 10-505164 特開2004−85549号公報JP 2004-85549 A SAE Technical Paper、(1979)、790140SAE Technical Paper, (1979), 790140

このような状況の中で、本発明者らは、センサ出力の温度依存性の無い抵抗型酸素センサを開発することを目標として鋭意研究を積み重ねた結果、酸素イオン伝導体である温度補償材の電極として緻密電極を用いた場合、温度補償材とその電極との界面での抵抗を低減して、温度補償材の抵抗と比べて格段に小さくすることにより、低温での温度依存性を無くすことができることを見出し、本発明を完成した。本発明は、低温における温度補償材とその電極との界面での抵抗を低減させ、低温での出力の温度依存性を無くすことが可能な抵抗型酸素センサ素子を提供することを目的とするものである。   Under these circumstances, the present inventors have conducted extensive research with the goal of developing a resistance-type oxygen sensor that does not depend on the temperature of the sensor output. As a result, the temperature compensation material that is an oxygen ion conductor has been developed. When a dense electrode is used as the electrode, the resistance at the interface between the temperature compensation material and the electrode is reduced, making it much smaller than the resistance of the temperature compensation material, thereby eliminating temperature dependence at low temperatures. The present invention has been completed. An object of the present invention is to provide a resistance type oxygen sensor element capable of reducing the resistance at the interface between a temperature compensation material and its electrode at a low temperature and eliminating the temperature dependence of the output at a low temperature. It is.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)温度補償材及びガス検出材を用いた抵抗型酸素センサ素子において、温度補償材とその電極との界面での抵抗を温度補償材の抵抗と比べて小さくしたことにより、酸素センサの出力の温度に依存しない範囲が、600℃までの低温側に広がっている抵抗型酸素センサ素子であって、
抵抗型酸素センサの動作時に、温度補償材の電極間隔をL 、温度補償材の電極面積をA 、温度補償材の断面積をS 、温度補償材の電極間の電位差をE とすると、E /L が大きくても140V/mであることを特徴とする抵抗型酸素センサ素子。
(2)Ce0.50.5の組成である温度補償材及びCe0.9Zr0.1の組成であるガス検出材を用いた抵抗型酸素センサ素子において、温度補償材が多孔質であり、温度補償材の電極が緻密電極であり、温度補償材とその電極の位置関係が基板・電極・温度補償材の関係を有し、温度補償材とガス検出材のそれぞれの抵抗が、ほぼ等しい抵抗型酸素センサ素子である、前記(1)記載の抵抗型酸素センサ素子。
(3)抵抗型酸素センサの動作時に、温度補償材とガス検出材を直列に接続したものに1V又はそれより低い一定電圧が負荷される、前記(1)記載の抵抗型酸素センサ素子。
)600℃又はそれより高い温度で、出力の温度依存性が無い、、前記(1)記載の抵抗型酸素センサ素子。
)温度補償材とその電極との界面での抵抗が、温度補償材の抵抗の大きくても0.02倍である、前記(1)記載の抵抗型酸素センサ素子。
)温度補償材の抵抗が、ガス検出材の抵抗の0.25倍から4倍以内である、前記(1)記載の抵抗型酸素センサ素子。
)ガス検出材の電極間隔をL、ガス検出材の断面積をS、温度補償材の電極間隔をL、温度補償材の断面積をSとすると、L/Lが0.0417以上0.666以下になるような電極構造を有する、前記(1)記載の抵抗型酸素センサ素子。
The present invention for solving the above-described problems comprises the following technical means.
(1) In the resistance-type oxygen sensor element using a temperature compensation material and gas detection material, more resistance at the interface between the temperature compensation material and its electrodes and the smaller lower child compared with the resistance of the temperature compensation material, oxygen range which does not depend on the temperature of the output of the sensor, a resistance-type oxygen sensor element that has spread on the low temperature side to 600 ° C.,
During operation of the resistance oxygen sensor, the electrode spacing of the temperature compensation material is L O , the electrode area of the temperature compensation material is A O , the cross-sectional area of the temperature compensation material is S O , and the potential difference between the electrodes of the temperature compensation material is E O. Then, the resistance type oxygen sensor element , wherein E O S O / L O A O is 140 V / m at most.
(2) In a resistance oxygen sensor element using a temperature compensation material having a composition of Ce 0.5 Y 0.5 O 2 and a gas detection material having a composition of Ce 0.9 Zr 0.1 O 2 , temperature compensation The material is porous, the electrode of the temperature compensation material is a dense electrode, and the positional relationship between the temperature compensation material and the electrode has the relationship of substrate / electrode / temperature compensation material, and each of the temperature compensation material and the gas detection material The resistance oxygen sensor element according to (1), wherein the resistances are substantially the same.
(3) The resistance type oxygen sensor element according to (1), wherein a constant voltage of 1 V or lower is applied to a temperature compensation material and a gas detection material connected in series when the resistance type oxygen sensor is operated.
( 4 ) The resistance-type oxygen sensor element according to (1), wherein the temperature does not depend on the output at a temperature of 600 ° C. or higher .
( 5 ) The resistance-type oxygen sensor element according to (1), wherein the resistance at the interface between the temperature compensation material and its electrode is 0.02 times the resistance of the temperature compensation material at most.
( 6 ) The resistance oxygen sensor element according to (1), wherein the resistance of the temperature compensation material is within 0.25 to 4 times the resistance of the gas detection material.
( 7 ) When the electrode interval of the gas detection material is L G , the cross-sectional area of the gas detection material is S G , the electrode interval of the temperature compensation material is L O , and the cross-sectional area of the temperature compensation material is S O , L O S G / L G S O has an electrode structure such that 0.666 inclusive 0.0417, the (1) resistance-type oxygen sensor element according.

次に、本発明について更に詳細に説明する。
本発明は、抵抗が、酸素分圧と温度に依存するガス検出材と、温度のみに依存する温度補償材が、基板に配置された抵抗型酸素センサに係るものである。ただし、基板へのガス検出材と温度補償材の配置は、横に並べて配置したものに限定されず、例えば、1)基板の表にガス検出材、裏に温度補償材を配置する、2)上記1)の逆に配置する、などが可能である。電極は交差指型構造(くし型構造)などが好ましい。これは、ガス検出材と温度補償材の抵抗を小さくすることが可能であるためである。
Next, the present invention will be described in more detail.
The present invention relates to a resistance type oxygen sensor in which a gas detection material whose resistance depends on oxygen partial pressure and temperature and a temperature compensation material whose resistance depends only on temperature are arranged on a substrate. However, the arrangement of the gas detection material and the temperature compensation material on the substrate is not limited to those arranged side by side. For example, 1) the gas detection material is arranged on the front side of the substrate, and the temperature compensation material is arranged on the back side. It is possible to arrange them in the reverse of the above 1). The electrode preferably has a crossed finger structure (comb structure). This is because the resistance of the gas detection material and the temperature compensation material can be reduced.

電極は緻密電極を用いる。これは、前述の通り、電極と配線を同時に作製したいためである。これにより、製造コストを抑えることが可能である。緻密電極を用いる場合、温度補償材は多孔質厚膜である必要があり、位置関係は、基板、電極、厚膜の順番である必要がある。これは、
2−=1/2O+2e (2)
の反応が、電極・厚膜・ガスの三相界面で生じる必要があるためであり、緻密電極を使うためには、上記構造が必要である。それは、上記反応が生じないと、酸素イオン伝導体と電極との界面での抵抗が増大するためである。
A dense electrode is used as the electrode. This is because, as described above, it is desired to produce the electrode and the wiring simultaneously. Thereby, the manufacturing cost can be suppressed. When a dense electrode is used, the temperature compensation material needs to be a porous thick film, and the positional relationship needs to be the order of the substrate, the electrode, and the thick film. this is,
O 2− = 1 / 2O 2 + 2e (2)
This is because the above reaction needs to occur at the three-phase interface of the electrode, the thick film, and the gas. In order to use the dense electrode, the above structure is necessary. This is because if the above reaction does not occur, the resistance at the interface between the oxygen ion conductor and the electrode increases.

基板の材料としては、絶縁体である酸化アルミナ、酸化マグネシウム、石英などが例示されるが、これらに制限されるものではない。ガス検出材としては、酸化セリウム、酸化チタン、酸化ガリウムなどに代表される酸化物半導体が用いられる。温度補償材としては、ガス検出材の温度依存性に近い酸素イオン伝導体、例えば、イットリア安定化ジルコニア、ガリウムド−プセリアなどが用いられる。酸化セリウムは、酸化物半導体であるが、添加する金属イオンの種類によっては、酸素イオン伝導体になることが可能である。具体的には、2、3価の金属イオンを添加すれば、酸素イオン伝導体となる。   Examples of the material of the substrate include, but are not limited to, alumina oxide, magnesium oxide, and quartz that are insulators. As the gas detection material, an oxide semiconductor typified by cerium oxide, titanium oxide, gallium oxide, or the like is used. As the temperature compensation material, an oxygen ion conductor close to the temperature dependence of the gas detection material, for example, yttria-stabilized zirconia, gallium-doped pseria, or the like is used. Cerium oxide is an oxide semiconductor, but can be an oxygen ion conductor depending on the type of metal ions to be added. Specifically, if a divalent or trivalent metal ion is added, an oxygen ion conductor is obtained.

ただし、ガス検出材と温度補償材を任意に選択することはできない。これは、一般に、ガス検出材として使用可能な酸化物半導体と温度補償材として使用可能な酸素イオン伝導体のそれぞれの抵抗の温度依存性は異なるためである。よって、両者の抵抗の温度依存性が同じかもしくは非常に近いことが必要であり、その組み合わせとして、温度補償材としては、Ce0.50.52−δ、ガス検出材としては、Ce0.9Zr0.1が好ましい組み合わせである。 However, the gas detection material and the temperature compensation material cannot be arbitrarily selected. This is because, in general, the temperature dependence of the resistances of the oxide semiconductor that can be used as a gas detection material and the oxygen ion conductor that can be used as a temperature compensation material are different. Therefore, it is necessary that the temperature dependence of both resistances is the same or very close. As a combination thereof, as a temperature compensation material, Ce 0.5 Y 0.5 O 2-δ , and as a gas detection material, Ce 0.9 Zr 0.1 O 2 is a preferred combination.

電極の材料は、高温で安定であり、前述の(2)式の反応が生じるものであれば適宜の材料が使用可能であり、例えば、白金が例示されるが、前述の条件を満たすものであれば、材料は任意に選択可能である。次に、ガス検出材と温度補償材の抵抗値は、できるだけ近い方が望ましい。好ましくは、温度補償材の抵抗は、ガス検出材の抵抗の0.25倍から4倍以内である。この根拠について、以下に簡単に説明する。図3は、酸素分圧PがlogP=−1.5を満たす場合において、温度補償材の抵抗を、ガス検出材の抵抗の0.15倍から6.3倍に変化させたときのセンサ出力を計算により求めた結果である。ガス検出材の抵抗Rは、R=P−1/6とし、E=1Vとして、(1)式を用いて計算した。 As the electrode material, any material can be used as long as it is stable at a high temperature and the reaction of the above-described formula (2) occurs. For example, platinum is exemplified, but the above-mentioned conditions are satisfied. If present, the material can be arbitrarily selected. Next, it is desirable that the resistance values of the gas detection material and the temperature compensation material be as close as possible. Preferably, the resistance of the temperature compensation material is within 0.25 to 4 times the resistance of the gas detection material. The basis for this will be briefly described below. FIG. 3 shows the sensor output when the resistance of the temperature compensation material is changed from 0.15 times to 6.3 times the resistance of the gas detection material when the oxygen partial pressure P satisfies log P = −1.5. Is a result obtained by calculation. The resistance RG of the gas detection material was calculated using the formula (1), with R G = P −1/6 and E = 1V.

この結果から、温度補償材の抵抗をガス検出材の抵抗の0.16倍以下や6.3倍以上にすると、酸素分圧に対する出力の傾きが水平に近づいてくる。すなわち、センサの感度が低くなる。このことから、温度補償材の抵抗は、ガス検出材の抵抗の0.25倍から4倍以内であることが好ましい。両者の抵抗を近づける方法としては、膜厚、電極間隔などを変えることなどが挙げられる。   From this result, when the resistance of the temperature compensation material is set to 0.16 times or less or 6.3 times or more of the resistance of the gas detection material, the inclination of the output with respect to the oxygen partial pressure approaches horizontal. That is, the sensitivity of the sensor is lowered. Therefore, the resistance of the temperature compensation material is preferably within 0.25 to 4 times the resistance of the gas detection material. As a method of bringing the resistances of the two close to each other, changing the film thickness, the electrode spacing, and the like can be mentioned.

後記する実施例(予備実験)に示すように、ガス検出材として、Ce0.9Zr0.1を、温度補償材として、Ce0.50.52−δを用いた場合、両者の抵抗率は異なる。Ce0.9Zr0.1及びCe0.50.52−δの抵抗率を、それぞれr及びrとすると、r/r=6である(実施例1の予備実験参照)。温度補償材の抵抗は、ガス検出材の抵抗の0.25倍から4倍以内であることが好ましいことから、これを式にすると、
0.25≦R/R≦4 (3)
となる。
As shown in an example (preliminary experiment) described later, Ce 0.9 Zr 0.1 O 2 was used as a gas detection material, and Ce 0.5 Y 0.5 O 2-δ was used as a temperature compensation material. In this case, the resistivity is different. When the resistivity of Ce 0.9 Zr 0.1 O 2 and Ce 0.5 Y 0.5 O 2-δ is r G and r O , respectively, r O / r G = 6 (Example 1) See preliminary experiment). Since the resistance of the temperature compensation material is preferably within 0.25 to 4 times the resistance of the gas detection material,
0.25 ≦ R O / R G ≦ 4 (3)
It becomes.

ここで、R及びRは、それぞれ温度補償材及びガス検出材の抵抗である。温度補償材の電極間の距離をLとし、温度補償材の断面積をS、温度補償材の抵抗率rとすると、
=r/S (4)
であり、ガス検出材の電極間の距離をLとし、ガス検出材の断面積をS、ガス検出材の抵抗率rとすると、
=r/S (5)
である。
Here, R O and R G are resistances of the temperature compensation material and the gas detection material, respectively. The distance between the electrodes of the temperature compensation material and L O, the cross-sectional area of the temperature compensation material S O, when the resistivity r O of the temperature compensation material,
R O = r O L O / S O (4)
, And the distance between the electrodes of the gas detection material and L G, the cross-sectional area of the gas detection material S G, when the resistivity r G of the gas detecting material,
R G = r G L G / S G (5)
It is.

ここで、交差指型(くし型)電極での温度補償材の断面積とは、図4に示すような、電極間隔が約Lである線分ABCDEFGHIJの長さDと、温度補償材膜の厚さTとの積である。また、ガス検出材の断面積も温度補償材と同様、対となる電極と電極間隔が約Lである辺の長さの和Dと、温度補償材膜の厚さTとの積である。よって、(3)式は、 Here, the cross-sectional area of the temperature compensation material at the interdigitated (comb) electrode is the length D O of the line segment ABCDEFGHIJ having an electrode interval of about L 2 O as shown in FIG. it is the product of the thickness T O of the film. Also, the product of the same and also the temperature compensation material cross-sectional area of the gas detecting material, and a sum D G of the length of the side is the electrode and the electrode spacing forming a pair of approximately L G, the thickness T G of the temperature compensation material film It is. Therefore, equation (3) is

Figure 0004625931
Figure 0004625931

となり、r/r=6であるので、 And r O / r G = 6,

Figure 0004625931
Figure 0004625931

となる。この条件を満たすように温度補償材及びガス検出材の電極を設計する必要がある。 It becomes. It is necessary to design the electrodes of the temperature compensation material and the gas detection material so as to satisfy this condition.

また、センサとして機能させるには、ガス検出材と温度補償材を直列に接続し、その直列回路に一定電圧を負荷させる必要がある。また、センサ出力は、ガス検出材での電位差又は温度補償材での電位差となる。図1では、出力として、ガス検出材の電位差を用いている。一定電圧は、温度補償材とその電極との界面での抵抗が無視できるくらい小さくなるように設定しなければならない。   Moreover, in order to function as a sensor, it is necessary to connect a gas detection material and a temperature compensation material in series, and to load a constant voltage to the series circuit. The sensor output is a potential difference at the gas detection material or a potential difference at the temperature compensation material. In FIG. 1, the potential difference of the gas detection material is used as the output. The constant voltage must be set so that the resistance at the interface between the temperature compensation material and its electrode is so small that it can be ignored.

温度補償材電極と温度補償材との界面での抵抗(界面抵抗)は、(2)式の反応が律速することにより生じる。言い換えると、上記反応が律速しなければ、界面抵抗は生じない。高温では温度依存性は無く、低温で温度依存性が出現したことから、上記反応は低温で遅く、高温では格段に速くなると考えられる。よって、低温で上記界面抵抗を考慮する必要がある。界面抵抗を小さくするには、上記反応が律速しないようにすれば良い。すなわち、電流を小さくすれば良い。電流を小さくするには、印加電圧を小さくすれば良い。これにより、低温においても上記反応が律速しなくなる。   The resistance (interface resistance) at the interface between the temperature compensation material electrode and the temperature compensation material is caused by the rate-limiting reaction of the equation (2). In other words, if the above reaction is not rate-limiting, no interfacial resistance occurs. Since there is no temperature dependence at high temperatures and temperature dependence has appeared at low temperatures, the above reaction is considered to be slow at low temperatures and much faster at high temperatures. Therefore, it is necessary to consider the interface resistance at a low temperature. In order to reduce the interface resistance, the above reaction should not be rate-limited. That is, the current may be reduced. In order to reduce the current, the applied voltage may be reduced. Thereby, the reaction is not rate-limiting even at a low temperature.

後記する実施例(本実験)に示すように、上記一定電圧を10Vに設定した場合、650℃以下の出力の温度依存性が大きくなった。一方、一定電圧を1Vに設定した場合、600℃以上で出力の温度依存性を抑制することができた。このことから、一定電圧を1Vに設定することにより、出力の温度依存性が無い温度範囲を広げることができた。ただし、1Vという一定電圧は、実施例(本実験)に示す電極構造の場合に限定される可能性がある。それは、一定電圧は電極構造に大きく依存すると考えられるからである。   As shown in an example (this experiment) to be described later, when the constant voltage was set to 10 V, the temperature dependence of the output of 650 ° C. or less became large. On the other hand, when the constant voltage was set to 1 V, the temperature dependence of the output could be suppressed at 600 ° C. or higher. Therefore, by setting the constant voltage to 1V, the temperature range without the temperature dependence of the output could be expanded. However, the constant voltage of 1 V may be limited to the electrode structure shown in the example (this experiment). This is because the constant voltage is considered to largely depend on the electrode structure.

(2)式の反応が律速する単位電極面積あたりの電流をilimitとすると、図1の直列回路を流れる電流Iは、
I≦ilimit (8)
を満たす必要がある。ここで、Aは温度補償材の電極面積である。これは、ilimitを超える電流が図1に流れようとすると、温度補償材とその電極との界面での抵抗が増大し、図1に無い抵抗が生じ、温度依存性を抑制することができなくなるため、上記条件が必要である。
When the current per unit electrode area where the reaction of the formula (2) is rate-limiting is i limit , the current I flowing through the series circuit of FIG.
I ≦ i limit A O (8)
It is necessary to satisfy. Here, A 2 O is the electrode area of the temperature compensation material. This is because, if a current exceeding i limit A O flows in FIG. 1, the resistance at the interface between the temperature compensation material and its electrode increases, resulting in a resistance not shown in FIG. 1 and suppressing temperature dependence. Therefore, the above conditions are necessary.

温度補償材の抵抗をR、温度補償材の電極間での電位差をEとすると、
I=E/R (9)
が成り立つので、(8)式は
/R≦ilimit (10)
となる。(4)及び(10)式から、
/L≦rlimit (11)
となる。
When the resistance of the temperature compensation material is R O and the potential difference between the electrodes of the temperature compensation material is E O ,
I = E O / R O (9)
Therefore, the equation (8) is expressed as E O / R O ≦ i limit A O (10)
It becomes. From equations (4) and (10)
E O S O / L O A O ≦ r O i limit (11)
It becomes.

右辺のrlimitは、マクロな構造には依存しない値であり、温度が一定なら一定値として考えて良い。この式の意味するところは、温度補償材の電極間の電位差及び温度補償材の断面積は小さいほうが良く、温度補償材の電極間隔及びその電極面積は大きいほうが良い、ということである。実施例(本実験)に示すように、低温において、出力の温度依存性が出現し、温度が低くなるにつれ、高温での出力からのずれが大きくなった。すなわち、rlimitは、温度が低くなるにつれ、小さくなると考えられる。 The r O i limit on the right side is a value that does not depend on the macro structure, and may be considered as a constant value if the temperature is constant. The meaning of this equation is that the potential difference between the electrodes of the temperature compensation material and the cross-sectional area of the temperature compensation material should be small, and the electrode spacing and the electrode area of the temperature compensation material should be large. As shown in the example (this experiment), the temperature dependence of the output appeared at low temperature, and the deviation from the output at high temperature became larger as the temperature decreased. That is, r O i limit is considered to decrease as the temperature decreases.

よって、出力の温度依存性が無いことを希望する温度範囲の一番低温で(11)式を満たせば、それより高温では、常に(11)式を満たすことになる。実施例(本実験)に示す構造の場合、600℃から800℃において、1Vの一定電圧を温度補償材とガス検出材の直列回路に負荷した場合に、出力の温度依存性が無かった。よって、600℃におけるE/Lを計算すると、140V/mとなる(各パラメータの値は、実施例参照のこと。)。このことから、E/Lが140V/m以下であれば、600℃以上で出力の温度依存性を無くすことができる。ただし、この条件は、必要十分条件でなく、十分条件である。 Therefore, if the expression (11) is satisfied at the lowest temperature in the temperature range where it is desired that the output has no temperature dependence, the expression (11) is always satisfied at a higher temperature. In the case of the structure shown in the example (this experiment), when a constant voltage of 1 V was applied to the series circuit of the temperature compensation material and the gas detection material at 600 to 800 ° C., there was no temperature dependency of the output. Therefore, when E O S O / L O A O at 600 ° C. is calculated, it is 140 V / m (refer to the examples for the values of each parameter). Therefore, E O S O / L O A O is not more than 140 V / m, it is possible to eliminate the temperature dependency of the output at 600 ° C. or higher. However, this condition is not a necessary and sufficient condition but a sufficient condition.

次に、温度補償材とその電極との界面における抵抗(以下、界面抵抗)に関する条件について述べる。ガス検出材の抵抗をR、温度補償材の抵抗をR、界面抵抗をRxとする。ここで、xは、温度補償材の抵抗に対する界面抵抗の割合である。このとき、センサ出力Voutは、印加電圧をEとすると、 Next, conditions regarding resistance at the interface between the temperature compensation material and the electrode (hereinafter referred to as interface resistance) will be described. The resistance of the gas detection material is R G , the resistance of the temperature compensation material is R O , and the interface resistance is R O x. Here, x is the ratio of the interface resistance to the resistance of the temperature compensation material. At this time, if the applied voltage is E, the sensor output V out is

Figure 0004625931
Figure 0004625931

である。界面抵抗が無視できるときのセンサ出力をVout とすると、 It is. If the sensor output when the interface resistance is negligible is V out O ,

Figure 0004625931
Figure 0004625931

界面抵抗が出現することによる出力誤差をΔVoutとすると、 If the output error due to the appearance of the interface resistance is ΔV out ,

Figure 0004625931
Figure 0004625931

よって、 Therefore,

Figure 0004625931
Figure 0004625931

とRが等しいとき、 When R G and R O are equal,

Figure 0004625931
Figure 0004625931

となる。ΔVout/E≦0.01とすると、
x≦0.02 (17)
となる。よって、界面抵抗が温度補償材の抵抗の0.02倍以下であると、界面抵抗の影響は無視できる。
It becomes. When ΔV out /E≦0.01,
x ≦ 0.02 (17)
It becomes. Therefore, when the interface resistance is 0.02 times or less of the resistance of the temperature compensation material, the influence of the interface resistance can be ignored.

次に、センサの作製方法を説明する。まず、初めに、電極及び配線を作製する。その方法として、Pt、Pdなどの貴金属ペーストをスクリーン印刷法により基板に塗布する方法、Pt、Pdをスパッタ法により作製する方法などが例示されるが、これらに限定されない。基板上に電極及び配線を作製し、その上にガス検出材と温度補償材をそれぞれ作製する。ガス検出材と温度補償材の作製方法であるが、ガス検出材の場合、まず、酸化物半導体粉末を作製する。この作製方法として、噴霧熱分解法、スプレードライ法、沈殿法などの製法が例示されるが、これらに限定されるものではない。   Next, a method for manufacturing the sensor will be described. First, an electrode and wiring are produced. Examples of the method include, but are not limited to, a method of applying a noble metal paste such as Pt and Pd to a substrate by a screen printing method, a method of producing Pt and Pd by a sputtering method, and the like. Electrodes and wirings are produced on the substrate, and a gas detection material and a temperature compensation material are produced thereon. This is a method for producing a gas detection material and a temperature compensation material. In the case of a gas detection material, first, an oxide semiconductor powder is produced. Examples of the production method include production methods such as spray pyrolysis, spray drying, and precipitation, but are not limited thereto.

次に、酸化物半導体粉末と、ビヒクル、スキージオイル等の有機溶媒を混合し、ペーストを作製する。このペーストを電極及び配線が設けられた基板上に印刷する。印刷方法としては、好適には、スクリーン印刷法が用いられるが、これに限定されない。温度補償材の場合、酸素イオン伝導体粉末を作製する。これ以降は、ガス検出材の作製方法と同じである。次に、これを空気中400〜600℃で加熱して、有機溶媒を除去し、次いで、空気中1000〜1200℃で焼成する。   Next, the oxide semiconductor powder and an organic solvent such as a vehicle or squeegee oil are mixed to prepare a paste. This paste is printed on a substrate provided with electrodes and wiring. A screen printing method is preferably used as the printing method, but is not limited thereto. In the case of a temperature compensation material, an oxygen ion conductor powder is prepared. The subsequent steps are the same as the method for producing the gas detection material. Next, this is heated at 400 to 600 ° C. in the air to remove the organic solvent, and then baked at 1000 to 1200 ° C. in the air.

ヒータ付の抵抗型酸素センサ素子の場合、例えば、基板に、セラミックヒータ、シリコンマイクロヒータなどを取り付ける。ただし、ヒータの取り付け位置、ヒータの形状、ヒータの特性については、特に限定するものではない。なぜならば、本発明の抵抗型酸素センサは、温度依存性が小さいので、ヒータに対する要求度が小さく、ヒータの性能は重要ではないためである。本発明の抵抗型酸素センサ素子は、酸素センサ装置に用いられる。この装置は、本発明の抵抗型酸素センサと電気回路部とセンサ出力などの表示部とを基本的構成要素として任意に設計することができる。   In the case of a resistance-type oxygen sensor element with a heater, for example, a ceramic heater, a silicon micro heater, or the like is attached to the substrate. However, the attachment position of the heater, the shape of the heater, and the characteristics of the heater are not particularly limited. This is because the resistance-type oxygen sensor of the present invention has a small temperature dependency, and thus the degree of demand for the heater is small, and the performance of the heater is not important. The resistance-type oxygen sensor element of the present invention is used in an oxygen sensor device. This device can be arbitrarily designed with the resistance oxygen sensor of the present invention, an electric circuit unit, and a display unit such as a sensor output as basic components.

本発明により、次のような効果が奏される。
(1)温度補償材として、Ce0.50.52−δ、ガス検出材として、Ce0.9Zr0.1を使った抵抗型酸素センサにおいて、その出力の温度依存性の無い温度範囲を、600℃までの低温側に広げることができる。
(2)緻密な電極を使っても、センサの出力の温度依存性を抑えることができる。
(3)低コストで酸素センサを構築し、提供することができる。
(4)温度依存性が小さいため、ヒータの温度を制御するための回路を簡素化できる。
(5)低温作動できるため、ヒータの消費電力を下げることができる。
The following effects are exhibited by the present invention.
(1) In a resistance type oxygen sensor using Ce 0.5 Y 0.5 O 2-δ as a temperature compensation material and Ce 0.9 Zr 0.1 O 2 as a gas detection material, the temperature dependence of its output It is possible to widen the temperature range having no property to the low temperature side up to 600 ° C.
(2) The temperature dependence of the sensor output can be suppressed even if a dense electrode is used.
(3) An oxygen sensor can be constructed and provided at low cost.
(4) Since the temperature dependency is small, a circuit for controlling the temperature of the heater can be simplified.
(5) Since it can operate at a low temperature, the power consumption of the heater can be reduced.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(予備実験)
まず、初めに、温度補償材Ce0.50.52−δ及びガス検出材Ce0.9Zr0.1の抵抗率及びそれらの抵抗の温度依存性を確認するために、全く同じ電極上に温度補償材及びガス検出材の厚膜を作製し、それらの抵抗を比較した。以下に、実験条件を詳細に示す。
(Preliminary experiment)
First, in order to confirm the resistivity of the temperature compensation material Ce 0.5 Y 0.5 O 2-δ and the gas detection material Ce 0.9 Zr 0.1 O 2 and the temperature dependence of these resistances. A thick film of a temperature compensation material and a gas detection material was prepared on the same electrode, and their resistances were compared. The experimental conditions are shown in detail below.

アルミナ基板に、白金ペーストをスクリーン印刷により塗布した。電極として、交差指型構造(くし型構造)電極を用いた。白金ペーストを印刷後、空気中1400℃で焼成を行った。得られた電極は、緻密な白金厚膜であり、金属光沢を有していた。次に、沈殿法によりCe0.50.52−δ及びCe0.9Zr0.1の微粉末を得た。得られた微粉末と有機溶媒のビヒクルとを混合したペーストを、電極が作製された酸化アルミニウム基板上にスクリーン印刷により印刷した。次に、これを空気中500℃で加熱し、引き続き、空気中1100℃で加熱し、温度補償材及びガス検出材となる厚膜を作製した。 A platinum paste was applied to the alumina substrate by screen printing. As the electrode, an interdigitated structure (comb structure) electrode was used. After printing the platinum paste, firing was performed at 1400 ° C. in air. The obtained electrode was a dense platinum thick film and had a metallic luster. Next, fine powders of Ce 0.5 Y 0.5 O 2-δ and Ce 0.9 Zr 0.1 O 2 were obtained by a precipitation method. A paste obtained by mixing the obtained fine powder and a vehicle of an organic solvent was printed by screen printing on an aluminum oxide substrate on which an electrode was produced. Next, this was heated at 500 ° C. in the air, and subsequently heated at 1100 ° C. in the air, thereby producing a thick film serving as a temperature compensation material and a gas detection material.

このようにして得られた温度補償材及びガス検出材の抵抗の値を図5にプロットする。測定雰囲気は、酸素、プロパン、窒素の混合ガス(2.75%O+0.50%C+N)を、加熱した貴金属触媒中で燃焼反応させた後のガス雰囲気、すなわち、模擬的な排気ガス雰囲気である。酸素過剰量λを次のように定義する。 The resistance values of the temperature compensation material and the gas detection material thus obtained are plotted in FIG. The measurement atmosphere is a gas atmosphere after a combustion reaction of a mixed gas of oxygen, propane and nitrogen (2.75% O 2 + 0.50% C 3 H 8 + N 2 ) in a heated noble metal catalyst, that is, a simulation. It is a typical exhaust gas atmosphere. The oxygen excess λ is defined as follows.

Figure 0004625931
Figure 0004625931

ここで、C(O)、C(C)は、それぞれ酸素及びプロパンの濃度である。また、 Here, C (O 2 ) and C (C 3 H 8 ) are oxygen and propane concentrations, respectively. Also,

Figure 0004625931
Figure 0004625931

は過不足なく反応する比であり、5である。一般的に、空気過剰率λairは次式である。 Is a ratio that reacts without excess or deficiency, and is 5. In general, the excess air ratio λ air is:

Figure 0004625931
Figure 0004625931

ここで、w(air)、w(fuel)は、それぞれ空気と燃料の重量比、すなわち、空燃比であり、   Here, w (air) and w (fuel) are the weight ratio of air and fuel, that is, the air-fuel ratio,

Figure 0004625931
Figure 0004625931

は理論空燃比である。したがって、λとλairが同じであっても、その雰囲気における酸素分圧は大きく異なる。酸素分圧が同じ場合の実施例で使用しているλとλairとは、次式の関係がある。
λair=0.1463λ+0.8695 (λ≧1.1) (20)
Is the stoichiometric air-fuel ratio. Therefore, even if λ and λ air are the same, the oxygen partial pressure in the atmosphere is greatly different. [Lambda] and [lambda] air used in the embodiment in the case where the oxygen partial pressure is the same have the following relationship.
λ air = 0.1463λ + 0.8695 (λ ≧ 1.1) (20)

このことから、本実施例で計測での実験結果は、一般に使われるλairの1に近い範囲を測定していることになる。酸素、プロパン、窒素の混合ガス(2.75%O+0.50%C+N)の場合、λ=1.1であり、いわゆるリーン雰囲気(燃料希薄雰囲気)である。図5では、約800℃(810℃)におけるガス検出材の抵抗RG,800℃で除した値をプロットしている。 From this, the experimental result of measurement in the present example is measuring a range close to 1 of λ air generally used. In the case of a mixed gas of oxygen, propane, and nitrogen (2.75% O 2 + 0.50% C 3 H 8 + N 2 ), λ = 1.1, which is a so-called lean atmosphere (fuel lean atmosphere). In FIG. 5, the resistance RG of the gas detection material at about 800 ° C. (810 ° C.) , the value divided by 800 ° C. is plotted.

温度補償材の抵抗の活性化エネルギーは1.23eVであり、ガス検出材の活性化エネルギーは1.27eVであった。このことから、両者の抵抗の温度依存性は、ほぼ同じであることが確認された。また、本予備実験では、温度補償材の電極構造とガス検出材の電極構造は、全く同じであり、両者の厚膜の膜厚もほぼ同じ(6.5〜7.5μm)であった。このことから、両者の抵抗の比は、抵抗率の比であり、約6であることが分かった。   The activation energy of the resistance of the temperature compensation material was 1.23 eV, and the activation energy of the gas detection material was 1.27 eV. From this, it was confirmed that the temperature dependence of both resistances is substantially the same. In this preliminary experiment, the electrode structure of the temperature compensation material and the electrode structure of the gas detection material were exactly the same, and the film thicknesses of both thick films were almost the same (6.5 to 7.5 μm). From this, it was found that the resistance ratio between the two was the resistivity ratio, which was about 6.

(本実験)
次に、図6に示すような電極を1つの基板上に作製し、その上に、予備実験と同じ作製方法で、温度補償材及びガス検出材の厚膜を作製した。温度補償材の電極間隔Lは200μm、電極間隔が約200μmである辺の長さの和Dと温度補償材膜の厚さTは、それぞれ14500μmと7μmであるので、温度補償材の断面積Sは1.015×10μm、温度補償材の電極面積Aは1.25×10μmであった。また、ガス検出材の電極間隔Lは500μm、電極間隔が約500μmである辺の長さの和Dと温度補償材膜の厚さTは、それぞれ6750μmと7μmであるので、温度補償材の断面積Sは4.725×10μmであった。このとき、L/Lを計算すると、0.19であった。
(This experiment)
Next, an electrode as shown in FIG. 6 was produced on one substrate, and a thick film of a temperature compensation material and a gas detection material was produced thereon by the same production method as in the preliminary experiment. The electrode distance L O of the temperature compensation material is 200 μm, the sum D O of the side lengths where the electrode distance is about 200 μm, and the thickness T O of the temperature compensation material film are 14500 μm and 7 μm, respectively. The cross-sectional area S O was 1.015 × 10 5 μm 2 , and the electrode area A O of the temperature compensation material was 1.25 × 10 6 μm 2 . Further, the electrode spacing L G of the gas detecting material 500 [mu] m, the thickness T G of the sum D G and the temperature compensation material film of the length of the side electrode spacing is about 500 [mu] m, since each is 6750μm and 7 [mu] m, temperature compensation sectional area S G of wood was 4.725 × 10 4 μm 2. At this time, L O S G / L G S O was calculated to be 0.19.

以上の電極及び厚膜を用いて、λ=1.1における温度補償材及びガス検出材の抵抗を測定した結果を図7に示す。図7も図5と同様に、約800℃(797℃)におけるガス検出材の抵抗RG,800℃で除した値をプロットしている。両者の抵抗は、ほぼ同じであり、0.25倍から4倍の間に入っていた。 FIG. 7 shows the results of measuring the resistance of the temperature compensation material and the gas detection material at λ = 1.1 using the above electrodes and thick film. FIG. 7 also plots the value obtained by dividing the resistance RG of the gas detection material at about 800 ° C. (797 ° C.) by 800 ° C. as in FIG. Both resistances were almost the same and were between 0.25 and 4 times.

この抵抗の値を基に、センサ出力を計算した結果を図8に示す。図8には、λ=1.6における温度補償材及びガス検出材の抵抗の測定結果を基にセンサ出力を計算した結果も示す。センサ出力の計算は、図1の回路に基づいて行った。この場合、センサ出力は(1)式から求めることができる。図8の結果では、E=10Vとして計算を行った。計算上では、500℃から800℃の広い範囲で出力の温度依存性はほぼなく、λ=1.1と1.6を識別できるという結果が得られた。   FIG. 8 shows the result of calculating the sensor output based on the resistance value. FIG. 8 also shows the result of calculating the sensor output based on the measurement results of the resistance of the temperature compensation material and the gas detection material at λ = 1.6. The sensor output was calculated based on the circuit of FIG. In this case, the sensor output can be obtained from equation (1). In the result of FIG. 8, the calculation was performed with E = 10V. In calculation, the result shows that λ = 1.1 and 1.6 can be distinguished from each other with almost no output temperature dependency in a wide range from 500 ° C. to 800 ° C.

次に、実際に図1のように接続し、E=10V又は1Vを負荷し、Voutを測定した。その結果を図9に示す。10Vを負荷した場合、650℃から800℃までは、出力の温度依存性は無かったが、650℃以下では、出力は温度に大きく依存した。一方、1Vを負荷した場合、600℃から800℃まで出力の温度依存性は無かった。これは、前述の通り、10Vでは600℃から650℃において温度補償材とその電極との界面での抵抗(界面抵抗)が生じたが、1Vでは600℃から650℃において界面抵抗が生じなかったためである。 Next, the actual connection was made as shown in FIG. 1, E = 10V or 1V was loaded, and V out was measured. The result is shown in FIG. When 10V was applied, the output did not depend on temperature from 650 ° C. to 800 ° C., but at 650 ° C. or less, the output greatly depended on temperature. On the other hand, when 1V was loaded, there was no temperature dependence of output from 600 ° C to 800 ° C. This is because, as described above, resistance at the interface between the temperature compensation material and the electrode (interface resistance) was generated at 10 V from 600 ° C. to 650 ° C., but no interface resistance was generated from 600 ° C. to 650 ° C. at 1 V. It is.

このように、界面抵抗を無視できるほど小さくすることにより、低温での出力温度依存性を無くすことができた。以上の実施例で示したように、酸素イオン伝導体である温度補償材の電極として緻密電極を用いた場合、温度補償材とその電極との界面での抵抗を低減することにより、低温での温度依存性を無くすことができた。すなわち、本発明により、出力の温度依存性を、広い温度範囲で抑制できることが実証できた。   Thus, by making the interface resistance small enough to be ignored, the output temperature dependence at low temperatures could be eliminated. As shown in the above examples, when a dense electrode is used as an electrode of a temperature compensation material that is an oxygen ion conductor, by reducing the resistance at the interface between the temperature compensation material and the electrode, The temperature dependence could be eliminated. That is, according to the present invention, it was proved that the temperature dependency of the output can be suppressed in a wide temperature range.

以上詳述したように、本発明は、センサ出力の温度依存性の無い抵抗型酸素センサに係るものであり、本発明により、抵抗型酸素センサにおいて、センサ出力の温度依存性の無い温度範囲を600℃まで低温側に拡大することができる。それにより、緻密な電極を酸素センサに使用することが可能となる。600℃以上の温度で出力の温度依存性が無い、センサ出力の温度依存性が抑制された、新しい抵抗型酸素センサを提供することができる。本発明により、センサ出力の温度依存性を無くして、酸素分圧を高精度で測定することが可能な、高性能の酸素センサ装置を提供することができる。   As described above in detail, the present invention relates to a resistance type oxygen sensor having no temperature dependence of the sensor output. According to the present invention, in the resistance type oxygen sensor, a temperature range having no temperature dependence of the sensor output can be obtained. It can be expanded to the low temperature side up to 600 ° C. This makes it possible to use a dense electrode for the oxygen sensor. It is possible to provide a new resistance oxygen sensor in which the temperature dependency of the sensor output is suppressed at a temperature of 600 ° C. or higher and the temperature dependency of the sensor output is suppressed. According to the present invention, it is possible to provide a high-performance oxygen sensor device capable of measuring the oxygen partial pressure with high accuracy by eliminating the temperature dependence of the sensor output.

酸素センサの回路図を示す。The circuit diagram of an oxygen sensor is shown. 抵抗の実測値から計算したセンサ出力と、実測のセンサ出力を示す。The sensor output calculated from the measured value of resistance and the measured sensor output are shown. 酸素分圧PがlogP=−1.5を満たす場合において、温度補償材の抵抗をガス検出材の抵抗の0.15倍から6.3倍に変化させたときのセンサ出力を計算により求めた結果を示す。When the oxygen partial pressure P satisfies log P = −1.5, the sensor output when the resistance of the temperature compensation material was changed from 0.15 times to 6.3 times the resistance of the gas detection material was obtained by calculation. Results are shown. 交差指型(くし型)電極における電極間隔LOと電極間隔が約Lである辺の長さの和Dの定義を示す。The definition of the sum D O of the electrode length LO and the length of the side where the electrode interval is about L 2 O in the interdigital electrode is shown. λ=1.1における温度補償材及びガス検出材の抵抗の値を示す。温度補償材とガス検出材の電極構造は同じである。ただし、縦軸は約800℃(810℃)におけるガス検出材の抵抗RG,800℃で除した値を用いた。The resistance value of the temperature compensation material and the gas detection material at λ = 1.1 is shown. The electrode structures of the temperature compensation material and the gas detection material are the same. However, a value obtained by dividing the resistance RG of the gas detection material at about 800 ° C. (810 ° C.) by 800 ° C. is used for the vertical axis. 温度補償材Ce0.50.52−δ及びガス検出材Ce0.9Zr0.1に用いる電極を示す。それぞれの抵抗がほぼ同じになるように調整されている。間隔が密及び疎である電極は、それぞれ、温度補償材用及びガス検出材用である。The electrodes used for the temperature compensation material Ce 0.5 Y 0.5 O 2-δ and the gas detection material Ce 0.9 Zr 0.1 O 2 are shown. Each resistor is adjusted to be almost the same. Electrodes with a dense and sparse spacing are for temperature compensation material and gas detection material, respectively. 図6に示した電極を用いたときのλ=1.1における温度補償材及びガス検出材の抵抗の値を示す。ただし、縦軸は約800℃(797℃)におけるガス検出材の抵抗RG,800℃で除した値を用いた。FIG. 7 shows resistance values of the temperature compensation material and the gas detection material at λ = 1.1 when the electrode shown in FIG. 6 is used. However, a value obtained by dividing the resistance RG of the gas detection material at about 800 ° C. (797 ° C.) by 800 ° C. is used for the vertical axis. 図7の測定結果から計算により求めたセンサ出力を示す。ただし、λ=1.6における温度補償材及びガス検出材の抵抗の測定結果を基にセンサ出力を計算した結果も合わせて示す。The sensor output calculated | required by calculation from the measurement result of FIG. 7 is shown. However, the calculation result of the sensor output based on the measurement result of the resistance of the temperature compensation material and the gas detection material at λ = 1.6 is also shown. 本実験で作製したセンサ素子にE=10V又は1Vを負荷したときのVoutを示す。V out when E = 10 V or 1 V is loaded on the sensor element manufactured in this experiment is shown.

Claims (7)

温度補償材及びガス検出材を用いた抵抗型酸素センサ素子において、温度補償材とその電極との界面での抵抗を温度補償材の抵抗と比べて小さくしたことにより、酸素センサの出力の温度に依存しない範囲が、600℃までの低温側に広がっている抵抗型酸素センサ素子であって、
抵抗型酸素センサの動作時に、温度補償材の電極間隔をL 、温度補償材の電極面積をA 、温度補償材の断面積をS 、温度補償材の電極間の電位差をE とすると、E /L が大きくても140V/mであることを特徴とする抵抗型酸素センサ素子。
In resistance-type oxygen sensor element using a temperature compensation material and gas detection material, more resistance at the interface between the temperature compensation material and its electrodes and the smaller lower child compared with the resistance of the temperature compensation material, the oxygen sensor output range independent of temperature of, a resistance-type oxygen sensor element that has spread on the low temperature side to 600 ° C.,
During operation of the resistance oxygen sensor, the electrode spacing of the temperature compensation material is L O , the electrode area of the temperature compensation material is A O , the cross-sectional area of the temperature compensation material is S O , and the potential difference between the electrodes of the temperature compensation material is E O. Then, the resistance type oxygen sensor element , wherein E O S O / L O A O is 140 V / m at most.
Ce0.50.5の組成である温度補償材及びCe0.9Zr0.1の組成であるガス検出材を用いた抵抗型酸素センサ素子において、温度補償材が多孔質であり、温度補償材の電極が緻密電極であり、温度補償材とその電極の位置関係が基板・電極・温度補償材の関係を有し、温度補償材とガス検出材のそれぞれの抵抗が、ほぼ等しい抵抗型酸素センサ素子である、請求項1記載の抵抗型酸素センサ素子。 In a resistance type oxygen sensor element using a temperature compensation material having a composition of Ce 0.5 Y 0.5 O 2 and a gas detection material having a composition of Ce 0.9 Zr 0.1 O 2 , the temperature compensation material is porous. The temperature compensation material electrode is a dense electrode, and the positional relationship between the temperature compensation material and the electrode has the relationship of substrate, electrode, and temperature compensation material. The resistance oxygen sensor element according to claim 1, wherein the resistance oxygen sensor elements are substantially equal resistance oxygen sensor elements. 抵抗型酸素センサの動作時に、温度補償材とガス検出材を直列に接続したものに1V又はそれより低い一定電圧が負荷される、請求項1記載の抵抗型酸素センサ素子。 The resistance-type oxygen sensor element according to claim 1, wherein a constant voltage of 1 V or lower is applied to the temperature-compensating material and the gas-detecting material connected in series during operation of the resistance-type oxygen sensor. 600℃又はそれより高い温度で、出力の温度依存性が無い、請求項1記載の抵抗型酸素センサ素子。 The resistance-type oxygen sensor element according to claim 1, wherein there is no temperature dependence of output at a temperature of 600 ° C or higher . 温度補償材とその電極との界面での抵抗が、温度補償材の抵抗の大きくても0.02倍である、請求項1記載の抵抗型酸素センサ素子。 The resistance-type oxygen sensor element according to claim 1, wherein the resistance at the interface between the temperature compensation material and its electrode is 0.02 times at most as large as the resistance of the temperature compensation material. 温度補償材の抵抗が、ガス検出材の抵抗の0.25倍から4倍以内である、請求項1記載の抵抗型酸素センサ素子。   The resistance-type oxygen sensor element according to claim 1, wherein the resistance of the temperature compensation material is within 0.25 to 4 times the resistance of the gas detection material. ガス検出材の電極間隔をL、ガス検出材の断面積をS、温度補償材の電極間隔をL、温度補償材の断面積をSとすると、L/Lが0.0417以上0.666以下になるような電極構造を有する、請求項1記載の抵抗型酸素センサ素子。 Assuming that the electrode interval of the gas detection material is L G , the cross-sectional area of the gas detection material is S G , the electrode interval of the temperature compensation material is L O , and the cross-sectional area of the temperature compensation material is S O , L O S G / L G S The resistance-type oxygen sensor element according to claim 1, having an electrode structure in which O is 0.0417 or more and 0.666 or less.
JP2006147491A 2006-05-26 2006-05-26 Resistive oxygen sensor element without temperature dependency of output Expired - Fee Related JP4625931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147491A JP4625931B2 (en) 2006-05-26 2006-05-26 Resistive oxygen sensor element without temperature dependency of output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147491A JP4625931B2 (en) 2006-05-26 2006-05-26 Resistive oxygen sensor element without temperature dependency of output

Publications (2)

Publication Number Publication Date
JP2007315979A JP2007315979A (en) 2007-12-06
JP4625931B2 true JP4625931B2 (en) 2011-02-02

Family

ID=38849956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147491A Expired - Fee Related JP4625931B2 (en) 2006-05-26 2006-05-26 Resistive oxygen sensor element without temperature dependency of output

Country Status (1)

Country Link
JP (1) JP4625931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633755B2 (en) 2012-03-27 2014-12-03 株式会社豊田中央研究所 Catalyst deterioration diagnosis method
CN109444225A (en) * 2018-12-27 2019-03-08 上海因士环保科技有限公司 A kind of resisting temperature, baseline drift gas sensor system and application method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141545A (en) * 1981-01-21 1982-09-01 Bendix Autolite Corp Titania oxygen detector with chromium oxide compensator
JPS625165A (en) * 1985-07-02 1987-01-12 Ngk Spark Plug Co Ltd Thick film type gas sensitive element and making thereof
JPS6366450A (en) * 1986-09-09 1988-03-25 Ngk Spark Plug Co Ltd Gas detector and manufacture thereof
JPH06222026A (en) * 1991-02-26 1994-08-12 Toyota Motor Corp Oxide semiconductor gas sensor
JPH0669830U (en) * 1993-03-02 1994-09-30 株式会社豊田中央研究所 Semiconductor thin film ozone sensor
JPH08220060A (en) * 1994-04-12 1996-08-30 Matsushita Electric Ind Co Ltd Oxygen sensor
JPH10505164A (en) * 1994-09-14 1998-05-19 シーメンス アクチエンゲゼルシヤフト Gas sensor
JP2004085549A (en) * 2002-06-27 2004-03-18 National Institute Of Advanced Industrial & Technology Resistance oxygen sensor, oxygen sensor unit employing it and air-fuel ratio control system
JP2004093547A (en) * 2002-07-08 2004-03-25 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor, oxygen sensor system, and air-fuel ratio control system using the same
JP2004203655A (en) * 2002-12-25 2004-07-22 National Institute Of Advanced Industrial & Technology Manufacturing method of detection portion of oxygen partial pressure of resistance type oxygen probe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141545A (en) * 1981-01-21 1982-09-01 Bendix Autolite Corp Titania oxygen detector with chromium oxide compensator
JPS625165A (en) * 1985-07-02 1987-01-12 Ngk Spark Plug Co Ltd Thick film type gas sensitive element and making thereof
JPS6366450A (en) * 1986-09-09 1988-03-25 Ngk Spark Plug Co Ltd Gas detector and manufacture thereof
JPH06222026A (en) * 1991-02-26 1994-08-12 Toyota Motor Corp Oxide semiconductor gas sensor
JPH0669830U (en) * 1993-03-02 1994-09-30 株式会社豊田中央研究所 Semiconductor thin film ozone sensor
JPH08220060A (en) * 1994-04-12 1996-08-30 Matsushita Electric Ind Co Ltd Oxygen sensor
JPH10505164A (en) * 1994-09-14 1998-05-19 シーメンス アクチエンゲゼルシヤフト Gas sensor
JP2004085549A (en) * 2002-06-27 2004-03-18 National Institute Of Advanced Industrial & Technology Resistance oxygen sensor, oxygen sensor unit employing it and air-fuel ratio control system
JP2004093547A (en) * 2002-07-08 2004-03-25 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor, oxygen sensor system, and air-fuel ratio control system using the same
JP2004203655A (en) * 2002-12-25 2004-07-22 National Institute Of Advanced Industrial & Technology Manufacturing method of detection portion of oxygen partial pressure of resistance type oxygen probe

Also Published As

Publication number Publication date
JP2007315979A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
White et al. Thick-film sensors: past, present and future
CA1117789A (en) Temperature compensated resistive exhaust gas sensor construction
EP0056752B1 (en) Titania oxygen sensor with chrome oxide compensator
US20100201385A1 (en) Method for measuring the threshold thickness of a layer of a purely resistive material, device for implementing same and use of said device in an exhaust pipe
US7236083B2 (en) Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
JP4625931B2 (en) Resistive oxygen sensor element without temperature dependency of output
CN109133201A (en) Based on the Ni-based perovskite oxide material of A codopes of multicomponent and application method
JPS61155751A (en) Air/fuel ratio sensor and apparatus thereof
US20180003576A1 (en) High Resolution Strain Gages for Ceramic Matrix Composites and Methods of Manufacture Thereof
JP3870261B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP3903181B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP2811976B2 (en) Oxide semiconductor gas sensor
JP2575213B2 (en) Thermistor element
EP1217635A3 (en) Platinum electrical resistance or a platinum composition and sensor arrangement
JP4671253B2 (en) Combustible gas concentration measuring device
JP5105284B2 (en) Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method
US7578974B2 (en) Resistive type oxygen sensor and air/fuel ratio control system using it
EP0853239A2 (en) Gas sensor and heater unit
JP2011169757A (en) Resistive oxygen sensor element
JP4171803B2 (en) Oxygen sensor using oxide semiconductor
JP2881426B2 (en) Oxygen sensor
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
JP2004325218A (en) Temperature control device, temperature control method, and gas detection device using them
JP4163840B2 (en) Gas sensor
JP2745805B2 (en) Manufacturing method of oxygen concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4625931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees