JP4623621B2 - Low noise duct - Google Patents

Low noise duct Download PDF

Info

Publication number
JP4623621B2
JP4623621B2 JP2001280939A JP2001280939A JP4623621B2 JP 4623621 B2 JP4623621 B2 JP 4623621B2 JP 2001280939 A JP2001280939 A JP 2001280939A JP 2001280939 A JP2001280939 A JP 2001280939A JP 4623621 B2 JP4623621 B2 JP 4623621B2
Authority
JP
Japan
Prior art keywords
duct
membrane
film
thickness
duct body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001280939A
Other languages
Japanese (ja)
Other versions
JP2003083186A (en
Inventor
光洋 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2001280939A priority Critical patent/JP4623621B2/en
Publication of JP2003083186A publication Critical patent/JP2003083186A/en
Application granted granted Critical
Publication of JP4623621B2 publication Critical patent/JP4623621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Duct Arrangements (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両エンジンの燃焼室へ外気を導入する吸気ダクトや車両用空調ダクトとして用いられ、低騒音化に役立つ低騒音ダクトに関するものである。
【0002】
【従来の技術】
近年、車外低騒音化が求められるなか、例えば車両用吸気ダクトにおいてはこれまで様々な方法が採られてきた。その代表的な手法として、▲1▼ダクトに孔を穿設し、該孔を塞ぐようにしてグラスウール,発泡ウレタン,不織布等のシートを貼着して吸音する方法、▲2▼ダクト内で発生してしまう共鳴の減衰を狙った多孔質材(繊維,焼結品等)による気柱共鳴減衰方法(特開昭62−84525号等)、▲3▼ある特定の周波数帯の騒音をチャンバー内で乱反射減衰させる消音器(レゾネータ)による減衰方法などがあり、これらが単一或いは複合仕様で採用されてきた。
【0003】
【発明が解決しようとする課題】
しかるに、前記▲1▼〜▲3▼の方法には次のような問題があった。▲1▼のグラスウールはそのままでは吸気負圧による分散(バラバラに散ってしまう)が予想されるため、形状維持できるような後加工が必要となった。発泡ウレタンは基本的にエンジンルーム内に使用するのに不向きであった。一つに加水分解があり、止水用カバーが必要になってしまう。また熱劣化が起こりやすく耐久性に難があった。
前記▲2▼は騒音そのものを消すのではなく、ダクト長さからくる気柱共鳴による騒音増大をダクト管途中からその音圧を逃すことによって共鳴を減少させ、結果として低騒音化を狙う手法であり、騒音そのものを消音する構造をもたなかった。またレゾネータのごとく、特定の周波数帯のみを狙うことはできなかった。加えて、ホットエアの吸い込みなどの不具合も考えられる。さらに、▲1▼にもいえることであるが、連通多孔質材を使用しているため、吸気ダクト内へ塵やゴミを混入させる可能性があることからエアクリーナより吸い込み口側のいわゆる一次側吸気部品にしか使用できなかった。
前記▲3▼は基本的に大容量のチャンバが必要で、エンジンルーム内に大きな空間を確保しなければならず、また高コストになっていた。
【0004】
本発明は上記問題点を解決するもので、ゴミ侵入等がなく、且つ設置スペースを殆ど必要とせずして低騒音化を実現し、吸気ダクトだけでなく空調ダクト等にも有用な低騒音ダクトを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成すべく、請求項1に記載の発明の要旨は、気体流路を形成するダクト本体と、 該ダクト本体の所定部位でダクト本体の一部を構成し、ダクト壁の一般部と一体成形され且つその肉厚が一般部の肉厚より薄く形成されてなる膜状部と、該膜状部の外周縁を取り囲んでダクト本体のダクト壁から外方へ盛り上り、該ダクト本体に一体成形される***部と、該膜状部を覆うようにして該***部に被着される別体のキャップと、を具備し、該膜状部が音波に対し共鳴振動をなし得るようにしたことを特徴とする低騒音ダクトにある。請求項2の発明たる低騒音ダクトは、請求項1で、ダクト本体がエラストマー系材料で造られたことを特徴とする。
【0006】
請求項1の発明のごとく一般部と一体成形され且つその肉厚が一般部の肉厚より薄く形成されてなる膜状部が音波に対し共鳴振動をなし得るようにすると、膜共振によって減音できる。ダクト本体に孔を開けることなく、ダクト本体の一部の肉厚を薄くして膜状部を形成するだけで減音できるので、ダクト内にゴミ等の侵入がない。膜状部を覆うようにして***部に別体のキャップが被着されると、膜状部とキャップの底部との間に空気層厚みができるので、この空気層厚みを変えることによって狙いの周波数を吸収できるようになる。請求項の発明のごとくダクト本体がエラストマー系材料で造られると、エラストマーの有する粘弾性特性によって吸音効果をより高めることができる。
【0007】
【発明の実施の形態】
以下、本発明に係る低騒音ダクトについて詳述する。図1〜図7は本発明の低騒音ダクトの一形態で、図1はその全体斜視図、図2は図1のA−A線矢視図、図3は(イ)が図2のキャップの斜視図、(ロ)が(イ)とは別態様のキャップの斜視図、図4は図1とは別態様の低騒音ダクトの部分縦断面図、図5は所要スペースを対比計算するために用いたレゾネータの斜視図、図6は所要スペースを計算するために用いたキャップ付き膜状部の縦断面図、図7は低騒音ダクトにおける膜状部設置箇所の一例を示す縦断面図である。車両用吸気ダクトに適用する。
【0008】
本実施形態の低騒音ダクトはダクト本体1と膜状部3と***部24とキャップ4とを具備する。ダクト本体1は外気を取り入れる気体流路Oを形成した導管で、ダクト壁21の肉厚がtでほぼ全体を占める一般部2と、肉厚がtでダクト壁21の一部を占める膜状部3と、が一体成形で造られている。ここでのダクト本体1は吸気口からエアクリーナまでのエアクリーナ上流側ダクト本体とするが、エアクリーナからエンジンへ向かう二次側ダクト本体にも適用できる。符号22は大気を導入する吸入部、符号23はエアクリーナ側の接続部で、その外周面には適宜嵌合用シール材5(図7参照)が巻回される。
【0009】
膜状部3は既述のごとくダクト本体1の所定部位で該ダクト本体1の一部を構成し、ダクト壁21の一般部2と一体成形され且つその肉厚tが一般部2の肉厚tより薄く形成される部分である。ダクト本体1の成形においてダクト壁21の一部を薄肉化して膜状部3が造られる。ここでの膜状部3は平面視で薄膜円板形にする。膜状部3は薄肉になりながらもダクト本体1に係るダクト壁21の一部を担って、一般部2と共に気体流路Oを形成する。そして、膜状部3の所が0.5mm〜3mmの厚みで薄く形成されることによって、音波に対し共鳴振動できるようになっている。膜状部肉厚tはあまり厚くなってしまうと振動しなくなるので、できるだけ薄肉化するのが好ましい。かといって、薄くしすぎると冷間時や熱老化時に膜が破れてしまう。材料の強度によってどれほど薄肉にできるか変わってくるが、例えばクロロプレンゴムを用いた場合は膜状部3の肉厚tを1mm〜3mm程度に設定する。
【0010】
薄肉化した膜状部3が音波に対し共鳴振動できるよう、ダクト本体1(膜状部3,一般部2)の材質が選定される。その材質には例えば汎用ホースに用いられるEPDM(エチレン・プロピレン・ジエンゴム),CR(クロロプレンゴム),NBR(アクリロニトリル・ブタジエン・ゴム),TPO(オレフィン系熱可塑性エラストマー),TPE(アミド系熱可塑性エラストマー),NR(天然ゴム)などが選定される。EPDM,CR,NBR等のエラストマー系材料がより好ましいとされる。膜状部3、すなわちダクト本体1にエラストマー系材料が良い理由は、硬さに相当する弾性と粘っこさに相当する粘性が複合された粘弾性という物理的両方の特性を有して、分子運動による摩擦によってエネルギ損失が起こり、エネルギに効率良く変換されるからである。膜状部3の膜振動によって吸音効果を発揮することになるが、エラストマーの場合は、運動エネルギが加わると、それが変形し応力を取り去るとまた元に戻り、そしてその間に分子間に摩擦が生じ、熱エネルギにとって変えられる。この分子鎖の運動による摩擦エネルギの熱エネルギへの変換が騒音減衰のメカニズムであるとされている。こうしたことから、粘弾性的性質に優れ振動減衰能のあるエラストマー系材料が特に好ましくなる。
【0011】
ダクト本体1に前記膜状部3を設定する位置(部位)は、ダクト内部音の圧力振幅の腹になる部分に設けられる。音波の吸収効果をより大きくするためであり、ヘルムホルツ型の消音器を設定するときと同様である。例えば、図7のようにダクト内径が一定で全長Zの直管からなる吸気ダクトでは、ダクト中央(端からZ/2の距離)にダクト内部音の圧力振幅の腹になる部分ができるので、このダクト中央に膜状部3が設けられる。そして、今度はダクト中央とエアクリーナ接続部(吸入部)の地点を圧力振幅の節とし、それらの中間点(端からZ/4の距離)に圧力振幅の腹になる部分ができるので該中間点に膜状部3が設定される。そうすれば、圧力振幅の腹がさらに解消して音圧レベルを低下させることができるようになる。本実施形態は図1,図2のごとくダクトのほぼ中央に膜状部3を設ける。
【0012】
***部24は、ダクト本体1の成形時に、前記膜状部3の外周縁を取り囲んでダクト本体1のダクト壁21から外方へ盛り上るようにして造った部分である。***部24は図1,図2のごとくの筒状体24aになっている。***部24はダクト1の一部分に膜状部3を形成することによってそこが薄肉化されるので、剛性を確保するために設けられる。ここでの***部24はさらにキャップ4を保持する役目も担っている。膜状部3の周囲を囲むようにしてダクト壁21の外方へ盛り上る筒状体24aが形成され、その先端に外付きフランジ241が設けられる。符号25は筒状体24aの基端部に形成されたアンダーカット部分の凹所を示す。
【0013】
かくのごとく、前記***部24を備えた一般部2と前記膜状部3とが一体になって気体流路Oを形成するダクト本体1は、例えば膜状部3の薄肉を確保するためにゴム系インジェクション成形によって造ることができる。ゴム系インジェクション成形では、材料を自動供給,予熱可塑化したものを自動計量し、型締めされた金型内に射出し、予め設定してある所定加熱時間で加硫製品が得られる。
ところで、ダクト本体1は成形品として見たとき、アンダーカット部分の凹所25が存在する。樹脂成形ではアンダーカットがある場合、アンダーカット部分をスライドさせるなどして脱型しなければならないが、ゴム系インジェクション成形においてはゴムの性質を利用して無理抜きによって脱型できる。ダクト本体1のダクト壁21の曲がっている部分についてもゴムの特性を生かして無理抜きやエアを吹き込ませたりしてその成形品を膨張させて脱型できるようになる。
なお、ゴム,エラストマーの有する弾性変形に比べ、熱可塑性エラストマーの弾性変形の融通性には限界があり、無理抜きによるアンダーカット処理に一定の制限がある。前述した吸音効果の観点に加え、斯る点からも、ダクト本体1の材料はEPDM,CR,NBR等のゴム,エラストマー系材料がより好ましいとされる。
【0014】
キャップ4は前記膜状部3を覆うようにして前記***部24に被着される別体の有底筒体である。キャップ4は膜状部3に覆着することによって膜状部3とその背後の底部42との間に空気層Lを確保するための部品であり、金属,樹脂又は複合材料等で造られ所定剛性を有している。本実施形態で用いるキャップ4は図3(イ)のような有底円筒状体である。キャップ4の開口側を膜状部3に対向させ、***部24の円筒壁内にキャップ4を押し込むようにして該キャップ4が***部24に被着される。キャップ4の開口縁には突起43が形成されており、キャップ4が***部24に被着されると突起43が凹所25に嵌合しキャップ4が固定保持される。さらに、必要に応じ筒状体24aの外周面からワイヤークランプ6等で締結することによってキャップ4を***部24に確実に被着保持される。符号61はクランプ具,符号62はワイヤを示す。前記突起43に代え、図3(ロ)のような鍔44にすることもできる。 また、キャップ4は***部24に被着されることによって膜状部3が破れたり損傷したりするのを保護する。車両用吸気ダクトや車両用空調ダクトでは、走行中の小石等が飛び跳ね膜状部3を破る可能性があり、一旦破れると膜状部3による騒音減衰機能を失ってしまう。キャップ4が膜状部3を守って安定した吸音性能を発揮させる。
【0015】
キャップ4が***部24に被着されると膜状部3の背後に空気層厚みLができる。膜状部3の共振による消音機構を考えた場合、共振周波数は理論的には膜状部3の面密度M(kg/m)と背後の空気層厚みLの積(M×L)の平方根に反比例する。したがって、膜状部3の膜厚tと空気層厚みLを適当に設定することで狙いの周波数を吸収できるようになる。さらに、レゾネータに比べてその設置スペースが少なくて済む。
【0016】
例えば、図5のようなレゾネータで周波数f=200Hzの共鳴を考えると、
f=(c/2π){πr/V(L+0.8×2r)}1/2 …(1)
となり、(1)式に音速値であるc=340[m/sec],r=17.5×10−3[m],L=25×10−3[m],f=200[Hz]を代入して、V=1.33×10−3[m]=1333[cm]を得、仮に図5(ロ)のごとくa×bが10cm角の角柱とすると高さcは13.3cm弱必要になる。
これに対し、図6(図2)のような膜状部3で周波数f=200Hzの共鳴を考えると、
f=(c/2π)(ρ/ML)1/2 …(2)
となる。ここで、空気の密度ρ=1.2kg/m,面密度M[kg/m],空気層の厚み[m]である。膜状部3の厚みが1[mm]のとき、比重を1.15として面密度M=1.15[kg/m]となり、これを(2)式に代入すればL=76.5[mm]が得られる。膜状部3の厚みが2[mm]ならばL=38.3[mm]が得られ、膜状部3の厚みが3[mm]ならばL=25.5[mm]が得られる。かくのごとく、膜状部3によった場合はレゾネータに比べて設置スペースを小さくできる。
【0017】
(2)式から判るように、膜状部3の面積は共振周波数とかかわりがない。しかし、その面積が大きくなればなるほど減音量が増すので、ダクトの強度が確保できる範囲で膜状部3の面積は大きく設置するのが好ましい。
【0018】
ところで、(2)式の膜共振において、前述のごとく共振周波数は理論的に膜状部3の面密度M(kg/m)と背後の空気層厚みLの積(M×L)の平方根に反比例する。しかし、ある一定の周波数以下、つまり膜状部3の面密度Mを一定とすれば所定の空気層以上では共振周波数の実測値はほぼ一定となり、理論式との差が大きくなっていく。斯る現象のため、数値的には160Hz以上の周波数に適し、この機構は低周波数域の消音には向かないことになる。反対に、背後の空間層Lを確保しなくても、ある特定の周波数で膜状部3が共鳴し、ダクト内部の音波を吸収できることになる。こうしたことから、前記キャップ4は膜状部3が破れたり損傷したりするのを保護する保護キャップとし、図3(ロ)のような透孔411(或いは網目)を設けた筒状体24aにすることができる。
【0019】
さらに発展させて、キャップ4のない図4のような低騒音ダクトにすることができる。図4の低騒音ダクトでは膜状部厚みt、膜状部3の形状等が狙いの周波数によって適宜設定されることになるが、図1,図2の低騒音ダクトと同様、厚みtに関しては一定の制約を受ける。なお、図4の低騒音ダクトはダクトの一部が膜状部3によって薄肉化されるので、剛性を確保すべく膜状部3の外周縁に補強用リブ24bたる***部24を設けるのが好ましい。
【0020】
このように構成した低騒音ダクトはダクト本体1の一部の肉厚を薄くして膜状部3を形成して、この膜状部3を音波に対し共鳴振動させるようにして減音するので、前記(2)式を適用できレゾネータ等の他の消音器と比較して小型化が可能になる。そして、160Hz以上の周波数の騒音低減に威力を発揮する。
また、ダクト本体1はその一部を薄肉化して膜状部3とするだけでありダクト壁21に孔が開いていないので、従来技術▲1▼のごとくダクト本体1に孔を開けて通気性グラスウール等の吸音材を貼着したり、従来技術▲2▼のダクト本体1に多孔質材を用いたものと違ってエンジン内部に塵やゴミが入り込む心配がない。したがって、エアクリーナとエンジン間の吸気ダクト等にも用いることができる。エンジン室の熱いホットエアを吸い込む虞もない。
そして、キャップ4が膜状部3を覆うようにして取り付けられれば、膜状部3が自動車走行中等における飛び跳ねる小石,砂利等によって破られる危険性を該キャップ4が守って解決するので、長期安定して減音対策を講じることができる。前記▲1▼,▲2▼の多孔質材を使った場合に起き易い目詰まりの問題もない。
加えて、ダクト本体1を構成する膜状部3と一般部2とは一体成形で造られるので製造が楽で低コスト化が可能であり、さらに同じ材質で造られることからリサイクルが容易になる。膜状部3(ダクト本体1)にエラストマー材料を使用すると、エラストマー材料の粘弾性特性が吸音効果を発揮し、振動減衰能をより高めることができる。
【0021】
尚、本発明においては、前記実施形態に示すものに限られず、目的,用途に応じて本発明の範囲で種々変更できる。ダクト本体1,一般部2,膜状部3,キャップ4等の形状,大きさ,それらの材質等は用途に合わせて適宜選択できる。実施形態は吸気ダクトに適用したが、車両用空調ダクト等にも適用できる。
【0022】
【発明の効果】
以上ごとく、本発明に係る低騒音ダクトはゴミ侵入等がなく、設置スペースを小さくし且つ騒音低減を選択的に可能するなど優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の低騒音ダクトの一形態で、その全体斜視図である。
【図2】図1のA−A線矢視図である。
【図3】(イ)が図2のキャップの斜視図、(ロ)が(イ)とは別態様のキャップの斜視図である。
【図4】図1とは別態様の低騒音ダクトの部分縦断面図である。
【図5】所要スペースを対比計算するために用いたレゾネータの斜視図である。
【図6】所要スペースを計算するために用いたキャップ付き膜状部の縦断面図である。
【図7】低騒音ダクトにおける膜状部設置箇所の一例を示す縦断面図である。
【符号の説明】
1 ダクト本体
2 一般部
21 ダクト壁
24 ***部
3 膜状部
4 キャップ
,t 肉厚
O 気体流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low noise duct that is used as an intake duct for introducing outside air into a combustion chamber of a vehicle engine or an air conditioning duct for a vehicle, and is useful for reducing noise.
[0002]
[Prior art]
In recent years, a variety of methods have been adopted so far, for example, in a vehicle air intake duct, in order to reduce noise outside the vehicle. As a typical method, (1) a hole is formed in the duct, and a sheet of glass wool, foamed urethane, non-woven fabric, etc. is attached to absorb the sound so as to close the hole, and (2) generated in the duct. Air column resonance attenuation method using porous materials (fibers, sintered products, etc.) aiming at attenuation of resonances (JP-A-62-84525, etc.), (3) noise in a specific frequency band in the chamber There are attenuation methods using a muffler (resonator) that attenuates diffuse reflection in a single or composite specification.
[0003]
[Problems to be solved by the invention]
However, the methods (1) to (3) have the following problems. Since the glass wool of (1) is expected to be dispersed by the negative pressure of the intake air (it will be scattered apart) as it is, post-processing to maintain the shape is necessary. The urethane foam is basically unsuitable for use in the engine room. One is hydrolysis, which requires a water-stop cover. In addition, heat deterioration is likely to occur, and durability is difficult.
The above (2) is not a method to eliminate noise itself, but rather to increase the noise caused by air column resonance coming from the duct length by reducing the resonance by letting the sound pressure escape from the middle of the duct pipe, and as a result, aim to reduce noise. There was no structure to mute the noise itself. Moreover, like a resonator, it was not possible to target only a specific frequency band. In addition, problems such as inhalation of hot air can be considered. Furthermore, as can also be said to (1), since a communicating porous material is used, there is a possibility that dust and dirt may be mixed into the intake duct, so the so-called primary intake on the intake side from the air cleaner. It could only be used for parts.
The above (3) basically requires a large-capacity chamber, and a large space must be secured in the engine room, and the cost is high.
[0004]
The present invention solves the above-mentioned problems, and achieves low noise without dust intrusion or the like and requires almost no installation space, and is useful for not only an intake duct but also an air conditioning duct or the like. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the gist of the invention described in claim 1 is that a duct body that forms a gas flow path, a part of the duct body at a predetermined portion of the duct body, and a general part of the duct wall A membrane-shaped portion that is integrally formed and whose thickness is thinner than the thickness of the general portion, and surrounds the outer peripheral edge of the membrane- like portion and rises outward from the duct wall of the duct body, A ridge part integrally formed and a separate cap attached to the ridge part so as to cover the film part so that the film part can resonate with sound waves. It is in a low noise duct characterized by the above. A low noise duct according to a second aspect of the present invention is the low noise duct according to the first aspect, wherein the duct body is made of an elastomeric material.
[0006]
If the film-like part formed integrally with the general part and having a thickness smaller than the thickness of the general part as in the invention of claim 1 is capable of resonance vibration with respect to the sound wave, the sound is reduced by the film resonance. it can. Since the sound can be reduced by forming a film-like portion by reducing the thickness of a part of the duct body without making a hole in the duct body, dust or the like does not enter the duct . If a separate cap is attached to the raised part so as to cover the membrane part, an air layer thickness is created between the membrane part and the bottom of the cap. The frequency can be absorbed. If the duct body is made of an elastomeric material as in the invention of claim 2, the sound absorption effect can be further enhanced by the viscoelastic properties of the elastomer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the low noise duct according to the present invention will be described in detail. 1 to 7 show an embodiment of the low noise duct according to the present invention. FIG. 1 is an overall perspective view thereof, FIG. 2 is a view taken along line AA in FIG. 1, and FIG. (B) is a perspective view of a cap different from (a), FIG. 4 is a partial longitudinal sectional view of a low noise duct different from FIG. 1, and FIG. 5 is for calculating the required space. FIG. 6 is a longitudinal sectional view of a membrane-like portion with a cap used for calculating a required space, and FIG. 7 is a longitudinal sectional view showing an example of a location where the membrane-like portion is installed in a low noise duct. is there. Applies to vehicle intake ducts.
[0008]
The low noise duct of the present embodiment includes a duct body 1, a membrane part 3, a raised part 24, and a cap 4. The duct body 1 is a conduit that forms a gas flow path O for taking in outside air. The duct wall 21 has a wall thickness t 1 that occupies almost the entire portion, and the wall thickness t 2 that occupies a portion of the duct wall 21. The membrane portion 3 is made by integral molding. The duct body 1 here is an air cleaner upstream side duct body from the air inlet to the air cleaner, but it can also be applied to a secondary side duct body heading from the air cleaner to the engine. Reference numeral 22 denotes a suction part for introducing the atmosphere, and reference numeral 23 denotes a connection part on the air cleaner side, and a fitting sealing material 5 (see FIG. 7) is appropriately wound around the outer peripheral surface thereof.
[0009]
As described above, the membrane portion 3 constitutes a part of the duct body 1 at a predetermined portion of the duct body 1 and is integrally formed with the general portion 2 of the duct wall 21 and has a thickness t 2 of the thickness of the general portion 2. is a portion which is thinner than the thickness t 1. In forming the duct body 1, a part of the duct wall 21 is thinned to form the membrane portion 3. Here, the film-like portion 3 is formed into a thin film disk shape in plan view. Although the film-like part 3 is thin, it bears a part of the duct wall 21 related to the duct body 1 and forms the gas flow path O together with the general part 2. The membrane portion 3 is thinly formed with a thickness of 0.5 mm to 3 mm, so that it can resonate with sound waves. Since the membrane portion thickness t 2 will not vibrate and become too thick, preferably as thin as possible of. On the other hand, if it is too thin, the film will be broken during cold or heat aging. Varies how much can be thin by the strength of the material, but if for example using a chloroprene rubber to set the thickness t 2 of the membrane portion 3 to about 1 mm to 3 mm.
[0010]
The material of the duct body 1 (film-like part 3, general part 2) is selected so that the thin-walled film-like part 3 can resonate and vibrate with sound waves. For example, EPDM (ethylene propylene diene rubber), CR (chloroprene rubber), NBR (acrylonitrile butadiene rubber), TPO (olefin thermoplastic elastomer), TPE (amide thermoplastic elastomer) used for general purpose hoses. ), NR (natural rubber), etc. are selected. Elastomer materials such as EPDM, CR, and NBR are more preferable. The reason why an elastomeric material is good for the membrane portion 3, that is, the duct body 1, is that it has both physical properties of elasticity corresponding to hardness and viscoelasticity in which viscosity corresponding to viscosity is combined, and molecular motion. This is because energy loss occurs due to friction caused by the above, and the energy is efficiently converted. In the case of elastomer, when kinetic energy is applied, it deforms and returns to its original state when stress is removed. In the meantime, there is friction between molecules. Produced and changed for thermal energy. The conversion of friction energy into heat energy by the movement of the molecular chain is considered to be a noise attenuation mechanism. For these reasons, an elastomer material having excellent viscoelastic properties and vibration damping ability is particularly preferable.
[0011]
The position (part) where the film-like portion 3 is set in the duct body 1 is provided at a portion where the pressure amplitude of the internal sound of the duct becomes an antinode. This is to increase the sound wave absorption effect, and is the same as when setting a Helmholtz-type silencer. For example, as shown in FIG. 7, in an intake duct composed of a straight pipe having a constant duct inner diameter and a full length Z, there is a portion that becomes an antinode of the pressure amplitude of the internal sound of the duct at the center of the duct (distance Z / 2 from the end) A membrane portion 3 is provided in the center of the duct. And this time, the point of the center of the duct and the air cleaner connection part (suction part) is a node of the pressure amplitude, and there is a part where the antinode of the pressure amplitude is at the middle point (distance of Z / 4 from the end). The film-like part 3 is set in By doing so, the pressure amplitude belly is further eliminated, and the sound pressure level can be lowered. In the present embodiment, as shown in FIGS. 1 and 2, a film-like portion 3 is provided in the approximate center of the duct.
[0012]
The raised portion 24 is a portion that is formed so as to surround the outer peripheral edge of the film-like portion 3 and to bulge outward from the duct wall 21 of the duct body 1 when the duct body 1 is molded. The raised portion 24 is a cylindrical body 24a as shown in FIGS. Since the bulge 24 is thinned by forming the film-like portion 3 in a part of the duct 1, the ridge 24 is provided to ensure rigidity. The raised portion 24 here also plays a role of holding the cap 4. A cylindrical body 24a that swells outward from the duct wall 21 is formed so as to surround the periphery of the membrane portion 3, and an external flange 241 is provided at the tip thereof. The code | symbol 25 shows the recess of the undercut part formed in the base end part of the cylindrical body 24a.
[0013]
As described above, the duct main body 1 in which the general portion 2 including the raised portion 24 and the membrane-like portion 3 are integrated to form the gas flow path O is, for example, to ensure the thinness of the membrane-like portion 3. It can be made by rubber injection molding. In rubber-based injection molding, a material automatically supplied and preheat plasticized is automatically weighed and injected into a mold that has been clamped, and a vulcanized product can be obtained in a predetermined heating time set in advance.
By the way, when the duct main body 1 is seen as a molded product, the recess 25 of the undercut part exists. In resin molding, if there is an undercut, the mold must be removed by sliding the undercut portion. However, in rubber-based injection molding, the mold can be removed by force using the properties of rubber. The bent part of the duct wall 21 of the duct main body 1 can be removed from the mold by expanding the molded product by forcibly removing air or blowing air by utilizing the characteristics of rubber.
Compared to the elastic deformation of rubber and elastomer, there is a limit to the flexibility of the elastic deformation of the thermoplastic elastomer, and there is a certain limit to the undercut treatment by forced removal. In addition to the above-described viewpoint of the sound absorbing effect, the material of the duct main body 1 is more preferably a rubber such as EPDM, CR, NBR, or an elastomer based material.
[0014]
The cap 4 is a separate bottomed cylindrical body that is attached to the raised portion 24 so as to cover the membrane portion 3. The cap 4 is a part for securing an air layer L between the film-shaped part 3 and the bottom part 42 behind the film-shaped part 3 by covering the film-shaped part 3, and is made of metal, resin, composite material or the like. It has rigidity. The cap 4 used in this embodiment is a bottomed cylindrical body as shown in FIG. The cap 4 is attached to the raised portion 24 so that the opening side of the cap 4 faces the membrane portion 3 and the cap 4 is pushed into the cylindrical wall of the raised portion 24. A protrusion 43 is formed on the opening edge of the cap 4. When the cap 4 is attached to the raised portion 24, the protrusion 43 fits into the recess 25 and the cap 4 is fixedly held. Furthermore, the cap 4 is securely attached and held on the raised portion 24 by fastening with the wire clamp 6 or the like from the outer peripheral surface of the cylindrical body 24a as necessary. Reference numeral 61 denotes a clamp, and reference numeral 62 denotes a wire. Instead of the protrusion 43 may be a flange 44 as shown in FIG. 3 (b). Further, the cap 4 is attached to the raised portion 24 to protect the film-like portion 3 from being torn or damaged. In a vehicle intake duct or a vehicle air-conditioning duct, traveling pebbles or the like may jump and break the membrane-like portion 3, and once it breaks, the noise attenuation function of the membrane-like portion 3 is lost. The cap 4 protects the film-like part 3 and exhibits a stable sound absorbing performance.
[0015]
When the cap 4 is attached to the raised portion 24, an air layer thickness L is formed behind the membrane-like portion 3. When considering a silencing mechanism by resonance of the membrane portion 3, the resonance frequency is theoretically the product (M × L) of the surface density M (kg / m 2 ) of the membrane portion 3 and the air layer thickness L behind. Inversely proportional to the square root. Therefore, the target frequency can be absorbed by appropriately setting the film thickness t 2 of the film-like portion 3 and the air layer thickness L. Furthermore, it requires less installation space than a resonator.
[0016]
For example, consider resonance with a frequency f = 200 Hz in a resonator as shown in FIG.
f = (c / 2π) {πr 2 /V(L+0.8×2r)} 1/2 (1)
In the equation (1), c = 340 [m / sec], r = 17.5 × 10 −3 [m], L = 25 × 10 −3 [m], f = 200 [Hz], which are sound velocity values. To obtain V = 1.33 × 10 −3 [m 3 ] = 1333 [cm 3 ], and assuming that a × b is a 10 cm square prism as shown in FIG. Less than 3cm is required.
On the other hand, when resonance of the frequency f = 200 Hz is considered in the film-like portion 3 as shown in FIG. 6 (FIG. 2),
f = (c / 2π) (ρ / ML) 1/2 (2)
It becomes. Here, the density ρ of air = 1.2 kg / m 3 , the surface density M [kg / m 2 ], and the thickness of the air layer [m]. When the thickness of the film-like part 3 is 1 [mm], the specific gravity is 1.15 and the surface density M = 1.15 [kg / m 2 ], and if this is substituted into the equation (2), L = 76.5 [Mm] is obtained. If the thickness of the film-shaped part 3 is 2 [mm], L = 38.3 [mm] is obtained, and if the thickness of the film-shaped part 3 is 3 [mm], L = 25.5 [mm] is obtained. As described above, when the film-like portion 3 is used, the installation space can be reduced as compared with the resonator.
[0017]
As can be seen from the equation (2), the area of the film-like portion 3 is not related to the resonance frequency. However, since the volume reduction increases as the area increases, it is preferable that the area of the membrane portion 3 is set large as long as the strength of the duct can be secured.
[0018]
By the way, in the membrane resonance of the formula (2), as described above, the resonance frequency is theoretically the square root of the product (M × L) of the surface density M (kg / m 2 ) of the membrane portion 3 and the air layer thickness L behind. Inversely proportional to However, if the surface density M of the film-like portion 3 is constant or lower than a certain frequency, that is, the measured value of the resonance frequency becomes substantially constant above a predetermined air layer, and the difference from the theoretical formula increases. Because of such a phenomenon, it is numerically suitable for a frequency of 160 Hz or higher, and this mechanism is not suitable for noise reduction in a low frequency range. On the other hand, even if the space layer L behind is not secured, the membrane portion 3 resonates at a specific frequency and can absorb sound waves inside the duct. For this reason, the cap 4 is a protective cap that protects the film-like portion 3 from being torn or damaged, and the cylindrical body 24a provided with a through hole 411 (or mesh) as shown in FIG. can do.
[0019]
Further development can be made into a low-noise duct as shown in FIG. In the low noise duct of FIG. 4, the thickness t 2 of the membrane portion, the shape of the membrane portion 3 and the like are appropriately set according to the target frequency, but the thickness t 2 is the same as in the low noise duct of FIGS. Is subject to certain restrictions. In the low noise duct of FIG. 4, a part of the duct is thinned by the membrane portion 3, so that a ridge 24 as a reinforcing rib 24 b is provided on the outer peripheral edge of the membrane portion 3 to ensure rigidity. preferable.
[0020]
The low noise duct configured in this manner reduces the sound by reducing the thickness of a part of the duct body 1 to form the film-shaped part 3 and causing the film-shaped part 3 to resonate with sound waves. The above formula (2) can be applied, and the size can be reduced as compared with other silencers such as a resonator. And it demonstrates its power in reducing noise with a frequency of 160 Hz or higher.
Further, since the duct body 1 is only partially thinned to form the membrane portion 3 and the duct wall 21 is not perforated, the duct body 1 is perforated by perforating the duct body 1 as in the prior art (1). There is no worry of dust and dirt getting into the engine unlike the case of attaching a sound absorbing material such as glass wool or using a porous material for the duct body 1 of the prior art (2). Therefore, it can also be used for an air intake duct between the air cleaner and the engine. There is no risk of inhaling hot hot air from the engine compartment.
And, if the cap 4 is attached so as to cover the membrane portion 3, the cap 4 protects and solves the risk of the membrane portion 3 being broken by jumping pebbles, gravel, etc. during driving, etc. And can take measures to reduce noise. There is no problem of clogging that tends to occur when the porous materials (1) and (2) are used.
In addition, since the membrane part 3 and the general part 2 constituting the duct body 1 are manufactured by integral molding, manufacturing is easy and cost reduction is possible, and recycling is facilitated because they are made of the same material. . When an elastomer material is used for the membrane portion 3 (duct body 1), the viscoelastic property of the elastomer material exhibits a sound absorbing effect, and the vibration damping ability can be further enhanced.
[0021]
In addition, in this invention, it is not restricted to what is shown to the said embodiment, According to the objective and a use, it can change variously in the range of this invention. The shape, size, material and the like of the duct body 1, the general part 2, the membrane part 3, the cap 4 and the like can be appropriately selected according to the application. Although the embodiment is applied to an intake duct, it can also be applied to a vehicle air-conditioning duct or the like.
[0022]
【The invention's effect】
As described above, the low-noise duct according to the present invention does not intrude dust and the like, and exhibits excellent effects such as reducing the installation space and selectively enabling noise reduction.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of one embodiment of a low noise duct according to the present invention.
FIG. 2 is a view taken along the line AA in FIG. 1;
3A is a perspective view of the cap of FIG. 2, and FIG. 3B is a perspective view of a cap according to another embodiment different from FIG.
4 is a partial longitudinal sectional view of a low noise duct different from that of FIG. 1; FIG.
FIG. 5 is a perspective view of a resonator used for calculating a required space.
FIG. 6 is a longitudinal sectional view of a cap-like film-like portion used for calculating a required space.
FIG. 7 is a longitudinal sectional view showing an example of a membrane-like portion installation location in a low noise duct.
[Explanation of symbols]
1 the duct body 2 generally portion 21 duct wall 24 ridges 3 membrane portion 4 caps t 1, t 2 thickness O gas flow path

Claims (2)

気体流路を形成するダクト本体と、
該ダクト本体の所定部位でダクト本体の一部を構成し、ダクト壁の一般部と一体成形され且つその肉厚が一般部の肉厚より薄く形成されてなる膜状部と、
該膜状部の外周縁を取り囲んでダクト本体のダクト壁から外方へ盛り上り、該ダクト本体に一体成形される***部と、
該膜状部を覆うようにして該***部に被着される別体のキャップと、を具備し、
該膜状部が音波に対し共鳴振動をなし得るようにしたことを特徴とする低騒音ダクト。
A duct body forming a gas flow path;
A part of the duct body is formed at a predetermined portion of the duct body, and is formed integrally with the general part of the duct wall, and the thickness of the film part is smaller than the thickness of the general part.
A bulge that surrounds the outer periphery of the membrane and swells outward from the duct wall of the duct body, and is integrally formed with the duct body;
A separate cap attached to the raised portion so as to cover the membrane-like portion ,
A low-noise duct characterized in that the membrane-like part can resonate with sound waves.
前記ダクト本体がエラストマー系材料で造られた請求項1記載の低騒音ダクト。Low noise duct made claims 1 Symbol placement in the duct body elastomeric material.
JP2001280939A 2001-09-17 2001-09-17 Low noise duct Expired - Fee Related JP4623621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280939A JP4623621B2 (en) 2001-09-17 2001-09-17 Low noise duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280939A JP4623621B2 (en) 2001-09-17 2001-09-17 Low noise duct

Publications (2)

Publication Number Publication Date
JP2003083186A JP2003083186A (en) 2003-03-19
JP4623621B2 true JP4623621B2 (en) 2011-02-02

Family

ID=19104852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280939A Expired - Fee Related JP4623621B2 (en) 2001-09-17 2001-09-17 Low noise duct

Country Status (1)

Country Link
JP (1) JP4623621B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836192B2 (en) * 2006-12-19 2011-12-14 株式会社イノアックコーポレーション Manufacturing method of duct for vehicle
JP5499460B2 (en) * 2008-11-14 2014-05-21 ヤマハ株式会社 Duct and vehicle structure
DE102016208278A1 (en) * 2016-05-13 2017-11-16 Mahle International Gmbh resonator
JP2018159532A (en) * 2017-03-24 2018-10-11 三菱重工サーマルシステムズ株式会社 Compressor system and refrigerator
WO2020080112A1 (en) * 2018-10-19 2020-04-23 富士フイルム株式会社 Acoustic system
JP7376525B2 (en) * 2021-03-19 2023-11-08 豊田鉄工株式会社 Internal combustion engine intake duct

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8501394A (en) * 1985-05-14 1986-12-01 Arbo Handel Ontwikkeling DEVICE FOR ENCLOSING ELECTRONIC COMPONENTS WITH PLASTIC.
JPH0388952A (en) * 1989-08-31 1991-04-15 Toyoda Gosei Co Ltd Air cleaner hose coupling structure with resonator
JP3211554B2 (en) * 1994-04-28 2001-09-25 豊田合成株式会社 Intake hose
JP3532079B2 (en) * 1997-08-29 2004-05-31 ダイハツ工業株式会社 Internal combustion engine intake duct

Also Published As

Publication number Publication date
JP2003083186A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US7448469B2 (en) Silencer
US20070044747A1 (en) Air intake sound control structure
WO1999053188A1 (en) Suction duct
JPH0763132A (en) Muffling hose for air intake system of internal combustion engine
US20080264719A1 (en) Silencer
JP4623621B2 (en) Low noise duct
JP2016217147A (en) Resonator and blower tube including the same
JP2003343373A (en) Intake duct
JP4764183B2 (en) Silencer duct for cooling
JP2003065173A (en) Reduced noise duct
JP2573211B2 (en) Low noise hair dryer
JPH07293371A (en) Air intake hose
CN108343531B (en) Air filter for internal combustion engine
US20100314193A1 (en) Membrane stiffening through ribbing for engine sound transmission device
JP2004346750A (en) Composite type duct
JP5091741B2 (en) Silencer duct
JP2010053763A (en) Duct
JPS6216551Y2 (en)
JP4996535B2 (en) Sound absorption duct
JP2010002147A (en) Ventilating duct
JP4727608B2 (en) Intake silencer and silencer method
JP3211554B2 (en) Intake hose
JPH07217511A (en) Synthetic resin blow-molded duct for automobile engine air intake
JP5052453B2 (en) Ventilation duct
JP3671587B2 (en) Resonant silencer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20010925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20010925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees