JP4623083B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP4623083B2
JP4623083B2 JP2007296730A JP2007296730A JP4623083B2 JP 4623083 B2 JP4623083 B2 JP 4623083B2 JP 2007296730 A JP2007296730 A JP 2007296730A JP 2007296730 A JP2007296730 A JP 2007296730A JP 4623083 B2 JP4623083 B2 JP 4623083B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
evaporator
leeward side
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007296730A
Other languages
Japanese (ja)
Other versions
JP2009121759A (en
Inventor
守 濱田
浩司 山下
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007296730A priority Critical patent/JP4623083B2/en
Publication of JP2009121759A publication Critical patent/JP2009121759A/en
Application granted granted Critical
Publication of JP4623083B2 publication Critical patent/JP4623083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、空気調和機、ヒートポンプ給湯器、冷凍冷蔵機器などのヒートポンプ装置における熱交換器構造や制御等の技術に関するものである。   The present invention relates to a technology such as a heat exchanger structure and control in a heat pump apparatus such as an air conditioner, a heat pump water heater, and a refrigeration apparatus.

従来技術として、ヒートポンプ装置における所定の間隔で配置されたフィンに対して伝熱管を垂直に貫通することで構成された蒸発器において、着霜分布を均一化するために、風上側から風下側に向かってフィンピッチを粗から密にしたものが存在する。(例えば特許文献1参照)。   As a conventional technique, in an evaporator configured by vertically passing through a heat transfer tube with respect to fins arranged at predetermined intervals in a heat pump device, in order to make the frost distribution uniform, from the leeward side to the leeward side Some fin pitches are coarse to dense. (For example, refer to Patent Document 1).

実開昭57-120887号(実用新案登録請求の範囲、第1図)Japanese Utility Model Publication No.57-120887 (Request for registration of utility model, Fig. 1)

通常、ヒートポンプ装置における蒸発器への着霜は風上側に多く着くため、風上側の風路閉塞が早く起き、十分な能力を維持できる時間が短くなってしまい、除霜を頻繁に行わなければならないという問題がある。そこで、冷蔵庫などにおいては、風上側のフィンピッチを広く、風下側のフィンピッチを狭くして着霜分布を改善したものが存在する。しかしながら、どのような構造に対しても着霜が改善されるとは限らず、場合によっては、逆に、着霜分布が悪化するという問題があった。   Normally, the frost on the evaporator in the heat pump device often reaches the windward side, so the airway blockage on the windward side occurs early, the time for maintaining sufficient capacity is shortened, and frequent defrosting is required. There is a problem of not becoming. Therefore, some refrigerators have an improved frost distribution by widening the fin pitch on the windward side and narrowing the fin pitch on the leeward side. However, frost formation is not always improved for any structure, and in some cases, there is a problem that the frost distribution deteriorates.

本発明は、上記のような課題を解消するためになされたもので、着霜分布を均一化する蒸発器構造あるいは冷媒制御により、蒸発器への着霜現象が発生するような運転時に、能力低下を遅延させることを目的とする。また本発明はヒートポンプ装置に対し効率を改善することを目的とする。   The present invention has been made in order to solve the above-described problems, and has an ability to perform an operation in which an frost formation phenomenon occurs in an evaporator by an evaporator structure or refrigerant control that makes the frost distribution uniform. The purpose is to delay the decline. Another object of the present invention is to improve efficiency with respect to a heat pump apparatus.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続され冷媒が循環する冷媒回路と、前記蒸発器に設けられ所定の間隔で配置された複数のフィンを貫通し空気の流れ方向に対して複数列もしくは複数本配置された伝熱管と、前記伝熱管の複数列もしくは複数本のうちの風上側に設けられた伝熱管のフィンピッチを前記伝熱管の複数列もしくは複数本のうちの風下側に設けられた伝熱管のフィンピッチよりも広くするとともに冷媒の流れが風上側から風下側になるように配置した伝熱管冷媒流路と、を備えたものである。 The present invention relates to a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are connected in order and the refrigerant circulates, and a plurality of fins provided in the evaporator and arranged at predetermined intervals to pass through the air. The heat transfer tubes arranged in a plurality of rows or a plurality of the heat transfer tubes, and the fin pitch of the heat transfer tubes provided on the windward side of the plurality of rows or the plurality of heat transfer tubes among the plurality of rows or the plurality of heat transfer tubes And a heat transfer tube refrigerant flow path that is wider than the fin pitch of the heat transfer tubes provided on the leeward side and arranged so that the refrigerant flows from the leeward side to the leeward side.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続され冷媒が循環する冷媒回路と、前記蒸発器に設けられ所定の間隔で略等ピッチに配置された複数のフィンを貫通し空気の流れ方向に対して複数列もしくは複数本配置された伝熱管と、前記伝熱管の冷媒の流れが風下側から風上側になるように配置した伝熱管冷媒流路と、を備え、複数列もしくは複数本配置された内の風上側に設けられた伝熱管のフィンの着霜量と複数列もしくは複数本配置された内の風下側に設けられた伝熱管のフィンの着霜量との着霜分布の調整を前記蒸発器における冷媒過熱度を目標値になるように制御して行うものである。   The present invention passes through a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are connected in order and the refrigerant circulates, and a plurality of fins provided in the evaporator and arranged at a substantially equal pitch at predetermined intervals. A plurality of rows of heat transfer tubes arranged in a plurality of rows or in the air flow direction, and a heat transfer tube refrigerant flow passage arranged so that the refrigerant flow in the heat transfer tubes flows from the leeward side to the windward side. Or, the amount of frost formation on the fins of the heat transfer tubes provided on the windward side of the plurality of tubes arranged and the amount of frost formation on the fins of the heat transfer tubes provided on the leeward side of the plurality of rows or tubes arranged. The frost distribution is adjusted by controlling the degree of superheat of the refrigerant in the evaporator so as to become a target value.

本発明に係るヒートポンプ装置は、着霜分布を均一化する蒸発器構造および冷媒制御とすることで、蒸発器への着霜現象が発生する運転状況において、能力低下を遅延化することが可能となり、除霜回数の低減による省エネ性向上を得るものである。また本発明はヒートポンプ装置における熱交換器において異なるフィンピッチを使用して効率を改善するものである。   The heat pump device according to the present invention employs an evaporator structure and refrigerant control that make the frost distribution uniform, and therefore, it is possible to delay the capacity reduction in an operation situation in which a frost phenomenon occurs on the evaporator. The energy saving is improved by reducing the number of times of defrosting. The present invention also uses a different fin pitch in a heat exchanger in a heat pump device to improve efficiency.

実施の形態1
本発明の実施の形態におけるヒートポンプ装置の冷媒回路構成図は、図1に示すとおりで、圧縮機1、凝縮器2、膨張手段3、蒸発器4が配管で順次接続され、凝縮器に送風を行う凝縮器用ファン5、蒸発器に送風を行う蒸発器用ファン6を備えている。冷媒は圧縮機1から高温高圧のガス冷媒として吐出され、凝縮器2で高温高圧の液冷媒に凝縮され外部の空気に温熱を放出し、膨張手段3によって低温低圧に減圧され、乾き度0.1〜0.3の気液二相冷媒として蒸発器4に流入し蒸発により外部空気から冷熱を吸収して低い温度の冷媒となり、高乾き度の冷媒、例えば、乾き度1の飽和ガス冷媒または過熱ガス冷媒として蒸発器4から流出し、圧縮機1へ戻る。凝縮器や蒸発器周囲の空気温度、蒸発器冷媒温度、冷媒圧力等必要に応じて計測する計測手段の計測結果に応じて、インバータ回路等を電源に有し周波数を変化させるなどにより回転数を変化させて冷媒を循環させる冷媒回路の能力調整が可能な圧縮機、冷媒回路を循環する冷媒の各機器での圧力や冷媒量を調整する開度調整が可能な膨張手段、冷媒の状態を変化させる凝縮器や蒸発器へ流す風量を調整可能なそれぞれのファンなど、図示しないが、ヒートポンプ装置の各操作手段を制御する制御装置は別途設けられている。
Embodiment 1
The refrigerant circuit configuration diagram of the heat pump device according to the embodiment of the present invention is as shown in FIG. 1. The compressor 1, the condenser 2, the expansion means 3, and the evaporator 4 are sequentially connected by piping, and air is blown to the condenser. A condenser fan 5 to be performed and an evaporator fan 6 to blow air to the evaporator are provided. The refrigerant is discharged from the compressor 1 as a high-temperature and high-pressure gas refrigerant, is condensed into a high-temperature and high-pressure liquid refrigerant by the condenser 2 and releases warm heat to the outside air, and is decompressed to a low temperature and low pressure by the expansion means 3, and has a dryness of 0. As a gas-liquid two-phase refrigerant of 1 to 0.3, it flows into the evaporator 4 and absorbs cold heat from the external air by evaporation to become a low temperature refrigerant, for example, a dryness refrigerant such as a saturated gas refrigerant having a dryness of 1 or It flows out of the evaporator 4 as superheated gas refrigerant and returns to the compressor 1. Depending on the measurement results of measuring means such as the temperature of the air around the condenser or evaporator, evaporator refrigerant temperature, refrigerant pressure, etc., if necessary, the number of revolutions can be adjusted by changing the frequency with an inverter circuit etc. Compressor capable of adjusting the capacity of the refrigerant circuit that circulates the refrigerant by changing it, expansion means capable of adjusting the opening degree to adjust the pressure and amount of refrigerant in each refrigerant device circulating in the refrigerant circuit, and changing the state of the refrigerant Although not shown in the drawings, a control device for controlling each operating means of the heat pump device is provided separately, such as a condenser and a fan capable of adjusting the amount of air flowing to the evaporator.

蒸発器は内部で冷媒を蒸発させ外部から空気の冷熱を吸収し、蒸発器4での冷媒と空気の熱交換においては、冷媒の温度が0℃以下で空気の露点温度以下である場合は、空気中に含まれる水分が蒸発器4へ付着し霜へと成長する着霜現象が発生する。言い換えると空気の絶対湿度と蒸発器冷媒管表面の絶対湿度との差に基づき空気中の水分が冷媒管表面およびであるフィン表面に付着して霜となる。この内容を図23の空気線図にて説明する。図23の空気線図の横軸が空気温度、縦軸が絶対温度を示すが、参考として蒸発器を通過する空気の温度と湿度の状態を相対湿度大から相対湿度小の状態に移行することを説明している。線図上における温度ta、絶対湿度xaの状態の空気が、相対湿度100%の線であって、蒸発器の冷媒配管である伝熱管の表面およびフィン表面の状態である温度trの冷却面に接して、冷却面に着霜が起きる場合、冷却面への着霜速度(単位時間当たりの単位面積当たりの着霜重量)は、空気の絶対湿度xaと冷却面の絶対湿度(冷却面と同じ温度で相対湿度100%の空気の絶対湿度)xrとの差Δxに、ほぼ比例する。   The evaporator evaporates the refrigerant inside and absorbs cold air from the outside. In the heat exchange between the refrigerant and the air in the evaporator 4, when the temperature of the refrigerant is 0 ° C. or lower and the air dew point temperature or lower, A frosting phenomenon occurs in which moisture contained in the air adheres to the evaporator 4 and grows into frost. In other words, based on the difference between the absolute humidity of the air and the absolute humidity of the evaporator refrigerant tube surface, moisture in the air adheres to the surface of the refrigerant tube and the fin surface, forming frost. This will be described with reference to the air diagram of FIG. The horizontal axis of the air diagram of FIG. 23 indicates the air temperature, and the vertical axis indicates the absolute temperature. As a reference, the temperature and humidity of the air passing through the evaporator are changed from a high relative humidity to a low relative humidity. Is explained. The air in the state of temperature ta and absolute humidity xa on the diagram is a line with a relative humidity of 100% on the cooling surface of temperature tr, which is the surface of the heat transfer tube that is the refrigerant piping of the evaporator and the state of the fin surface. When frosting occurs on the cooling surface, the frosting rate on the cooling surface (the frosting weight per unit area per unit time) is the absolute humidity xa of the air and the absolute humidity of the cooling surface (same as the cooling surface) Absolutely proportional to the difference Δx from the absolute humidity (xr) of air with a relative humidity of 100% at temperature.

従って、空気の温度湿度が一定の場合、冷却面(熱交換器のフィンおよび伝熱管)の温度が同一であれば、一定時間後の単位面積当たりの着霜量および霜厚さは同じになる。一般的に、蒸発器の冷媒温度が全域で均一温度の場合、フィンピッチが、例えば、6mmのように広いと風上側から風下側の着霜はほぼ均一になり、フィンピッチが、例えば1.5mmのようにせまいと風上側の着霜量が風下側よりも多くなり、風上側のフィンピッチ間を覆い尽くしフィン閉塞が早く起きてしまう。すなわち等ピッチの場合風上を通過した空気の湿度下降し風下を通過するときは空気の湿度が風上側より低いので風上の着霜が風下の着霜より多くなり、風上側で空気の流れが閉塞しやすい。 Therefore, when the temperature and humidity of the air are constant, if the temperature of the cooling surface (heat exchanger fins and heat transfer tubes) is the same, the amount of frost formation and the frost thickness per unit area after a certain time are the same. . In general, when the refrigerant temperature of the evaporator is uniform throughout the region, if the fin pitch is as wide as 6 mm, for example, the frost formation from the leeward side to the leeward side is almost uniform, and the fin pitch is, for example, 1. If it is narrow like 5 mm, the amount of frost formation on the windward side will be larger than that on the leeward side, covering the space between the fins on the windward side, and fin closing will occur earlier. That is, in the case of an equal pitch, when the humidity of the air that passed through the windward decreases and passes through the leeward, the humidity of the air is lower than the windward side, so the frosting on the windward is more than the frosting on the windward side, The flow is easily blocked.

本実施の形態では、図2に示すように、等間隔で並べられたフィン4−aに対して垂直に伝熱管4−bを貫通し、伝熱管4−bを空気の流れの方向に複数列配置した蒸発器とし、風上側から風下側に至るまでフィンピッチを等しく、且つ、冷媒の流れが風下側から風上側となるように、すなわち風向きと冷媒の向きが対向流となるように冷媒流路を構成する。これは冷媒の流れが風下側から風上側となるように伝熱管冷媒流路の入口を風下側に設け、出口側を風上側に設け、伝熱管の接続部分を一列目と二列目をそれぞれ独立させて配置する。 In the present embodiment, as shown in FIG. 2, a plurality of heat transfer tubes 4-b are provided in the direction of air flow so as to penetrate perpendicularly to fins 4-a arranged at equal intervals. The evaporators are arranged in a row, and the fin pitch is equal from the leeward side to the leeward side, and the refrigerant flows from the leeward side to the leeward side, that is, the wind direction and the direction of the refrigerant are opposed to each other. Configure the flow path. This is because the inlet of the heat transfer tube refrigerant flow path is provided on the leeward side so that the refrigerant flow is from the leeward side to the leeward side, the outlet side is provided on the windward side, and the connection parts of the heat transfer tubes are in the first and second rows, respectively. Place them independently.

管内の熱伝達率は、乾き度がある点を超えると、急激に低下する。例えば、図3のように乾き度が0.8〜0.85を超えた場合に、急激に低下する。また、管内熱伝達率が低い場合は、フィン効率が悪化し、フィン表面の平均温度が上昇し、着霜量は減ることになる。 The heat transfer coefficient in the tube rapidly decreases when the dryness exceeds a certain point. For example, when the dryness exceeds 0.8 to 0.85 as shown in FIG. Moreover, when the heat transfer coefficient in the pipe is low, the fin efficiency is deteriorated, the average temperature of the fin surface is increased, and the amount of frost formation is reduced.

そのため、冷媒流路が風下側から風上側に流れるように構成された場合は、乾き度が低い冷媒が風下側を流れ、乾き度が高い冷媒が風上側を流れるため、冷媒流路を風上側から風下側に流れるように構成した場合よりも、風上側の着霜量が減り、風下側の着霜量が増える。しかしながら、これだけでは、風下側と風上側の着霜量を比較すると、まだ風上側の着霜量のほうが多い場合がある。 Therefore, when the refrigerant flow path is configured to flow from the leeward side to the windward side, the refrigerant with low dryness flows through the leeward side, and the refrigerant with high dryness flows through the windward side. The amount of frost formation on the leeward side is reduced and the amount of frost formation on the leeward side is increased as compared with the case where the frost is configured to flow from the windward side to the leeward side. However, with this alone, when comparing the frost amount on the leeward side and the leeward side, the frost amount on the leeward side may still be larger.

そこで、乾き度が高く管内熱伝達率の低い冷媒出口が風上側にくるように、冷媒流路を風下側から風上側に流れるように構成するとともに、冷媒出口の冷媒過熱度を制御し、乾き度が高く管内熱伝達率の低い冷媒が蒸発器を占める割合を調節する。冷媒が飽和点を超えたガス状態となると乾き度が0.85から1の二相状態よりもさらに管内熱伝達率が悪く、冷媒温度とフィン表面温度の温度差はさらに大きくなる。冷媒過熱度を制御し、乾き度が高く管内熱伝達率の低い冷媒が蒸発器を占める割合を増やすと、冷媒出口は風上側にあるので、風上側におけるフィン表面の平均温度が更に上昇し、風上側の着霜量を減らすことができる。このようにして、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。 Therefore, the refrigerant flow path is configured to flow from the leeward side to the windward side so that the refrigerant outlet with a high degree of dryness and a low heat transfer coefficient in the pipe is on the windward side, and the refrigerant superheat degree at the refrigerant outlet is controlled to dry the refrigerant. The ratio of the refrigerant that occupies the evaporator with high degree and low heat transfer coefficient in the pipe is adjusted. When the refrigerant is in a gas state exceeding the saturation point, the heat transfer coefficient in the tube is worse than that in the two-phase state where the dryness is 0.85 to 1, and the temperature difference between the refrigerant temperature and the fin surface temperature is further increased. By controlling the degree of superheat of the refrigerant and increasing the proportion of refrigerant with high dryness and low heat transfer coefficient in the pipe, the refrigerant outlet is on the windward side, so the average temperature of the fin surface on the windward side further increases, The amount of frost formation on the windward side can be reduced. In this way, it is possible to make the frost distribution more uniform between the leeward row and the leeward row, and to delay the capacity reduction due to frost formation.

過熱度(スーパーヒートSH)を検出して着霜分布を均一にするような過熱度目標値を得る制御を図24にて説明する。図24はヒートポンプ装置に設けられた冷媒サイクルを制御する制御装置(図示せず)内のマイコンに設けられた制御のフローであって、START(ステップ1)すると先ず蒸発器における冷媒の入口と出口の温度を計測(ステップ2)する。冷媒の温度は通常蒸発器冷媒配管の表面温度を計測して行うが、入口と出口に相当する部分を計測したり演算で求めても良い。冷媒の出口温度であるtroを温度検出手段で計測したデータとし、冷媒の入口温度または飽和温度triを冷媒配管から計測する、あるいは圧縮機の吸入側の圧力測定値から計算によって求めても良い。求められた温度から過熱度をSH=tro−triにて算出する(ステップ3)。過熱度目標値と過熱度算出値の偏差に基づき膨張手段である絞り手段の開口面積を調整し過熱度算出値が目標値に近づくように制御する(ステップ4)。SH*である過熱度目標値とSHである過熱度算出値との偏差ΔSHが一定範囲以内(+δから―δ迄に入っているか)かどうかを判断する(ステップ5)。もし入っていなければステップ2に戻り開口面積を少しずつ変更する制御を温度を計測しながら繰返す。もし目標値を含む設定した範囲以内に到達していれば過熱度目標値に近づける制御を一旦完了させて設定された次の時間間隔の後で再度行うことになる。 The control for obtaining the superheat degree target value that detects the superheat degree (superheat SH) and makes the frost distribution uniform will be described with reference to FIG. FIG. 24 is a control flow provided in a microcomputer in a control device (not shown) for controlling a refrigerant cycle provided in the heat pump device. When START (step 1) is performed, first, the refrigerant inlet and outlet in the evaporator. Is measured (step 2). The temperature of the refrigerant is usually measured by measuring the surface temperature of the evaporator refrigerant pipe, but the part corresponding to the inlet and outlet may be measured or calculated. The refrigerant outlet temperature tro may be data measured by the temperature detecting means, and the refrigerant inlet temperature or saturation temperature tri may be measured from the refrigerant pipe, or may be obtained by calculation from the pressure measurement value on the suction side of the compressor. The degree of superheat is calculated from the obtained temperature by SH = tro-tri (step 3). Based on the deviation between the superheat degree target value and the calculated superheat degree value, the opening area of the expansion means that is the expansion means is adjusted to control the calculated superheat degree so as to approach the target value (step 4). It is determined whether or not the deviation ΔSH between the superheat degree target value that is SH * and the calculated superheat degree value that is SH is within a certain range (within + δ to −δ) (step 5). If not, return to step 2 and repeat the control of changing the opening area little by little while measuring the temperature. If it reaches within the set range including the target value, the control to bring it close to the superheat degree target value is once completed, and it is performed again after the set next time interval.

ここで、図4に示すように、蒸発器吸込空気温度検出手段7を設け、蒸発器吸込空気温度検出手段7の検出値により、即ち蒸発器吸い込み温度がどの温度帯にあるかに応じて目標冷媒過熱度をあらかじめ設定された目標冷媒過熱度に変更する。この場合新たに設定された目標過熱度になるように過熱度が膨張手段により制御される。 Here, as shown in FIG. 4, the evaporator suction air temperature detecting means 7 is provided, and the target is determined by the detected value of the evaporator suction air temperature detecting means 7, that is, the temperature range where the evaporator suction temperature is. The refrigerant superheat degree is changed to a preset target refrigerant superheat degree. In this case, the degree of superheat is controlled by the expansion means so as to reach the newly set target degree of superheat.

絶対湿度が低い温度帯と、絶対湿度が比較的高い温度帯では、着霜分布が異なる場合がある。例えば、図5に示すように、絶対湿度が比較的高い温度帯では、風上側から風下側に向かって徐々に着霜量が減っていくが、絶対湿度が低い温度帯では、風下側には全く着霜しないという場合がある。このような場合は、蒸発器吸込空気温度検出手段で検出された値により、目標冷媒過熱度を制御し冷媒の過熱領域を調整することで、様々な温度帯において、風上側の列と風下側の列とで着霜を均一に近づける制御が可能となる。例えば、蒸発器吸込空気温度が0℃のときは、着霜分布は風上側から風下側に向かって徐々に減っていくため、目標冷媒過熱度を1degで過熱領域を小さくすることで、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。また、蒸発器吸込空気温度が−20℃のときは、風上側で空気中のほとんどの水分が取り除かれ、風下側には殆ど着霜しないので、目標冷媒過熱度を5degとし過熱領域を大きくすることで、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。 The frost distribution may be different between a temperature range where the absolute humidity is low and a temperature range where the absolute humidity is relatively high. For example, as shown in FIG. 5, in the temperature zone where the absolute humidity is relatively high, the amount of frost formation gradually decreases from the windward side toward the leeward side, but in the temperature zone where the absolute humidity is low, There may be no frost formation. In such a case, by controlling the target refrigerant superheat degree and adjusting the refrigerant superheat area based on the value detected by the evaporator intake air temperature detection means, the windward side row and the leeward side are adjusted in various temperature zones. It is possible to control the frost formation uniformly with the other rows. For example, when the evaporator intake air temperature is 0 ° C., the frost distribution gradually decreases from the windward side toward the leeward side. Therefore, the target refrigerant superheat degree is reduced by 1 deg, and the frost formation is reduced. The distribution can be made to be uniform between the leeward row and the leeward row, so that the capacity reduction due to frost formation can be delayed. When the evaporator intake air temperature is −20 ° C., most of the moisture in the air is removed on the windward side and hardly forms frost on the leeward side, so that the target refrigerant superheat degree is set to 5 deg and the overheat region is enlarged. Thus, it is possible to make the frost distribution uniform in the leeward row and the leeward row, thereby delaying the capacity reduction due to frost formation.

また、図6に示すように、圧縮機の通電量や回転数を計測する計測手段などにより圧縮機運転時間計測手段8を付け、圧縮機の運転時間により目標冷媒過熱度を変えても良い。   Further, as shown in FIG. 6, the compressor operating time measuring means 8 may be provided by a measuring means for measuring the energization amount and the rotational speed of the compressor, and the target refrigerant superheat degree may be changed depending on the operating time of the compressor.

図7、図8は冷媒回路の運転時間に対する特性の関係状態を示す説明図であって、ある冷媒過熱度で運転を開始して、着霜が進んでいくと、着霜により熱交換量が減少する。この場合、同じ冷媒過熱度を維持しようとすると、膨張手段により蒸発器へと流れる冷媒流量が減らされ低圧が下がるため、図7に示すように蒸発温度が低下し、逆に着霜速度を速めてしまうことになる。このような場合は、図8に示すように運転開始時の目標冷媒過熱度よりも、ある一定時間運転後の目標冷媒過熱度を小さくすることで、蒸発温度低下による着霜速度を速めることなく、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。   FIG. 7 and FIG. 8 are explanatory diagrams showing the relational state of the characteristic with respect to the operation time of the refrigerant circuit. When the operation is started at a certain degree of refrigerant superheat and frost formation proceeds, the heat exchange amount is increased by frost formation. Decrease. In this case, if the same superheat degree of the refrigerant is maintained, the flow rate of the refrigerant flowing to the evaporator is reduced by the expansion means and the low pressure is lowered, so that the evaporation temperature is lowered as shown in FIG. It will end up. In such a case, as shown in FIG. 8, the target refrigerant superheat degree after operation for a certain period of time is made smaller than the target refrigerant superheat degree at the start of operation without increasing the frost formation rate due to the decrease in evaporation temperature. The frost distribution can be made to be uniform between the leeward row and the leeward row, so that the capacity reduction due to frost formation can be delayed.

既に説明してきているように、図1は、本発明の実施の形態におけるヒートポンプ装置の冷媒回路の概略構成図である。冷媒回路は、圧縮機1、凝縮器2、膨張手段3、蒸発器4が配管で順次接続され、凝縮器用ファン5、蒸発器用ファン6を備えている。冷媒は圧縮機1から高温高圧のガス冷媒として吐出され、凝縮器2で高温高圧の液冷媒となり、膨張手段3によって低温低圧に減圧され、乾き度0.1〜0.3の気液二相冷媒として蒸発器4に流入したあと、高乾き度の冷媒、例えば、乾き度1の飽和ガス冷媒または過熱ガス冷媒として蒸発器4から流出し、圧縮機1へ戻る。   As already described, FIG. 1 is a schematic configuration diagram of a refrigerant circuit of a heat pump device according to an embodiment of the present invention. The refrigerant circuit includes a compressor 1, a condenser 2, an expansion means 3, and an evaporator 4 sequentially connected by piping, and includes a condenser fan 5 and an evaporator fan 6. The refrigerant is discharged from the compressor 1 as a high-temperature high-pressure gas refrigerant, becomes a high-temperature high-pressure liquid refrigerant in the condenser 2, is decompressed to low-temperature low-pressure by the expansion means 3, and is a gas-liquid two-phase with a dryness of 0.1 to 0.3. After flowing into the evaporator 4 as a refrigerant, the refrigerant flows out of the evaporator 4 as a high dryness refrigerant, for example, a dryness saturated gas refrigerant or a superheated gas refrigerant, and returns to the compressor 1.

蒸発器4での冷媒と空気の熱交換においては、冷媒の温度が0℃以下で空気の露点温度以下である場合は、空気中に含まれる水分が蒸発器4へ付着し霜へと成長する着霜現象が発生する。一般的に、蒸発器の冷媒温度が全域で均一温度の場合、フィンピッチが、広いと風上側から風下側の着霜はほぼ均一になり、フィンピッチが、狭いと空気が先に流れる風上側の着霜量が空気の温度が風上側より高くなる風下側よりも多くなり、風上側のフィン閉塞が早く起きてしまう。   In heat exchange between the refrigerant and air in the evaporator 4, when the refrigerant temperature is 0 ° C. or less and the air dew point temperature or less, moisture contained in the air adheres to the evaporator 4 and grows into frost. A frosting phenomenon occurs. Generally, when the refrigerant temperature of the evaporator is uniform throughout the region, if the fin pitch is wide, the frost formation from the leeward side to the leeward side is almost uniform, and if the fin pitch is narrow, the leeward side where air flows first. The amount of frosting increases more than that on the leeward side where the temperature of the air is higher than that on the leeward side, and fin closure on the leeward side occurs earlier.

これに対し本発明の次の例では、図9に示すように、等間隔に並べられたフィン4−aに対して垂直に伝熱管4−bを貫通し、伝熱管4−bを空気の流れの方向に複数列配置した蒸発器とし、風上側のフィンピッチを風下側のフィンピッチよりも広く、かつ、冷媒の流れが風上側から風下側となるように冷媒流路を並向流として構成することでも良い。 On the other hand, in the next example of the present invention, as shown in FIG. 9, the heat transfer tube 4-b passes through the heat transfer tube 4-b perpendicularly to the fins 4-a arranged at equal intervals, and the heat transfer tube 4-b is made of air. The evaporator is arranged in a plurality of rows in the flow direction, the fin pitch on the windward side is wider than the fin pitch on the leeward side, and the refrigerant flow path is made to be a parallel flow so that the refrigerant flow is from the leeward side to the leeward side. It may be configured.

冷媒の流れから蒸発器出口側の冷媒の乾き度が高くなると、既に説明した通り、出口側の管内熱伝達率が低くなり、フィン効率が悪化し、フィン表面の平均温度が高くなる。つまり、冷媒の乾き度が低いほうが、フィン表面の平均温度は低くなるため、冷媒流路が風上側から風下側に流れるように構成され、乾き度が低い冷媒が風上側を流れ、乾き度が高い冷媒が風下側を流れる場合は、風上側の着霜量が風下側の着霜量よりも多くなる。このようにすると、風上側のフィンピッチを風下側のフィンピッチよりも広くすることで、風上側の風路面積を増やして閉塞率を減らし、例え着霜量が低い温度となる風上側で増えたとしてもフィンピッチが大きいので空気の流路が確保され、且つ、風下側での着霜はピッチが狭くともなかなか増えずに結果的にフィン間全体への着霜を遅くして能力低下を引き伸ばすことが出来る。即ち着霜分布(閉塞率分布)を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。 When the dryness of the refrigerant on the evaporator outlet side increases from the flow of the refrigerant, as already described, the in-tube heat transfer coefficient on the outlet side decreases, the fin efficiency deteriorates, and the average temperature on the fin surface increases. In other words, the lower the dryness of the refrigerant, the lower the average temperature of the fin surface, so that the refrigerant flow path is configured to flow from the windward side to the leeward side, and the refrigerant with low dryness flows through the windward side. When a high refrigerant flows on the leeward side, the amount of frost formation on the windward side is larger than the amount of frost formation on the leeward side. In this way, the windward fin pitch is made wider than the fin pitch on the leeward side, thereby increasing the windward area on the windward side and reducing the blockage rate, for example, increasing on the windward side where the amount of frost formation is low. Even if the fin pitch is large, the air flow path is secured, and frost formation on the leeward side does not increase easily even if the pitch is narrow, resulting in slowing the frost formation between the fins and reducing the capacity. Can be stretched. That is, it is possible to make the frost distribution (blockage rate distribution) uniform between the leeward row and the leeward row, thereby delaying the capacity reduction due to frost formation.

逆に、冷媒流路が風下側から風上側に流れるように構成され、乾き度が低い冷媒が風下側を流れ、乾き度が高い冷媒が風上側を流れる場合は、冷媒流路が風上側から風下側に流れるように構成された場合よりも、冷えやすい風下側の着霜量が増え、風上側の着霜量が減る傾向にある。このような状態で、着霜分布(閉塞率分布)を均一化しようとして風上側のフィンピッチを風下側のフィンピッチよりも広くすると、予想に反してフィンピッチの狭い風下側のフィン閉塞が早まってしまうという問題が発生する。 Conversely, when the refrigerant flow path is configured to flow from the leeward side to the windward side, a refrigerant with low dryness flows through the leeward side, and a refrigerant with high dryness flows through the windward side, the refrigerant flow path is from the windward side. There is a tendency that the amount of frost formation on the leeward side, which is easy to cool, increases, and the amount of frost formation on the upwind side decreases, compared to the case where it is configured to flow to the leeward side. In such a state, if the fin pitch on the leeward side is made wider than the fin pitch on the leeward side in an attempt to make the frost distribution (blockage rate distribution) uniform, unexpectedly, the fin blockage on the leeward side with a narrow fin pitch is accelerated. The problem of end up occurs.

そこで、本発明のように風上側のフィンピッチを風下側のフィンピッチよりも広くする場合は、冷媒流路を風上側から風下側に流れるように構成することが、着霜分布を均一化し着霜による能力低下を遅延化するためには重要となってくる。 Therefore, when the fin pitch on the leeward side is made wider than the fin pitch on the leeward side as in the present invention, the refrigerant flow path is configured to flow from the leeward side to the leeward side, so that the frost distribution is made uniform. It becomes important to delay the decline in capacity due to frost.

図10は本発明の効果を説明する図であって、縦軸に能力、横軸に運転時間を取る。例えば、空気の流れ方向に2列の伝熱管を有する蒸発器において、フィンピッチを風上側、風下側の両方とも1.5mmとした等フィンピッチで、冷媒流路を風上側から風下側に流れるように構成したものと、同等の管外伝熱面積を有し、フィンピッチを風上側1.6mm、風下側1.3mmにした異フィンピッチで、冷媒流路を風上側から風下側に流れるように構成したもので比較した場合、着霜分布(閉塞率分布)が均一化され、図10に示すように着霜による能力低下がおこる時間が約20%遅延化される。 FIG. 10 is a diagram for explaining the effect of the present invention, in which the vertical axis represents capacity and the horizontal axis represents operation time. For example, in an evaporator having two rows of heat transfer tubes in the air flow direction, the refrigerant channel flows from the windward side to the leeward side with an equal fin pitch of 1.5 mm on both the windward side and the leeward side. It has the same heat transfer area outside the tube as the one configured as described above, and has a fin pitch of 1.6 mm on the leeward side and 1.3 mm on the leeward side so that the refrigerant flow from the leeward side to the leeward side. When compared with the above, the frost distribution (clogging rate distribution) is made uniform, and as shown in FIG.

また、フィンカラーにより、フィンピッチを決める場合は、フィン材を曲げたり伸ばしたりして製作するので、板厚が薄すぎるとフィンカラーが割れるなどの問題が発生する。このため製作が可能なフィンピッチはフィンの板厚によって決まってくるため、フィン板厚が薄いという理由で、風上側の必要フィンピッチが出せないといった問題が生じる。 Further, when the fin pitch is determined by the fin collar, since the fin material is manufactured by bending or stretching, problems such as cracking of the fin collar occur if the plate thickness is too thin. For this reason, the fin pitch that can be manufactured is determined by the plate thickness of the fin, so that the necessary fin pitch on the windward side cannot be obtained because the fin plate thickness is thin.

そのような場合は、図11に示すように、風上側のフィン板厚を厚くして風上側のフィンピッチを広くしても良い。このとき、風下側のフィン板厚については厚くすると、通風抵抗が増加するため、風上側のフィン板厚よりも薄くしたほうが良い。 In such a case, as shown in FIG. 11, the fin pitch on the windward side may be increased to increase the fin pitch on the windward side. At this time, if the fin plate thickness on the leeward side is increased, the ventilation resistance increases, so it is better to make the fin plate thickness thinner than the fin plate thickness on the leeward side.

本発明のヒートポンプ装置の次の例の冷媒回路構成図は、図1にて説明してきたように、圧縮機1、凝縮器2、膨張手段3、蒸発器4が配管で順次接続され、凝縮器用ファン5、蒸発器用ファン6を備えている。冷媒は圧縮機1から高温高圧のガス冷媒として吐出され、凝縮器2で高温高圧の液冷媒となり、膨張手段3によって低温低圧に減圧され、乾き度0.1〜0.3の気液二相冷媒として蒸発器4に流入したあと、高乾き度の冷媒、例えば、乾き度1の飽和ガス冷媒または過熱ガス冷媒としてとして蒸発器4から流出し、圧縮機1へ戻る。 The refrigerant circuit configuration diagram of the next example of the heat pump device of the present invention is, as described with reference to FIG. 1, the compressor 1, the condenser 2, the expansion means 3, and the evaporator 4 are sequentially connected by a pipe. A fan 5 and an evaporator fan 6 are provided. The refrigerant is discharged from the compressor 1 as a high-temperature high-pressure gas refrigerant, becomes a high-temperature high-pressure liquid refrigerant in the condenser 2, is decompressed to low-temperature low-pressure by the expansion means 3, and is a gas-liquid two-phase with a dryness of 0.1 to 0.3. After flowing into the evaporator 4 as a refrigerant, the refrigerant flows out of the evaporator 4 as a highly dry refrigerant, for example, a dryness saturated gas refrigerant or a superheated gas refrigerant, and returns to the compressor 1.

蒸発器4での冷媒と空気の熱交換においては、冷媒の温度が0℃以下で空気の露点温度以下である場合は、空気中に含まれる水分が蒸発器4へ付着し霜へと成長する着霜現象が発生する。一般的に、蒸発器の冷媒温度が全域で均一温度の場合、フィンピッチが、例えば、6mmのように広いと風上側から風下側の着霜はほぼ均一になり、フィンピッチが、例えば1.5mmのようにせまいと風上側の着霜量が風下側よりも多くなり、風上側のフィン閉塞が早く起きてしまう。   In heat exchange between the refrigerant and air in the evaporator 4, when the refrigerant temperature is 0 ° C. or less and the air dew point temperature or less, moisture contained in the air adheres to the evaporator 4 and grows into frost. A frosting phenomenon occurs. In general, when the refrigerant temperature of the evaporator is uniform throughout the region, if the fin pitch is as wide as 6 mm, for example, the frost formation from the leeward side to the leeward side is almost uniform, and the fin pitch is, for example, 1. The windward frosting amount is larger than that on the leeward side as in the case of 5 mm, and the finward closure on the leeward side occurs earlier.

本発明の次の例では、更に、図12に示すように、等間隔で並べられたフィン4−aに対して垂直に伝熱管4−bを貫通し、伝熱管4−bを空気の流れの方向に複数列配置した蒸発器とし、風下側のフィン板厚を風上側のフィン板厚よりも厚くする。 In the next example of the present invention, as shown in FIG. 12, the heat transfer tube 4-b passes through the heat transfer tube 4-b perpendicularly to the fins 4-a arranged at equal intervals, and the air flows through the heat transfer tube 4-b. The evaporator is arranged in a plurality of rows in the direction, and the fin plate thickness on the leeward side is thicker than the fin plate thickness on the windward side.

フィン表面で空気から奪った熱は、フィン内部を熱伝導という形でフィン根元まで伝わっていく。このとき、フィン板厚が厚いほうが、熱抵抗が少なくフィン根元までスムーズに熱が伝わる。つまり、フィン板厚を厚くしたほうが、フィン効率が上がり、フィン全体で空気から熱を効率よく奪うことができる。そこで、風下側のフィン板厚を風上側のフィン板厚よりも厚くすることにより、風下側の着霜量を増やすことができるので、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。このとき、板厚を厚くしすぎると通風抵抗が増加してしまうので、例えば板厚はフィンピッチの1/10以内に抑えるなどの制限を設けたほうが良い。但し、この範囲外でも同様の効果が認められればこの限りではない。図9においては並向流であり冷えやすい風上側のフィンピッチを広げているが、図12の場合は空気の流れの上流側で熱交換を行い温度が高くなった空気が風下にて風上側より低い温度のフィン表面にて熱交換量が多くなり風下での着霜量が増えるので風上と風下の着霜量をほぼ均一にして運転能力の低下を遅らせることができ、除霜の間隔を長くしてエネルギー消費を少なくすることができる。従って、冷媒の流れは図2のごとく風下から風上に流れていても良いし、あるいは、図9のごとく、風上から風下に流れていても熱伝達率を上下させる効果は板厚と乾き度による関係しだいで板厚の薄い風上に着霜量を増える様にすればよい。   The heat taken from the air on the fin surface is transferred to the fin base in the form of heat conduction inside the fin. At this time, when the fin plate thickness is thick, the heat resistance is less and heat is smoothly transferred to the fin base. That is, if the fin plate thickness is increased, the fin efficiency increases, and heat can be efficiently taken from the entire fin. Therefore, by making the leeward fin plate thickness thicker than the leeward fin plate thickness, the amount of frost formation on the leeward side can be increased, so the frost distribution is divided between the leeward row and the leeward row. It becomes possible to approach the uniformity and delay the capacity reduction due to frost formation. At this time, if the plate thickness is excessively increased, the ventilation resistance increases. Therefore, for example, it is better to provide a restriction such as suppressing the plate thickness to within 1/10 of the fin pitch. However, this is not the limit as long as the same effect is recognized even outside this range. In FIG. 9, the fin pitch on the windward side, which is a parallel flow and is easy to cool, is widened. However, in the case of FIG. Since the amount of heat exchange increases on the fin surface at a lower temperature and the amount of frost formation on the leeward side increases, the amount of frost formation on the windward and leeward sides can be made almost uniform, so that the reduction in operating capacity can be delayed and the defrosting interval The energy consumption can be reduced by lengthening. Therefore, the refrigerant flow may flow from leeward to leeward as shown in FIG. 2, or the effect of increasing or decreasing the heat transfer coefficient even when flowing from leeward to leeward as shown in FIG. Depending on the degree, the amount of frost formation should be increased on the windward with a thin plate thickness.

本発明における蒸発器は、図13に示すように室内側に配置されたヒートポンプ装置である。例えば、ユニットクーラや低温環境下で冷房を行うような空調機等が対象となる。   The evaporator in this invention is a heat pump apparatus arrange | positioned indoors as shown in FIG. For example, a unit cooler or an air conditioner that performs cooling in a low temperature environment is a target.

更にまた本発明における蒸発器は、図14に示すように室外側に配置されたヒートポンプ装置である。例えば、暖房を行う空調機やヒートポンプ給湯器等が対象となる。   Furthermore, the evaporator in the present invention is a heat pump device arranged on the outdoor side as shown in FIG. For example, an air conditioner or a heat pump water heater that performs heating is a target.

以上のように説明してきた蒸発器においては、図15に示すように風下側のフィン形状を風上側のフィン形状よりも熱伝達係数の高いスリット形状やルーバー形状のものにしても良い。風下側のフィン形状を熱伝達係数の高いものにし、熱伝達率を向上させると、熱伝達と物質伝達は相関があるため、風下側の着霜量が増え、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。当然ながら風上側のフィンにスリット形状などを設け風上側のフィンに着霜を増やすことも出来る。即ちフィンの形状を風上と風下の熱交換器で変更して着霜量を調整することになる。   In the evaporator described above, as shown in FIG. 15, the fin shape on the leeward side may have a slit shape or a louver shape having a higher heat transfer coefficient than the fin shape on the leeward side. If the fin shape on the leeward side has a high heat transfer coefficient and the heat transfer coefficient is improved, the heat transfer and the mass transfer are correlated, so the amount of frost formation on the leeward side increases and the frost distribution is arranged on the windward side. And the leeward row can be made closer to each other, and it is possible to delay the capacity reduction due to frost formation. Of course, it is also possible to increase the frost formation on the windward fin by providing a slit shape or the like on the windward fin. That is, the amount of frost formation is adjusted by changing the shape of the fin with the heat exchangers of the windward and leeward.

更に本発明の蒸発器においては、図16に示すように風下側の段ピッチを風上側の段ピッチよりも狭くしたものでも良い。フィン表面の温度は伝熱管からの距離が長くなるほど高くなるため、伝熱管同士の距離が長いと、フィン効率は悪くなり、平均フィン温度が高くなる。逆に言うと、伝熱管の段ピッチを狭くすることで、フィン効率が良くなり、平均フィン温度を下げることが可能となる。そこで、風下側の段ピッチを狭くし、フィン効率を良くすることで、着霜量を増やし、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。もちろん場合によってはほかの条件次第では着霜を均一にするため風上側の段ピッチを狭くしても良いことは当然である。   Furthermore, in the evaporator of the present invention, as shown in FIG. 16, the step pitch on the leeward side may be narrower than the step pitch on the leeward side. Since the temperature of the fin surface increases as the distance from the heat transfer tube increases, the fin efficiency decreases and the average fin temperature increases as the distance between the heat transfer tubes increases. Conversely, fin efficiency is improved by reducing the step pitch of the heat transfer tubes, and the average fin temperature can be lowered. Therefore, by reducing the step pitch on the leeward side and improving the fin efficiency, the amount of frost formation is increased, and the frost distribution is made closer to the leeward row and the leeward row to reduce the performance due to frost formation. It becomes possible to delay. Of course, depending on other conditions, it is natural that the step pitch on the windward side may be narrowed in order to make frost formation uniform.

また、このとき、図17に示すように風下側の伝熱管外径を細くしても良い。最小段ピッチは伝熱管の外径により決まってくるので、より段ピッチを狭くしてフィン効率を改善したい場合は、風下側の伝熱管外径を細くすることで対応可能となる。また風上側の伝熱管を細径化して、すなわち風上と風下の熱交換器構造を異なるものにして着霜量を調整できる。   At this time, the outer diameter of the heat transfer tube on the leeward side may be reduced as shown in FIG. Since the minimum step pitch is determined by the outer diameter of the heat transfer tube, if it is desired to improve the fin efficiency by narrowing the step pitch, it becomes possible to reduce the heat transfer tube outer diameter on the leeward side. Further, the amount of frost formation can be adjusted by reducing the diameter of the heat transfer tube on the windward side, that is, by making the windward and leeward heat exchanger structures different.

更に本発明における蒸発器においては、風下側の伝熱管の管内構造を風上側の伝熱管よりも管内熱伝達係数の高いものにしても良い。例えば、図18に示すように風上側の伝熱管を熱伝達率の低い平滑管にし、風下側の伝熱管を熱伝達率の高い溝付管にすることで、風下側の着霜量を増やすことができ、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。凹凸や熱伝達促進具を取り付けるなどその他の形状であっても風上側の伝熱管の管内熱伝達率よりも風下側の伝熱管の管内熱伝達率が大きくなるような形状とすれば同様の効果を奏する。また場合によっては風上側の管内熱伝達率を大きくしても着霜量を調整できる。以上のように伝熱管冷媒流路を風上と風下で異なるものに調整してフィンに着く霜の量を調整することが出来る。   Further, in the evaporator according to the present invention, the in-tube structure of the leeward heat transfer tube may have a higher in-tube heat transfer coefficient than the upwind heat transfer tube. For example, as shown in FIG. 18, the leeward heat transfer tube is a smooth tube having a low heat transfer coefficient, and the leeward heat transfer tube is a grooved tube having a high heat transfer coefficient, thereby increasing the amount of frost formation on the leeward side. It is possible to make the frost distribution uniform between the leeward row and the leeward row, and to delay the capacity reduction due to frost formation. Even if other shapes such as unevenness and heat transfer facilitator are attached, the same effect can be obtained if the heat transfer coefficient in the tube on the leeward heat transfer tube is larger than the heat transfer coefficient in the tube on the leeward side. Play. In some cases, the amount of frost formation can be adjusted by increasing the in-pipe heat transfer coefficient. As described above, the amount of frost that reaches the fins can be adjusted by adjusting the heat transfer tube refrigerant flow path to be different between the windward and leeward.

更にほかの例を追加すると、伝熱管のフィン形状を風下と風上を異ならせる例の一つとして、本発明における蒸発器においては、図19に示すように風下側のフィン幅を風上側のフィン幅よりも狭くしたものでも良い。フィン幅を狭くすることにより、伝熱管からフィン先端までの距離が短くなるため、フィン効率が良くなる。つまり、風下側のフィン幅を狭くすることで、フィンの表面温度を下げ、風下側の着霜量を増やすことが可能となり、着霜分布を風上側の列と風下側の列とで均一に近づけ、着霜による能力低下を遅延化することが可能となる。以上の説明では風下側の熱伝達率を高くして風下側の着霜量を増やすためにフィンピッチを広げる代わりに、等フィンピッチで図12、図15−図19の構造でも良いということである。しかしながら着霜量をできるだけ均一にして空気の流れを霜により閉塞しにくいようにする目的であるので、これらの技術を組み合わせたり、対向流と並向流を逆にしたりして実験的に熱交換器の性能を向上させた上に着霜量を均一にする構造を採用できる。例えば並向流とした風上側のフィンピッチを広げる図9の構造を採用した上で、風上側伝熱管を溝付管としさらに表面温度を下げて霜が着くようにし、フィンピッチをできるだけ狭くした風下側は平滑管のままとし、風上側は風下より広いフィンピッチにして霜が付いて閉塞しにくい構造とすることができ、この結果、従来の等ピッチ構造の熱交換器と比較しても霜の問題を解決しながら風上側、風下側の両方とも熱交換器としての伝熱性能を向上させることができる。例えば風上と風下の熱交換器の伝熱管を扁平管と丸管等異形管にしてもよい。 As another example, when the fin shape of the heat transfer tube is made different from the leeward side and the leeward side, in the evaporator according to the present invention, the fin width on the leeward side is set to the windward side as shown in FIG. It may be narrower than the fin width. By narrowing the fin width, the distance from the heat transfer tube to the fin tip is shortened, so fin efficiency is improved. In other words, by reducing the fin width on the leeward side, it is possible to reduce the surface temperature of the fins and increase the amount of frost formation on the leeward side, and the frost distribution is evenly distributed between the leeward and leeward rows. It is possible to delay the capacity reduction due to frosting. In the above description, instead of widening the fin pitch in order to increase the heat transfer coefficient on the leeward side and increase the amount of frost formation on the leeward side, the structure shown in FIGS. 12 and 15 to 19 may be used with an equal fin pitch. is there. However, since the purpose is to make the amount of frost formation as uniform as possible so that the air flow is not easily blocked by frost, heat exchange is conducted experimentally by combining these technologies or reversing the counter flow and the counter flow. In addition to improving the performance of the vessel, it is possible to adopt a structure that makes the amount of frost formation uniform. For example, after adopting the structure shown in FIG. 9 that widens the windward fin pitch in a co-current flow, the windward heat transfer tube is made into a grooved tube, and the surface temperature is lowered so that frost is formed, and the fin pitch is made as narrow as possible. The leeward side remains a smooth tube, and the leeward side has a wider fin pitch than that of the leeward, so that it can be made frosted and difficult to block. As a result, even when compared with a conventional heat exchanger with an equal pitch structure While solving the problem of frost, both the windward side and the leeward side can improve the heat transfer performance as a heat exchanger. For example, the heat transfer tubes of the upwind and downwind heat exchangers may be flat tubes and round tubes.

更に本発明のヒートポンプ装置については、図20に示すように、圧縮機1、第一の熱交換器9、膨張手段3、第二の熱交換器10、四方弁11が配管で順次接続された冷凍サイクルからなるヒートポンプ装置でも良い。   Furthermore, in the heat pump device of the present invention, as shown in FIG. 20, the compressor 1, the first heat exchanger 9, the expansion means 3, the second heat exchanger 10, and the four-way valve 11 are sequentially connected by piping. A heat pump device comprising a refrigeration cycle may be used.

四方弁により、図21に示すように第二の熱交換器を蒸発器にするか、図22に示すように第一の熱交換器を蒸発器にするか切り替え可能となっている。   With the four-way valve, the second heat exchanger can be switched to an evaporator as shown in FIG. 21, or the first heat exchanger can be switched to an evaporator as shown in FIG.

ルームエアコンやパッケージエアコンにおいては、暖房時、室外に配置された第二の熱交換器を蒸発器とする。暖房時、外気温度が低い場合は、蒸発器に着霜が起きるため、本発明を適用すると、低外気時の暖房能力を向上させることができる。冷房時は室外に配置された第二の熱交換器は凝縮器となり着霜の問題は起こらない。また、設備用パッケージエアコンやユニットクーラ、ショーケース等においては、室内に配置された第一の熱交換器を蒸発器とし、室内を冷却する。室内の温度が低い場合は蒸発器に着霜するため、本発明の適用により冷却能力を向上させることができる。室内を暖房にする場合は室内に配置された第一の熱交換器は凝縮器となるため霜の問題はない。   In room air conditioners and packaged air conditioners, the second heat exchanger disposed outside the room is used as an evaporator during heating. When the outside air temperature is low during heating, frosting occurs in the evaporator. Therefore, when the present invention is applied, the heating capacity during low outside air can be improved. During cooling, the second heat exchanger arranged outside becomes a condenser and does not cause frosting. Further, in a packaged air conditioner for equipment, a unit cooler, a showcase, etc., the first heat exchanger disposed in the room is used as an evaporator to cool the room. When the indoor temperature is low, the evaporator forms frost, so that the cooling capacity can be improved by applying the present invention. When the room is heated, the first heat exchanger arranged in the room becomes a condenser, so there is no problem of frost.

エアコンを例に取ると、図21の構成にて室外に配置された第二の熱交換器10を蒸発器にする場合、圧縮機1から吐出された高温高圧のガス冷媒は四方弁にて室内に配置された第一の熱交換器9にて凝縮し高温高圧の2相冷媒となるとともに図示していない送風機にて送風される室内空気を加熱し暖房を行う。冷媒は膨張弁3にて膨張し低圧となり蒸発器10にて室外空気から熱を吸収しガス冷媒となり圧縮機に吸入される。このとき蒸発器として使用される第二の熱交換器10は本発明の構成、例えば図9に示す冷媒と空気の流れが並向流となるように配管接続され、かつ、風上側のフィンピッチを風下側のフィンピッチよりも広い構造の熱交換器とする。このような図21の冷媒回路の構成で四方弁11が切り替わり室内空気から熱を吸収する冷房に運転モードが変えられるとすると、今まで蒸発器であった第二の熱交換器は凝縮器となるが、室外ファンの位置は変わらないため送風方向は変わらずに風上側は広いフィンピッチであり風下側は狭いフィンピッチのままである。しかし四方弁11にて切替えられて冷媒の流れる方向が逆になるため凝縮器となった第二の熱交換器の冷媒の入口出口の関係が逆となり、結局第二の熱交換器は対向流となるが高温の冷媒が流入するため霜の問題は存在しない。しかし、図10にて説明したように、通常は空気の流れ方向に2列の伝熱管を有する蒸発器において、フィンピッチを風上側、風下側の両方とも1.5mmとした等フィンピッチで、冷媒流路を風上側から風下側に流れるように構成したものと、同等の管外伝熱面積を有するが、着霜を均一にする対策を実施した熱交換器でありフィンピッチを風上側1.6mm、風下側1.3mmにした異フィンピッチとしたまま、冷媒流路を風上側から風下側に流れるように構成したものが凝縮器に切り替わることになる。この場合でも凝縮器としての異ピッチフィンにより風上側と風下側でフィンが空気の流れを乱す関係でフィン表面からの熱交換量が多くなり等ピッチのものと比較して熱交換性能がよいデータが得られた。   Taking an air conditioner as an example, when the second heat exchanger 10 arranged outdoors in the configuration of FIG. 21 is used as an evaporator, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is indoors by a four-way valve. The first heat exchanger 9 arranged in the above is condensed into a high-temperature and high-pressure two-phase refrigerant, and the indoor air blown by a blower (not shown) is heated to perform heating. The refrigerant expands at the expansion valve 3 to become a low pressure, absorbs heat from the outdoor air at the evaporator 10, becomes a gas refrigerant, and is sucked into the compressor. At this time, the second heat exchanger 10 used as an evaporator is connected by piping so that the refrigerant and air flows shown in FIG. Is a heat exchanger having a structure wider than the fin pitch on the leeward side. If the four-way valve 11 is switched in the configuration of the refrigerant circuit of FIG. 21 and the operation mode is changed to cooling that absorbs heat from room air, the second heat exchanger that has been an evaporator until now is a condenser. However, since the position of the outdoor fan does not change, the blowing direction does not change and the windward side has a wide fin pitch and the leeward side has a narrow fin pitch. However, since the flow direction of the refrigerant is switched by the four-way valve 11, the relationship between the inlet and the outlet of the refrigerant of the second heat exchanger that is a condenser is reversed, and the second heat exchanger eventually has a counterflow. However, there is no problem of frost because a high-temperature refrigerant flows in. However, as explained in FIG. 10, in an evaporator having two rows of heat transfer tubes in the air flow direction, the fin pitch is 1.5 mm at both the windward side and the leeward side, This is a heat exchanger that has the same heat flow area outside the tube as the refrigerant flow path that flows from the leeward side to the leeward side, but has a countermeasure for making frost formation uniform. The refrigerant flow path configured to flow from the leeward side to the leeward side with the different fin pitch being 6 mm and the leeward side 1.3 mm is switched to the condenser. Even in this case, because the fins disturb the air flow on the windward side and the leeward side due to different pitch fins as a condenser, the amount of heat exchange from the fin surface increases, and the heat exchange performance is better than that of the constant pitch. was gotten.

設備用パッケージエアコンなどのように、図22の構成にて室内に配置された第一の熱交換器9を蒸発器にする場合、圧縮機1から吐出された高温高圧のガス冷媒は四方弁にて室外に配置された第二の熱交換器10にて凝縮し高温高圧の2相冷媒となるとともに図示していない送風機にて室外空気と熱交換して低温となった冷媒は膨張弁3にて膨張し低圧となり蒸発器9にて室内空気から熱を奪い室内を冷却する。この後低温のガス冷媒は圧縮機に吸入される。このとき蒸発器として使用される第一の熱交換器9は本発明の構成、例えば冷媒と空気の流れが対向流となるように配管接続され、かつ、風下側のフィンピッチを風下側のフィンピッチよりも広い構造の熱交換器とする。このような図22の冷媒回路の構成で四方弁11が切り替わり室内空気を加熱する暖房に運転モードが変えられるとすると、今まで蒸発器であった第一の熱交換器は凝縮器となるが、室内ファンの位置は変わらないため送風方向は変わらずに風下側は広いフィンピッチであり風上側は狭いフィンピッチのままである。しかし四方弁11にて切替えられて冷媒の流れる方向が逆になるため凝縮器となった第一の熱交換器の冷媒の入口出口の関係が逆となり、結局第一の熱交換器は並向流となるが高温の冷媒が流入するため霜の問題は存在しない。また凝縮器の場合の第一の熱交換器の能力はフィンピッチを風上と風下にて異ならせることで従来品と比べてよくなることは上記説明と同じである。しかも、さらに本発明の熱伝達率を高くする別の構造、例えば溝付管等をフィンピッチが広い側の伝熱管に組み合わせることで、あるいはフィンピッチが広い側のフィンにスリットなどを設けるなどで、すなわちピッチの広い側をさらに冷やす構造を採用し、ピッチの狭い側のピッチを可能な範囲で狭く取ることにより、蒸発器として使用する、凝縮器として使用するに係わらず、熱交換器として等ピッチフィン使用時より高い能力が得られ、装置としての効率がよくなる。     When the first heat exchanger 9 arranged indoors in the configuration of FIG. 22 is used as an evaporator, such as a packaged air conditioner for equipment, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is transferred to a four-way valve. Then, the refrigerant is condensed in the second heat exchanger 10 arranged outdoors to become a high-temperature and high-pressure two-phase refrigerant, and the refrigerant which has become low temperature by exchanging heat with outdoor air in a blower (not shown) is supplied to the expansion valve 3. The evaporator 9 expands to a low pressure, and the evaporator 9 takes heat from the room air to cool the room. Thereafter, the low-temperature gas refrigerant is sucked into the compressor. At this time, the first heat exchanger 9 used as an evaporator is connected to the configuration of the present invention, for example, so that the refrigerant and air flows in opposite directions, and the fin pitch on the leeward side is set to the fin on the leeward side. The heat exchanger has a structure wider than the pitch. If the four-way valve 11 is switched in the configuration of the refrigerant circuit of FIG. 22 and the operation mode is changed to heating for heating indoor air, the first heat exchanger that has been an evaporator until now becomes a condenser. Since the position of the indoor fan does not change, the blowing direction does not change and the leeward side has a wide fin pitch and the leeward side has a narrow fin pitch. However, since the flow direction of the refrigerant is reversed by switching at the four-way valve 11, the relationship between the inlet and outlet of the refrigerant of the first heat exchanger that is the condenser is reversed, and the first heat exchanger is eventually oriented. However, there is no problem of frost because high temperature refrigerant flows in. Further, the capacity of the first heat exchanger in the case of the condenser is the same as that described above, because the fin pitch is made different between the windward and leeward compared to the conventional product. In addition, another structure for increasing the heat transfer rate of the present invention, for example, by combining a grooved tube or the like with a heat transfer tube on the wide fin pitch side, or providing a slit or the like on the fin on the wide fin pitch side. In other words, by adopting a structure that further cools the wide pitch side and narrowing the narrow pitch side as much as possible, it can be used as an evaporator, as a heat exchanger, regardless of whether it is used as a condenser, etc. Higher performance is obtained than when pitch fins are used, and the efficiency of the device is improved.

なお、本発明の冷凍サイクル内を循環する冷媒は、どんなものでもよく、二酸化炭素、炭化水素、ヘリウム、アンモニア、空気のような自然冷媒、HFC410A、HFC407Cなどの代替冷媒など塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれでもよい。   The refrigerant circulating in the refrigeration cycle of the present invention may be any refrigerant, natural refrigerants such as carbon dioxide, hydrocarbons, helium, ammonia, air, refrigerants that do not contain chlorine, such as alternative refrigerants such as HFC410A and HFC407C, Alternatively, any of CFC-based refrigerants such as R22 and R134a used in existing products may be used.

また、圧縮機11は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプ、あるいは密閉型、半密閉型、開放型などの構造のいずれのものを用いてもよく、駆動装置としても誘導機、希土類磁石開示を有するDCブラシレスなど、またインバータによる回転数可変可能のものでも、回転数固定のものでも構わない。   The compressor 11 may be of various types such as reciprocating, rotary, scroll, screw, etc., or may have any structure such as a sealed type, a semi-sealed type, an open type, etc. It may be a DC brushless having a magnet disclosure or the like, which may be capable of changing the rotational speed by an inverter, or a motor whose rotational speed is fixed.

以上説明したように、冷媒が風下側から風上側へ流れる対向流とした場合、冷媒の出口側である風上側の列のフィンの温度が冷媒の入口側である風下側の列のフィン温度よりも高くなり、空気の絶対湿度xaと冷却面の絶対湿度xrとの差Δxが小さくなるため、風上側のフィンへの着霜量が少なくなる。冷媒入口側のフィン温度に対し、冷媒出口側のフィン温度は例えば1℃くらい高い温度になる。この構成により風上側のフィンに霜が着いて閉塞せずに風下まで空気が流れて能力低下に時間が掛かることになる。更に風上側のフィン板厚を風下側よりも厚くして風下側の着霜量を増やすことが出来、着霜量の均一化により能力低下をさらに遅らせることも出来る。また、冷媒が風上側から風下側へ流れる並向流とした場合、冷媒の出口側である風下側の列のフィンの温度が冷媒の入口側である風上側の列のフィン温度よりも高くなるため、風下側のフィンへの着霜量が少なくなる。また、風上側の列のフィンにて着霜した分、風下側の列のフィンに至る空気の絶対湿度も低くなり、風下側での着霜量はさらに減る。冷媒が風上側から風下側へ流れる並向流とし、風上側の列のフィンピッチを広く、風下側の列のフィンピッチを狭くした場合は、風上側と風下側とでフィンピッチが等しい場合と、風上側の列の冷却面(熱交換器のフィンおよび配管)の温度は同一であり、着霜速度、すなわち一定時間後の単位面積当たりの着霜量および霜厚さ、はどちらの場合も等しくなる。しかし、風上側の列のフィンピッチが広いと、霜厚さが同じであれば、フィンとフィンの間の隙間が広くなり、すなわち閉塞率が小さくなり、風路抵抗が少なくなって、風量がフィンピッチ配列が広い側のフィンを有する伝熱管における冷媒から空気までの熱伝達率を、フィンピッチ配列が狭い側のフィンを有する伝熱管における冷媒から空気までの熱伝達率よりも高くするように並向流として説明しているが、これは主たる流れの意味であって、例えば主たる流れが並向流であって部分的に対向流があってもかまわない。   As described above, when the counterflow is such that the refrigerant flows from the leeward side to the windward side, the temperature of the fin on the leeward side that is the outlet side of the refrigerant is higher than the fin temperature of the leeward side row that is the inlet side of the refrigerant. And the difference Δx between the absolute humidity xa of the air and the absolute humidity xr of the cooling surface is reduced, so that the amount of frost formation on the fin on the windward side is reduced. The fin temperature on the refrigerant outlet side is, for example, about 1 ° C. higher than the fin temperature on the refrigerant inlet side. With this configuration, frost forms on the windward fins and the air flows to the leeward without being blocked, and it takes time to reduce the capacity. Further, the leeward fin plate thickness can be made thicker than the leeward side to increase the amount of frost formation on the leeward side, and the ability reduction can be further delayed by making the amount of frost formation uniform. Further, when the refrigerant flows in a parallel flow from the leeward side to the leeward side, the fin temperature in the leeward row that is the refrigerant outlet side is higher than the fin temperature in the leeward row that is the refrigerant inlet side. Therefore, the amount of frost on the leeward fin is reduced. Further, the amount of frost formed on the leeward side fins is also reduced by the amount of frost formed on the leeward side, and the absolute humidity of the air reaching the fins on the leeward side is also reduced. When the refrigerant is a parallel flow that flows from the leeward side to the leeward side, and the fin pitch in the leeward row is wide and the fin pitch in the leeward row is narrow, the fin pitch is the same on the leeward side and leeward side. , The temperature of the cooling side (heat exchanger fins and piping) in the windward row is the same, and the frosting rate, that is, the frosting amount and frost thickness per unit area after a certain time, in both cases Will be equal. However, if the fin pitch on the windward side is wide, if the frost thickness is the same, the gap between the fins becomes wide, that is, the blockage rate decreases, the wind path resistance decreases, and the air volume decreases. The heat transfer coefficient from the refrigerant to the air in the heat transfer tube having the fins on the wide fin pitch array is made higher than the heat transfer coefficient from the refrigerant to the air in the heat transfer tube having the fins on the narrow fin pitch array. Although described as a parallel flow, this is the meaning of the main flow, and for example, the main flow may be a parallel flow and partially have a counter flow.

本発明の蒸発器の構造として、熱交換器を複数列組み合わせた構造として風と冷媒の流れにて説明したが、一列の熱交換器であっても段方向に複数本の伝熱管が設けられても良い。例えば上下方向に複数本の伝熱管が一列に設けられ、冷媒が上下方向に直列に流れ、且つ上下方向に風を流す冷蔵庫の蒸発器のようなものであっても同一の効果を奏する。即ち、風上風下の風の流れ方向と、冷媒の上下に設けた出入り口からの冷媒流れ方向の関係が対向流や並向流であり、且つ、既に説明したようなフィン構造、伝熱管冷媒流露構造、過熱度制御などなど本発明の構成を満足することにより同様な効果が得られる。なお、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通される構造を説明してきたが、フィン構造がコルゲートフィンのような屈曲したフィン形状でも接触する伝熱管から低温冷媒にてフィンが冷やされて空気中の水分がフィンに付着する状況に対し、本発明の構造を適用することができ、本発明の効果が得られることは当然である。また本発明の伝熱管は扁平管でも丸管でも2重管でもよい。   The structure of the evaporator according to the present invention has been described with the flow of wind and refrigerant as a structure in which a plurality of heat exchangers are combined. However, even in a single heat exchanger, a plurality of heat transfer tubes are provided in the stage direction. May be. For example, a plurality of heat transfer tubes are provided in a row in the vertical direction, and the same effect can be obtained even if it is a refrigerator evaporator in which the refrigerant flows in series in the vertical direction and winds in the vertical direction. That is, the relationship between the flow direction of the wind on the windward side and the flow direction of the refrigerant from the inlet / outlet provided above and below the refrigerant is a counter flow or a parallel flow, and the fin structure and the heat transfer tube refrigerant flow as already described. The same effect can be obtained by satisfying the configuration of the present invention such as the structure and superheat control. In addition, although the evaporator has demonstrated the structure where a heat-transfer tube penetrates perpendicularly to a plurality of fins arranged at equal intervals, the heat-transfer tube that the fin structure contacts even with a bent fin shape such as a corrugated fin Therefore, the structure of the present invention can be applied to the situation in which the fins are cooled by the low-temperature refrigerant and moisture in the air adheres to the fins, and it is natural that the effects of the present invention can be obtained. The heat transfer tube of the present invention may be a flat tube, a round tube or a double tube.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風上側のフィンピッチを風下側のフィンピッチよりも広くし、且つ、冷媒の流れが風上側から風下側となるように冷媒流路を構成したので、蒸発器風路の霜による閉塞を遅らせることができ、省エネルギー運転が可能になる。また並向流でなく対向流の場合は、フィン表面などがより冷える部分である風上側のフィンピッチを風下側より広げれば同一の効果が得られる。 The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected. In the evaporator, the heat transfer tube vertically penetrates a plurality of equally spaced fins. The heat transfer tubes are arranged in a plurality of rows in the air flow direction, the fin pitch on the windward side is wider than the fin pitch on the leeward side, and the refrigerant flow path is such that the refrigerant flow is from the windward side to the leeward side. Therefore, the blockage of the evaporator air passage due to frost can be delayed, and energy saving operation becomes possible. In the case of counterflow instead of parallel flow, the same effect can be obtained by widening the fin pitch on the leeward side, which is a part where the fin surface and the like are further cooled, from the leeward side.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風上側のフィン板厚を風下側のフィン板厚よりも厚くすることで、風下側のフィンピッチを風上側のフィンピッチよりも広くしたので、フィンピッチを広くしてもフィンカラーが割れるなどの不具合を防止できる。   The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected. In the evaporator, the heat transfer tube vertically penetrates a plurality of equally spaced fins. The heat transfer tubes are arranged in a plurality of rows in the air flow direction, and the fin plate thickness on the leeward side is thicker than the fin plate thickness on the leeward side so that the fin pitch on the leeward side is wider than the fin pitch on the leeward side. Therefore, even if the fin pitch is widened, it is possible to prevent problems such as cracking of the fin collar.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風上側から風下側に至るまでのフィンピッチを等しくし、冷媒の流れが風下側から風上側となるように冷媒流路を構成したので、簡単に製造できる構造で着霜量を均一に近づけることが出来る。 The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected. In the evaporator, the heat transfer tube vertically penetrates a plurality of equally spaced fins. The heat transfer tubes are arranged in a plurality of rows in the air flow direction, the fin pitch from the leeward side to the leeward side is made equal, and the refrigerant flow path is configured so that the refrigerant flow is from the leeward side to the leeward side. Therefore, the amount of frost formation can be made uniform with a structure that can be easily manufactured.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、蒸発器吸込空気検出手段を備え、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風上側から風下側に至るまでのフィンピッチを等しくし、冷媒の流れが風下側から風上側となるように冷媒流路を構成し、蒸発器吸込空気温度検出手段により検出した温度により、蒸発器出口における目標冷媒過熱度を変更したので、どのような製品、設置場所などに係わり無くエネルギー消費を抑えた装置が得られる。   The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected. The heat pump apparatus includes an evaporator intake air detection means, and the evaporator includes a plurality of sheets arranged at equal intervals. The heat transfer tubes are vertically penetrated through the fins, and the heat transfer tubes are arranged in a plurality of rows in the air flow direction, the fin pitch from the leeward side to the leeward side is made equal, and the refrigerant flow is from the leeward side to the leeward side. The refrigerant flow path is configured so that the target refrigerant superheat degree at the outlet of the evaporator is changed according to the temperature detected by the evaporator intake air temperature detection means, so that energy consumption can be achieved regardless of the product, installation location, etc. A reduced device is obtained.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、圧縮機運転時間計測手段を備え、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風上側から風下側に至るまでのフィンピッチを等しくし、冷媒の流れが風下側から風上側となるように冷媒流路を構成し、圧縮機運転時間計測手段による計測値により、目標冷媒過熱度を変更したので、簡単な制御でエネルギー消費を抑えた装置が得られる。 The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion unit, and an evaporator are sequentially connected, and includes a compressor operation time measuring unit, and the evaporator includes a plurality of sheets disposed at equal intervals. The heat transfer tubes are vertically penetrated through the fins, and the heat transfer tubes are arranged in a plurality of rows in the air flow direction, the fin pitch from the leeward side to the leeward side is made equal, and the refrigerant flow is from the leeward side to the leeward side. Since the refrigerant flow path is configured as described above and the target refrigerant superheat degree is changed based on the measured value by the compressor operating time measuring means, an apparatus that suppresses energy consumption with simple control can be obtained.

本発明は、圧縮機、凝縮器、膨張手段、蒸発器が順次接続された冷媒回路を有するヒートポンプ装置において、蒸発器は、等間隔に置かれた複数枚のフィンに、伝熱管が垂直に貫通され、その伝熱管は空気の流れ方向に複数列配置され、風下側のフィン板厚を風上側のフィン板厚よりも厚くすることで、フィン効率を上げたので、省エネルギー装置が得られる。   The present invention relates to a heat pump apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected. In the evaporator, the heat transfer tube vertically penetrates a plurality of equally spaced fins. The heat transfer tubes are arranged in a plurality of rows in the air flow direction, and the fin efficiency is increased by making the fin plate thickness on the leeward side larger than the fin plate thickness on the windward side, so that an energy saving device is obtained.

本発明に係るヒートポンプ装置は、着霜分布を均一化する蒸発器構造および冷媒制御とすることで、蒸発器への着霜現象が発生する運転状況において、能力低下を遅延化することが可能となり、除霜回数の低減による省エネ性向上、冷凍冷蔵機器などにおいては除霜時の庫内温度上昇の抑制による品質向上、空調機器やヒートポンプ給湯器においては除霜時の室内温度低下や湯温低下の抑制により高負荷価値化が可能となる。   The heat pump device according to the present invention employs an evaporator structure and refrigerant control that make the frost distribution uniform, and therefore, it is possible to delay the capacity reduction in an operation situation in which a frost phenomenon occurs on the evaporator. , Improved energy savings by reducing the number of defrosts, improved quality by suppressing the rise in internal temperature during defrosting for refrigerated refrigerators, etc., and reduced indoor temperature and hot water temperature during defrosting for air conditioners and heat pump water heaters High load value can be achieved by suppressing the above.

本発明に係るヒートポンプ装置は、冷媒を吐出する圧縮機、冷媒の流れを切り替える四方弁、第一の熱交換器、膨張手段、第二の熱交換器が接続され冷媒を循環させる冷媒回路と、第一の熱交換器または第二の熱交換器に設けられ所定の間隔で配置された複数のフィンを貫通し空気の流れ方向に対して複数列もしくは複数本配置された伝熱管と、伝熱管の複数列もしくは複数本のうちの風上側もしくは風下側に設けられた伝熱管のフィンピッチを伝熱管の複数列もしくは複数本のうちの風下側もしくは風上側に設けられた伝熱管のフィンピッチよりも広くするフィンピッチ配列と、フィンピッチ配列が広い側のフィンを有する伝熱管における冷媒から空気までの熱伝達率を、フィンピッチ配列が狭い側のフィンを有する伝熱管における冷媒から空気までの熱伝達率よりも高くするようにフィンピッチ配列が広い側のフィンを有する伝熱管に設けられた熱交換促進手段と、を備えたので、四方弁により冷媒の流れが切り替えられ第一の熱交換器または第二の熱交換器が蒸発器になろうと、凝縮器になろうと、常に効率の良いヒートポンプ装置が得られる。当然ながらフィンピッチ配列が広い側のフィンを有する伝熱管の列における冷媒から空気までの熱伝達率を、フィンピッチ配列が狭い側のフィンを有する伝熱管の列における冷媒から空気までの熱伝達率よりも高くするように、冷媒の熱交換器への流入流出口の位置を決めてもよい。   A heat pump device according to the present invention includes a compressor that discharges a refrigerant, a four-way valve that switches a refrigerant flow, a first heat exchanger, an expansion unit, a refrigerant circuit that circulates the refrigerant by being connected to a second heat exchanger, Heat transfer tubes provided in the first heat exchanger or the second heat exchanger and passing through a plurality of fins arranged at predetermined intervals and arranged in a plurality of rows or a plurality in the air flow direction, and heat transfer tubes The fin pitch of the heat transfer tubes provided on the leeward side or the leeward side of the plurality of rows or the plurality of pipes from the fin pitch of the heat transfer tubes provided on the leeward side or the leeward side of the plurality of rows or plurality of heat transfer tubes The heat transfer coefficient from the refrigerant to the air in the heat transfer tube with the fins on the wide fin pitch array and the fins on the wide fin pitch array is the refrigerant in the heat transfer tube with the fins on the narrow fin pitch array. And a heat exchange facilitating means provided on the heat transfer tube having fins on the side having a wide fin pitch arrangement so as to be higher than the heat transfer coefficient to the air, so that the flow of the refrigerant is switched by the four-way valve. Whether the heat exchanger or the second heat exchanger is an evaporator or a condenser, an efficient heat pump device is always obtained. Naturally, the heat transfer coefficient from the refrigerant to the air in the row of heat transfer tubes having the fins on the wide fin pitch arrangement side, and the heat transfer coefficient from the refrigerant to the air in the row of heat transfer tubes having the fins on the narrow fin pitch arrangement side. The position of the inlet / outlet of the refrigerant into the heat exchanger may be determined so as to be higher.

本発明に係るヒートポンプ装置の、フィンピッチ配列が広い側のフィンを有する伝熱管に設けられた熱交換促進手段は、フィン表面に設けられたスリットなどの凹凸であるので、簡単な構造で蒸発器になろうと凝縮器になろうと簡単な構造で常に効率の良いヒートポンプ装置が得られる。   In the heat pump device according to the present invention, the heat exchange promoting means provided on the heat transfer tube having the fins on the wide fin pitch array is uneven such as slits provided on the fin surface, so the evaporator has a simple structure. Regardless of whether it is a condenser or a condenser, an efficient heat pump device is always obtained with a simple structure.

本発明に係るヒートポンプ装置は、前記フィンピッチ配列が広い側のフィンを有する伝熱管に設けられた熱交換促進手段は、伝熱管内部に設けられた凹凸構造であるので、簡単な構造で蒸発器になろうと凝縮器になろうと簡単な構造で常に効率の良いヒートポンプ装置が得られる。   In the heat pump device according to the present invention, the heat exchange promoting means provided in the heat transfer tube having the fins on the wide fin pitch array is a concavo-convex structure provided in the heat transfer tube. Regardless of whether it is a condenser or a condenser, an efficient heat pump device is always obtained with a simple structure.

この発明の実施の形態1における、ヒートポンプ装置の冷媒回路概略構成図。The refrigerant circuit schematic block diagram of the heat pump apparatus in Embodiment 1 of this invention. この発明の実施の形態1における蒸発器概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The evaporator schematic block diagram in Embodiment 1 of this invention. この発明の乾き度と管内の熱伝達係数の関係説明図。The relationship explanatory drawing of the dryness of this invention and the heat transfer coefficient in a pipe | tube. この発明の実施の形態1におけるヒートポンプ装置の冷媒回路概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The refrigerant circuit schematic block diagram of the heat pump apparatus in Embodiment 1 of this invention. この発明の温度帯による着霜分布比較説明図。The frosting distribution comparison explanatory drawing by the temperature zone of this invention. この発明の実施の形態1におけるヒートポンプ装置の冷媒回路概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The refrigerant circuit schematic block diagram of the heat pump apparatus in Embodiment 1 of this invention. この発明のSHと冷媒流量と蒸発温度の関係説明図。The relationship explanatory drawing of SH of this invention, a refrigerant | coolant flow volume, and evaporation temperature. この発明のSHと冷媒流暢と蒸発温度の関係説明図。The relationship explanatory drawing of SH of this invention, a refrigerant | coolant fluent, and evaporation temperature. この発明の実施の形態1における蒸発器概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The evaporator schematic block diagram in Embodiment 1 of this invention. この発明の能力の時間変化を示す関係説明図。The relationship explanatory view which shows the time change of ability of this invention. この発明の実施の形態1における蒸発器概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The evaporator schematic block diagram in Embodiment 1 of this invention. この発明の実施の形態1における蒸発器概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The evaporator schematic block diagram in Embodiment 1 of this invention. この発明の実施の形態1における蒸発器が室内側に配置された説明図。Explanatory drawing in which the evaporator in Embodiment 1 of this invention was arrange | positioned indoors. この発明の実施の形態1における蒸発器が室外側に配置された説明図。Explanatory drawing in which the evaporator in Embodiment 1 of this invention was arrange | positioned in the outdoor side. この発明の実施の形態1において、風下側のフィン形状をスリット形状にした説明図。In Embodiment 1 of this invention, explanatory drawing which made the fin shape of the leeward side into slit shape. この発明の実施の形態1において、風下側の伝熱管段ピッチを狭くした説明図。In Embodiment 1 of this invention, explanatory drawing which narrowed the leeward heat exchanger tube step pitch. この発明の実施の形態1において、風下側の伝熱管の外径を小さくした説明図。In Embodiment 1 of this invention, explanatory drawing which made the outer diameter of the leeward heat exchanger tube small. この発明の実施の形態1において、風下側の伝熱管を熱伝達係数の高い伝熱管にした説明図。In Embodiment 1 of this invention, the explanatory drawing which made the leeward heat exchanger tube into the heat exchanger tube with a high heat transfer coefficient. この発明の実施の形態1において、風下側のフィン幅を狭くした説明図。In Embodiment 1 of this invention, explanatory drawing which narrowed the fin width of the leeward side. この発明の実施の形態1のヒートポンプ装置において、四方弁を備えた冷媒回路概略構成図。In the heat pump apparatus of Embodiment 1 of this invention, the refrigerant circuit schematic block diagram provided with the four-way valve. この発明の実施の形態1の四方弁を備えた冷凍サイクルにおいて第二の熱交換器が蒸発器となる場合の説明図。Explanatory drawing in case a 2nd heat exchanger becomes an evaporator in the refrigerating cycle provided with the four-way valve of Embodiment 1 of this invention. この発明の実施の形態1の四方弁を備えた冷凍サイクルにおいて第一の熱交換器が蒸発器となる場合の説明図。Explanatory drawing in case a 1st heat exchanger becomes an evaporator in the refrigerating cycle provided with the four-way valve of Embodiment 1 of this invention. この発明の実施の形態1の特性を示す空気線図。The air line figure which shows the characteristic of Embodiment 1 of this invention. この発明の実施の形態1の制御内容を説明するフローチャート。The flowchart explaining the control content of Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、4−a 蒸発器フィン、4−b 蒸発器電熱管、5 蒸発器用ファン、6 凝縮器用ファン、7 蒸発器吸込空気温度検出手段、8 圧縮機運転時間計測手段、9 第一の熱交換器、10 第二の熱交換器、11 四方弁、20 霜。 DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 4-a Evaporator fin, 4-b Evaporator heating pipe, 5 Evaporator fan, 6 Condenser fan, 7 Evaporator suction air temperature detection means, 8 Compressor operating time measuring means, 9 first heat exchanger, 10 second heat exchanger, 11 four-way valve, 20 frost.

Claims (8)

圧縮機、凝縮器、膨張手段、蒸発器が順次接続され冷媒が循環する冷媒回路と、前記蒸発器に設けられ所定の間隔で配置された複数のフィンを貫通し空気の流れ方向に対して複数列もしくは複数本配置された伝熱管と、前記伝熱管の複数列もしくは複数本のうちの風上側に設けられた伝熱管のフィンピッチを前記伝熱管の複数列もしくは複数本のうちの風下側に設けられた伝熱管のフィンピッチよりも広くするとともに冷媒の流れが風上側から風下側になるように配置した伝熱管冷媒流路と、
蒸発器の吸込み温度帯を検出する蒸発器吸込温度検出手段と、
前記蒸発器における目標冷媒過熱度を制御する冷媒過熱度制御手段と、
を備え、前記蒸発器吸込温度検出手段によって求められた前記温度帯に対応するそれぞれの絶対湿度から、前記絶対湿度の高低に応じた前記目標冷媒過熱度をあらかじめ設定した
ことを特徴とするヒートポンプ装置。
A compressor, a condenser, an expansion means, and an evaporator are sequentially connected to each other, and a refrigerant circuit in which the refrigerant circulates, and a plurality of fins that are provided in the evaporator and are arranged at a predetermined interval to pass through a plurality of fins. The fin pitch of the heat transfer tubes arranged on the windward side of the heat transfer tubes arranged in a row or a plurality of rows and the heat transfer tubes on the leeward side of the heat transfer tubes in the rows or the plurality of heat transfer tubes A heat transfer tube refrigerant flow path that is wider than the fin pitch of the provided heat transfer tubes and arranged so that the flow of the refrigerant is from the windward side to the leeward side;
An evaporator suction temperature detecting means for detecting the suction temperature zone of the evaporator;
Refrigerant superheat degree control means for controlling the target refrigerant superheat degree in the evaporator;
The target refrigerant superheat degree corresponding to the level of the absolute humidity is set in advance from the respective absolute humidity corresponding to the temperature zone obtained by the evaporator suction temperature detecting means. Heat pump device.
前記蒸発器は風上側のフィン板厚を風下側のフィン板厚よりも厚くすることを特徴とする請求項1に記載のヒートポンプ装置。 2. The heat pump device according to claim 1, wherein the evaporator has a fin plate thickness on the leeward side larger than a fin plate thickness on the leeward side. 圧縮機、凝縮器、膨張手段、蒸発器が順次接続され冷媒が循環する冷媒回路と、前記蒸発器に設けられ所定の間隔で略等ピッチに配置された複数のフィンを貫通し空気の流れ方向に対して複数列もしくは複数本配置された伝熱管と、前記伝熱管の冷媒の流れが風下側から風上側になるように配置した伝熱管冷媒流路と、
蒸発器の吸込み温度帯を検出する蒸発器吸込温度検出手段と、
前記蒸発器における目標冷媒過熱度を制御する冷媒過熱度制御手段と、
を備え、複数列もしくは複数本配置された内の風上側に設けられた伝熱管のフィンの着霜量と複数列もしくは複数本配置された内の風下側に設けられた伝熱管のフィンの着霜量との着霜分布の調整を、前記蒸発器吸込温度検出手段によって求められた絶対湿度の高い時には前記目標冷媒過熱度を小さくし、前記絶対湿度の低い時には前記目標冷媒過熱度を大きくしたことを特徴とするヒートポンプ装置。
A refrigerant circuit in which a compressor, a condenser, expansion means, and an evaporator are sequentially connected to circulate the refrigerant, and a plurality of fins provided in the evaporator and arranged at a substantially equal pitch at a predetermined interval to pass through the air. A plurality of rows or a plurality of heat transfer tubes, and a heat transfer tube refrigerant flow path arranged so that the flow of refrigerant in the heat transfer tubes is from the leeward side to the windward side,
An evaporator suction temperature detecting means for detecting the suction temperature zone of the evaporator;
Refrigerant superheat degree control means for controlling the target refrigerant superheat degree in the evaporator;
The amount of frost formation on the fins of the heat transfer tubes provided on the windward side in the plurality of rows or the plurality of rows arranged and the attachment of the fins of the heat transfer tubes provided on the leeward side in the rows of the plurality or rows arranged When adjusting the frost distribution with the amount of frost, the target refrigerant superheat degree is decreased when the absolute humidity obtained by the evaporator suction temperature detecting means is high, and the target refrigerant superheat degree is increased when the absolute humidity is low. A heat pump device characterized by that.
前記蒸発器が室外側もしくは室内側に配置されたことを特徴とする請求項1乃至のいずれかに記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3 , wherein the evaporator is disposed on an outdoor side or an indoor side. 前記蒸発器の複数列もしくは複数本配置された伝熱管の内の風上側に配置された伝熱管のフィン形状と風下側に配置された伝熱管のフィン形状を異なったものとすることを特徴とした請求項1乃至のいずれかに記載のヒートポンプ装置。 The fin shape of the heat transfer tubes arranged on the leeward side and the fin shape of the heat transfer tubes arranged on the leeward side are different from each other in the plural rows or plural heat transfer tubes of the evaporator. The heat pump device according to any one of claims 1 to 4 . 前記蒸発器の複数列もしくは複数本配置された伝熱管の内の風下側に配置された伝熱管の段ピッチを風上側に配置された伝熱管の段ピッチよりも狭くしたことを特徴とする請求項1乃至のいずれかに記載のヒートポンプ装置。 The step pitch of the heat transfer tubes arranged on the leeward side of the heat transfer tubes arranged in a plurality of rows or a plurality of the evaporators is made narrower than the step pitch of the heat transfer tubes arranged on the leeward side. Item 6. The heat pump device according to any one of Items 1 to 5 . 前記蒸発器の複数列もしくは複数本配置された伝熱管の風下側に配置された伝熱管の外径を風上側に配置された伝熱管の外径よりも細くしたことを特徴とする請求項に記載のヒートポンプ装置。 Claim 6, characterized in that thinner than the outer diameter of the evaporator plurality of rows or a plurality of arranged downwind arranged heat transfer tubes toward the heat transfer tube outside diameter is disposed on the windward side of the heat transfer tube The heat pump device described in 1. 前記蒸発器の複数列もしくは複数本配置された伝熱管の風下側に配置された伝熱管管内熱伝達率を風上側に配置された伝熱管管内熱伝達率よりも高くするように風下側に配置された伝熱管の管内構造を風上側に配置された伝熱管の管内構造と異なるようにしたことを特徴とする請求項1乃至のいずれかに記載のヒートポンプ装置。 Arranged on the leeward side so that the heat transfer coefficient in the heat transfer tube arranged on the lee side of the heat transfer tubes arranged in a plurality of rows or a plurality of the evaporators is higher than the heat transfer coefficient in the heat transfer tube arranged on the leeward side. The heat pump device according to any one of claims 1 to 7 , wherein the in-tube structure of the heat transfer tube is made different from the in-tube structure of the heat transfer tube arranged on the windward side.
JP2007296730A 2007-11-15 2007-11-15 Heat pump equipment Active JP4623083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296730A JP4623083B2 (en) 2007-11-15 2007-11-15 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296730A JP4623083B2 (en) 2007-11-15 2007-11-15 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2009121759A JP2009121759A (en) 2009-06-04
JP4623083B2 true JP4623083B2 (en) 2011-02-02

Family

ID=40814092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296730A Active JP4623083B2 (en) 2007-11-15 2007-11-15 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP4623083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070697A (en) * 2016-06-01 2018-12-21 株式会社电装 cold-storage heat exchanger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715971B2 (en) * 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
JP5713691B2 (en) * 2011-01-14 2015-05-07 日立アプライアンス株式会社 Refrigeration cycle equipment
CN102252464A (en) * 2011-06-10 2011-11-23 三花丹佛斯(杭州)微通道换热器有限公司 Heat exchanger
JP5323962B2 (en) * 2012-03-28 2013-10-23 パナソニック株式会社 Air conditioner for vehicles
JP5981395B2 (en) * 2013-07-10 2016-08-31 サンポット株式会社 Heat pump heat source machine
JP5981396B2 (en) * 2013-07-10 2016-08-31 サンポット株式会社 Heat pump heat source machine
JP6214670B2 (en) * 2013-10-25 2017-10-18 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
CN111595070B (en) * 2020-04-30 2023-12-15 浙江英科新能源有限公司 Fin evaporator
CN112303972B (en) * 2020-11-03 2021-09-14 珠海格力电器股份有限公司 Control method and system of electronic expansion valve and refrigeration system
CN114165948B (en) * 2021-12-03 2023-03-24 珠海格力电器股份有限公司 Heat exchanger assembly and air conditioner with same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146155U (en) * 1974-05-20 1975-12-03
JPS60228864A (en) * 1984-04-27 1985-11-14 株式会社日立製作所 Air conditioner
JPS6127492A (en) * 1984-07-16 1986-02-06 Matsushita Electric Ind Co Ltd Heat exchanger with fins
JPS63220096A (en) * 1987-03-10 1988-09-13 Matsushita Electric Ind Co Ltd Finned heat exchanger
JPH0518636A (en) * 1991-07-09 1993-01-26 Showa Alum Corp Heat exchanger
JPH05322478A (en) * 1991-10-24 1993-12-07 Nippondenso Co Ltd Heat exchanger
JPH0771890A (en) * 1993-09-03 1995-03-17 Oak Japan:Kk Heat exchanger
JPH1054685A (en) * 1996-08-09 1998-02-24 Daikin Ind Ltd Heat exchanger and manufacture thereof
JPH1151500A (en) * 1997-08-01 1999-02-26 Hitachi Ltd Heat pump type air-conditioner
JPH11201679A (en) * 1998-01-19 1999-07-30 Matsushita Refrig Co Ltd Heat exchanger with fin
JPH11230638A (en) * 1998-02-18 1999-08-27 Toshiba Corp Heat exchanger
JP2002147893A (en) * 2000-11-14 2002-05-22 Mitsubishi Electric Corp Heat exchanger
JP2005121361A (en) * 2003-10-17 2005-05-12 Lg Electronics Inc Controller and method for controlling degree of superheat in heat pump system
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006023005A (en) * 2004-07-07 2006-01-26 Denso Corp Heat pump type water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179778U (en) * 1984-10-30 1986-05-28

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146155U (en) * 1974-05-20 1975-12-03
JPS60228864A (en) * 1984-04-27 1985-11-14 株式会社日立製作所 Air conditioner
JPS6127492A (en) * 1984-07-16 1986-02-06 Matsushita Electric Ind Co Ltd Heat exchanger with fins
JPS63220096A (en) * 1987-03-10 1988-09-13 Matsushita Electric Ind Co Ltd Finned heat exchanger
JPH0518636A (en) * 1991-07-09 1993-01-26 Showa Alum Corp Heat exchanger
JPH05322478A (en) * 1991-10-24 1993-12-07 Nippondenso Co Ltd Heat exchanger
JPH0771890A (en) * 1993-09-03 1995-03-17 Oak Japan:Kk Heat exchanger
JPH1054685A (en) * 1996-08-09 1998-02-24 Daikin Ind Ltd Heat exchanger and manufacture thereof
JPH1151500A (en) * 1997-08-01 1999-02-26 Hitachi Ltd Heat pump type air-conditioner
JPH11201679A (en) * 1998-01-19 1999-07-30 Matsushita Refrig Co Ltd Heat exchanger with fin
JPH11230638A (en) * 1998-02-18 1999-08-27 Toshiba Corp Heat exchanger
JP2002147893A (en) * 2000-11-14 2002-05-22 Mitsubishi Electric Corp Heat exchanger
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005121361A (en) * 2003-10-17 2005-05-12 Lg Electronics Inc Controller and method for controlling degree of superheat in heat pump system
JP2006023005A (en) * 2004-07-07 2006-01-26 Denso Corp Heat pump type water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070697A (en) * 2016-06-01 2018-12-21 株式会社电装 cold-storage heat exchanger

Also Published As

Publication number Publication date
JP2009121759A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4623083B2 (en) Heat pump equipment
JP4358832B2 (en) Refrigeration air conditioner
CN105980784B (en) Air conditioner
JP5709993B2 (en) Refrigeration air conditioner
JP5997060B2 (en) Air conditioner
JP4975076B2 (en) Defrosting device and defrosting method
Heo et al. Optimum cycle control of a two-stage injection heat pump with a double expansion sub-cooler
JP6309739B2 (en) Air conditioner
JP5474024B2 (en) Refrigeration cycle equipment
US9964343B2 (en) Refrigeration cycle apparatus
JP2009133624A (en) Refrigerating/air-conditioning device
CN113091267B (en) Control method of air conditioner
CN110260416A (en) The control method of subregion heat exchanger assembly, air conditioner and subregion heat exchanger assembly
JP6355325B2 (en) Refrigerator and control method of refrigerator
US7571760B2 (en) Condenser of refrigerator
JP2017161172A (en) Cooling device
JP5511897B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
JP6045204B2 (en) Heat exchange system
JP5447438B2 (en) refrigerator
JP5501094B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
JP2013253726A5 (en)
CN113375290B (en) Air conditioner and control method thereof
CN113646597B (en) Refrigeration cycle device
JPH07127955A (en) Refrigerating cycle device
CN111609483A (en) Dehumidification device and dehumidification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4623083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250