JP4621921B2 - Novel nucleic acid derivative and method for producing polynucleotide using the same - Google Patents

Novel nucleic acid derivative and method for producing polynucleotide using the same Download PDF

Info

Publication number
JP4621921B2
JP4621921B2 JP2006071549A JP2006071549A JP4621921B2 JP 4621921 B2 JP4621921 B2 JP 4621921B2 JP 2006071549 A JP2006071549 A JP 2006071549A JP 2006071549 A JP2006071549 A JP 2006071549A JP 4621921 B2 JP4621921 B2 JP 4621921B2
Authority
JP
Japan
Prior art keywords
group
substituted
mmol
derivative
polynucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006071549A
Other languages
Japanese (ja)
Other versions
JP2007056001A (en
Inventor
正靖 桑原
宏明 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2006071549A priority Critical patent/JP4621921B2/en
Publication of JP2007056001A publication Critical patent/JP2007056001A/en
Application granted granted Critical
Publication of JP4621921B2 publication Critical patent/JP4621921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Description

本発明は、新規なC7位置換デオキシアデノシン誘導体、新規なC7位置換デオキシグアノシン誘導体、及びそれらを用いたポリヌクレオチドの製造方法に関する。   The present invention relates to a novel C7-substituted deoxyadenosine derivative, a novel C7-substituted deoxyguanosine derivative, and a polynucleotide production method using them.

機能性ポリヌクレオチドを合成したり、ポリヌクレオチドにヌクレアーゼ耐性などの特性を付与したりするために、非天然の核酸誘導体を合成し、それを用いてDNAやRNAなどの修飾ポリヌクレオチドを作製する研究が行われている。
核酸誘導体としては、C5位にトリフロロアセチルアミノヘキシルアミノカルボニルメチルなどの置換基が結合したデオキシウリジン誘導体が知られている(特許文献1参照)。しかしながら、この誘導体はDNAポリメラーゼの基質とはなりにくく、ポリヌクレオチドを得るためにはDNA合成機などを用いて化学合成する必要があった。
また、2004年にドイツのFamulokらが、ポリメラーゼ連鎖反応(PCR)による高密度修飾DNAの調製法を報告している(非特許文献1参照)。しかしながら、この方法では、耐熱性DNAポリメラーゼに対して基質特性に乏しい修飾基質ヌクレオシド三リン酸を用いるため、目的物生成のために、DMSOやホルムアミドなどの添加剤(変性剤)などいくつかの添加剤の組み合わせの最適化が必要であった。
DNAポリメラーゼの基質として働く核酸誘導体がいくつか知られている。例えば、特許文献2では、C5位にメチルエステルやヘキサメチレンジアミンなどを含む置換基が結合したデオキシウリジン誘導体を用いたポリヌクレオチドの合成法が報告されている。また、特許文献3では、C5位に1−アミノ−3,6−オキサヘプチル基などが結合したデオキシウリジン誘導体又はデオキシシチジン誘導体を用いたポリヌクレオチドの合成法が報告されている。さらに、特許文献4では、C5位に(6−アミノヘキシル)カルバミルメチル基などが結合したデオキシシチジン誘導体やN6位に4−アミノブチル基などが結合したデオキシアデノシン誘導体を用いたポリヌクレオチドの合成法が報告されている。このように、これまでにもいくつかの核酸誘導体が知られていたが、より効率よく機能性の修飾ポリヌクレオチドを得るためには、さらなる種類の核酸誘導体が要望されていた。
特開平7−165786号公報 特開2002−085079号公報 特開2004−238353号公報 特開2005−060240号公報 Angew.Chem.Int.Ed. 2004, 43, 3337-3340
Research to synthesize non-natural nucleic acid derivatives and synthesize modified polynucleotides such as DNA and RNA in order to synthesize functional polynucleotides and to impart properties such as nuclease resistance to polynucleotides Has been done.
As a nucleic acid derivative, a deoxyuridine derivative in which a substituent such as trifluoroacetylaminohexylaminocarbonylmethyl is bonded to the C5 position is known (see Patent Document 1). However, this derivative is unlikely to be a substrate for DNA polymerase, and it has been necessary to chemically synthesize it using a DNA synthesizer or the like in order to obtain a polynucleotide.
In 2004, Famulok et al. Of Germany reported a method for preparing high-density modified DNA by polymerase chain reaction (PCR) (see Non-Patent Document 1). However, this method uses a modified substrate nucleoside triphosphate that has poor substrate properties compared to heat-resistant DNA polymerase, so that several additives such as DMSO and formamide (denaturing agents) are added to produce the target product. It was necessary to optimize the combination of agents.
Several nucleic acid derivatives that serve as substrates for DNA polymerase are known. For example, Patent Document 2 reports a method for synthesizing a polynucleotide using a deoxyuridine derivative in which a substituent containing methyl ester, hexamethylenediamine or the like is bonded to the C5 position. Patent Document 3 reports a method for synthesizing a polynucleotide using a deoxyuridine derivative or a deoxycytidine derivative in which a 1-amino-3,6-oxaheptyl group or the like is bonded to the C5 position. Further, in Patent Document 4, synthesis of a polynucleotide using a deoxycytidine derivative in which a (6-aminohexyl) carbamylmethyl group or the like is bonded to the C5 position or a deoxyadenosine derivative in which a 4-aminobutyl group or the like is bonded to the N6 position. The law has been reported. Thus, several nucleic acid derivatives have been known so far, but in order to obtain a functional modified polynucleotide more efficiently, a further type of nucleic acid derivative has been desired.
Japanese Patent Laid-Open No. 7-165786 JP 2002-085079 A JP 2004-238353 A JP-A-2005-060240 Angew.Chem.Int.Ed. 2004, 43, 3337-3340

本発明は、DNAポリメラーゼの優れた基質として働くことができ、効率よく機能性修飾ポリヌクレオチドを生成させることのできる新規な核酸誘導体を提供することを課題とする。   An object of the present invention is to provide a novel nucleic acid derivative that can serve as an excellent substrate for a DNA polymerase and can efficiently generate a functionally modified polynucleotide.

本発明者は上記課題を解決するために鋭意検討を行った。その結果、新規なC7位置換デオキシアデノシン誘導体と新規なC7位置換デオキシグアノシン誘導体を合成することに成功し、さらに、それらの誘導体を用いることによりポリヌクレオチドを効率よく得ることができることを見出して、本発明を完成させるに至った。   The present inventor has intensively studied to solve the above problems. As a result, the inventors succeeded in synthesizing a novel C7-substituted deoxyadenosine derivative and a novel C7-substituted deoxyguanosine derivative, and found that a polynucleotide can be efficiently obtained by using these derivatives. The present invention has been completed.

すなわち、本発明は以下の通りである。
(1)下記一般式(I-1)または(I-2)で表される7位置換デアザデオキシアデノシン誘導体。

Figure 0004621921
式中、Rは、−OR1又は−NH−(CH2)n−NR23を示し、ここで、nは2〜10の整数であり、R1はアルキル基であり、R2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基から選ばれる置換基である。
(2)下記一般式(II-1)または(II-2)で表される7位置換デアザデオキシグアノシン誘導体。
Figure 0004621921
式中、Rは、−OR1又は−NH−(CH2)n−NR23を示し、ここで、nは2〜10の整数であり、R1はアルキル基であり、R2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基から選ばれる置換基である。
(3)(1)の7位置換デアザデオキシアデノシン誘導体のヌクレオチド残基を含むポリヌクレオチド。
(4)(2)の7位置換デアザデオキシグアノシン誘導体のヌクレオチド残基を含むポリヌクレオチド。
(5)(1)の7位置換デアザデオキシアデノシン誘導体または(2)の7位置換デアザデオキシグアノシン誘導体を含む、修飾ポリヌクレオチド合成用基質溶液。
(6)(5)の修飾ポリヌクレオチド合成用基質溶液を含む、修飾ポリヌクレオチド合成用試薬。
(7)(1)の7位置換デアザデオキシアデノシン誘導体及び(2)の7位置換デアザデオキシグアノシン誘導体の少なくとも一方を基質に用いて、修飾ポリヌクレオチドを製造する方法。
(8)(1)の7位置換デアザデオキシアデノシン誘導体又は(2)の7位置換デアザデオキシグアノシン誘導体に標識物質を導入することによって得られた標識核酸を用いて標識ポリヌクレオチドを製造する方法。
That is, the present invention is as follows.
(1) A 7-substituted deazadeoxyadenosine derivative represented by the following general formula (I-1) or (I-2).
Figure 0004621921
In the formula, R represents —OR 1 or —NH— (CH 2 ) n —NR 2 R 3 , where n is an integer of 2 to 10, R 1 is an alkyl group, R 2 , Each R 3 is independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (═NH) NH 2 , biotinyl group, It is a substituent selected from various amino acids bonded through an amide bond or — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group.
(2) A 7-substituted deazadeoxyguanosine derivative represented by the following general formula (II-1) or (II-2).
Figure 0004621921
In the formula, R represents —OR 1 or —NH— (CH 2 ) n —NR 2 R 3 , where n is an integer of 2 to 10, R 1 is an alkyl group, R 2 , Each R 3 is independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (═NH) NH 2 , biotinyl group, It is a substituent selected from various amino acids bonded through an amide bond or — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group.
(3) A polynucleotide comprising the nucleotide residue of the 7-substituted deazadeoxyadenosine derivative of (1).
(4) A polynucleotide comprising the nucleotide residue of the 7-substituted deazadeoxyguanosine derivative of (2).
(5) A substrate solution for synthesizing a modified polynucleotide comprising the 7-substituted deazadeoxyadenosine derivative of (1) or the 7-substituted deazadeoxyguanosine derivative of (2).
(6) A modified polynucleotide synthesis reagent comprising the modified polynucleotide synthesis substrate solution of (5).
(7) A method for producing a modified polynucleotide using at least one of the 7-position substituted deazadeoxyadenosine derivative of (1) and the 7-position substituted deazadeoxyguanosine derivative of (2) as a substrate.
(8) A labeled polynucleotide is produced using a labeled nucleic acid obtained by introducing a labeling substance into the 7-substituted deazadeoxyadenosine derivative of (1) or the 7-substituted deazadeoxyguanosine derivative of (2) Method.

本発明のC7位置換デオキシアデノシン誘導体とC7位置換デオキシグアノシン誘導体(これらをまとめて本発明の核酸誘導体と呼ぶことがある)は、耐熱性DNAポリメラーゼに対する基質特性に優れているため、DMSOやホルムアミドなどの添加剤(変性剤)を使用することなく、修飾基が高密度に修飾されたポリヌクレオチドを簡便に調製することが可能である。本発明のC7位置換デオキシアデノシン誘導体とC7位置換デオキシグアノシン誘導体を用いてポリヌクレオチドを合成することによって、SELEX法によって創製される機能性DNAの高性能化や遺伝子標識の高密度化、アンチセンス・アンチジーン分子やsiRNAへの機能付与などが達成できる。   Since the C7-substituted deoxyadenosine derivative and the C7-substituted deoxyguanosine derivative of the present invention (these may be collectively referred to as the nucleic acid derivatives of the present invention) are excellent in substrate properties for heat-resistant DNA polymerase, DMSO and formamide Thus, it is possible to easily prepare a polynucleotide in which the modifying group is modified at a high density without using an additive (denaturing agent). By synthesizing a polynucleotide using the C7-substituted deoxyadenosine derivative and the C7-substituted deoxyguanosine derivative of the present invention, the functional DNA created by the SELEX method has higher performance, the density of the gene label is increased, and the antisense.・ Functionalization of antigene molecules and siRNA can be achieved.

以下に本発明を詳しく説明する。
本発明の7位置換デアザデオキシアデノシン誘導体は、一般式(I-1)または(I-2)で表される。

Figure 0004621921
式中、Rは、−OR1又は−NH−(CH2)n−NR23を示す。ここで、nは2〜10の整数であり、好ましくは6の整数である。R1はアルキル基であり、R2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、及び−(CH22N[(CH22NH22基から選ばれる置換基である。なお、上記アルキル基は、直鎖アルキル基であっても分岐鎖アルキル基であってもよいが、炭素数が6のアルキル基が好ましい。アルケニル基、アルキニル基については、直鎖状あるいは分岐鎖状のいずれでもよく、2重結合又は3重結合の位置及び個数も特に制限されないが、炭素数が6のものが好ましい。アリール基は非置換アリール基、置換アリール基のいずれでもよい。
各種アミノ酸をアミド結合を介して結合させたものとして具体的には、グリシル基、アラニル基、バリル基、ロイシル基、イソロイシル基、メチオニル基、プロリル基、フェニルアラニル基、トリプトファニル基、セリル基、スレオニル基、アスパラギニル基、グルタミニル基、アスパラチル基、グルタミル基、システイニル基、チロシル基、ヒスチジル基、リシル基、アルギニル基が挙げられる。これらはタンパク質に含まれる機能性残基という観点から、好ましく用いることができる。 The present invention is described in detail below.
The 7-position substituted deazadeoxyadenosine derivative of the present invention is represented by the general formula (I-1) or (I-2).
Figure 0004621921
In the formula, R represents —OR 1 or —NH— (CH 2 ) n —NR 2 R 3 . Here, n is an integer of 2 to 10, preferably an integer of 6. R 1 is an alkyl group, and R 2 and R 3 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, — It is a substituent selected from C (= NH) NH 2 , a biotinyl group, a group in which various amino acids are bonded via an amide bond, and a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. . The alkyl group may be a linear alkyl group or a branched alkyl group, but an alkyl group having 6 carbon atoms is preferable. The alkenyl group and alkynyl group may be either linear or branched, and the position and number of double bonds or triple bonds are not particularly limited, but those having 6 carbon atoms are preferred. The aryl group may be either an unsubstituted aryl group or a substituted aryl group.
Specific examples of various amino acids bonded via an amide bond include glycyl group, alanyl group, valyl group, leucyl group, isoleucyl group, methionyl group, prolyl group, phenylalanyl group, tryptophanyl group, seryl group, Examples include threonyl group, asparaginyl group, glutaminyl group, asparatyl group, glutamyl group, cysteinyl group, tyrosyl group, histidyl group, lysyl group, and arginyl group. These can be preferably used from the viewpoint of functional residues contained in proteins.

上記7位置換デアザデオキシアデノシン誘導体は、後述の実施例に示される方法によって合成することができる。なお、実施例では、7-Deaza-7-(methoxycarbonylethenyl) -2'-deoxyadenosine-5'-triphosphate、7-Deaza-7-[N-(6-trifluoroacetyamidohexyl)-carbonylethenyl]-2'-deoxyadenosine-5'-triphosphate及び7-Deaza-7-[N-(6-amidohexyl)-carbonylethenyl]-2'-deoxyadenosine-5'-triphosphate、7-Deaza-7-[N-(6-trifluoroacetyamidohexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphate、7-Deaza-7-[N-(6-amidohexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphate、7-Deaza-7-[N-(6-guanidinumhexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphateの合成例について示したが、一般式(I-1)または(I-2)で示されるその他の7位置換デアザデオキシアデノシン誘導体についても同様の方法によって得ることができる。   The 7-position substituted deazadeoxyadenosine derivative can be synthesized by the method shown in Examples described later. In Examples, 7-Deaza-7- (methoxycarbonylethenyl) -2'-deoxyadenosine-5'-triphosphate, 7-Deaza-7- [N- (6-trifluoroacetyamidohexyl) -carbonylethenyl] -2'-deoxyadenosine-5 '-triphosphate and 7-Deaza-7- [N- (6-amidohexyl) -carbonylethenyl] -2'-deoxyadenosine-5'-triphosphate, 7-Deaza-7- [N- (6-trifluoroacetyamidohexyl) -carbonylethyl]- 2'-deoxyadenosine-5'-triphosphate, 7-Deaza-7- [N- (6-amidohexyl) -carbonylethyl] -2'-deoxyadenosine-5'-triphosphate, 7-Deaza-7- [N- (6- guanidinumhexyl) -carbonylethyl] -2'-deoxyadenosine-5'-triphosphate was shown as an example of synthesis, but other 7-substituted deazadeoxyadenosine derivatives represented by general formula (I-1) or (I-2) Can be obtained by a similar method.

本発明の7位置換デアザデオキシグアノシン誘導体は、下記一般式(II-1)又は(II-2)で表される。

Figure 0004621921
式中、Rは、−OR1又は−NH−(CH2)n−NR23を示す。ここで、nは2〜10の整数であり、好ましくは6の整数である。R1はアルキル基であり、R2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、及び−(CH22N[(CH22NH22基から選ばれる置換基である。なお、上記アルキル基は、直鎖アルキル基であっても分岐鎖アルキル基であってもよいが、炭素数が6のアルキル基が好ましい。アルケニル基、アルキニル基については、直鎖状あるいは分岐鎖状のいずれでもよく、2重結合又は3重結合の位置及び個数も特に制限されないが、炭素数が6のものが好ましい。アリール基は非置換アリール基、置換アリール基のいずれでもよい。
各種アミノ酸をアミド結合を介して結合させたものとして具体的には、グリシル基、アラニル基、バリル基、ロイシル基、イソロイシル基、メチオニル基、プロリル基、フェニルアラニル基、トリプトファニル基、セリル基、スレオニル基、アスパラギニル基、グルタミニル基、アスパラチル基、グルタミル基、システイニル基、チロシル基、ヒスチジル基、リシル基、アルギニル基が挙げられる。これらはタンパク質に含まれる機能性残基という観点から、好ましく用いることができる。 The 7-position substituted deazadeoxyguanosine derivative of the present invention is represented by the following general formula (II-1) or (II-2).
Figure 0004621921
In the formula, R represents —OR 1 or —NH— (CH 2 ) n —NR 2 R 3 . Here, n is an integer of 2 to 10, preferably an integer of 6. R 1 is an alkyl group, and R 2 and R 3 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, — It is a substituent selected from C (= NH) NH 2 , biotinyl group, those obtained by bonding various amino acids via amide bonds, and — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. . The alkyl group may be a linear alkyl group or a branched alkyl group, but an alkyl group having 6 carbon atoms is preferable. The alkenyl group and alkynyl group may be either linear or branched, and the position and number of double bonds or triple bonds are not particularly limited, but those having 6 carbon atoms are preferred. The aryl group may be either an unsubstituted aryl group or a substituted aryl group.
Specific examples of various amino acids bonded via an amide bond include glycyl group, alanyl group, valyl group, leucyl group, isoleucyl group, methionyl group, prolyl group, phenylalanyl group, tryptophanyl group, seryl group, Examples include threonyl group, asparaginyl group, glutaminyl group, asparatyl group, glutamyl group, cysteinyl group, tyrosyl group, histidyl group, lysyl group, and arginyl group. These can be preferably used from the viewpoint of functional residues contained in proteins.

上記7位置換デアザデオキシグアノシン誘導体は、後述の実施例に示される方法によって合成することができる。なお、実施例では、7-Deaza-7-[2-(methoxycarbonyl)ethenyl]-N2-pivaloyl-2'-deoxyguanosineの合成例について示したが、一般式(II-1)で示されるその他の7位置換デアザデオキシグアノシン誘導体についても同様の方法によって得ることができる。例えば、7-Deaza-7-[2-(methoxycarbonyl)ethenyl]-N2-pivaloyl-2'-deoxyguanosineにジアミンなどを反応させることによってRが−NH−(CH2)n−NR23のものを合成することができる。また、一般式(II-2)で示される7位置換デアザデオキシグアノシン誘導体については、例えば、7-Deaza-7-(methoxycarbonylethyl) -2'-deoxyguanosineを出発物質とし、実施例に示される一般式(I-2)で示される7位置換デアザデオキシアデノシン誘導体の合成と同様の手順で合成することができる。 The 7-position substituted deazadeoxyguanosine derivative can be synthesized by the method shown in Examples described later. In the embodiment, 7-Deaza-7- [2- (methoxycarbonyl) ethenyl] has been described synthesis example of -N 2 -pivaloyl-2'-deoxyguanosine, other represented by the general formula (II-1) The 7-position substituted deazadeoxyguanosine derivative can also be obtained by the same method. For example, when 7-Deaza-7- [2- (methoxycarbonyl) ethenyl] -N 2 -pivaloyl-2′-deoxyguanosine is reacted with diamine or the like, R is —NH— (CH 2 ) n —NR 2 R 3 Things can be synthesized. As for the 7-substituted deazadeoxyguanosine derivative represented by the general formula (II-2), for example, 7-Deaza-7- (methoxycarbonylethyl) -2'-deoxyguanosine is used as a starting material, The 7-position substituted deazadeoxyadenosine derivative represented by the formula (I-2) can be synthesized by the same procedure.

本発明の核酸誘導体を用いてDNAなどの修飾ポリヌクレオチドを合成することができる。得られた、本発明の核酸誘導体のヌクレオチド残基を含む修飾ポリヌクレオチドも本発明の範囲に含まれる。C7位置換デオキシアデノシン誘導体とC7位置換デオキシグアノシン誘導体は、両方用いて修飾ポリヌクレオチドを合成してもよいし、いずれか一方を用いて修飾ポリヌクレオチドを合成してもよい。さらに、これら本発明の核酸誘導体と、後述するような既知の核酸誘導体とを組み合わせて、ポリヌクレオチドを合成してもよい。本発明の核酸誘導体を用いて合成されるポリヌクレオチドは一本鎖でも二本鎖でもよい。合成法は特に制限されず、化学合成法でもよいが、DNAポリメラーゼなどを用いた酵素合成法が好ましい。   A modified polynucleotide such as DNA can be synthesized using the nucleic acid derivative of the present invention. The obtained modified polynucleotide containing the nucleotide residue of the nucleic acid derivative of the present invention is also included in the scope of the present invention. Both the C7-substituted deoxyadenosine derivative and the C7-substituted deoxyguanosine derivative may be used to synthesize a modified polynucleotide, or one of them may be used to synthesize a modified polynucleotide. Furthermore, polynucleotides may be synthesized by combining these nucleic acid derivatives of the present invention with known nucleic acid derivatives as described below. The polynucleotide synthesized using the nucleic acid derivative of the present invention may be single-stranded or double-stranded. The synthesis method is not particularly limited and may be a chemical synthesis method, but an enzyme synthesis method using DNA polymerase or the like is preferable.

DNAポリメラーゼなどを用いた酵素合成法は、一般的な核酸増幅法にしたがって行うことができる。具体的には、核酸基質、DNA合成酵素、鋳型DNA及びプライマーを用い
て合成を行うことができる。ここで、核酸基質として、本発明の核酸誘導体と、通常の核酸増幅に用いられる天然型dNTP(dATP、dTTP、dCTP、dGTP)を用いる。場合によってはさらに既知の核酸誘導体を用いてもよい。天然型dNTPは、基質として加えられる核酸誘導体と同種類のdNTP(例えば、C7位置換デオキシアデノシン誘導体を用いる場合はdATP)を除いたものを用いてもよいが、全種類用いることが好ましい。増幅に用いることのできる酵素の種類は特に制限されないが、Taq DNA ポリメラーゼ、Tth DNA ポリメラーゼ(東洋紡)、Vent(exo-) DNA ポリメラーゼ(New England Biolabs)、KOD Dash DNA ポリメラーゼ(東洋紡)などを用いることができる。鋳型DNAとしては、天然のDNA,化学合成したDNA又は天然のRNAを逆転写して形成されたcDNAなどを挙げることができる。
ポリヌクレオチドを増幅する方法はPCRに限定されず、LAMP法(特許第3313358号明細書)、NASBA法(Nucleic Acid Sequence-Based Amplification;特許2843586号明細書)、ICAN法(特開2002-233379号公報)などでもよい。
The enzyme synthesis method using DNA polymerase or the like can be performed according to a general nucleic acid amplification method. Specifically, the synthesis can be performed using a nucleic acid substrate, a DNA synthase, a template DNA, and a primer. Here, as the nucleic acid substrate, the nucleic acid derivative of the present invention and natural dNTP (dATP, dTTP, dCTP, dGTP) used for normal nucleic acid amplification are used. In some cases, a known nucleic acid derivative may be used. The natural dNTP may be the same as the nucleic acid derivative added as a substrate except the dNTP of the same type (for example, dATP when a C7-substituted deoxyadenosine derivative is used), but all types are preferably used. The type of enzyme that can be used for amplification is not particularly limited, but Taq DNA polymerase, Tth DNA polymerase (Toyobo), Vent (exo-) DNA polymerase (New England Biolabs), KOD Dash DNA polymerase (Toyobo), etc. should be used. Can do. Examples of the template DNA include natural DNA, chemically synthesized DNA, cDNA formed by reverse transcription of natural RNA, and the like.
The method for amplifying the polynucleotide is not limited to PCR, but the LAMP method (Japanese Patent No. 3313358), NASBA method (Nucleic Acid Sequence-Based Amplification; Japanese Patent No. 2843586), ICAN method (Japanese Patent Laid-Open No. 2002-233379) Publication).

また、ポリヌクレオチド増幅において、本発明の核酸誘導体とともに用いてもよい既知の核酸誘導体としては、例えば、以下のようなものが挙げられる。
既知のデオキシウリジン誘導体としては、以下のようなものが挙げられる。

Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
上記式中、Rは水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)からなる群から選択される置換基である。 In addition, examples of known nucleic acid derivatives that may be used with the nucleic acid derivative of the present invention in polynucleotide amplification include the following.
Examples of known deoxyuridine derivatives include the following.
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
In the above formula, R is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (═NH) NH 2 , biotinyl group, various types An amino acid bonded via an amide bond or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group is shown. A substituent selected from the group consisting of:

既知のデオキシアデノシン誘導体としては、以下のようなものが挙げられる。

Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
上記式中、Rは水素原子、アルキニル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−CH(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)からなる群から選択される置換基である。 Examples of known deoxyadenosine derivatives include the following.
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
Figure 0004621921
In the above formula, R represents a hydrogen atom, an alkynyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —CH (═NH) NH 2 , biotinyl group, various types An amino acid bonded via an amide bond or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group is shown. A substituent selected from the group consisting of:

また、特開2005-0602540号公報に開示された以下のN6位置換デオキシアデノシン誘導体でもよい。

Figure 0004621921
式中、Rは−NHXを表し、Xは水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)からなる群から選択される置換基である。 Also, the following N6-substituted deoxyadenosine derivatives disclosed in JP-A-2005-0602540 may be used.
Figure 0004621921
In the formula, R represents —NHX, and X represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (═NH) NH 2 , a biotinyl group, a group in which various amino acids are bonded via an amide bond, or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. A substituent selected from the group consisting of:

既知のデオキシシチジン誘導体としては、特開2005-060240号公報に開示された式xiiのC5位置換デオキシシチジン誘導体が挙げられる。

Figure 0004621921
式中、Rは−NHXを表し、Xは水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)からなる群から選択される置換基である。 Known deoxycytidine derivatives include C5-substituted deoxycytidine derivatives of the formula xii disclosed in JP 2005-060240 A.
Figure 0004621921
In the formula, R represents —NHX, and X represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (═NH) NH 2 , a biotinyl group, a group in which various amino acids are bonded via an amide bond, or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. A substituent selected from the group consisting of:

また、特開2004-238353号公報に開示された式xiiiのC5位置換デオキシシチジン誘導体でもよい。

Figure 0004621921
(但し、式中、Rは−NHXを表し、Xは水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)からなる群から選択される置換基である。 Further, it may be a C5-substituted deoxycytidine derivative of the formula xiii disclosed in JP-A-2004-238353.
Figure 0004621921
(In the formula, R represents —NHX, X represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (= NH) NH 2 , a biotinyl group, a combination of various amino acids via an amide bond, or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. It is a substituent.

さらに、特開2004-238353号公報に開示された式xivのC5位置換デオキシシチジン誘導体でもよい。

Figure 0004621921
(但し、式中、Rは−NHXを表し、Xは水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、各種アミノ酸をアミド結合を介して結合させたもの、又は−(CH22N[(CH22NH22基を示す。)で表される置換基である。 Further, it may be a C5-substituted deoxycytidine derivative of the formula xiv disclosed in JP-A-2004-238353.
Figure 0004621921
(In the formula, R represents —NHX, and X represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, —COCF 3 group, —COCH 3 group, carbonylmethylimidazole group, —C (= NH) NH 2 , a biotinyl group, a group in which various amino acids are bonded via an amide bond, or a — (CH 2 ) 2 N [(CH 2 ) 2 NH 2 ] 2 group. It is.

本発明の核酸誘導体には蛍光物質などの標識物質を結合させることが可能であり、標識物質を結合させた核酸を含むポリヌクレオチドは、有用なプローブ等となり得る。標識物質としては、従来核酸の標識に用いられている物質であれば特に制限されない。例えば、蛍光標識物質として、フルオレスセイン,Cy5,テトラメチルカルボキシローダミン,ピレンなどを挙げることができる。標識物質は、例えば、本発明の核酸誘導体のアミノ基に導入することができる。蛍光標識を本発明の核酸誘導体に結合させ、得られた標識核酸を基質に用いてポリヌクレオチドを合成することにより、標識物質が導入された修飾ポリヌクレオチドを得ることができる。
蛍光物質などの標識物質が導入された修飾ポリヌクレオチドは、一本鎖にしてマイクロアレイのプローブに用いたりすることができる。
なお、蛍光標識以外に、種々の機能性物質を本発明の核酸誘導体に結合させることにより、機能性修飾ポリヌクレオチド,例えば触媒、アプタマーなどを合成することもできる。また、阻害剤を結合させることも可能である。
A labeling substance such as a fluorescent substance can be bound to the nucleic acid derivative of the present invention, and a polynucleotide containing a nucleic acid bound with a labeling substance can be a useful probe or the like. The labeling substance is not particularly limited as long as it is a substance conventionally used for labeling nucleic acids. Examples of the fluorescent labeling substance include fluorescein, Cy5, tetramethylcarboxyrhodamine, pyrene and the like. The labeling substance can be introduced into, for example, the amino group of the nucleic acid derivative of the present invention. A modified polynucleotide introduced with a labeling substance can be obtained by binding a fluorescent label to the nucleic acid derivative of the present invention and synthesizing a polynucleotide using the labeled nucleic acid obtained as a substrate.
The modified polynucleotide into which a labeling substance such as a fluorescent substance has been introduced can be used as a single-stranded probe for a microarray.
In addition to fluorescent labels, functional modified polynucleotides such as catalysts and aptamers can also be synthesized by binding various functional substances to the nucleic acid derivatives of the present invention. It is also possible to bind an inhibitor.

本発明の核酸誘導体を用いて合成されたポリヌクレオチドはSELEX法に適用することもできる。すなわち、本発明の核酸誘導体を用いてランダムなポリヌクレオチドを複数合成し、その中から、種々の生体関連物質等に対するアプタマーや特定反応を触媒するリボザイムなど、実用可能性があるさまざまな機能性核酸をスクリーニングすることができる。すなわち、ランダムな修飾ポリヌクレオチドを複数合成し、その中から酵素活性などを指標に特定のポリヌクレオチドを選択することにより、生理活性を有するアプタマーやリボザイムを得ることができる。   A polynucleotide synthesized using the nucleic acid derivative of the present invention can also be applied to the SELEX method. That is, a plurality of random polynucleotides are synthesized using the nucleic acid derivative of the present invention, and various functional nucleic acids such as aptamers for various biological substances and ribozymes that catalyze specific reactions are used. Can be screened. That is, aptamers and ribozymes having physiological activity can be obtained by synthesizing a plurality of random modified polynucleotides and selecting specific polynucleotides from them using enzyme activity as an index.

本発明の核酸誘導体を用いて合成されたポリヌクレオチドはアンチセンス分子やアンチジーン分子などの遺伝子発現を調節するための核酸医薬として利用することもできる。本発明の核酸誘導体を含むことでポリヌクレオチドの細胞膜透過性や遺伝子抑制作用の向上、副作用の緩和、ヌクレアーゼ耐性の向上が達成でき、より有効な核酸医薬として利用できる。   A polynucleotide synthesized using the nucleic acid derivative of the present invention can also be used as a nucleic acid drug for regulating gene expression of an antisense molecule or an antigene molecule. By including the nucleic acid derivative of the present invention, it is possible to improve the cell membrane permeability and gene suppression action of polynucleotides, reduce side effects, and improve nuclease resistance, and can be used as a more effective nucleic acid medicine.

上述したように、本発明の核酸誘導体は、機能性ポリヌクレオチドを合成するために用いることができるため、本発明の核酸誘導体を含む修飾ポリヌクレオチド合成用基質溶液や修飾ポリヌクレオチド合成用試薬などとして提供されうる。
As described above, the nucleic acid derivative of the present invention can be used to synthesize a functional polynucleotide, and therefore, as a modified polynucleotide synthesis substrate solution or a modified polynucleotide synthesis reagent containing the nucleic acid derivative of the present invention. Can be provided.

以下に実施例を示し、本発明をさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   The following examples illustrate the present invention more specifically. However, the present invention is not limited to the following examples.

<1>修飾プリンヌクレオシド三リン酸の合成
<1-1>使用機器および試剤
イオン交換カラムクロマトグラフィー
BIO-RAD ECONO SYSTEM CONTOROLLER
BIO-RAD ECONO PUMP
BIO-RAD ECONO UV MONITER
ADVATEC SF-160 FRACTION COLLECTOR
中圧カラムクロマトグラフィー
EYELA CERAMIC PUMP VSP-3050
高速液体クロマトグラフィー(HPLC)
日本分光 PU-980 Intelligent HPLC Pump
日本分光 UV-970 Intelligent UV/VIS Detector
三和通商 DG-3310 Degasys
視外可視分光高度計 島津 UV 1200
日立 U-3000
核磁気共鳴分光光度計(NMR) 日本電子 JNM-AL 300 FT-NMR system
ESI質量分析装置(ESI-MS) Perkin Elmer Sciex API-100
<1> Synthesis of modified purine nucleoside triphosphates <1-1> Equipment used and reagent ion exchange column chromatography
BIO-RAD ECONO SYSTEM CONTOROLLER
BIO-RAD ECONO PUMP
BIO-RAD ECONO UV MONITER
ADVATEC SF-160 FRACTION COLLECTOR
Medium pressure column chromatography
EYELA CERAMIC PUMP VSP-3050
High performance liquid chromatography (HPLC)
JASCO PU-980 Intelligent HPLC Pump
JASCO UV-970 Intelligent UV / VIS Detector
Sanwa Tsusho DG-3310 Degasys
Visible spectroscopic altimeter Shimadzu UV 1200
Hitachi U-3000
Nuclear magnetic resonance spectrophotometer (NMR) JEOL JNM-AL 300 FT-NMR system
ESI Mass Spectrometer (ESI-MS) Perkin Elmer Sciex API-100

修飾プリンヌクレオシドの出発原料には以下のものを使用した。
2'-デオキシグアノシン Gene ACT, Inc.
7-デアザヒポキサンチン BERRY ASSOCIATES
7-デアザグアノシン BERRY ASSOCIATES
The following were used as starting materials for the modified purine nucleosides.
2'-Deoxyguanosine Gene ACT, Inc.
7-Deazahypoxanthine BERRY ASSOCIATES
7-Deazaguanosine BERRY ASSOCIATES

<1-2>修飾7-デアザアデノシン三リン酸の合成
6-Chloro-7-deazaadenine 8の合成

Figure 0004621921
真空乾燥した7-デアザヒポキサンチン7(1.493 g, 11.0 mmol, F.W.135.12)に塩化ホスホリル(10 mL, 110 mmol, 10当量)を加えて懸濁させ、115℃で1時間還流した。反応液を減圧留去し、残渣に冷水(100 mL)を入れクエンチした。これをジエチルエーテル(100 L)で4回抽出した。有機相を無水硫酸マグネシウムで乾燥させた後、ろ過し、ろ液を減圧留去し、目的物8を得た。Rf値 0.41 [10%メタノール/ジクロロメタン]
収量 1.536 g(10.0 mmol) 収率 91%
1H NMR (300 MHz, CDCl3)
δ9.82 (1H, s, 9-NH), 8.68 (1H, s, H-2), 7.38 (1H, q, H-8), 6.68 (1H, q, H-7)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:154.2, Calc.:154.01 [(M+H)+] <1-2> Synthesis of modified 7-deazaadenosine triphosphate
Synthesis of 6-Chloro-7-deazaadenine 8
Figure 0004621921
Phosphoryl chloride (10 mL, 110 mmol, 10 equivalents) was added to 7- deazahypoxanthine 7 (1.493 g, 11.0 mmol, FW135.12) that had been vacuum-dried, suspended therein, and refluxed at 115 ° C. for 1 hour. The reaction solution was distilled off under reduced pressure, and the residue was quenched with cold water (100 mL). This was extracted four times with diethyl ether (100 L). The organic phase was dried over anhydrous magnesium sulfate and filtered, and the filtrate was distilled off under reduced pressure to obtain the desired product 8 . R f value 0.41 [10% methanol / dichloromethane]
Yield 1.536 g (10.0 mmol) Yield 91%
1 H NMR (300 MHz, CDCl 3 )
δ9.82 (1H, s, 9-NH), 8.68 (1H, s, H-2), 7.38 (1H, q, H-8), 6.68 (1H, q, H-7)
ESI-MS (positive mode) m / z [Attribution]
Found: 154.2, Calc .: 154.01 [(M + H) + ]

6-Chloro-7-deaza -7-iodoadenine 9の合成

Figure 0004621921
デアザプリン8(0.591 g, 3.58 mmol, F.W.153.57)をdry-DMF(15 mL)に溶かし、N-ヨードスクシンイミド(0.963 g, 4.28 mmol, 1.1当量)のdry-DMF溶液(15 mL)を加え、アルゴン雰囲気下、室温で3時間撹拌した。反応液を減圧留去し、残渣を酢酸エチル(75mL)に溶かした後、飽和NaHCO3水(30 mL)で2回洗浄した。有機相を無水硫酸マグネシウムで乾燥後、ろ過し、ろ液を減圧留去した。これを、シリカゲルカラムクロマトグラフィー(Silica gel 60,230-400mesh, 1〜6%メタノール/ジロロメタン)で精製し、白黄色の粉の目的物9を得た。Rf値 0.5 [10%メタノール/ジクロロメタン]
収量 0.840 g(3.00 mmol) 収率 84%
1H NMR (300 MHz, CDCl3)
δ8.66 (1H, s, H-2), 7.52 (1H, d, J=2.4, H-8)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:280.1, Calc.:279.91 [(M+H)+] Synthesis of 6-Chloro-7-deaza -7-iodoadenine 9
Figure 0004621921
Deazapurine 8 (0.591 g, 3.58 mmol, FW153.57) was dissolved in dry-DMF (15 mL), N-iodosuccinimide (0.963 g, 4.28 mmol, 1.1 eq) in dry-DMF (15 mL) was added, The mixture was stirred at room temperature for 3 hours under an argon atmosphere. The reaction solution was evaporated under reduced pressure, the residue was dissolved in ethyl acetate (75 mL), and washed twice with saturated aqueous NaHCO 3 (30 mL). The organic phase was dried over anhydrous magnesium sulfate and filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60,230-400mesh, 1-6% methanol / dichloromethane) to obtain the intended product 9 as a white yellow powder. R f value 0.5 [10% methanol / dichloromethane]
Yield 0.840 g (3.00 mmol) Yield 84%
1 H NMR (300 MHz, CDCl 3 )
δ8.66 (1H, s, H-2), 7.52 (1H, d, J = 2.4, H-8)
ESI-MS (positive mode) m / z [Attribution]
Found: 280.1, Calc .: 279.91 [(M + H) + ]

3',5'-Di-O-(4-toluoyl)-6-chloro-7-deaza-7-iodo-2'-deoxyadenosine10の合成

Figure 0004621921
真空乾燥させた9(1.048 g, 3.75 mmol, F.W.279.47)をdry-アセトニトリル(77 mL)に懸濁させ、水素化ナトリウム(60% in oil ,0.165 mg, 4.13 mmol, 1.1当量)を加えアルゴン雰囲気下、室温で30分間撹拌した。続いて1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentfuranose(2.041 g, 5.25 mmol, 1.4当量)を20分間かけてゆっくり加えた後、Ar雰囲気下、室温で2時間撹拌した。反応液を減圧留去し、残渣をジクロロメタン(150 mL)に溶かし、蒸留水(100 mL)で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、ろ過し、ろ液を減圧留去した。これを、シリカゲルカラムクロマトグラフィー(Silica gel 60,230-400mesh, 20〜33%酢酸エチル/ヘキサン)で精製した。さらに酢酸エチルに溶かし、ヘキサンを加えて生じた結晶を濾取し、白色粉末状の目的物10を得た。Rf値 0.40 [酢酸エチル/ヘキサン= 1/4]
収量 1.493 g(2.36 mmol) 収率 63%
1H NMR (300 MHz, CDCl3)
δ8.60 (1H, s, H-2), 7.95 (4H, m, toluoyl), 7.28 (4H, m, toluoyl),
6.79 (1H, t, J=7.0 Hz, H-1'), 5.75 (1H, m, H-3'), 4.71 (1H, m, H-4'),
4.61 (2H, m, H-5'), 2.78 (2H, m, H-2'), 2.42 (6H, m, toluoyl methyl)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:632.1, Calc.:631.04 [(M+H)+]
Found:654.1, Calc.:654.04 [(M+Na)+] Synthesis of 3 ', 5'-Di-O- (4-toluoyl) -6-chloro-7-deaza-7-iodo-2'-deoxyadenosine 10
Figure 0004621921
Vacuum-dried 9 (1.048 g, 3.75 mmol, FW279.47) was suspended in dry-acetonitrile (77 mL), sodium hydride (60% in oil, 0.165 mg, 4.13 mmol, 1.1 eq) was added and argon was added. Stir for 30 minutes at room temperature under atmosphere. Subsequently, 1-chloro-2-deoxy-3,5-di-Op-toluoyl-α-D-erythro-pentfuranose (2.041 g, 5.25 mmol, 1.4 eq) was slowly added over 20 minutes, and then in an Ar atmosphere. And stirred at room temperature for 2 hours. The reaction solution was evaporated under reduced pressure, and the residue was dissolved in dichloromethane (150 mL) and washed with distilled water (100 mL). The organic phase was dried over anhydrous magnesium sulfate and filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60,230-400mesh, 20-33% ethyl acetate / hexane). Further, the product was dissolved in ethyl acetate, hexane was added, and the resulting crystals were collected by filtration to obtain the desired product 10 as a white powder. R f value 0.40 [ethyl acetate / hexane = 1/4]
Yield 1.493 g (2.36 mmol) Yield 63%
1 H NMR (300 MHz, CDCl 3 )
δ8.60 (1H, s, H-2), 7.95 (4H, m, toluoyl), 7.28 (4H, m, toluoyl),
6.79 (1H, t, J = 7.0 Hz, H-1 '), 5.75 (1H, m, H-3'), 4.71 (1H, m, H-4 '),
4.61 (2H, m, H-5 '), 2.78 (2H, m, H-2'), 2.42 (6H, m, toluoyl methyl)
ESI-MS (positive mode) m / z [Attribution]
Found: 632.1, Calc .: 631.04 [(M + H) + ]
Found: 654.1, Calc .: 654.04 [(M + Na) + ]

7-Deaza -7-iodo-2'-deoxyadenosine11の合成

Figure 0004621921
ヌクレオシド10(500 mg, 0.791 mmol, F.W.631.85)を飽和アンモニアエタノール溶液に懸濁させ、耐圧容器中65℃で35時間撹拌し、反応液を減圧留去した。続いて、残渣をメタノール(39 mL)に溶かし、濃アンモニア水(37 mL)を加え室温で5時間撹拌した。反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60,230-400mesh,5〜10%メタノール/ジクロロメタン)で精製して白色粉末状の目的物11を得た。Rf値 0.31
[10%メタノール/ジクロロメタン]
収量 184 mg(0.489 mmol) 収率 61%
1H NMR (300 MHz, CD3OD)
δ8.03 (1H, s, H-2), 7.58 (1H, s, H-8), 6.50 (1H, t, J=6.3 Hz, H-1'),
4.49 (1H, m, H-3'), 3.98 (1H, m, H-4'), 3.74 (2H, m, H-5'), 2.59 (1H, m, H-2'),
2.32 (1H, m, H-2')
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:377.2, Calc.:376.00 [(M+H)+]
Found:399.2, Calc.:399.00 [(M+Na)+] Synthesis of 7-Deaza -7-iodo-2'-deoxyadenosine 11
Figure 0004621921
Nucleoside 10 (500 mg, 0.791 mmol, FW631.85) was suspended in a saturated ammonia ethanol solution and stirred at 65 ° C. for 35 hours in a pressure vessel, and the reaction solution was distilled off under reduced pressure. Subsequently, the residue was dissolved in methanol (39 mL), concentrated aqueous ammonia (37 mL) was added, and the mixture was stirred at room temperature for 5 hours. The reaction solution was distilled off under reduced pressure, and purified by silica gel column chromatography (Silica gel 60,230-400mesh, 5-10% methanol / dichloromethane) to obtain the target product 11 as a white powder. R f value 0.31
[10% methanol / dichloromethane]
Yield 184 mg (0.489 mmol) Yield 61%
1 H NMR (300 MHz, CD 3 OD)
δ8.03 (1H, s, H-2), 7.58 (1H, s, H-8), 6.50 (1H, t, J = 6.3 Hz, H-1 '),
4.49 (1H, m, H-3 '), 3.98 (1H, m, H-4'), 3.74 (2H, m, H-5 '), 2.59 (1H, m, H-2'),
2.32 (1H, m, H-2 ')
ESI-MS (positive mode) m / z [Attribution]
Found: 377.2, Calc .: 376.00 [(M + H) + ]
Found: 399.2, Calc .: 399.00 [(M + Na) + ]

7-Deaza-7-(methoxycarbonylethenyl) -2'-deoxyadenosine12の合成

Figure 0004621921
ヌクレオシド11(389 mg, 1.03 mmol, F.W.376.15)をdry-DMF(6 mL)に溶かし、Arを10分間吹き込ませた後、メチルアクリレート(40 mL, 446 mmol,433当量)、ヨウ化銅(CuI, 41 mg, 0.215 mmol, 0.2当量)、トリフェニルホスフィンパラジウム(Pd(PPh3)4, 125mg, 0.108 mmol, 0.1当量)、トリエチルアミン(0.3 mL, 2.15 mmol, 2当量)を順に加え70℃で20時間撹拌した。反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60, 40〜50μm,2〜6%メタノール/酢酸エチル)で精製し、オイル状の目的物12を得た。Rf値 0.31 [10%メタノール/酢酸エチル]
収量 249 mg(0.745 mmol) 収率 72 %
1H NMR (300 MHz, CD3OD)
δ8.13 (1H, s, H-2), 7.99 (1H, s, H-8), 7.95 (1H, d, J=15.9 Hz, CH),
6.53 (1H, t, J=7.2 Hz, H-1'), 6.40 (1H, d, J=15.9 Hz, CH),
4.54 (1H, m, H-3'), 4.01 (1H, m, H-4'), 3.76 (5H, m, H-5' and OCH3),
2.63 (1H, m, H-2'), 2.37 (1H, m, H-2')
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:335.1, Calc.:335.13 [(M+H)+]
Found:357.2, Calc.:357.13 [(M+Na)+] Synthesis of 7-Deaza-7- (methoxycarbonylethenyl) -2'-deoxyadenosine 12
Figure 0004621921
Nucleoside 11 (389 mg, 1.03 mmol, FW376.15) was dissolved in dry-DMF (6 mL), Ar was blown for 10 minutes, methyl acrylate (40 mL, 446 mmol, 433 equivalents), copper iodide ( CuI, 41 mg, 0.215 mmol, 0.2 eq), triphenylphosphine palladium (Pd (PPh 3 ) 4 , 125 mg, 0.108 mmol, 0.1 eq), triethylamine (0.3 mL, 2.15 mmol, 2 eq) were added in this order at 70 ° C. Stir for 20 hours. The reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 2-6% methanol / ethyl acetate) to obtain oily target product 12 . R f value 0.31 [10% methanol / ethyl acetate]
Yield 249 mg (0.745 mmol) Yield 72%
1 H NMR (300 MHz, CD 3 OD)
δ8.13 (1H, s, H-2), 7.99 (1H, s, H-8), 7.95 (1H, d, J = 15.9 Hz, CH),
6.53 (1H, t, J = 7.2 Hz, H-1 '), 6.40 (1H, d, J = 15.9 Hz, CH),
4.54 (1H, m, H-3 '), 4.01 (1H, m, H-4'), 3.76 (5H, m, H-5 'and OCH 3 ),
2.63 (1H, m, H-2 '), 2.37 (1H, m, H-2')
ESI-MS (positive mode) m / z [Attribution]
Found: 335.1, Calc .: 335.13 [(M + H) + ]
Found: 357.2, Calc .: 357.13 [(M + Na) + ]

7-Deaza-7-(methoxycarbonylethenyl) -2'-deoxyadenosine-5'-triphosphate A4の合成

Figure 0004621921
ヌクレオシド12 (128 mg, 0.383 mmol, F.W.334.33)をDMF(6 mL)で2回、アセトニトリル(3 mL)で3回共沸し、3時間真空乾燥後、N,N,N',N'-テトラメチル-1,8-ナフタレンジアミン(Proton Sponge, 126mg, 0.588 mmol, 1.5当量)を一晩乾燥させた。これにリン酸トリメチル(2.9 mL)をアルゴン雰囲気下で加えて溶かした後、0℃に冷却した。塩化ホスホニル(58μL, 0.62 mmol, 1.6当量)を滴下し0℃で45分間撹拌した。さらにトリブチルアミン(0.34 mL, 1.4 mmol, 3.7当量 )と0.5Mピロリン酸トリブチルアンモニウムのDMF溶液(3.8 mL, 1.9 mmol, 5当量)を0℃で加え、反応液を室温に戻し1時間反応させた。1.0M炭酸水素トリエチルアンモニウム水溶液(pH8.0, 5mL)と水(5mL)を加えて反応を止め反応液を減圧留去した。続いて残渣を水に溶かしジエチルエーテルで2回洗浄し、水相をDEAE-Sephadex A-25カラムを用い、炭酸水素トリエチルアンモニウム水溶液(pH8.0)の塩濃度勾配(0.3〜1.0M)緩衝液により溶出した。これを高速液体クロマトグラフィーで精製し、目的物A4を得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 3.30 OD260 nm(0.216 mmol) 収率 0.06 %
ESI-MS(ネガティブ・モード) m/z [帰属] Found:573.1, Calc.:573.3 [(M-H)-]
<HPLC>
カラム TSK-GEL(ODS-80Ts,φ20×250mm)
溶媒 A : 50mM TEAA 流速 8ml/min
B: 50mM TEAA 70%MeCN Synthesis of 7-Deaza-7- (methoxycarbonylethenyl) -2'-deoxyadenosine-5'-triphosphate A4
Figure 0004621921
Nucleoside 12 (128 mg, 0.383 mmol, FW334.33) was azeotroped twice with DMF (6 mL) and three times with acetonitrile (3 mL), dried in vacuo for 3 hours, and then N, N, N ', N' -Tetramethyl-1,8-naphthalenediamine (Proton Sponge, 126 mg, 0.588 mmol, 1.5 eq) was dried overnight. To this, trimethyl phosphate (2.9 mL) was added and dissolved in an argon atmosphere, and then cooled to 0 ° C. Phosphonyl chloride (58 μL, 0.62 mmol, 1.6 equivalents) was added dropwise and stirred at 0 ° C. for 45 minutes. Further, tributylamine (0.34 mL, 1.4 mmol, 3.7 eq) and 0.5M tributylammonium pyrophosphate in DMF (3.8 mL, 1.9 mmol, 5 eq) were added at 0 ° C, and the reaction solution was allowed to return to room temperature and reacted for 1 hour. . 1.0M triethylammonium hydrogen carbonate aqueous solution (pH 8.0, 5 mL) and water (5 mL) were added to stop the reaction, and the reaction solution was distilled off under reduced pressure. Subsequently, the residue was dissolved in water and washed twice with diethyl ether. The aqueous phase was subjected to a salt concentration gradient (0.3 to 1.0 M) buffer solution of triethylammonium hydrogen carbonate aqueous solution (pH 8.0) using a DEAE-Sephadex A-25 column. Was eluted. This was purified by high performance liquid chromatography to obtain the desired product A4 . The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 3.30 OD 260 nm (0.216 mmol) Yield 0.06%
ESI-MS (negative mode) m / z [Attribution] Found: 573.1, Calc .: 573.3 [(MH) - ]
<HPLC>
Column TSK-GEL (ODS-80Ts, φ20 × 250mm)
Solvent A: 50mM TEAA Flow rate 8ml / min
B: 50mM TEAA 70% MeCN

Figure 0004621921
Figure 0004621921

7-Deaza-7-[N-(6-trifluoroacetyamidohexyl)-carbonylethenyl]-2'-deoxyadenosine21の合成

Figure 0004621921
ヌクレオシド12(338 mg, 1.01 mmol, F.W.334.33)とDMAP(13 mg, 0.106 mmol, 0.1当量)を一晩真空乾燥し、1,6-diaminohexane(1.220 g, 10.5 mmol, 10当量)のdryメタノール(8 mL)溶液を加えて52℃で18時間還流した。反応が終了していなかったので、1,6-diaminohexane(548 mg, 4.72 mmol, 4.7当量)追加して17時間還流した。反応が終了していたので反応液を減圧留去した。次に、大量に含まれている1,6-diaminohexaneをできる限り除去するために、再沈殿を行った。残渣をメタノール(10 mL)に溶かし、氷冷下でジエチルエーテル(450 mL)を撹拌しているところに、ゆっくり滴下して沈殿を析出
させた。これを吸引ろ過し目的物を含む薄い褐色の粉を425 mg得た。
この粗生成物の粉(425 mg, 1.02 mmol, F.W.418.49)をメタノール(8 mL)に溶かし、トリエチルアミン(0.65 mL, 4.02 mmol, 4当量)とトリフルオロ酢酸エチル(1.2 mL,
10.1 mmol, 10当量)を加えて室温で13.5時間撹拌した。反応が終了していなかったので、トリフルオロ酢酸エチル(1.2 mL, 10.1 mmol, 10当量)を追加して室温で2.5時間撹拌した。反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60, 40〜50μm,1〜6%メタノール/クロロホルム)で精製し、薄い褐色の粉の目的物21を得た。Rf値 0.37 [20%メタノール/クロロホルム]
収量 70 mg(0.136 mmol) 収率 13 % (12からの収率)
目的物21はNMRとESI-MSで同定した。
1H NMR (300 MHz, CD3OD)
δ8.11 (1H, s, H-2), 7.80 (1H, s, H-8), 7.75 (1H, d, J=15.6 Hz, CH),
6.53 (1H, t, J=7.2 Hz, H-1'), 6.42 (1H, d, J=15.3 Hz, CH),
4.52 (1H, m, H-3'), 4.02 (1H, m, H-4'), 3.77 (2H, m, H-5'),
3.31 (4H, m, -CH 2 NH-), 2.66 (1H, m, H-2'), 2.35 (1H, m, H-2'),
1.58〜1.28 (8H, m, -CH 2 CH 2 CH2NH-)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:515.2, Calc.:515.22 [(M+H)+]
Found:537.3, Calc.:537.22 [(M+Na)+] Synthesis of 7-Deaza-7- [N- (6-trifluoroacetyamidohexyl) -carbonylethenyl] -2'-deoxyadenosine 21
Figure 0004621921
Nucleoside 12 (338 mg, 1.01 mmol, FW334.33) and DMAP (13 mg, 0.106 mmol, 0.1 eq) are vacuum dried overnight and 1,6-diaminohexane (1.220 g, 10.5 mmol, 10 eq) in dry methanol (8 mL) solution was added and refluxed at 52 ° C. for 18 hours. Since the reaction was not completed, 1,6-diaminohexane (548 mg, 4.72 mmol, 4.7 equivalents) was added and refluxed for 17 hours. Since the reaction was completed, the reaction solution was distilled off under reduced pressure. Next, reprecipitation was performed in order to remove 1,6-diaminohexane contained in a large amount as much as possible. The residue was dissolved in methanol (10 mL), and diethyl ether (450 mL) was slowly stirred while ice-cooling to precipitate a precipitate. This was suction filtered to obtain 425 mg of a light brown powder containing the desired product.
This crude product powder (425 mg, 1.02 mmol, FW418.49) was dissolved in methanol (8 mL) and triethylamine (0.65 mL, 4.02 mmol, 4 eq) and ethyl trifluoroacetate (1.2 mL,
10.1 mmol, 10 equivalents) was added and stirred at room temperature for 13.5 hours. Since the reaction was not completed, ethyl trifluoroacetate (1.2 mL, 10.1 mmol, 10 equivalents) was added and stirred at room temperature for 2.5 hours. The reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 1-6% methanol / chloroform) to obtain the desired product 21 as a light brown powder. R f value 0.37 [20% methanol / chloroform]
Yield 70 mg (0.136 mmol) Yield 13% (Yield from 12 )
Target 21 was identified by NMR and ESI-MS.
1 H NMR (300 MHz, CD 3 OD)
δ8.11 (1H, s, H-2), 7.80 (1H, s, H-8), 7.75 (1H, d, J = 15.6 Hz, CH),
6.53 (1H, t, J = 7.2 Hz, H-1 '), 6.42 (1H, d, J = 15.3 Hz, CH),
4.52 (1H, m, H-3 '), 4.02 (1H, m, H-4'), 3.77 (2H, m, H-5 '),
3.31 (4H, m, -C H 2 NH-), 2.66 (1H, m, H-2 '), 2.35 (1H, m, H-2'),
1.58 to 1.28 (8H, m, -C H 2 C H 2 CH 2 NH-)
ESI-MS (positive mode) m / z [Attribution]
Found: 515.2, Calc .: 515.22 [(M + H) + ]
Found: 537.3, Calc .: 537.22 [(M + Na) + ]

7-Deaza-7-[N-(6-trifluoroacetyamidohexyl)-carbonylethenyl]-2'-deoxyadenosine-5'-triphosphate 22の合成

Figure 0004621921
ヌクレオシド12 (65 mg, 0.126 mmol, F.W.514.50)をDMF(6 mL)で2回、アセトニトリル(3 mL)で3回共沸し、3時間真空乾燥後、N,N,N',N'-テトラメチル-1,8-ナフタレンジアミン(Proton Sponge, 41mg, 0.189 mmol, 1.5当量)を一晩乾燥させた。これにリン酸トリメチル(0.9 mL)をアルゴン雰囲気下で加えて溶かした後、0℃に冷却した。塩化ホスホニル(19μL, 0.20 mmol, 1.6当量)を滴下し0℃で45分間撹拌した。さらにトリブチルアミン(0.12 mL, 0.50 mmol, 4.0当量 )と0.5Mピロリン酸トリブチルアンモニウムのDMF溶液(1.3 mL, 0.65 mmol, 5当量)を0℃で加え、反応液を室温に戻し1時間反応させた。1.0M炭酸水素トリエチルアンモニウム水溶液(pH8.0, 4mL)と水(4mL)を加えて反応を止め反応液を減圧留去した。続いて残渣を水に溶かしジエチルエーテルで2回洗浄し、水相をDEAE-Sephadex A-25カラムを用い、炭酸水素トリエチルアンモニウム水溶液(pH8.0)の塩濃度勾配(0.3〜1.0M)緩衝液により溶出した。これを高速液体クロマトグラフィーで精製し、目的物22を得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光
係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 10.9 OD260 nm(7.12×10-7mol) 収率 0.6 %
ESI-MS(ネガティブ・モード) m/z [帰属]
Found:753.1, Calc.:753.11 [(M-H)-]
<HPLC条件>
カラム TSK-GEL(ODS-80Ts,φ20×250mm)
溶媒 A : 50mM TEAA 流速 8ml/min
B: 50mM TEAA 70%MeCN Synthesis of 7-Deaza-7- [N- (6-trifluoroacetyamidohexyl) -carbonylethenyl] -2'-deoxyadenosine-5'-triphosphate 22
Figure 0004621921
Nucleoside 12 (65 mg, 0.126 mmol, FW514.50) was azeotroped twice with DMF (6 mL) and three times with acetonitrile (3 mL), dried in vacuo for 3 hours, and then N, N, N ', N' -Tetramethyl-1,8-naphthalenediamine (Proton Sponge, 41 mg, 0.189 mmol, 1.5 eq) was dried overnight. To this, trimethyl phosphate (0.9 mL) was added and dissolved in an argon atmosphere, and then cooled to 0 ° C. Phosphonyl chloride (19 μL, 0.20 mmol, 1.6 equivalents) was added dropwise and stirred at 0 ° C. for 45 minutes. Further, tributylamine (0.12 mL, 0.50 mmol, 4.0 equivalents) and 0.5 M tributylammonium pyrophosphate in DMF (1.3 mL, 0.65 mmol, 5 equivalents) were added at 0 ° C., and the reaction solution was allowed to return to room temperature and reacted for 1 hour. . 1.0M triethylammonium hydrogen carbonate aqueous solution (pH 8.0, 4 mL) and water (4 mL) were added to stop the reaction, and the reaction solution was distilled off under reduced pressure. Subsequently, the residue was dissolved in water and washed twice with diethyl ether. The aqueous phase was subjected to a salt concentration gradient (0.3 to 1.0 M) buffer solution of triethylammonium hydrogen carbonate aqueous solution (pH 8.0) using a DEAE-Sephadex A-25 column. Was eluted. This was purified by high performance liquid chromatography to give the intended product 22 . The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 10.9 OD 260 nm (7.12 × 10 -7 mol) Yield 0.6%
ESI-MS (negative mode) m / z [Attribution]
Found: 753.1, Calc .: 753.11 [(MH) - ]
<HPLC conditions>
Column TSK-GEL (ODS-80Ts, φ20 × 250mm)
Solvent A: 50mM TEAA Flow rate 8ml / min
B: 50mM TEAA 70% MeCN

Figure 0004621921
Figure 0004621921

7-Deaza-7-[N-(6-amidohexyl)-carbonylethenyl]-2'-deoxyadenosine-5'-triphosphate 23の合成

Figure 0004621921
ヌクレオチド22(360μL, 3.9 OD260nm, 2.55×10-7 mol,F.W.754.44)に4Nアンモニア水(360μL)を加え室温で3.5時間撹拌した。反応終了後、反応液を減圧留去し残渣を高速液体クロマトグラフィーによって精製し目的物23を収率47%で1.82 OD260nm得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 1.82 OD260 nm(1.19×10-7 mol) 収率 47%
ESI-MS(ネガティブ・モード) m/z [帰属]
Found:657.0, Calc.:657.13 [(M-H)-]
<HPLC条件>
カラム Wakosil 5C18(φ4.6×250mm)
溶媒 A : 50mM TEAA 流速 1ml/min
B: 50mM TEAA 70%MeCN Synthesis of 7-Deaza-7- [N- (6-amidohexyl) -carbonylethenyl] -2'-deoxyadenosine-5'-triphosphate 23
Figure 0004621921
4N ammonia water (360 μL) was added to nucleotide 22 (360 μL, 3.9 OD 260 nm , 2.55 × 10 −7 mol, FW754.44), and the mixture was stirred at room temperature for 3.5 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure, and the residue was purified by high performance liquid chromatography to obtain 1.82 OD 260 nm of the target product 23 in 47% yield. The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 1.82 OD 260 nm (1.19 × 10 -7 mol) Yield 47%
ESI-MS (negative mode) m / z [Attribution]
Found: 657.0, Calc .: 657.13 [(MH) - ]
<HPLC conditions>
Column Wakosil 5C18 (φ4.6 × 250mm)
Solvent A: 50mM TEAA Flow rate 1ml / min
B: 50mM TEAA 70% MeCN

Figure 0004621921
Figure 0004621921

<1-3>修飾7-デアザグアノシンの合成
2-Amino-6-chloro-7-deazaguanine 14の合成

Figure 0004621921
7-デアザグアニン13(1.00 g, 6.66 mmol, F.W.150.10)を塩化ホスホリル(80 mL, 883 mmol, 133当量)に懸濁させ、ジメチルアニリン(0.2 mL, 1.58 mmol, 0.2当量)を加えて115℃で1.5時間還流した。反応液を減圧留去し、氷と冷水でクエンチした。生じた沈殿を吸引ろ過し、ろ液に濃アンモニア水を滴下して結晶を析出させ、一晩室温で静置した。結晶を濾取し、目的物14を得た。ろ液は酢酸エチルで抽出し、有機相を無水硫酸マグネシウムで乾燥させ、ろ過し、ろ液を減圧留去した。この残渣をヘキサンで洗浄し、ジメチルアニリンを除去し、目的物14を得た。
Rf値 0.46 [10%メタノール/ジクロロメタン]
収量 0.639 g(5.71 mmol) 収率 86 %
1H NMR (300 MHz, CD3OD)
δ7.02 (1H, d, J=3.6 Hz, H-8), 7.62 (1H, d,J=3.6 Hz, H-7)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:169.0, Calc.:169.0 [(M+H)+]
Found:191.1, Calc.:191.0 [(M+Na)+] <1-3> Synthesis of modified 7-deazaguanosine
Synthesis of 2-Amino-6-chloro-7-deazaguanine 14
Figure 0004621921
7-Deazaguanine 13 (1.00 g, 6.66 mmol, FW150.10) was suspended in phosphoryl chloride (80 mL, 883 mmol, 133 eq), dimethylaniline (0.2 mL, 1.58 mmol, 0.2 eq) was added, and 115 ° C. At reflux for 1.5 hours. The reaction was evaporated under reduced pressure and quenched with ice and cold water. The resulting precipitate was filtered by suction, and concentrated ammonia water was added dropwise to the filtrate to precipitate crystals, which were allowed to stand overnight at room temperature. The crystals were collected by filtration to obtain the target product 14 . The filtrate was extracted with ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate and filtered, and the filtrate was distilled off under reduced pressure. This residue was washed with hexane to remove dimethylaniline to obtain the desired product 14 .
R f value 0.46 [10% methanol / dichloromethane]
Yield 0.639 g (5.71 mmol) Yield 86%
1 H NMR (300 MHz, CD 3 OD)
δ7.02 (1H, d, J = 3.6 Hz, H-8), 7.62 (1H, d, J = 3.6 Hz, H-7)
ESI-MS (positive mode) m / z [Attribution]
Found: 169.0, Calc .: 169.0 [(M + H) + ]
Found: 191.1, Calc .: 191.0 [(M + Na) + ]

2-Pivaloylamino-6-chloro-7-deazaguanine 15の合成

Figure 0004621921
化合物14(0.960 g, 5.70 mmol, F.W.168.52)をdryピリジン(8.4 mL)に懸濁させ、塩化ピバロイル(0.9 mL,7.4 mmol, 1.3当量)を加え、アルゴン雰囲気下、室温で4.5時間撹拌した。さらに、塩化ピバロイル(0.2 mL,1.7 mmol, 0.3当量)を追加して室温で1時間撹拌した。反応液を減圧留去した後、蒸留水を加えて懸濁させ減圧留去した。これを3回繰り返した。この残渣に冷水を加えて懸濁させ、ろ過し、赤紫色の目的物15を得た。Rf 値 0.60 [5%メタノール/クロロホルム]
収量 1.191 g(4.71 mmol) 収率 83 %
1H NMR (300 MHz, CDCl3)
δ11.75 (1H, s, N(9)-H), 8.21 (1H, s, N(2)-H), 7.50 (1H, m, H-8),
6.53 (1H, m, H-7), 1.39 (9H, s, pivaloyl methyls)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:253.3, Calc.:253.0 [(M+H)+]
Found:275.3, Calc.:275.0 [(M+Na)+] Synthesis of 2-Pivaloylamino-6-chloro-7-deazaguanine 15
Figure 0004621921
Compound 14 (0.960 g, 5.70 mmol, FW168.52) was suspended in dry pyridine (8.4 mL), pivaloyl chloride (0.9 mL, 7.4 mmol, 1.3 eq) was added, and the mixture was stirred at room temperature for 4.5 hours under an argon atmosphere. . Furthermore, pivaloyl chloride (0.2 mL, 1.7 mmol, 0.3 equivalent) was added, and the mixture was stirred at room temperature for 1 hour. After the reaction solution was distilled off under reduced pressure, distilled water was added to suspend the reaction solution and distilled off under reduced pressure. This was repeated three times. Cold water was added to the residue to suspend the residue, followed by filtration to obtain a reddish purple target product 15 . R f value 0.60 [5% methanol / chloroform]
Yield 1.191 g (4.71 mmol) Yield 83%
1 H NMR (300 MHz, CDCl 3 )
δ11.75 (1H, s, N (9) -H), 8.21 (1H, s, N (2) -H), 7.50 (1H, m, H-8),
6.53 (1H, m, H-7), 1.39 (9H, s, pivaloyl methyls)
ESI-MS (positive mode) m / z [Attribution]
Found: 253.3, Calc .: 253.0 [(M + H) + ]
Found: 275.3, Calc .: 275.0 [(M + Na) + ]

2-Pivaloylamino-6-chloro-7-deaza-7-iodoguanine 16の合成

Figure 0004621921
化合物15(1.877 g, 7.43 mmol, F.W.252.70)をdryDMF(11mL)に懸濁させ、N-ヨードスクシンイミド(1.674 g, 7.44 mmol, 1当量)をdryDMF(7.5mL)に溶かして加えた。これをアルゴン雰囲気下、室温で2時間撹拌した後、反応液を減圧留去した。この残渣に冷水(30 mL)を入れ、生じた沈殿をろ過し、黄褐色粉末状の目的物16を得た。Rf値 0.71 [5%メタノール/クロロホルム]
収量 2.741 g(7.24 mmol) 収率 97 %
1H NMR(300 MHz, CDCl3
δ11.87 (1H, s, N(9)-H), 8.23 (1H, s, N(2)-H), 7.58 (1H, d, J=2.7 Hz, H-8),
1.38 (9H, s, pivaloyl methyl)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:379.1, Calc.:378.9 [(M+H)+]
Found:401.1, Calc.:400.9 [(M+Na)+] Synthesis of 2-Pivaloylamino-6-chloro-7-deaza-7-iodoguanine 16
Figure 0004621921
Compound 15 (1.877 g, 7.43 mmol, FW252.70) was suspended in dryDMF (11 mL), and N-iodosuccinimide (1.674 g, 7.44 mmol, 1 equivalent) was dissolved in dryDMF (7.5 mL) and added. After stirring this at room temperature for 2 hours under an argon atmosphere, the reaction solution was distilled off under reduced pressure. Cold water (30 mL) was added to the residue, and the resulting precipitate was filtered to obtain target product 16 in the form of tan powder. R f value 0.71 [5% methanol / chloroform]
Yield 2.741 g (7.24 mmol) Yield 97%
1 H NMR (300 MHz, CDCl 3 )
δ11.87 (1H, s, N (9) -H), 8.23 (1H, s, N (2) -H), 7.58 (1H, d, J = 2.7 Hz, H-8),
1.38 (9H, s, pivaloyl methyl)
ESI-MS (positive mode) m / z [Attribution]
Found: 379.1, Calc .: 378.9 [(M + H) + ]
Found: 401.1, Calc .: 400.9 [(M + Na) + ]

3',5'-Di-O-(4-toluoyl)-N2-pivaloyl-6-chloro-7-deaza-7-iodo-2'-deoxyguanosine 17
の合成

Figure 0004621921
化合物16(1.343 g,3.55 mmol, F.W.378.60)をdry アセトニトリル(24 mL)に懸濁させ、水素化ナトリウム(60% in oil ,0.365 g, 9.13 mmol, 2.6当量)を加えアルゴン雰囲気下、室温で10min撹拌し、48℃で30秒加熱した後、室温まで冷ました。続いて、1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentfuranose(1.548 g, 3.98 mmol, 1.1当量)を加えて室温で4時間撹拌した。反応が終了していなかったので1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentfuranose(0.270g,0.694 mmol, 0.2当量)加えて17時間撹拌した。反応液を濾過して沈殿物を除去し、ろ液を減圧留去した。残渣をクロロホルムに溶かし、冷飽和NaHCO3、冷食塩水、冷水で洗浄した。有機相を無水硫酸マグネシウムで乾燥させ、ろ過してろ液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 40〜50μm, クロロホルム/ヘキサン=9/1)で精製した。さらに、メタノールから結晶を析出させて、白色粉末状の目的物17を得た。Rf値 0.71 [酢酸エチル/ヘキサン= 1/2]
収量 0.666 g(0.911 mmol) 収率 26 %
1H NMR(300 MHz, CDCl3
δ8.15 (1H, s, N(2)-H), 7.94 (4H, m, toluoyl), 7.41 (1H, s, H-8),
7.25 (4H, m, toluoyl), 6.73 (1H, t, J=6.0 Hz, H-1'), 5.77 (1H, m, H-3'),
4.69 (2H, m, H-5'), 4.56 (2H, m, H-4'), 2.85 (2H, m, H-2'),
2.43 (6H, 2s, toluoyl methyl), 1.32 (9H, s, pivaloyl methyl)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:731.2, Calc.:731.1 [(M+H)+]
Found:753.2, Calc.:753.2 [(M+Na)+] 3 ', 5'-Di-O- (4-toluoyl) -N 2 -pivaloyl-6-chloro-7-deaza-7-iodo-2'-deoxyguanosine 17
Synthesis of
Figure 0004621921
Compound 16 (1.343 g, 3.55 mmol, FW378.60) was suspended in dry acetonitrile (24 mL), sodium hydride (60% in oil, 0.365 g, 9.13 mmol, 2.6 equivalents) was added, and room temperature was maintained under an argon atmosphere at room temperature. For 10 min, heated at 48 ° C for 30 seconds, and then cooled to room temperature. Subsequently, 1-chloro-2-deoxy-3,5-di-Op-toluoyl-α-D-erythro-pentfuranose (1.548 g, 3.98 mmol, 1.1 eq) was added and stirred at room temperature for 4 hours. Since the reaction was not completed, 1-chloro-2-deoxy-3,5-di-Op-toluoyl-α-D-erythro-pentfuranose (0.270 g, 0.694 mmol, 0.2 equivalent) was added and stirred for 17 hours. The reaction solution was filtered to remove the precipitate, and the filtrate was distilled off under reduced pressure. The residue was dissolved in chloroform and washed with cold saturated NaHCO 3 , cold brine and cold water. The organic phase was dried over anhydrous magnesium sulfate, filtered and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 40-50 μm, chloroform / hexane = 9/1). Further, crystals were precipitated from methanol to obtain the target product 17 as a white powder. R f value 0.71 [ethyl acetate / hexane = 1/2]
Yield 0.666 g (0.911 mmol) Yield 26%
1 H NMR (300 MHz, CDCl 3 )
δ8.15 (1H, s, N (2) -H), 7.94 (4H, m, toluoyl), 7.41 (1H, s, H-8),
7.25 (4H, m, toluoyl), 6.73 (1H, t, J = 6.0 Hz, H-1 '), 5.77 (1H, m, H-3'),
4.69 (2H, m, H-5 '), 4.56 (2H, m, H-4'), 2.85 (2H, m, H-2 '),
2.43 (6H, 2s, toluoyl methyl), 1.32 (9H, s, pivaloyl methyl)
ESI-MS (positive mode) m / z [Attribution]
Found: 731.2, Calc .: 731.1 [(M + H) + ]
Found: 753.2, Calc .: 753.2 [(M + Na) + ]

3',5'-Di-O-(4-toluoyl)-6-chloro-7-deaza-7-[2-(methoxycarbonyl)ethenyl]-N2-pivaloyl- 2'-deoxyguanosine 18の合成

Figure 0004621921
ヌクレオシド17(575 mg, 0.784 mmol, F.W.730.98)をdryDMF(7.8 mL)に溶かし、この溶液にアルゴンを10分間吹き込ませた。この溶液に、メチルアクリレート(29 mL, 323
mmol, 412当量)、ヨウ化銅(299 mg, 1.57 mmol, 2当量)、トリフェニルホスフィンパラジウム(Pd(PPh3)4, 905 mg, 0.783 mmol, 1当量)、トリエチルアミン(0.34 mL, 2.44 mmol, 3当量)を順に加え70℃で3時間撹拌した。反応液を減圧留去し、残渣をCH2Cl2(120 mL)に懸濁させ、飽和重ソウ水、飽和食塩水、蒸留水でそれぞれ1回ずつ洗浄した。有機相を無水硫酸マグネシウムで乾燥させ、ろ過し、ろ液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 40-50μm,2〜8%酢酸エチル/クロロホルム)で精製し、白色粉末状の目的物18を得た。Rf値 0.51 [ジクロロメタン/酢酸エチル= 9/1]
収量 402 mg(0.584 mmol) 収率 74 %
1H NMR(300 MHz, CDCl3
δ8.16 (1H, s, N(2)-H), 8.07 (1H, d, J=15.0 Hz, CH), 7.94 (4H, m, toluoyl),
7.61 (1H, s, H-8), 7.27 (4H, m, toluoyl), 6.77 (1H, t, J=6.0 Hz, H-1'),
5.96 (1H, d, J=15.9 Hz, CH), 5.81 (1H, m, H-3'), 4.80 (2H, m, H-4'),
4.63 (2H, m, H-5'), 3.80 (3H, s, OCH3), 2.88 (2H, m, H-2'),
2.43 (6H, 2s, toluoyl methyl), 1.34 (9H, s, pivaloyl methyl)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:689.1, Calc.:689.2 [(M+H)+]
Found:711.1, Calc.:711.2 [(M+Na)+] Synthesis of 3 ', 5'-Di-O- (4-toluoyl) -6-chloro-7-deaza-7- [2- (methoxycarbonyl) ethenyl] -N 2 -pivaloyl-2'-deoxyguanosine 18
Figure 0004621921
Nucleoside 17 (575 mg, 0.784 mmol, FW730.98) was dissolved in dryDMF (7.8 mL), and argon was blown into this solution for 10 minutes. To this solution was added methyl acrylate (29 mL, 323
mmol, 412 equivalents), copper iodide (299 mg, 1.57 mmol, 2 equivalents), triphenylphosphine palladium (Pd (PPh 3 ) 4 , 905 mg, 0.783 mmol, 1 equivalent), triethylamine (0.34 mL, 2.44 mmol, 3 equivalents) were added in order, and the mixture was stirred at 70 ° C. for 3 hours. The reaction solution was evaporated under reduced pressure, the residue was suspended in CH 2 Cl 2 (120 mL), and washed once each with saturated aqueous sodium bicarbonate, saturated brine, and distilled water. The organic phase was dried over anhydrous magnesium sulfate and filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 2-8% ethyl acetate / chloroform) to obtain the target product 18 as a white powder. R f value 0.51 [dichloromethane / ethyl acetate = 9/1]
Yield 402 mg (0.584 mmol) Yield 74%
1 H NMR (300 MHz, CDCl 3 )
δ8.16 (1H, s, N (2) -H), 8.07 (1H, d, J = 15.0 Hz, CH), 7.94 (4H, m, toluoyl),
7.61 (1H, s, H-8), 7.27 (4H, m, toluoyl), 6.77 (1H, t, J = 6.0 Hz, H-1 '),
5.96 (1H, d, J = 15.9 Hz, CH), 5.81 (1H, m, H-3 '), 4.80 (2H, m, H-4'),
4.63 (2H, m, H-5 '), 3.80 (3H, s, OCH 3 ), 2.88 (2H, m, H-2'),
2.43 (6H, 2s, toluoyl methyl), 1.34 (9H, s, pivaloyl methyl)
ESI-MS (positive mode) m / z [Attribution]
Found: 689.1, Calc .: 689.2 [(M + H) + ]
Found: 711.1, Calc .: 711.2 [(M + Na) + ]

7-Deaza-O6-methoxy-7-[2-(methoxycarbonyl)ethenyl]-N2-pivaloyl-2'-deoxyguanosine 19の合成

Figure 0004621921
ヌクレオシド18(172 mg, 0.250 mmol, F.W.689.15)を0.5 N NaOMeメタノール溶液(1.5 mL, 0.78 mmol, 3当量)に懸濁させ、77℃で1時間還流した。反応終了後、氷冷下で反応液(pH 9)を6 N 塩酸で中和し(pH 6)、これを減圧留去した。残渣に2-プロパノール(2 mL)加えて懸濁させた後、減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 40〜50μm, 1〜5%メタノール/ジクロロメタン)で精製し、目的物19を得た。Rf値 0.49 [10%メタノール/ジクロロメタン]
収量 68 mg(0.19 mmol) 収率 76 %
1H NMR(300 MHz, CD3OD)
δ7.73 (1H, d, J=15.6 Hz, CH), 7.55 (1H, s, H-8), 6.64 (1H, d, J=15.9 Hz, CH),
6.39 (1H, t, J=6.6 Hz, H-1'), 4.50 (1H, m, H-3'), 4.05 (3H, s, O(6)CH3),
3.97 (2H, m, H-4'), 3.75 (5H, m, H-5' and OCH3), 2.60 (1H, m, H-2'),
2.30 (1H, m, H-2')
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:365.2, Calc.:365.1 [(M+H)+]
Found:387.2, Calc.:387.1 [(M+Na)+] Synthesis of 7-Deaza-O 6 -methoxy-7- [2- (methoxycarbonyl) ethenyl] -N 2 -pivaloyl-2'-deoxyguanosine 19
Figure 0004621921
Nucleoside 18 (172 mg, 0.250 mmol, FW689.15) was suspended in 0.5 N NaOMe methanol solution (1.5 mL, 0.78 mmol, 3 equivalents) and refluxed at 77 ° C. for 1 hour. After completion of the reaction, the reaction solution (pH 9) was neutralized with 6 N hydrochloric acid (pH 6) under ice cooling, and this was distilled off under reduced pressure. 2-Propanol (2 mL) was added to the residue for suspension, and then the residue was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 1-5% methanol / dichloromethane) to give the intended product 19 . R f value 0.49 [10% methanol / dichloromethane]
Yield 68 mg (0.19 mmol) Yield 76%
1 H NMR (300 MHz, CD 3 OD)
δ7.73 (1H, d, J = 15.6 Hz, CH), 7.55 (1H, s, H-8), 6.64 (1H, d, J = 15.9 Hz, CH),
6.39 (1H, t, J = 6.6 Hz, H-1 '), 4.50 (1H, m, H-3'), 4.05 (3H, s, O (6) CH 3 ),
3.97 (2H, m, H-4 '), 3.75 (5H, m, H-5' and OCH 3 ), 2.60 (1H, m, H-2 '),
2.30 (1H, m, H-2 ')
ESI-MS (positive mode) m / z [Attribution]
Found: 365.2, Calc .: 365.1 [(M + H) + ]
Found: 387.2, Calc .: 387.1 [(M + Na) + ]

7-Deaza-7-[2-(methoxycarbonyl)ethenyl]-N2-pivaloyl-2'-deoxyguanosine 20の合成

Figure 0004621921
ヌクレオシド19(94 mg, 0.21 mmol, F.W.448.47)をdryアセトニトリル(23.5 mL)に懸濁させ、ヨウ化ナトリウム(70 mg, 0.47 mmol, 2.2当量)と塩化トリメチルシラン(64μL, 0.51 mmol, 2.4当量)を加えアルゴン雰囲気下、室温で1時間撹拌した。さらに92℃で2時間還流し、反応液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 40-50μm, 0.5〜10%メタノール/ジクロロメタン)で精製し、黄色粉末状の目的物20(F.W.434.44)を得た。
Rf値 0.37 [10%メタノール/ジクロロメタン]
収量 53 mg(0.12 mmol) 収率 57 %
1H NMR(300 MHz, CD3OD)
δ7.73 (3H, d, H-8 and CH), 7.18 (1H, d, J=15.6 Hz, CH),
6.54 (1H, t, J=6.9 Hz, H-1'), 4.48 (1H, m, H-3'), 3.94 (2H, m, H-4'),
3.74 (5H, m, H-5' and OCH3), 2.46 (1H, m, H-2'), 2.34 (1H, m, H-2')
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:435.3, Calc.:435.1 [(M+H)+]
Found:457.3, Calc.:457.1 [(M+Na)+] Synthesis of 7-Deaza-7- [2- (methoxycarbonyl) ethenyl] -N 2 -pivaloyl-2'-deoxyguanosine 20
Figure 0004621921
Nucleoside 19 (94 mg, 0.21 mmol, FW448.47) was suspended in dry acetonitrile (23.5 mL), sodium iodide (70 mg, 0.47 mmol, 2.2 eq) and trimethylsilane chloride (64 μL, 0.51 mmol, 2.4 eq) ) And stirred at room temperature for 1 hour under an argon atmosphere. The mixture was further refluxed at 92 ° C. for 2 hours, and the reaction solution was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 0.5-10% methanol / dichloromethane) to obtain the target product 20 (FW434.44) as a yellow powder.
R f value 0.37 [10% methanol / dichloromethane]
Yield 53 mg (0.12 mmol) Yield 57%
1 H NMR (300 MHz, CD 3 OD)
δ7.73 (3H, d, H-8 and CH), 7.18 (1H, d, J = 15.6 Hz, CH),
6.54 (1H, t, J = 6.9 Hz, H-1 '), 4.48 (1H, m, H-3'), 3.94 (2H, m, H-4 '),
3.74 (5H, m, H-5 'and OCH 3 ), 2.46 (1H, m, H-2'), 2.34 (1H, m, H-2 ')
ESI-MS (positive mode) m / z [Attribution]
Found: 435.3, Calc .: 435.1 [(M + H) + ]
Found: 457.3, Calc .: 457.1 [(M + Na) + ]

<2>PCRにおける基質特性
<2-1>使用機器および試剤
PCR 増幅装置 TECHNE Progege
TECHNE Techgene
電気泳動装置 コスモバイオ Mupid-2
コスモバイオ Mupid-21
解析装置 BIO-RAD Molecular Imager FX PRO
PCRに使用した酵素等は以下のものを使用した。
pUC18 DNA(鋳型) 宝酒造
Primer 1,2(配列番号1,2) 北海道システム・サイエンス
100 bp DNA Ladder Bio Labs
Vent(exo-) DNA polymerase Bio Labs
KOD Dash DNA polymerase 東洋紡
Taq DNA polymerase 宝酒造
Tth DNA polymerase 東洋紡
<2> Substrate characteristics in PCR <2-1> Equipment and reagents used
PCR amplifier TECHNE Progege
TECHNE Techgene
Electrophoresis device Cosmo Bio Mupid-2
Cosmo Bio Mupid-21
Analyzer BIO-RAD Molecular Imager FX PRO
The following enzymes were used for PCR.
pUC18 DNA (template) Takara Shuzo
Primer 1,2 (SEQ ID NOs: 1, 2) Hokkaido System Science
100 bp DNA Ladder Bio Labs
Vent (exo-) DNA polymerase Bio Labs
KOD Dash DNA polymerase Toyobo
Taq DNA polymerase Takara Shuzo
Tth DNA polymerase Toyobo

<2-2>PCR条件
修飾基質A1,A2,A3を用いたPCRの反応溶液は、表4、表5に従ってそれぞれ調製し、表6の温度条件でPCRを行った。結果を図1に示した。
<2-2> PCR conditions PCR reaction solutions using the modified substrates A1, A2, and A3 were prepared according to Tables 4 and 5, respectively, and PCR was performed under the temperature conditions shown in Table 6. The results are shown in FIG.

Figure 0004621921
Figure 0004621921

Figure 0004621921
Figure 0004621921

Figure 0004621921
Figure 0004621921

2種類の修飾基質(A2とT1or T2, A3とC1 or C2)或いは3種類の修飾基質(A2とT1とC1, A3とT2とC2)を同時に使用し、DNAポリメラーゼにVent(exo-)を用いたPCRの反応液は、表7に従って調製し、表6の温度条件でPCRを行った。また、2種類の修飾基質(A2とT1or T2, A3とC1 or C2)或いは3種類の修飾基質(A2とT1とC1, A3とT2とC2)を同時に使用し、DNAポリメラーゼにKOD Dashを用いたPCRの反応液は、表8に従って調製し、表6の温度条件でPCRを行った。結果を図2に示した。   Use two modified substrates (A2 and T1or T2, A3 and C1 or C2) or three modified substrates (A2 and T1 and C1, A3 and T2 and C2) at the same time, and use Vent (exo-) for DNA polymerase. The PCR reaction solution used was prepared according to Table 7, and PCR was performed under the temperature conditions shown in Table 6. Also, use two types of modified substrates (A2 and T1or T2, A3 and C1 or C2) or three types of modified substrates (A2 and T1 and C1, A3 and T2 and C2) at the same time, and use KOD Dash for DNA polymerase. The PCR reaction solution was prepared according to Table 8, and PCR was performed under the temperature conditions shown in Table 6. The results are shown in FIG.

Figure 0004621921
Figure 0004621921

Figure 0004621921
Figure 0004621921

<2-3>ゲル電気泳動によるPCR生成物の確認
PCR終了後、反応液(20μL)に色素液(1mM EDTA , 0.25%キシレンシアノール, 30%グリセロール)2μLを加え、遠心とボルテックスで均一な溶液にし、その内10μLを2%アガロースゲル電気泳動(0.5×TBE buffer, 100V, 45 分間)させた後、5μg/mL臭化エチジウム水溶液で50分間染色し、解析装置(BIO-RAD Molecular Imager FX PRO)によって確認した。
<2-3> Confirmation of PCR products by gel electrophoresis
After completion of PCR, add 2 μL of dye solution (1 mM EDTA, 0.25% xylene cyanol, 30% glycerol) to the reaction solution (20 μL), and centrifuge and vortex to make a homogeneous solution, 10 μL of which is 2% agarose gel electrophoresis ( 0.5 × TBE buffer, 100 V, 45 minutes), and then stained with 5 μg / mL ethidium bromide aqueous solution for 50 minutes, and confirmed by an analyzer (BIO-RAD Molecular Imager FX PRO).

dATPアナログA2はいずれのポリメラーゼにも良い基質として認識され、対応する生成物を与えた。また、修飾基質A3はDNAポリメラーゼにKOD Dashを用いた場合、副生成物が見られた(図1 レーン20)。一方、A1はKOD Dashを除くいずれのDNAポリメラーゼの基質にならなかったが、KOD Dashには認識され、対応するPCR産物が生成した。
PCRにおいて最も基質特性が優れていたA2を用いて二重修飾DNAおよび三重修飾DNAのPCRによる調製を行ったところ、全ての組み合わせにおいて、多重修飾DNAが生成した(図2)。
dATP analog A2 was recognized as a good substrate for both polymerases and gave the corresponding product. In addition, when KOD Dash was used as the DNA polymerase, a modified product A3 was seen as a by-product (FIG. 1, lane 20). On the other hand, A1 was not a substrate for any DNA polymerase except KOD Dash, but was recognized by KOD Dash and a corresponding PCR product was produced.
When double-modified DNA and triple-modified DNA were prepared by PCR using A2, which had the best substrate characteristics in PCR, multiple modified DNA was generated in all combinations (FIG. 2).

<3>修飾7-デアザアデノシン三リン酸の合成〜その2
7-Deaza-7-(methoxycarbonylethyl) -2'-deoxyadenosine 24の合成

Figure 0004621921
ナスフラスコに乾燥させたヌクレオシド12(262 mg, 0.784 mg)をMeOH(70 mL)に溶かした後、PtO2(5mg)を加えて撹拌し、さらに水素ガスを吹き込み、室温で1時間反応させた。反応終了後、反応液をろ過して、濾液を減圧留去した。残渣をシリカゲルカラム(MeOH:CH2Cl2=1:9)で精製した。
収量 146 mg(0.435 mmol) 収率 55 %
1H NMR (300 MHz, CD3OD)
δ8.04 (1H, s, H-2), 7.13 (1H, s, H-8), 6.47 (1H, t, H-1'),
4.52 (1H, m, H-3'), 4.00 (1H, m, H-4'), 3.75 (2H, m, H-5'),
3.68 (3H, s, -OMe), 3.08 (2H, t, -CH2-), 2.68 (2H, t, -CH2-),
2.63 (1H, m, H-2'), 2.27 (1H, m, H-2')
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:337.2, Calc.:337.14 [(M+H)+]
Found:359.0, Calc.:559.14 [(M+Na)+] <3> Synthesis of Modified 7-Deazaadenosine Triphosphate-Part 2
Synthesis of 7-Deaza-7- (methoxycarbonylethyl) -2'-deoxyadenosine 24
Figure 0004621921
Nucleoside 12 (262 mg, 0.784 mg) dried in an eggplant flask was dissolved in MeOH (70 mL), then PtO 2 (5 mg) was added and stirred, and hydrogen gas was blown into the flask and reacted at room temperature for 1 hour. . After completion of the reaction, the reaction solution was filtered, and the filtrate was distilled off under reduced pressure. The residue was purified by silica gel column (MeOH: CH 2 Cl 2 = 1: 9).
Yield 146 mg (0.435 mmol) Yield 55%
1 H NMR (300 MHz, CD 3 OD)
δ8.04 (1H, s, H-2), 7.13 (1H, s, H-8), 6.47 (1H, t, H-1 '),
4.52 (1H, m, H-3 '), 4.00 (1H, m, H-4'), 3.75 (2H, m, H-5 '),
3.68 (3H, s, -OMe), 3.08 (2H, t, -CH 2- ), 2.68 (2H, t, -CH 2- ),
2.63 (1H, m, H-2 '), 2.27 (1H, m, H-2')
ESI-MS (positive mode) m / z [Attribution]
Found: 337.2, Calc .: 337.14 [(M + H) + ]
Found: 359.0, Calc .: 559.14 [(M + Na) + ]

7-Deaza-7-(methoxycarbonylethyl) -2'-deoxyadenosine-5'-triphosphate 25の合成

Figure 0004621921
ヌクレオシド24(145 mg, 0.432 mmol, F.W.336)とDMAP(5.3 mg, 0.0432 mmol, 0.1当量)を一晩真空乾燥し、1,6-diaminohexane(0.502 g, 1.07 mmol, 10当量)のdryメタノール(3.5 mL)溶液を加えて52℃で15時間還流した。反応が終了していなかったので、1,6-diaminohexane(251 mg, 0.535 mmol, 5当量)追加して24時間還流した。反応が終了していたので反応液を減圧留去した。この粗生成物の粉(1.01 g, 2.4 mmol, F.W.420)をメタノール(20 mL)に溶かし、トリエチルアミン(0.97 mL, 9.6 mmol, 4当量)とトリフルオロ酢酸エチル(3.4 mL, 24 mmol, 10当量)を加えて室温で4時間撹拌した。反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60, 40〜50μm,5〜11%メタノール/クロロホルム)で精製し、目的物25を得た。
収量 203 mg(0.432 mmol) 収率 91 % (12からの収率)
目的物25はNMRとESI-MSで同定した。
1H NMR (300 MHz, CD3OD)
δ8.09 (1H, s, H-2), 7.26 (1H, s, H-8), 6.53 (1H, t, H-1'),
4.50 (1H, m, H-3'), 3.99 (1H, m, H-4'), 3.72 (2H, m, H-5'),
3.31-3.06 (4H, m, -CH 2 NH-), 3.08 (2H, t, -CH2-), 2.54 (1H, m, H-2'),
2.53 (2H, t, -CH2-), 2.29 (1H, m, H-2'), 1.61-1.23(8H, m, -CH 2 CH 2 CH2NH-)
ESI-MS(ポジティブ・モード) m/z [帰属]
Found:517.2, Calc.:516.23 [(M+H)+]
Found:539.2, Calc.:539.23 [(M+Na)+] Synthesis of 7-Deaza-7- (methoxycarbonylethyl) -2'-deoxyadenosine-5'-triphosphate 25
Figure 0004621921
Nucleoside 24 (145 mg, 0.432 mmol, FW336) and DMAP (5.3 mg, 0.0432 mmol, 0.1 eq) were vacuum-dried overnight and 1,6-diaminohexane (0.502 g, 1.07 mmol, 10 eq) in dry methanol (3.5 mL) solution was added and refluxed at 52 ° C. for 15 hours. Since the reaction was not completed, 1,6-diaminohexane (251 mg, 0.535 mmol, 5 equivalents) was added and refluxed for 24 hours. Since the reaction was completed, the reaction solution was distilled off under reduced pressure. Dissolve the crude product powder (1.01 g, 2.4 mmol, FW420) in methanol (20 mL), triethylamine (0.97 mL, 9.6 mmol, 4 equivalents) and ethyl trifluoroacetate (3.4 mL, 24 mmol, 10 equivalents) And stirred at room temperature for 4 hours. The reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 5-11% methanol / chloroform) to obtain the intended product 25 .
Yield 203 mg (0.432 mmol) Yield 91% (Yield from 12 )
The target product 25 was identified by NMR and ESI-MS.
1 H NMR (300 MHz, CD 3 OD)
δ8.09 (1H, s, H-2), 7.26 (1H, s, H-8), 6.53 (1H, t, H-1 '),
4.50 (1H, m, H-3 '), 3.99 (1H, m, H-4'), 3.72 (2H, m, H-5 '),
3.31-3.06 (4H, m, -C H 2 NH-), 3.08 (2H, t, -CH 2- ), 2.54 (1H, m, H-2 '),
2.53 (2H, t, -CH 2- ), 2.29 (1H, m, H-2 '), 1.61-1.23 (8H, m, -C H 2 C H 2 CH 2 NH-)
ESI-MS (positive mode) m / z [Attribution]
Found: 517.2, Calc .: 516.23 [(M + H) + ]
Found: 539.2, Calc .: 539.23 [(M + Na) + ]

7-Deaza-7-[N-(6-trifluoroacetyamidohexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphate 26の合成

Figure 0004621921
ヌクレオシド25 (106 mg, 0.205 mmol, F.W.516)をDMF(6 mL)で2回、アセトニトリル(3 mL)で3回共沸し、3時間真空乾燥後、N,N,N',N'-テトラメチル-1,8-ナフタレンジアミン(Proton Sponge, 66mg, 0.308 mmol, 1.5当量)を一晩乾燥させた。これにリン酸トリメチル(1.47 mL)をアルゴン雰囲気下で加えて溶かした後、0℃に冷却した。塩化ホスホニル(31μL, 0.33 mmol, 1.6当量)を滴下し0℃で45分間撹拌した。さらにトリブチルアミン(0.197 mL, 0.82 mmol, 4.0当量 )と0.5Mピロリン酸トリブチルアンモニウムのDMF溶液(2.12 mL, 1.03 mmol, 5当量)を0℃で加え、反応液を室温に戻し1時間反応させた。1.0M炭酸水素トリエチルアンモニウム水溶液(pH8.0, 4mL)と水(4mL)を加えて反応を止め反応液を減圧留去した。続いて残渣を水に溶かしジエチルエーテルで2回洗浄し、水相をDEAE-Sephadex A-25カラムを用い、炭酸水素トリエチルアンモニウム水溶液(pH8.0)の塩濃度勾配(0.3〜1.0M)緩衝液により溶出した。これを高速液体クロマトグラフィーで精製し、目的物26を得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 89.9 OD260 nm(5.88×10-6mol) 収率 3 %
ESI-MS(ネガティブ・モード) m/z [帰属]
Found:755.2, Calc.:755.13 [(M-H)-]
<HPLC条件>
カラム TSK-GEL(ODS-80Ts,φ20×250mm)
溶媒 A : 50mM TEAA 流速 8ml/min
B: MeCN Synthesis of 7-Deaza-7- [N- (6-trifluoroacetyamidohexyl) -carbonylethyl] -2'-deoxyadenosine-5'-triphosphate 26
Figure 0004621921
Nucleoside 25 (106 mg, 0.205 mmol, FW516) was azeotroped twice with DMF (6 mL) and three times with acetonitrile (3 mL), dried in vacuo for 3 hours, and then N, N, N ', N'-tetra Methyl-1,8-naphthalenediamine (Proton Sponge, 66 mg, 0.308 mmol, 1.5 eq) was dried overnight. To this, trimethyl phosphate (1.47 mL) was added and dissolved in an argon atmosphere, and then cooled to 0 ° C. Phosphonyl chloride (31 μL, 0.33 mmol, 1.6 eq) was added dropwise and stirred at 0 ° C. for 45 minutes. Further, tributylamine (0.197 mL, 0.82 mmol, 4.0 equivalent) and 0.5 M tributylammonium pyrophosphate in DMF (2.12 mL, 1.03 mmol, 5 equivalent) were added at 0 ° C., and the reaction solution was allowed to return to room temperature and reacted for 1 hour. . 1.0M triethylammonium hydrogen carbonate aqueous solution (pH 8.0, 4 mL) and water (4 mL) were added to stop the reaction, and the reaction solution was distilled off under reduced pressure. Subsequently, the residue was dissolved in water and washed twice with diethyl ether. The aqueous phase was subjected to a salt concentration gradient (0.3 to 1.0 M) buffer solution of triethylammonium hydrogen carbonate aqueous solution (pH 8.0) using a DEAE-Sephadex A-25 column. Was eluted. This was purified by high performance liquid chromatography to give the intended product 26 . The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 89.9 OD 260 nm (5.88 × 10 -6 mol) Yield 3%
ESI-MS (negative mode) m / z [Attribution]
Found: 755.2, Calc .: 755.13 [(MH) - ]
<HPLC conditions>
Column TSK-GEL (ODS-80Ts, φ20 × 250mm)
Solvent A: 50mM TEAA Flow rate 8ml / min
B: MeCN

Figure 0004621921
Figure 0004621921

7-Deaza-7-[N-(6-amidohexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphate 27の合成

Figure 0004621921
ヌクレオチド26を含む水溶液(830μL, 74.6 OD260nm, 4.90×10-6 mol, F.W.756)に4Nアンモニア水(5 mL)を加え室温で2時間撹拌した。反応終了後、反応液を減圧留去し残渣を高速液体クロマトグラフィーによって精製し目的物27を収率97%で72.0 OD260nm得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 72.0 OD260 nm(4.71×10-6 mol) 収率 97%
ESI-MS(ネガティブ・モード) m/z [帰属]
Found:658.9, Calc.:659.15 [(M-H)-]
<HPLC条件>
カラム TSK-GEL(ODS-80Ts,φ20×250mm)
溶媒 A : 50mM TEAA 流速 8ml/min
B: MeCN Synthesis of 7-Deaza-7- [N- (6-amidohexyl) -carbonylethyl] -2'-deoxyadenosine-5'-triphosphate 27
Figure 0004621921
4N ammonia water (5 mL) was added to an aqueous solution containing nucleotide 26 (830 μL, 74.6 OD 260 nm , 4.90 × 10 −6 mol, FW756), and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure, and the residue was purified by high performance liquid chromatography to obtain 72.0 OD 260 nm of the intended product 27 in 97% yield. The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 72.0 OD 260 nm (4.71 × 10 -6 mol) Yield 97%
ESI-MS (negative mode) m / z [Attribution]
Found: 658.9, Calc .: 659.15 [(MH) - ]
<HPLC conditions>
Column TSK-GEL (ODS-80Ts, φ20 × 250mm)
Solvent A: 50mM TEAA Flow rate 8ml / min
B: MeCN

Figure 0004621921
Figure 0004621921

7-Deaza-7-[N-(6-guanidinumhexyl)-carbonylethyl]-2'-deoxyadenosine-5'-triphosphate 28の合成

Figure 0004621921
乾燥させたヌクレオシド27(35 OD260nm, 2.33×10-6 mol, F.W.660)に1 M エチルチ
オウレアのDMF溶液(513μL, 5.13×10-6 mol, 220当量)およびトリエチルアミン(143μL, 440当量)を加え、室温で3時間撹拌した。反応液を減圧留去し、残渣を高速液体クロマトグラフィーで精製し、目的物28を収率51%で得た。なお、収率は2'-デオキシアデノシン三リン酸のモル吸光係数(ε260 nm= 15300 mol-1L cm-1)を用いて計算した。
収量 17.9 OD260 nm(1.17×10-6mol) 収率 51 %
ESI-MS(ネガティブ・モード) m/z [帰属]
Found:701.3, Calc.:701.17 [(M-H)-]
<HPLC条件>
カラム TSK-GEL(ODS-80Ts,φ20×250mm)
溶媒 A : 50mM TEAA 流速 8ml/min
B: MeCN Synthesis of 7-Deaza-7- [N- (6-guanidinumhexyl) -carbonylethyl] -2'-deoxyadenosine-5'-triphosphate 28
Figure 0004621921
Add 1 M ethylthiourea DMF solution (513 μL, 5.13 × 10 -6 mol, 220 equivalents) and triethylamine (143 μL, 440 equivalents) to dried nucleoside 27 (35 OD 260 nm , 2.33 × 10 -6 mol, FW660) And stirred at room temperature for 3 hours. The reaction solution was distilled off under reduced pressure, and the residue was purified by high performance liquid chromatography to obtain the target product 28 in 51% yield. The yield was calculated using the molar extinction coefficient of 2′-deoxyadenosine triphosphate (ε 260 nm = 15300 mol −1 L cm −1 ).
Yield 17.9 OD 260 nm (1.17 × 10 -6 mol) Yield 51%
ESI-MS (negative mode) m / z [Attribution]
Found: 701.3, Calc .: 701.17 [(MH) - ]
<HPLC conditions>
Column TSK-GEL (ODS-80Ts, φ20 × 250mm)
Solvent A: 50mM TEAA Flow rate 8ml / min
B: MeCN

Figure 0004621921
Figure 0004621921

<4>PCRにおける基質特性
<4-1>使用機器および試剤
PCR 増幅装置 TECHNE Progege
TECHNE Techgene
電気泳動装置 コスモバイオ Mupid-2
コスモバイオ Mupid-21
解析装置 BIO-RAD Molecular Imager FX PRO
PCRに使用した酵素等は以下のものを使用した。
pUC18 DNA(鋳型) 宝酒造
Primer 1,2(配列番号1,2) 北海道システム・サイエンス
100 bp DNA Ladder Bio Labs
KOD Dash DNA polymerase 東洋紡
<4> Substrate characteristics in PCR <4-1> Equipment and reagents used
PCR amplifier TECHNE Progege
TECHNE Techgene
Electrophoresis device Cosmo Bio Mupid-2
Cosmo Bio Mupid-21
Analyzer BIO-RAD Molecular Imager FX PRO
The following enzymes were used for PCR.
pUC18 DNA (template) Takara Shuzo
Primer 1,2 (SEQ ID NOs: 1, 2) Hokkaido System Science
100 bp DNA Ladder Bio Labs
KOD Dash DNA polymerase Toyobo

<4-2>PCR条件
修飾基質26,27,28を用いたPCRの反応溶液は、表12、表13に従ってそれぞれ調製し、表14の温度条件でPCRを行った。
<4-2> PCR conditions PCR reaction solutions using the modified substrates 26, 27, and 28 were prepared according to Tables 12 and 13, respectively, and PCR was performed under the temperature conditions shown in Table 14.

Figure 0004621921
Figure 0004621921

Figure 0004621921
Figure 0004621921

Figure 0004621921
Figure 0004621921

<4-3>ゲル電気泳動によるPCR生成物の確認
PCR終了後、反応液(20μL)に色素液(1mM EDTA , 0.25%キシレンシアノール, 30%グリセロール)2μLを加え、遠心とボルテックスで均一な溶液にし、その内10μLを2%アガロースゲル電気泳動(0.5×TBE buffer, 100V, 45 分間)させた後、5μg/mL臭化エチジウム水溶液で50分間染色し、解析装置(BIO-RAD Molecular Imager FX PRO)によって確認した。
結果を図3に示した。dATPアナログ26,27,28はKOD Dash DNAポリメラーゼにも良い基質として認識され、対応する生成物を与えた。
<4-3> Confirmation of PCR products by gel electrophoresis
After completion of PCR, add 2 μL of dye solution (1 mM EDTA, 0.25% xylene cyanol, 30% glycerol) to the reaction solution (20 μL), and centrifuge and vortex to make a homogeneous solution, 10 μL of which is 2% agarose gel electrophoresis ( 0.5 × TBE buffer, 100 V, 45 minutes), and then stained with 5 μg / mL ethidium bromide aqueous solution for 50 minutes, and confirmed by an analyzer (BIO-RAD Molecular Imager FX PRO).
The results are shown in FIG. dATP analogs 26, 27, 28 were also recognized as good substrates for KOD Dash DNA polymerase and gave the corresponding products.

本発明の7位置換デアザデオキシアデノシン誘導体を用いたポリヌクレオチドの合成を示す図(一部写真)。(A)は用いたアデノシン誘導体の構造を示す。TfaはCF3CO-を意味している。(B)は各種DNAポリメラーゼを用いたときの増幅結果を示す。Mは分子量マーカーを示す。The figure which shows the synthesis | combination of the polynucleotide using the 7 position substituted deazadeoxy adenosine derivative of this invention (partial photograph). (A) shows the structure of the adenosine derivative used. Tfa means CF 3 CO-. (B) shows amplification results when various DNA polymerases are used. M represents a molecular weight marker. 本発明の7位置換デアザデオキシアデノシン誘導体(A2)とともに、各種既知のデオキシシチジン誘導体またはデオキシウリジン誘導体を用いてポリヌクレオチドを合成した結果を示す図(一部写真)。The figure (partial photograph) which shows the result of having synthesize | combined the polynucleotide using various known deoxycytidine derivatives or deoxyuridine derivatives with the 7-position substituted deazadeoxyadenosine derivative (A2) of this invention. 本発明の7位置換デアザデオキシアデノシン誘導体(26,27,28)を用いてポリヌクレオチドを合成した結果を示す図(写真)。POS:ポジティブコントロール、NEG:ネガティブコントロール。The figure (photograph) which shows the result of having synthesize | combined the polynucleotide using the 7-position substituted deazadeoxyadenosine derivative (26,27,28) of this invention. POS: Positive control, NEG: Negative control.

Claims (8)

下記一般式(I-1)または(I-2)で表される7位置換デアザデオキシアデノシン誘導体。
Figure 0004621921
式中、Rは、−NH−(CH2)n−NR23を示し、ここで、nは2〜10の整数であり2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、又は−(CH22N[(CH22NH22基から選ばれる置換基である。
A 7-substituted deazadeoxyadenosine derivative represented by the following general formula (I-1) or (I-2).
Figure 0004621921
Wherein, R, - NH- (CH 2) shows the n -NR 2 R 3, where, n is an integer of 2 to 10, R 2, R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, -COCF 3 radical, -COCH 3 group, carbonyl methylimidazole group, -C (= NH) NH 2 , biotinyl groups, also - (CH 2) 2 N [ (CH 2 ) A substituent selected from 2 NH 2 ] 2 groups.
下記一般式(II-1)または(II-2)で表される7位置換デアザデオキシグアノシン誘導体。
Figure 0004621921
式中、Rは、−NH−(CH2)n−NR23を示し、ここで、nは2〜10の整数であり
2、R3はそれぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、−COCF3基、−COCH3基、カルボニルメチルイミダゾール基、−C(=NH)NH2、ビオチニル基、又は−(CH22N[(CH22NH22基から選ばれる置換基である。
A 7-substituted deazadeoxyguanosine derivative represented by the following general formula (II-1) or (II-2).
Figure 0004621921
Wherein, R, - NH- (CH 2) shows the n -NR 2 R 3, where, n is an integer from 2 to 10,
R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a —COCF 3 group, a —COCH 3 group, a carbonylmethylimidazole group, —C (═NH) NH 2 , biotinyl groups, or - a (CH 2) 2 N [( CH 2) 2 NH 2] substituents selected from the 2 group.
請求項1に記載の7位置換デアザデオキシアデノシン誘導体のヌクレオチド残基を含むポリヌクレオチド。 A polynucleotide comprising the nucleotide residue of the 7-substituted deazadeoxyadenosine derivative according to claim 1. 請求項2に記載の7位置換デアザデオキシグアノシン誘導体のヌクレオチド残基を含むポリヌクレオチド。 A polynucleotide comprising the nucleotide residue of the 7-substituted deazadeoxyguanosine derivative according to claim 2. 請求項1に記載の7位置換デアザデオキシアデノシン誘導体または請求項2に記載の7位置換デアザデオキシグアノシン誘導体を含む、修飾ポリヌクレオチド合成用基質溶液。 A substrate solution for modified polynucleotide synthesis comprising the 7-position substituted deazadeoxyadenosine derivative according to claim 1 or the 7-position substituted deazadeoxyguanosine derivative according to claim 2. 請求項5に記載の修飾ポリヌクレオチド合成用基質溶液を含む、修飾ポリヌクレオチド合成用試薬。 A reagent for synthesizing a modified polynucleotide comprising the substrate solution for synthesizing a modified polynucleotide according to claim 5. 請求項1に記載の7位置換デアザデオキシアデノシン誘導体及び請求項2に記載の7位置換デアザデオキシグアノシン誘導体の少なくとも一方を基質に用いて、修飾ポリヌクレオチドを製造する方法。 A method for producing a modified polynucleotide using at least one of the 7-position substituted deazadeoxyadenosine derivative according to claim 1 and the 7-position substituted deazadeoxyguanosine derivative according to claim 2 as a substrate. 請求項1に記載の7位置換デアザデオキシアデノシン誘導体又は請求項2に記載の7位置換デアザデオキシグアノシン誘導体に標識物質を導入することによって得られた標識核酸を用いて標識ポリヌクレオチドを製造する方法。 A labeled polynucleotide is produced using a labeled nucleic acid obtained by introducing a labeling substance into the 7-substituted deazadeoxyadenosine derivative according to claim 1 or the 7-substituted deazadeoxyguanosine derivative according to claim 2 how to.
JP2006071549A 2005-07-27 2006-03-15 Novel nucleic acid derivative and method for producing polynucleotide using the same Active JP4621921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071549A JP4621921B2 (en) 2005-07-27 2006-03-15 Novel nucleic acid derivative and method for producing polynucleotide using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005217479 2005-07-27
JP2006071549A JP4621921B2 (en) 2005-07-27 2006-03-15 Novel nucleic acid derivative and method for producing polynucleotide using the same

Publications (2)

Publication Number Publication Date
JP2007056001A JP2007056001A (en) 2007-03-08
JP4621921B2 true JP4621921B2 (en) 2011-02-02

Family

ID=37919786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071549A Active JP4621921B2 (en) 2005-07-27 2006-03-15 Novel nucleic acid derivative and method for producing polynucleotide using the same

Country Status (1)

Country Link
JP (1) JP4621921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499037B2 (en) * 2009-08-14 2014-05-21 株式会社日立製作所 Gene sequence analysis method and reagent
JP5812478B2 (en) * 2011-08-12 2015-11-11 国立大学法人群馬大学 Anticancer drug-binding nucleic acid aptamer and use thereof
WO2018051581A1 (en) 2016-09-15 2018-03-22 Necソリューションイノベータ株式会社 Nucleoside derivative or salt thereof, reagent for synthesizing polynucleotide, method for producing polynucleotide, polynucleotide, and method for producing binding nucleic acid molecule
WO2018051580A1 (en) 2016-09-15 2018-03-22 Necソリューションイノベータ株式会社 Nucleoside derivative or salt thereof, reagent for synthesizing polynucleotide, method for producing polynucleotide, polynucleotide, and method for producing binding nucleic acid molecule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175898A (en) * 1997-07-07 1999-03-23 Rikagaku Kenkyusho Determination of base sequence of dna
JP2000119296A (en) * 1997-03-20 2000-04-25 Amersham Pharmacia Biotech Inc Derivative of 7-deaza-2'-deoxy-guanosine 5'-triphosphate, its production and use thereof
JP2002193991A (en) * 2000-12-26 2002-07-10 Wako Pure Chem Ind Ltd Modified nucleotide
JP2002193992A (en) * 2000-12-26 2002-07-10 Wako Pure Chem Ind Ltd Nucleotide derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395954A (en) * 2002-08-23 2004-06-09 Solexa Ltd Modified nucleotides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119296A (en) * 1997-03-20 2000-04-25 Amersham Pharmacia Biotech Inc Derivative of 7-deaza-2'-deoxy-guanosine 5'-triphosphate, its production and use thereof
JPH1175898A (en) * 1997-07-07 1999-03-23 Rikagaku Kenkyusho Determination of base sequence of dna
JP2002193991A (en) * 2000-12-26 2002-07-10 Wako Pure Chem Ind Ltd Modified nucleotide
JP2002193992A (en) * 2000-12-26 2002-07-10 Wako Pure Chem Ind Ltd Nucleotide derivative

Also Published As

Publication number Publication date
JP2007056001A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
EP1401850A1 (en) Nucleoside derivatives for library preparation
US6794499B2 (en) Oligonucleotide analogues
US8034909B2 (en) Oligonucleotide analogues
CA2303299C (en) Oligonucleotide analogues
US6174998B1 (en) C-nucleoside derivatives and their use in the detection of nucleic acids
EP2089343B1 (en) Click chemistry for the production of reporter molecules
US8895712B2 (en) Artificial base pair capable of forming specific base pair
US8013147B2 (en) Heterocyclic compounds and their use in the detection of nucleic acids
JP2006258818A (en) Nucleic acid labelling compound
JP3639308B2 (en) C-nucleoside derivatives and their use in nucleic acid detection
JP2009149605A (en) Six membered ring-having nucleotide analogue
EP0090789A1 (en) Chemical DNA synthesis
Wang et al. Diamondoid-modified DNA
Sørensen et al. Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2′-amino-LNA monomers
JP6368318B2 (en) Nucleoside derivatives or salts thereof, 5&#39;-phosphate esters of nucleoside derivatives or salts thereof, 3&#39;-phosphoramidites of nucleoside derivatives or salts thereof, and polynucleotides
JP4621921B2 (en) Novel nucleic acid derivative and method for producing polynucleotide using the same
WO2012091091A1 (en) Compound, nucleic acid, method for producing nucleic acid, and kit for producing nucleic acid
JP2835630B2 (en) Nucleoside derivatives that can be used in the synthesis of targeted oligonucleotides, oligonucleotides derived from these derivatives, and their synthesis
US20030143561A1 (en) Nucleoside derivatives for library preparation
JP5076504B2 (en) Amidite for nucleic acid synthesis and nucleic acid synthesis method
EP2576577B1 (en) Synthesis of 2&#39;, 3&#39;-dideoxynucleosides for automated dna synthesis and pyrophosphorolysis activated polymerization
JP2004502701A (en) Base analog
JPS636080B2 (en)
RU2278869C2 (en) New substrates for terminal deoxynucleotidyl transferase
JP2003292499A (en) Process for chemical synthesis of oligonucleotide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150