JP4620946B2 - Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide - Google Patents

Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide Download PDF

Info

Publication number
JP4620946B2
JP4620946B2 JP2003383836A JP2003383836A JP4620946B2 JP 4620946 B2 JP4620946 B2 JP 4620946B2 JP 2003383836 A JP2003383836 A JP 2003383836A JP 2003383836 A JP2003383836 A JP 2003383836A JP 4620946 B2 JP4620946 B2 JP 4620946B2
Authority
JP
Japan
Prior art keywords
polyimide precursor
polyimide
trans
diaminocyclohexane
silylating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003383836A
Other languages
Japanese (ja)
Other versions
JP2005146073A (en
Inventor
匡俊 長谷川
淳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2003383836A priority Critical patent/JP4620946B2/en
Priority to PCT/JP2004/006414 priority patent/WO2005047367A1/en
Publication of JP2005146073A publication Critical patent/JP2005146073A/en
Application granted granted Critical
Publication of JP4620946B2 publication Critical patent/JP4620946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、且つ電子基板における絶縁膜用途として十分な靭性を併せ持つ実用上有益なポリイミド膜とその前駆体の製造方法に関する。   The present invention relates to a practically useful polyimide film having a low dielectric constant, a low linear thermal expansion coefficient, a high glass transition temperature, high transparency, and sufficient toughness for use as an insulating film in an electronic substrate, and a method for producing a precursor thereof.

一般にポリイミドは、無水ピロメリット酸などの芳香族テトラカルボン酸二無水物とジアミノジフェニルエーテル等の芳香族ジアミンとをジメチルアセトアミド等の非プロトン性極性溶媒中で等モル反応させ容易に得られる高重合度のポリイミド前駆体を、膜などに成形し加熱硬化して得られる。このような全芳香族ポリイミドは優れた耐熱性、耐薬品性、耐放射線性、電気絶縁性、機械的性質などの性質を併せ持つことから、フレキシブルプリント配線回路用基板、テープオートメーションボンディング用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに現在広く利用されている。   Generally, polyimide has a high degree of polymerization that is easily obtained by equimolar reaction of an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride and an aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide. The polyimide precursor is formed into a film and cured by heating. Such wholly aromatic polyimides have excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, mechanical properties, etc., so flexible printed circuit boards, tape automation bonding substrates, Currently, it is widely used in various electronic devices such as protective films for semiconductor elements and interlayer insulating films for integrated circuits.

最近では特にマイクロプロセッサーの演算速度の高速化やクロック信号の立ち上がり時間の短縮化が情報処理・通信分野で重要な課題になってきているが、そのためには層間絶縁膜として使用するポリイミド膜の誘電率を下げることが必要となる。   Recently, increasing the calculation speed of the microprocessor and shortening the rise time of the clock signal have become important issues in the information processing and communication fields. For this purpose, the dielectric of the polyimide film used as the interlayer insulating film is used. It is necessary to lower the rate.

ポリイミドの誘電率を下げるためにはポリイミド構造中へのフッ素基の導入が有効である(Macromolecules, 24, 5001 (1991))、High Perform. Polym., 15, 47 (2003)で公知のように2,2-ビス(3,4-カルボキシフェニル)ヘキサフルオロプロパン酸二無水物と2,2’-ビス(トリフルオロメチル)ベンジジンから得られるフッ素化ポリイミド膜は平均屈折率から見積もられた誘電率が2.8と非常に低い値を示す。   In order to lower the dielectric constant of polyimide, introduction of fluorine groups into the polyimide structure is effective (Macromolecules, 24, 5001 (1991)), as known in High Perform. Polym., 15, 47 (2003). Fluorinated polyimide films obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic dianhydride and 2,2'-bis (trifluoromethyl) benzidine are dielectrics estimated from the average refractive index. The rate is very low at 2.8.

また芳香族単位を脂環族単位に置き換えてπ電子を減少することにより、分子内共役および電荷移動錯体形成を妨害すること(Macromolecules, 32, 4933 (1999))も低誘電率化に有効である。Reactive & Functional Polymers, 30, 61 (1996)で公知のように1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4'-メチレンビス(シクロヘキシルアミン)から得られる非芳香族ポリイミド膜は平均屈折率から見積もられた誘電率が2.6と極めて低い値を示す。   In addition, intermolecular conjugation and charge transfer complex formation can be prevented by replacing aromatic units with alicyclic units and reducing π electrons (Macromolecules, 32, 4933 (1999)). is there. Non-aromatic polyimide membranes obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4'-methylenebis (cyclohexylamine) as known in Reactive & Functional Polymers, 30, 61 (1996) Shows a very low value of the dielectric constant estimated from the average refractive index of 2.6.

一方、ポリイミド膜を層間絶縁膜として銅などの金属基板と積層する場合、それぞれの線熱膨張係数のミスマッチにより残留応力が発生し、カーリング、膜の剥離、割れ等の重大な問題を引き起こすことが知られている。この問題を回避するためにはポリイミド膜の線熱膨張係数を金属基板のそれに近づけること即ちポリイミドの低熱膨張化が必要となる。現在知られているポリイミドの殆どは50〜90ppm/Kの線熱膨張係数を持ち、銅基板の18ppm/Kに比べてはるかに高い。最近では電子回路の高密度化に伴い、配線基板の多層化の必要性が高まってきているが、多層基板における残留応力はデバイスの信頼性を著しく低下させる。   On the other hand, when a polyimide film is laminated with a metal substrate such as copper as an interlayer insulating film, residual stress is generated due to mismatch of the respective linear thermal expansion coefficients, which may cause serious problems such as curling, film peeling and cracking. Are known. In order to avoid this problem, it is necessary to make the linear thermal expansion coefficient of the polyimide film close to that of the metal substrate, that is, to lower the thermal expansion of the polyimide. Most of the currently known polyimides have a linear thermal expansion coefficient of 50 to 90 ppm / K, much higher than the 18 ppm / K for copper substrates. Recently, with the increase in the density of electronic circuits, the necessity of multilayer wiring boards has increased, but the residual stress in the multilayer board significantly reduces device reliability.

ポリイミドの低熱膨張係数発現には一般に、その主鎖構造が直線的でしかも内部回転が束縛され剛直であることが必要条件であることが知られている(Polymer, 28, 2282 (1987))。現在実用的な低熱膨張ポリイミド材料としては3,3',4,4'-ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから形成されるポリイミドが最もよく知られている。このポリイミド膜は膜厚や作製条件にもよるが、3〜10 ppm/Kと非常に低い線熱膨張係数を示すことが知られている(Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996, p 207))。
しかしながら、低誘電率と低熱膨張係数を同時に有し、かつハンダ耐熱性を保持しているポリイミドを得ることは分子設計上容易ではない。これを達成すべくポリイミド以外の低誘電率高分子材料や無機材料も検討されているが、誘電率、線熱膨張係数、耐熱性および靭性の点で要求特性が十分に満たされていないのが現状である。
In general, it is known that a low thermal expansion coefficient of a polyimide is a necessary condition that its main chain structure is linear and its internal rotation is constrained and rigid (Polymer, 28, 2282 (1987)). Currently, polyimides formed from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine are best known as practical low thermal expansion polyimide materials. This polyimide film is known to exhibit a very low linear thermal expansion coefficient of 3 to 10 ppm / K depending on the film thickness and production conditions (Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996 , p 207)).
However, it is not easy in terms of molecular design to obtain a polyimide having both a low dielectric constant and a low thermal expansion coefficient and having solder heat resistance. Low dielectric constant polymer materials and inorganic materials other than polyimide have been studied to achieve this, but the required properties are not sufficiently satisfied in terms of dielectric constant, linear thermal expansion coefficient, heat resistance and toughness. Currently.

また近年、電子デバイスにおける配線基板の多層化の動向に伴って、絶縁層にワイヤリング用のスルーホールをあける等の目的で、層間絶縁膜自身に感光性を持たせる試みも行なわれている。この際ポリイミド絶縁膜自身による光吸収をできるだけ抑制する必要があるため、ポリイミド膜そのものが紫外・可視全域で高い透明性を有することが望ましい。   In recent years, with the trend of multilayered wiring boards in electronic devices, attempts have been made to make the interlayer insulating film itself photosensitive for the purpose of opening wiring through holes in the insulating layer. At this time, since it is necessary to suppress light absorption by the polyimide insulating film itself as much as possible, it is desirable that the polyimide film itself has high transparency in the entire ultraviolet / visible region.

一般にポリイミド構造中へのフッ素基の導入は分子間相互作用を弱め、低熱膨張化の要因であるイミド化時の自発的分子配向を妨害する傾向をもたらす。フッ素基の導入はコスト面でも不利である。前述のように2,2-ビス(3,4-カルボキシフェニル)ヘキサフルオロプロパン酸二無水物と2,2’-ビス(トリフルオロメチル)ベンジジンから得られる代表的なフッ素化ポリイミド膜は前述のように低誘電率を示すが、線熱膨張係数は64ppm/Kと非常に高く、低熱膨張特性を示さない(High Perform. Polym., 15, 47 (2003))。更に透明性の点でも不十分である。   In general, introduction of a fluorine group into a polyimide structure weakens intermolecular interaction, and tends to hinder spontaneous molecular orientation during imidization, which is a factor of low thermal expansion. The introduction of fluorine groups is also disadvantageous in terms of cost. As mentioned above, a typical fluorinated polyimide film obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic dianhydride and 2,2′-bis (trifluoromethyl) benzidine is Thus, although the dielectric constant is low, the coefficient of linear thermal expansion is as high as 64 ppm / K, and does not show low thermal expansion characteristics (High Perform. Polym., 15, 47 (2003)). Furthermore, transparency is insufficient.

またピロメリット酸二無水物と2,2’-ビス(トリフルオロメチル)ベンジジンから得られるポリイミド膜は主鎖が直線的で剛直であることに起因して極めて低い線熱膨張係数を示す(Macromolecules, 26, 419 (1993))が、フィルムは着色しており透明性の点で問題がある。これは酸二無水物、ジアミンともに芳香族モノマーを使用したため、分子内共役や電荷移動相互作用が生じたことによる(Polym. J., 29, 69 (1997))。   Polyimide membranes obtained from pyromellitic dianhydride and 2,2'-bis (trifluoromethyl) benzidine exhibit a very low linear thermal expansion coefficient due to the linear and rigid main chain (Macromolecules , 26, 419 (1993)), but the film is colored and has a problem with transparency. This is due to the occurrence of intramolecular conjugation and charge transfer interaction due to the use of aromatic monomers for both acid dianhydride and diamine (Polym. J., 29, 69 (1997)).

ポリイミド骨格への脂環構造単位の導入はπ電子を減少させ、低誘電率化と共に膜の透明化に有効である。しかしながら脂環構造単位の導入は一般にポリイミド主鎖骨格の直線性および剛直性を低下させ、線熱膨張係数の増大を引き起こすという問題がある。例えば下記化学式(3)に示す4,4'-メチレンビス(シクロヘキシルアミン)の如き屈曲性の高い脂環式ジアミンを用いた場合、各種酸二無水物と容易に重合が進行し、高重合度のポリイミド前駆体を生成するが、閉環反応により得られるポリイミド膜は低熱膨張特性を示さない。   Introduction of an alicyclic structural unit into the polyimide skeleton reduces π electrons, and is effective for lowering the dielectric constant and making the film transparent. However, the introduction of alicyclic structural units generally has a problem that the linearity and rigidity of the polyimide main chain skeleton are lowered and the linear thermal expansion coefficient is increased. For example, when a highly flexible alicyclic diamine such as 4,4′-methylenebis (cyclohexylamine) represented by the following chemical formula (3) is used, the polymerization proceeds easily with various acid dianhydrides, and the degree of polymerization is high. Although a polyimide precursor is produced, the polyimide film obtained by the ring closure reaction does not exhibit low thermal expansion characteristics.

Figure 0004620946
Figure 0004620946

例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4'-メチレンビス(シクロヘキシルアミン)から得られるポリイミド膜は前述のように高透明性で低誘電率を示すが、線熱膨張係数は70ppm/Kと非常に高く、低熱膨張特性を示さない。同様に、ピロメリット酸二無水物と4,4'-メチレンビス(シクロヘキシルアミン)から得られるポリイミド膜も低熱膨張特性を示さない。これはこれらのポリイミドにおいて主鎖骨格の折れ曲がり構造のため熱イミド化の際にポリマー鎖の面内配向が促進されないことに起因している。 For example, a polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4′-methylenebis (cyclohexylamine) is highly transparent and exhibits a low dielectric constant as described above. The expansion coefficient is as high as 70 ppm / K and does not exhibit low thermal expansion characteristics. Similarly, a polyimide film obtained from pyromellitic dianhydride and 4,4′-methylenebis (cyclohexylamine) does not exhibit low thermal expansion characteristics. This is due to the fact that the in-plane orientation of the polymer chain is not promoted during thermal imidization due to the bent structure of the main chain skeleton in these polyimides.

直線性および剛直性を保持している唯一の脂環式ジアミンとしてトランス-1,4-ジアミノシクロヘキサンがあげられる。
しかしながら目的とする要求特性即ち低誘電率と低熱膨張特性を同時に満たすために直線性の高い酸二無水物とトランス-1,4-ジアミノシクロヘキサンからポリイミド前駆体を重合しようとすると合成上重大な問題に直面する。即ち公知の芳香族ジアミンの場合とは大きく異なり脂肪族ジアミンではその高い塩基性に起因して、重合反応初期段階に生成した低分子量のアミド酸との間で塩形成が起こる。
The only alicyclic diamine that retains linearity and rigidity is trans-1,4-diaminocyclohexane.
However, if a polyimide precursor is polymerized from highly linear acid dianhydride and trans-1,4-diaminocyclohexane in order to simultaneously satisfy the desired characteristics, ie, low dielectric constant and low thermal expansion characteristics, it is a serious problem in synthesis. To face. That is, unlike the case of known aromatic diamines, salt formation occurs between aliphatic diamines and low molecular weight amic acids generated in the initial stage of the polymerization reaction due to their high basicity.

4,4'-メチレンビス(シクロヘキシルアミン)の如き屈曲性の脂環式ジアミンを使用するならば、形成される塩は、わずかながら重合溶媒に溶解し、単に室温で長時間攪拌するだけで公知の方法で容易に重合反応を進行させることができる。これに対し、トランス-1,4-ジアミノシクロヘキサンを使用した場合は形成される塩が非常に強固で重合溶媒に対する溶解度は殆どゼロであり、しばしば重合反応が妨害される。   If a flexible alicyclic diamine such as 4,4'-methylenebis (cyclohexylamine) is used, the salt formed is slightly dissolved in the polymerization solvent and is known simply by stirring at room temperature for a long time. The polymerization reaction can be easily advanced by the method. On the other hand, when trans-1,4-diaminocyclohexane is used, the salt formed is very strong and the solubility in the polymerization solvent is almost zero, often hindering the polymerization reaction.

ピロメリット酸二無水物とトランス-1,4-ジアミノシクロヘキサンから得られるポリイミドは主鎖骨格が直線的で剛直な分子構造であるため、分子設計上、上記要求特性を全て満たすことが期待される。また安価なピロメリット酸二無水物の使用はコスト面でも有利である。しかしながら、上記のような重合反応性上の問題により、ピロメリット酸二無水物とトランス-1,4-ジアミノシクロヘキサンから高分子量のポリイミド前駆体を合成することは極めて困難である。この問題点がこれまでこの系の報告例が全くなかった主な理由である。   Polyimide obtained from pyromellitic dianhydride and trans-1,4-diaminocyclohexane is expected to satisfy all of the above required characteristics in terms of molecular design because the main chain skeleton has a linear and rigid molecular structure. . The use of inexpensive pyromellitic dianhydride is advantageous in terms of cost. However, it is extremely difficult to synthesize a high molecular weight polyimide precursor from pyromellitic dianhydride and trans-1,4-diaminocyclohexane due to the above-described problems in polymerization reactivity. This problem is the main reason that there have been no reports of this system so far.

特開2002−161136およびHigh Perform. Polym., 13, S93 (2001)に開示されているように、重合反応初期での塩形成後、重合反応混合物を適切な温度例えば120℃で短時間加熱することにより、高重合度のポリイミド前駆体が得られる例が知られている。しかしながらピロメリット酸二無水物とトランス1,4-ジアミノシクロヘキサンとの重合反応系では形成される塩が極めて強固であり如何なる温度条件でも塩は溶解しないためこの方法を適用することは困難である。   As disclosed in JP-A No. 2002-161136 and High Perform. Polym., 13, S93 (2001), after salt formation at the initial stage of the polymerization reaction, the polymerization reaction mixture is heated at an appropriate temperature, for example, 120 ° C. for a short time. Thus, an example in which a polyimide precursor having a high degree of polymerization is obtained is known. However, in the polymerization reaction system of pyromellitic dianhydride and trans 1,4-diaminocyclohexane, the salt formed is very strong and the salt does not dissolve at any temperature condition, so this method is difficult to apply.

脂肪族ジアミンを用いる際の塩形成を回避する方法として界面重合法がHigh Perform. Polym., 10, 11 (1998)に開示されている。この方法はまずテトラカルボン酸二無水物とアルコールを反応させてテトラカルボン酸のジエステルとし、次いでこれを塩素化して油層に溶解し、これとアルカリ水溶液に溶解した脂肪族ジアミンとを油/水界面で重合させてポリアミド酸のアルキルエステルを得るものである。   An interfacial polymerization method is disclosed in High Perform. Polym., 10, 11 (1998) as a method for avoiding salt formation when an aliphatic diamine is used. In this method, tetracarboxylic dianhydride and alcohol are first reacted to form a tetracarboxylic acid diester, which is then chlorinated and dissolved in an oil layer, and this is mixed with an aliphatic diamine dissolved in an aqueous alkaline solution at the oil / water interface. To obtain an alkyl ester of polyamic acid.

しかしこの重合方法では製造工程は煩雑でしかも高重合度のポリイミド前駆体を得ることは困難であるばかりかバッチごとの分子量のばらつきも大きくなる。更に界面重合法では塩素が発生するので電子材料用途としては好ましくない。   However, in this polymerization method, the production process is complicated, and it is difficult to obtain a polyimide precursor having a high degree of polymerization, and the variation in molecular weight from batch to batch also increases. Furthermore, interfacial polymerization generates chlorine, which is not preferable for use as an electronic material.

またピロメリット酸二無水物とトランス-1,4-ジアミノシクロヘキサンから得られる剛直なポリイミド系では製膜工程上でも深刻な問題が発生する恐れがある。即ちポリイミド前駆体膜をキャスト後、熱イミド化工程中に膜の割れが発生する。これは剛直な系ではポリマー鎖同士の絡み合いの程度が低いため元々膜の靭性が乏しいことに加えて、ポリアミド酸の熱イミド化中に重合反応の逆反応が特に200℃付近を通過する際に若干起こり、分子量低下を伴って更に膜靭性が低下し、イミド化反応時の膜収縮に耐え切れなくなって起こるものである。   In addition, the rigid polyimide system obtained from pyromellitic dianhydride and trans-1,4-diaminocyclohexane may cause serious problems in the film forming process. That is, after the polyimide precursor film is cast, the film is cracked during the thermal imidization process. This is because, in a rigid system, the degree of entanglement between polymer chains is low, so the toughness of the film is inherently poor, and the reverse reaction of the polymerization reaction during the thermal imidation of polyamic acid passes particularly around 200 ° C. It occurs somewhat, and the film toughness is further lowered with a decrease in molecular weight, and the film contraction cannot be tolerated during the imidization reaction.

ピロメリット酸二無水物と1,4-ジアミノシクロヘキサンとを反応させてポリイミド前駆体を製造する方法が知られている(Journal of Polymer Science: part A, Vol.31, 2345-2351,(1993))。しかしながら、一般に1,4-ジアミノシクロヘキサンはシス型、トランス型が混在しており、シス型1,4-ジアミノシクロヘキサンはその折れ曲がり構造によりポリイミド膜の熱膨張係数を増大させてしまう。
「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society)、1991年、24号、p5001 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、2003年、15巻、p47 「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society) 、1999年、32号、p 4933 「リアクティブアンドファンクショナルポリマーズ(Reactive & Functional Polymers)」、(オランダ)、エルゼビア・サイエンス(Elsevier Science)、1996年、30巻、p61 「ポリマー(Polymer)」、(オランダ)、エルゼビア・サイエンス(Elsevier Science)、1987年、28巻、p2282 「ポリイミド:ファンダメンタルスアンドアプリケーションズ(Polyimides: Fundamentals and Applications)」、(米国)、マーセル・デッカー(Marcel Dekker Inc)、1996年、p207 「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society)、 1993年、26号、p 419 「ポリマージャーナル(Polymer Journal)」、社団法人高分子学会、1997年、29巻、p69 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、2001年、13巻、 S93 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、1998年、10巻、p11 「ジャーナルオブポリマーサイエンス:パートエー(Journal of Polymer Science: part A」)、(米国) 、ウィレイ ペリオディカルス(Wiley Periodicals, Inc)、31号、p2345-p2351,(1993) 特開2002−161136号公報
A method for producing a polyimide precursor by reacting pyromellitic dianhydride and 1,4-diaminocyclohexane is known (Journal of Polymer Science: part A, Vol. 31, 2345-2351, (1993) ). However, 1,4-diaminocyclohexane generally has a mixture of cis type and trans type, and cis type 1,4-diaminocyclohexane increases the thermal expansion coefficient of the polyimide film due to its bent structure.
“Macromolecules” (USA), Aemrican Chemical Society, 1991, No. 24, p5001 “High Performance Polymers” (UK), Institute of Physics, 2003, Volume 15, p47 "Macromolecules" (USA), Aemrican Chemical Society, 1999, 32, p 4933 "Reactive & Functional Polymers", (Netherlands), Elsevier Science, 1996, 30 volumes, p61 “Polymer” (Netherlands), Elsevier Science, 1987, 28, p2282. "Polyimides: Fundamentals and Applications" (USA), Marcel Dekker Inc, 1996, p207. “Macromolecules” (USA), Aemrican Chemical Society, 1993, 26, p 419 “Polymer Journal”, Society of Polymer Science, 1997, 29, p69 “High Performance Polymers” (UK), Institute of Physics, 2001, vol. 13, S93 “High Performance Polymers” (UK), Institute of Physics, 1998, 10 volumes, p11 “Journal of Polymer Science: Part A”, (USA), Wiley Periodicals, Inc., No. 31, p2345-p2351, (1993) JP 2002-161136 A

本発明は低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、且つ電子基板における絶縁膜用途として十分な靭性を併せ持つ実用上有益なポリイミド膜とその前駆体膜の製造方法を提供するものである。   The present invention provides a practically useful polyimide film having a low dielectric constant, a low linear thermal expansion coefficient, a high glass transition temperature, high transparency, and sufficient toughness for use as an insulating film in an electronic substrate, and a method for producing a precursor film thereof. It is to provide.

以上の問題を鑑み、鋭意研究を積み重ねた結果、選択されたシリル化剤を用いて適切なシリル化率範囲でシリル化したトランス1,4-ジアミノシクロヘキサンと等モルのピロメリット酸二無水物とを限定された有機溶媒中で重合反応行わせることにより、高重合度の半芳香族ポリイミド前駆体溶液を得ることに成功した。さらにそのキャスト膜(ポリイミド前駆体膜)を限定された条件下でイミド化反応させて製造した半芳香族ポリイミド膜は上記の要求特性を全て達成できることを見出し、本発明を完成するに至った。   In view of the above problems, as a result of intensive studies, trans 1,4-diaminocyclohexane silylated in the appropriate silylation rate range using a selected silylating agent and equimolar pyromellitic dianhydride Was successfully obtained in a limited organic solvent to obtain a semi-aromatic polyimide precursor solution having a high degree of polymerization. Furthermore, the semi-aromatic polyimide film produced by imidizing the cast film (polyimide precursor film) under limited conditions was found to be able to achieve all of the above required characteristics, and the present invention was completed.

単位構造式(2)に示すポリイミド膜が低熱膨張特性を発現するためにはジアミンモノマーである1,4-ジアミノシクロヘキサンの立体構造が図1に示すトランス型で2つのアミノ基が共にエクアトリアル配置である必要がある。モノマーの段階でのトランス配置はポリイミド前駆体およびポリイミド骨格中でも保持されている。重合時にシス型1,4-ジアミノシクロヘキサンを使用することはその折曲がり構造に起因してポリイミド膜の線熱膨張係数の急激な増大を引き起こす恐れがある。   In order for the polyimide film shown in the unit structural formula (2) to exhibit low thermal expansion characteristics, the steric structure of 1,4-diaminocyclohexane, which is a diamine monomer, is the trans type shown in FIG. 1, and the two amino groups are both in an equatorial configuration. There must be. The trans configuration at the monomer stage is maintained even in the polyimide precursor and the polyimide skeleton. The use of cis-type 1,4-diaminocyclohexane during polymerization may cause a rapid increase in the linear thermal expansion coefficient of the polyimide film due to its bent structure.

特公昭51-48198号公報に開示されているように、パラフェニレンジアミンを水添して得られる1,4-ジアミノシクロヘキサンは通常、シス/トランス混合物として得られるが、これをそのまま重合に供した場合、公知の反応条件でも問題なく重合が進行する。また、ジアミン成分にトランス1,4-ジアミノシクロヘキサン単独ではなく他の屈曲性脂肪族ジアミンと共重合するとやはり公知の反応条件でも問題なく重合が進行する。しかしながらトランス1,4-ジアミノシクロヘキサン単独でなく、上記のようなトランス/シス混合物を使用することは、得られるポリイミドは主鎖の直線性、剛直性が大きく低下し、ポリイミド膜の線熱膨張係数の急激な増加およびガラス温度の低下を招く恐れがあり本目的のためには避けるべきである。   As disclosed in Japanese Patent Publication No. 51-48198, 1,4-diaminocyclohexane obtained by hydrogenating paraphenylenediamine is usually obtained as a cis / trans mixture, but this was directly subjected to polymerization. In this case, the polymerization proceeds without problems even under known reaction conditions. Further, when the diamine component is copolymerized with other flexible aliphatic diamine instead of trans 1,4-diaminocyclohexane alone, the polymerization proceeds without problems even under known reaction conditions. However, using a trans / cis mixture as described above instead of trans 1,4-diaminocyclohexane alone will greatly reduce the linearity and rigidity of the main chain of the resulting polyimide, and the linear thermal expansion coefficient of the polyimide film. This can lead to a rapid increase in glass and a decrease in glass temperature and should be avoided for this purpose.

上記課題を解決するために請求項1記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物とピロメリット酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表されるポリイミド前駆体を製造するポリイミド前駆体の製造方法である。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that trans 1,4-diaminocyclohexane and a silylating agent are reacted to form an intermediate product, and then the intermediate product and pyromellitic dianhydride are produced. This is a method for producing a polyimide precursor in which a product is reacted to produce a polyimide precursor having a repeating structural unit represented by the following unit structural formula (1).

Figure 0004620946
Figure 0004620946

(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
請求項2記載の発明は、請求項1記載のポリイミド前駆体の製造方法であって、前記シリル化剤、化学構造中に塩素原子を含有しないシリル化剤を用いるポリイミド前駆体の製造方法である。
請求項3記載の発明は、請求項2記載のポリイミド前駆体の製造方法であって、前記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いるポリイミド前駆体の製造方法である。
請求項4記載の発明は、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法であって、化学構造全体に含有されるRのうち、シリル基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表される前記ポリイミド前駆体のシリル化率が0.9以上1.0以下になるように、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド前駆体の製造方法である。
シリル化率=A/(A+B)……数式(1)
請求項5記載の発明は、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項1乃至請求項4のいずれか1項記載のポリイミド前駆体の製造方法であって、反応前の前記トランス1,4-ジアミノシクロヘキサンの全部のアミノ基の数をc、前記中間生成物全部のシリル基の数をdとすると、下記数式(2)で表される前記中間生成物のシリル化率が0.9以上1.0以下の範囲になるような割合で前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド前駆体の製造方法である。
シリル化率=d/c……数式(2)
請求項6記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中にピロメリット酸二無水物を添加し、前記中間生成物と、前記ピロメリット酸二無水物とを反応させ、ポリイミド前駆体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体の溶液を製造するポリイミド前駆体有機溶媒溶液の製造方法である。
請求項7記載の発明は、請求項6記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、キャスト膜を形成した後、前記キャスト膜中のポリイミド前駆体をイミド化するポリイミド膜の製造方法であって、前記重合溶媒に、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤と、前記ピロメリット酸二無水物と、前記中間生成物に対して親和性が高い高沸点溶媒を含有させ、前記重合溶媒と親和性が高く、かつ前記重合溶媒よりも沸点が低い洗浄液を前記キャスト膜に接触させ、前記キャスト膜を洗浄した後、前記イミド化を行うポリイミド膜の製造方法である。
請求項8記載の発明は、請求項7記載のポリイミド膜の製造方法であって、前記高沸点溶媒としてヘキサメチルホスホルアミドを用い、前記洗浄液としてアルコールを用いるポリイミド膜の製造方法である。
請求項9記載の発明は、請求項1乃至請求項5のいずれか1項記載のポリイミド前駆体製造方法で製造され、繰り返し構造単位が上記単位構造式(1)で表され、上記単位構造式(1)中の置換基RはHまたはSi(CH3)3基である全脂環式ポリイミド前駆体であって、1つの単位構造式中の置換基Rのうち、いずれか一方又は両方がSi(CH3)3基である単位構造を少なくとも一つ有し、ヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの体積比3:1の混合溶媒を溶媒として30℃で測定したときの固有粘度が2.0dL/g以上であるポリイミド前駆体である。
請求項10記載の発明は、請求項9項記載のポリイミド前駆体であって、上記単位構造式(1)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とするポリイミド前駆体である。
請求項11記載の発明は、請求項9又は請求項10のいずれか1項記載のポリイミド前駆体であって、全化学構造中、Si(CH3)3基からなる置換基Rの合計数をA、水素からなる置換基Rの合計数をBとすると、下記数式(1)で表されるポリイミド前駆体のシリル化率が0以上0.9以下の範囲であるポリイミド前駆体である。
シリル化率=A/(A+B)……数式(1)
請求項12記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物とピロメリット酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表されるポリイミド前駆体を製造し、
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
According to a second aspect of the invention, a process for the preparation of the polyimide precursor according to claim 1, wherein the silylating agent, the polyimide precursor used stone drill agent such contains chlorine atom in the chemical structure It is a manufacturing method.
According to a third aspect of the invention, there is provided a method for producing a polyimide precursor according to claim 2, N as before carboxymethyl Lil agent, O- bis (trimethylsilyl) trifluoroacetamide and N, O- bis (trimethylsilyl) This is a method for producing a polyimide precursor using one or both of acetamide.
The invention according to claim 4 is the method for producing a polyimide precursor according to any one of claims 1 to 3, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted in a predetermined ratio. Of the R contained in the entire chemical structure, when the number of R consisting of silyl groups is A and the number of R consisting of H is B, the silyl of the polyimide precursor represented by the following formula (1) This is a method for producing a polyimide precursor in which the trans 1,4-diaminocyclohexane and the silylating agent are reacted so that the conversion rate is 0.9 or more and 1.0 or less.
Silylation rate = A / (A + B) (1)
The invention according to claim 5 is the method for producing a polyimide precursor according to any one of claims 1 to 4, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. Where the number of all amino groups of the trans 1,4-diaminocyclohexane before the reaction is c and the number of silyl groups of all the intermediate products is d, the intermediate represented by the following formula (2) In this method, the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a ratio such that the silylation rate of the product is in the range of 0.9 to 1.0.
Silylation rate = d / c Equation (2)
The invention according to claim 6 is the addition of pyromellitic dianhydride into the polymerization solvent after reacting trans 1,4-diaminocyclohexane with a silylating agent in a polymerization solvent to produce an intermediate product. The intermediate product and the pyromellitic dianhydride are reacted to produce a polyimide precursor solution in which the polyimide precursor is dispersed or dissolved in the polymerization solvent. Is the method.
The invention according to claim 7 is the production of a polyimide film in which the polyimide precursor organic solvent solution according to claim 6 is applied to a coating object to form a cast film, and then the polyimide precursor in the cast film is imidized. The polymerization solvent includes the trans 1,4-diaminocyclohexane, the silylating agent, the pyromellitic dianhydride, and a high-boiling solvent having high affinity for the intermediate product. It is a manufacturing method of the polyimide film which contains and makes the imidation after making the cast film contact with the washing liquid which has high affinity with the polymerization solvent, and having a boiling point lower than the polymerization solvent, and washing the cast film .
The invention according to claim 8 is the method for producing a polyimide film according to claim 7, wherein hexamethylphosphoramide is used as the high boiling point solvent and alcohol is used as the cleaning liquid.
Invention of Claim 9 is manufactured with the polyimide precursor manufacturing method of any one of Claim 1 thru | or 5, A repeating structural unit is represented by the said unit structural formula (1), The said unit structural formula The substituent R in (1) is a fully alicyclic polyimide precursor which is H or Si (CH 3 ) 3 group, and one or both of the substituents R in one unit structural formula are Inherent when measured at 30 ° C. using a mixed solvent of 3: 1 volume ratio of hexamethylphosphoramide and N, N-dimethylacetamide having at least one unit structure of Si (CH 3 ) 3 group It is a polyimide precursor having a viscosity of 2.0 dL / g or more.
The invention according to claim 10 is the polyimide precursor according to claim 9, characterized in that the steric structure of each 1,4-cyclohexane residue in the unit structural formula (1) is in a trans configuration. It is a polyimide precursor.
The invention of claim 11 wherein is a polyimide precursor of any one of claims 9 or claim 10, in total chemical structure, the total number of substituents R consisting of Si (CH 3) 3 group When the total number of substituents R composed of A and hydrogen is B, the polyimide precursor represented by the following formula (1) has a silylation rate in the range of 0 to 0.9.
Silylation rate = A / (A + B) (1)
The invention according to claim 12 comprises reacting trans 1,4-diaminocyclohexane and a silylating agent to produce an intermediate product, then reacting the intermediate product with pyromellitic dianhydride, and repeating The structural unit is a polyimide precursor represented by the following unit structural formula (1),

Figure 0004620946
Figure 0004620946

(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
次いで加熱処理して、ポリイミドを製造するポリイミド製造方法である。
請求項13記載の発明は、請求項12記載のポリイミド製造方法であって、前記シリル化剤は、化学構造中に塩素原子を含有しないシリル化剤を用いるポリイミド製造方法である。
請求項14記載の発明は、請求項13記載のポリイミド製造方法であって、前記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いるポリイミド製造方法である。
請求項15記載の発明は、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項12乃至請求項14のいずれか1項記載のポリイミド製造方法であって、化学構造全体に含有されるRのうち、シリル基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表される前記ポリイミド前駆体のシリル化率が0.9以上1.0以下になるように、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド製造方法である。
シリル化率=A/(A+B)……数式(1)
請求項16記載の発明は、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項12乃至請求項15のいずれか1項記載のポリイミドの製造方法であって、反応前の前記トランス1,4-ジアミノシクロヘキサンの全部のアミノ基の数をc、前記中間生成物全部のシリル基の数をdとすると、下記数式(2)で表される前記中間生成物のシリル化率が0.9以上1.0以下の範囲になるような割合で前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミドの製造方法である。
シリル化率=d/c……数式(2)
請求項17記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中にピロメリット酸二無水物を添加し、前記中間生成物と、前記ピロメリット酸二無水物とを反応させ、生成したポリイミド前駆体を前記重合溶媒中に分散又は溶解させ、次いで加熱処理して、ポリイミドを製造するポリイミド製造方法である。
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
Subsequently, it is a polyimide manufacturing method which heat-processes and manufactures a polyimide.
A thirteenth aspect of the present invention is the polyimide manufacturing method according to the twelfth aspect, wherein the silylating agent uses a silylating agent that does not contain a chlorine atom in the chemical structure.
The invention according to claim 14 is the method for producing polyimide according to claim 13, wherein the silylating agent is one of N, O-bis (trimethylsilyl) trifluoroacetamide and N, O-bis (trimethylsilyl) acetamide. Or it is a polyimide manufacturing method using both.
The invention according to claim 15 is the polyimide production method according to any one of claims 12 to 14, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted in a predetermined ratio. Of the Rs contained in the entire chemical structure, when the number of Rs consisting of silyl groups is A and the number of Rs consisting of H is B, the silylation rate of the polyimide precursor represented by the following formula (1) is In the polyimide production method, the trans 1,4-diaminocyclohexane and the silylating agent are reacted so as to be 0.9 or more and 1.0 or less.
Silylation rate = A / (A + B) (1)
The invention according to claim 16 is the method for producing a polyimide according to any one of claims 12 to 15, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. The intermediate product represented by the following formula (2), where c is the number of all amino groups of the trans 1,4-diaminocyclohexane before reaction and d is the number of silyl groups of all the intermediate products This is a method for producing a polyimide, in which the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a ratio such that the silylation rate of the compound is in the range of 0.9 to 1.0.
Silylation rate = d / c Equation (2)
The invention according to claim 17 is the addition of pyromellitic dianhydride in the polymerization solvent after reacting trans 1,4-diaminocyclohexane with a silylating agent in a polymerization solvent to produce an intermediate product. Then, the intermediate product and the pyromellitic dianhydride are reacted, and the produced polyimide precursor is dispersed or dissolved in the polymerization solvent, and then heat-treated to produce a polyimide. is there.

尚、本発明でポリイミド前駆体のシリル化率とは、1構造単位中だけに含まれるSi(CH33基と水素の数から求められるものではなく、ポリイミド前駆体分子の化学構造全体に含まれるSi(CH33基からなるRの数と、水素からなるRの数とから、上記数式(1)で導かれるものである。 In the present invention, the silylation rate of the polyimide precursor is not determined from the number of Si (CH 3 ) 3 groups and hydrogen contained only in one structural unit, but the entire chemical structure of the polyimide precursor molecule. From the number of Rs composed of Si (CH 3 ) 3 groups and the number of Rs composed of hydrogen, it is derived by the above formula (1).

本発明によれば、余分な精製の工程がなくポリイミド前駆体を製造することが可能であり、本発明により製造されたポリイミド前駆体をイミド化すれば、低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、且つ電子基板における絶縁膜用途として十分な靭性を併せ持つ実用上有益なポリイミド膜が得られる。   According to the present invention, it is possible to produce a polyimide precursor without an extra purification step. If the polyimide precursor produced according to the present invention is imidized, a low dielectric constant, a low linear thermal expansion coefficient, A practically useful polyimide film having high glass transition temperature, high transparency, and sufficient toughness for use as an insulating film in an electronic substrate can be obtained.

以下に本発明を詳細に説明する。
前述のように、ピロメリット酸二無水物とトランス1,4-ジアミノシクロヘキサンとの重合系では反応初期に強固な塩が形成され、如何なる溶媒、温度条件によっても重合を進行せしめることが困難である。そこで塩形成を回避すべくシリル化法を用いることでポリイミド前駆体製造に関する問題の解決に至った。
The present invention is described in detail below.
As described above, in the polymerization system of pyromellitic dianhydride and trans 1,4-diaminocyclohexane, a strong salt is formed at the initial stage of the reaction, and it is difficult to proceed with polymerization under any solvent and temperature conditions. . Therefore, the use of a silylation method to avoid salt formation has led to the solution of problems relating to the production of polyimide precursors.

先ずトランス1,4-ジアミノシクロヘキサンである脂環式ジアミンを限定された重合溶媒に溶解し、そこへ適切量のN,O-ビス(トリメチルシリル)トリフルオロアセトアミドあるいはN,O-ビス(トリメチルシリル)アセトアミドを滴下してシリル化を行い、シリル化された脂環式ジアミンからなる中間生成物を生成する。その後シリル化脂環式ジアミンを単離せずにそのままその溶液に等モルのピロメリット酸二無水物であるテトラカルボン酸二無水物粉末を徐々に加えて室温で1〜2時間攪拌し、粘稠で透明な均一溶液を得る。   First, trans 1,4-diaminocyclohexane, an alicyclic diamine, is dissolved in a limited polymerization solvent, and then an appropriate amount of N, O-bis (trimethylsilyl) trifluoroacetamide or N, O-bis (trimethylsilyl) acetamide Is added dropwise to effect silylation to produce an intermediate product composed of silylated alicyclic diamine. Then, without isolating the silylated cycloaliphatic diamine, the tetracarboxylic dianhydride powder which is an equimolar pyromellitic dianhydride is gradually added to the solution as it is, and the mixture is stirred at room temperature for 1 to 2 hours. To obtain a clear homogeneous solution.

トランス1,4-ジアミノシクロヘキサンはn-ヘキサンにより再結晶を繰り返して着色成分を完全に除去してから用いることが好ましい。さもなければ得られるポリイミド膜の着色を引き起こす恐れがある。   Trans 1,4-diaminocyclohexane is preferably used after recrystallization with n-hexane to completely remove colored components. Otherwise, the resulting polyimide film may be colored.

高分子討論会予稿集, 49, 1917 (2000)に開示されているシリル化法は、シリル化剤として代表的なトリメチルシリルクロライドを用いてトリエチルアミンのような塩化水素受容剤の存在化、脂肪族ジアミンをシリル化したのち、蒸留によってこれを単離・精製して酸二無水物との重合反応に供するものである。ここでトリメチルシリルクロライドと脂肪族ジアミンとの反応により発生する塩化水素は受容剤としてのトリエチルアミンだけでなく重合反応成分としての脂肪族ジアミンにも一部付加し、塩酸塩を形成する。脂肪族ジアミンの塩酸塩は重合反応性を失うばかりか溶解度の低下によって沈澱してしまうため、シリル化ジアミンを単離せずにこの反応溶液に引き続き酸二無水物を添加して重合をおこなうことはモルバランスが崩れているため不可能である。一般にシリル化ジアミンの単離・精製工程が必要なのはこのためである。またシリル化ジアミンは空気中の僅かな水分と容易に反応して分解するため、場合によってはグローブボックス等の設備が必要となり単離・生成工程時が煩雑になる。   The silylation method disclosed in Polymer Proceedings, 49, 1917 (2000) is based on the presence of a hydrogen chloride acceptor such as triethylamine, an aliphatic diamine using trimethylsilyl chloride, which is a representative silylating agent. Is then isolated and purified by distillation and subjected to a polymerization reaction with acid dianhydride. Here, hydrogen chloride generated by the reaction of trimethylsilyl chloride and an aliphatic diamine partially adds to not only triethylamine as an acceptor but also an aliphatic diamine as a polymerization reaction component to form a hydrochloride. Since aliphatic diamine hydrochloride loses polymerization reactivity and precipitates due to a decrease in solubility, it is not possible to polymerize by adding acid dianhydride to this reaction solution without isolating silylated diamine. It is impossible because the molar balance is broken. This is why a silylated diamine isolation / purification step is generally required. In addition, silylated diamine easily decomposes by reacting with a slight amount of moisture in the air, and in some cases, equipment such as a glove box is required, which complicates the isolation / generation process.

しかしながら本発明におけるポリイミド前駆体の製造工程はこのようなシリル化ジアミンの単離・精製工程を一切含まない。シリル化剤として化学構造中にハロゲン原子を有しない非ハロゲン化シリル化剤を用いると、トランス1,4-ジアミノシクロヘキサンをシリル化するときに副生成物として塩化水素のようなハロゲン化水素が発生しない。   However, the production process of the polyimide precursor in the present invention does not include any such isolation / purification process of silylated diamine. When a non-halogenated silylating agent having no halogen atom in the chemical structure is used as a silylating agent, hydrogen halide such as hydrogen chloride is generated as a by-product when trans 1,4-diaminocyclohexane is silylated. do not do.

例えば、非ハロゲン化シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドあるいはN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いると、脂環式ジアミンと反応してシリル化した後、副生成物として発生するのは重合反応に無害なアセトアミド類のみで塩化水素を発生することはないため、そこへ引き続き酸二無水物を添加してもモルバランスは保持されているためである。なお、副生成物としてのアセトアミド類は熱イミド化反応時に溶媒と共に揮発するため全く問題がない。   For example, when one or both of N, O-bis (trimethylsilyl) trifluoroacetamide and N, O-bis (trimethylsilyl) acetamide is used as a non-halogenated silylating agent, it reacts with an alicyclic diamine and is silylated. After that, only by acetamides that are harmless to the polymerization reaction is generated as a by-product, and hydrogen chloride is not generated. Therefore, even if acid dianhydride is subsequently added, the molar balance is maintained. It is. In addition, since acetamides as a by-product are volatilized with the solvent during the thermal imidation reaction, there is no problem at all.

また、トランス1,4-ジアミノシクロヘキサンがシリル化されるときに塩化水素が発生しないから、本発明では3級アミンのような中和剤を使用せずに済む。従って、形成されるポリイミド膜中に塩類が残留しない。   Further, since hydrogen chloride is not generated when trans 1,4-diaminocyclohexane is silylated, the present invention does not require the use of a neutralizing agent such as a tertiary amine. Therefore, no salts remain in the formed polyimide film.

単位構造式(1)で表され、請求項1に記載の高重合度半芳香族ポリイミド前駆体を得るには上記のシリル化剤の添加量を調節してシリル化率Xが0.9以上1.0以下の範囲で重合を行うことが好ましい。Xが0.9未満であると、重合時に塩形成が起こり、反応溶液は均一にならない。   In order to obtain the high degree of polymerization semi-aromatic polyimide precursor represented by unit structural formula (1) according to claim 1, the silylation rate X is 0.9 or more and 1.0 or less by adjusting the addition amount of the silylating agent. It is preferable to carry out the polymerization in the range. When X is less than 0.9, salt formation occurs during polymerization, and the reaction solution does not become uniform.

このようにして得られたポリイミド前駆体溶液を酸性水溶液やアルコール等に滴下するか、またはキャスト後、ポリイミド前駆体膜をこれらに浸漬することでシリル基が容易に脱離する。この際酸あるいはアルコール濃度および反応時間を調節することによりシリル化率Xが0以上1.0以下のポリイミド前駆体を得ることが可能である。   The polyimide precursor solution thus obtained is dropped into an acidic aqueous solution, alcohol, or the like, or after casting, the polyimide precursor film is immersed in these to easily desorb the silyl group. At this time, it is possible to obtain a polyimide precursor having a silylation rate X of 0 or more and 1.0 or less by adjusting the acid or alcohol concentration and the reaction time.

また本発明に係るポリイミド前駆体の重合においては、重合溶媒の選択が極めて重要である。重合溶媒としてはヘキサメチルホスホルアミド単独、あるいはヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの混合溶媒やヘキサメチルホスホルアミドとN-メチル-2-ピロリドンの混合溶媒が好ましい。重合溶媒が適切でないと、重合時の塩形成により重合が全く進まないか、一部重合反応が起っても沈澱、ゲル化などにより均一な重合溶液が得られず成膜ができなくなる恐れがある。   In the polymerization of the polyimide precursor according to the present invention, the selection of the polymerization solvent is extremely important. As the polymerization solvent, hexamethylphosphoramide alone, a mixed solvent of hexamethylphosphoramide and N, N-dimethylacetamide, or a mixed solvent of hexamethylphosphoramide and N-methyl-2-pyrrolidone is preferable. If the polymerization solvent is not appropriate, the polymerization may not proceed at all due to salt formation during polymerization, or even if a partial polymerization reaction occurs, a uniform polymerization solution may not be obtained due to precipitation or gelation, and film formation may not be possible. is there.

ポリアミド等の重合の際しばしば添加される高分子溶解促進剤即ちリチウムブロマイドやリチウムクロライドの如き金属塩類は、本発明に係る重合系では一切使用する必要がない。これらの金属塩類はポリイミド膜中に金属イオンが痕跡量でも残留すると、電子デバイスとしての信頼性を著しく低下させるため用いられるべきではない。また単位構造式(1)においてXが0.9以上1.0以下の範囲外では前述のように重合が進行しないが、これに対する上記の塩類の溶解促進効果は殆ど見られず、塩類添加だけで重合反応性を改善することはできない。   Polymer dissolution accelerators, that is, metal salts such as lithium bromide and lithium chloride, which are often added during polymerization of polyamide or the like, do not need to be used in the polymerization system according to the present invention. These metal salts should not be used because if the metal ions remain in the polyimide film even in a trace amount, the reliability as an electronic device is remarkably lowered. In addition, when the X in the unit structural formula (1) is outside the range of 0.9 or more and 1.0 or less, the polymerization does not proceed as described above, but almost no effect of promoting the dissolution of the above salts is observed. Cannot be improved.

単位構造式(1)のポリイミド前駆体を重合する際、上記以外の留意点としてモノマー濃度の設定が重要である。均一で高重合度のポリイミド前駆体溶液を得るためのモノマー濃度としては10〜13重量%が好ましい。モノマー濃度10重量%以下で重合を行うと、得られるポリイミド前駆体の固有粘度は請求項1に記載の固有粘度2.0dL/gを大きく下回り、最終的に得られるポリイミド膜が著しく脆弱化して膜中にひび割れ等が生じる恐れがある。また13重量%以上では、ポリイミド前駆体溶液がゲル化する傾向が強くなり貯蔵安定性が低下する恐れがある。   When polymerizing the polyimide precursor of unit structural formula (1), the setting of the monomer concentration is important as points to be noted other than the above. The monomer concentration for obtaining a uniform and highly polymerized polyimide precursor solution is preferably 10 to 13% by weight. When the polymerization is carried out at a monomer concentration of 10% by weight or less, the intrinsic viscosity of the obtained polyimide precursor is significantly lower than the intrinsic viscosity of 2.0 dL / g described in claim 1, and the finally obtained polyimide film is significantly weakened. There is a risk of cracks in the film. On the other hand, if it is 13% by weight or more, the polyimide precursor solution tends to gel, and the storage stability may be lowered.

上記のモノマー濃度範囲で重合すると、均一で高重合度のポリイミド前駆体溶液を得ることができるが、重合終了後室温で24時間以上48時間以下経過すると、一部ゲル分が生じて不均一になり、良質なポリイミド膜の製造に支障をきたす。これはこのポリイミド前駆体の剛直な構造に基づくアミド基同士の強い分子間水素結合によるものである。これを回避するために重合終了後、100℃で10分以上20分以下この溶液を加熱処理することで、貯蔵安定性を大幅に改善することができる。   When polymerized in the above monomer concentration range, a polyimide precursor solution having a uniform and high degree of polymerization can be obtained. This hinders the production of high-quality polyimide films. This is due to strong intermolecular hydrogen bonding between amide groups based on the rigid structure of the polyimide precursor. In order to avoid this, the storage stability can be greatly improved by heat-treating the solution at 100 ° C. for 10 minutes or more and 20 minutes or less after the completion of the polymerization.

得られたポリイミド膜中には必要に応じて酸化防止剤、フィラー、シランカップリング剤、感光剤、光重合開始剤および増感剤等の添加物が混合されていても差し支えない。   In the obtained polyimide film, additives such as an antioxidant, a filler, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer may be mixed as necessary.

基板上に塗布されたポリイミド前駆体溶液は強制循環式熱風乾燥器中あるいは真空乾燥器中50℃以上100℃以下の範囲で乾燥される。この際50℃未満では乾燥に長時間を要するばかりか、キャスト膜(ポリイミド前駆体膜)が液晶形成により白濁化したり、膜中に多量の溶媒が残留し、イミド化時に溶媒の急激な蒸発により気泡が発生しやすく、良質なポリイミド膜を得るのに好ましくない。また100℃を超える温度での乾燥ではキャスト膜(ポリイミド前駆体膜)が脆弱になって割れや剥れを生じる傾向があり、良質なポリイミド膜を得るのに好ましくない。  The polyimide precursor solution applied on the substrate is dried in a forced circulation hot air dryer or in a vacuum dryer in the range of 50 ° C. to 100 ° C. At this time, if it is less than 50 ° C., not only will drying take a long time, but the cast film (polyimide precursor film) will become cloudy due to liquid crystal formation, or a large amount of solvent will remain in the film. Air bubbles are easily generated, which is not preferable for obtaining a good quality polyimide film. Further, drying at a temperature exceeding 100 ° C. tends to cause the cast film (polyimide precursor film) to become brittle and cause cracking or peeling, which is not preferable for obtaining a high-quality polyimide film.

公知の方法ではポリイミド膜は基板上のキャスト膜をそのまま200℃以上400℃以下で加熱して製造されるが、本発明に係る単位構造式(1)で表されるポリイミド前駆体のキャスト膜では公知の方法に従って熱イミド化すると窒素雰囲気中あるいは真空中にかかわらず膜は激しく断裂および黒色化して、ポリイミド膜を製造することが困難になる。これは溶媒として使用したヘキサメチルホスホルアミドが非常に揮発しにくいため、イミド化時に膜中に滞留しやすく、ヘキサメチルホスホルアミド自身の熱分解や、ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。   In the known method, the polyimide film is produced by heating the cast film on the substrate as it is at 200 ° C. or more and 400 ° C. or less. However, in the polyimide precursor cast film represented by the unit structural formula (1) according to the present invention, When thermal imidization is performed according to a known method, the film is severely broken and blackened regardless of whether it is in a nitrogen atmosphere or in a vacuum, making it difficult to produce a polyimide film. This is because the hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of the hexamethylphosphoramide itself and some reaction with the polyimide precursor. it is conceivable that.

ポリイミド前駆体のキャスト膜を水中に浸漬することで、ヘキサメチルホスホルアミド等の水溶性残留溶媒をほぼ完全に抽出・除去することは可能である。しかしながら、水中への浸漬は基板と膜との間の接着力の低下を招き、剥れの原因となるばかりか、膜の激しい収縮をも引き起こす。この時の大きな膜収縮はイミド化時にポリイミド膜の割れを誘発し、基板上へのポリイミド膜の形成を困難にする。   By immersing the cast film of the polyimide precursor in water, it is possible to almost completely extract and remove the water-soluble residual solvent such as hexamethylphosphoramide. However, immersion in water causes a decrease in the adhesion between the substrate and the film, causing not only peeling but also severe contraction of the film. Large film shrinkage at this time induces cracking of the polyimide film during imidization, making it difficult to form the polyimide film on the substrate.

鋭意研究の結果、n-プロパノールやn-ブタノール等のアルコール類へキャスト膜を浸漬することで、膜の収縮や基板からの剥れを抑制し、同時にヘキサメチルホスホルアミド等の残留溶媒がほぼ完全に抽出・除去されることを見出し、製膜時の問題解決に至った。   As a result of diligent research, by immersing the cast film in alcohols such as n-propanol and n-butanol, the film shrinkage and peeling from the substrate are suppressed, and at the same time, residual solvents such as hexamethylphosphoramide are almost eliminated. It was found that it was completely extracted and removed, and the problem was solved during film formation.

このようにして基板上に形成されたポリイミド前駆体膜を減圧下200℃以上400℃以下、好ましくは250℃以上350℃以下の温度で熱処理することで強靭なポリイミド膜が得られる。200℃未満ではイミド化が完結しない恐れがあり、350℃を超えるとポリイミド膜の着色が起る。またイミド化反応はポリイミド前駆体の膜を無水酢酸と三級アミン等の混合物等の脱水試薬と反応させて化学的に行うこともできる。   A tough polyimide film can be obtained by heat-treating the polyimide precursor film thus formed on the substrate at a temperature of 200 ° C. or higher and 400 ° C. or lower, preferably 250 ° C. or higher and 350 ° C. or lower, under reduced pressure. If it is less than 200 ° C., imidation may not be completed, and if it exceeds 350 ° C., the polyimide film is colored. The imidation reaction can also be carried out chemically by reacting the polyimide precursor film with a dehydrating reagent such as a mixture of acetic anhydride and tertiary amine.

本発明に係るポリイミドは脂環構造を含有するため、脂環構造を全く含まない全芳香族ポリイミドに比べると長期熱安定性に劣るが、ガラス転移温度、窒素中および空気中での熱分解温度が共に400℃以上であり、ハンダ耐熱性の如き短期耐熱性は充分高く、上記産業分野への応用には全く問題がない。   Since the polyimide according to the present invention contains an alicyclic structure, it is inferior in long-term thermal stability compared to a wholly aromatic polyimide that does not contain an alicyclic structure at all, but the glass transition temperature, the thermal decomposition temperature in nitrogen and air However, both of them are 400 ° C. or higher, and short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the industrial field.

また、上記単位構造式(2)で表される本発明のポリイミドは、周波数1MHzの誘電率が3.0以下と低いだけではなく、線熱膨張係数が20ppm/K以下と低く、その上、高透明性、且つ電子基板における絶縁膜用途として十分な靭性を併せ持つことを特徴とする。   In addition, the polyimide of the present invention represented by the unit structural formula (2) not only has a low dielectric constant of 3.0 MHz or less at a frequency of 1 MHz, but also has a low coefficient of linear thermal expansion of 20 ppm / K or less, and is highly transparent. And toughness sufficient for use as an insulating film in an electronic substrate.

以下に本発明を実施例により具体的に説明するが、これに限定されるものではない。尚、各例における分析値は以下の方法により求めた。   EXAMPLES The present invention will be specifically described below with reference to examples, but it should not be construed that the invention is limited thereto. In addition, the analytical value in each example was calculated | required with the following method.

<固有粘度>
0.5wt%ポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<Intrinsic viscosity>
A 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.

<ガラス転移温度>
動的粘弾性測定により、周波数0.1Hz、昇温速度5℃/分における損失ピークから求めた。
<Glass transition temperature>
The dynamic viscoelasticity was measured from the loss peak at a frequency of 0.1 Hz and a heating rate of 5 ° C./min.

<5%重量減少温度>
ポリイミド膜の熱重量変化を熱天秤を用いて測定し、重量が5%減少した温度を求めた。
<5% weight loss temperature>
The thermogravimetric change of the polyimide film was measured using a thermobalance, and the temperature at which the weight was reduced by 5% was determined.

<線熱膨張係数>
熱機械分析により、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値として線熱膨張係数を求めた。
<Linear thermal expansion coefficient>
The linear thermal expansion coefficient was determined as an average value in the range of 100 to 200 ° C. from the elongation of the test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min.

<カットオフ波長(透明性)>
分光光度計により200nmから1000nmの可視・紫外線透過率を測定した。透過率が1%以下となる波長(カットオフ波長)を透明性の指標とした。カットオフ波長が短い程、透明性が良好であることを意味する。
<Cutoff wavelength (transparency)>
Visible / ultraviolet transmittance from 200 nm to 1000 nm was measured with a spectrophotometer. The wavelength (cutoff wavelength) at which the transmittance was 1% or less was used as an index of transparency. The shorter the cutoff wavelength, the better the transparency.

<複屈折>
ポリイミド膜に平行な方向(nin)と垂直な方向(nout)の屈折率をアッベ屈折計(ナトリウムランプ使用、波長589nm)で測定し、これらの屈折率の差から複屈折(Δn=nin−nout)を求めた。
<Birefringence>
The refractive index in the direction parallel to the polyimide film (n in ) and the direction perpendicular to the polyimide film (n out ) is measured with an Abbe refractometer (using a sodium lamp, wavelength 589 nm), and birefringence (Δn = n in −n out ).

<誘電率>
ポリイミド膜の平均屈折率〔nav=(2nin+nout)/3〕に基づいて、次式により1MHzにおける誘電率(ε)を算出した。
<Dielectric constant>
Based on the average refractive index [n av = (2n in + n out ) / 3] of the polyimide film, the dielectric constant (ε) at 1 MHz was calculated by the following formula.

ε=1.1×nav 2(1kHz)
(実施例1)
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの混合溶媒(体積比3:1)130mLに溶解した後、シリンジにてN,O-ビス(トリメチルシリル)トリフルオロアセトアミド15.0mL(0.05モル)をゆっくりと滴下し、室温で1時間攪拌してシリル化(シリル化率X =1.0)を行った。
ε = 1.1 × n av 2 (1 kHz)
Example 1
Put recrystallized and purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried sealed reaction vessel equipped with a stirrer and thoroughly dehydrated hexamethylphosphoramide and N, N-dimethylacetamide. After dissolving in 130 mL of a mixed solvent (volume ratio 3: 1), 15.0 mL (0.05 mol) of N, O-bis (trimethylsilyl) trifluoroacetamide was slowly added dropwise with a syringe and stirred at room temperature for 1 hour for silylation. (Silylation rate X = 1.0) was performed.

この溶液にピロメリット酸二無水物粉末10.906g(0.05モル)を徐々に加え室温で2時間撹拌し均一で粘稠なポリイミド前駆体溶液(ポリイミド前駆体有機溶媒溶液)を得た。これを100℃で20分加熱して貯蔵安定性を高める処理を行った。重合時と同じ溶媒中、30℃で測定したポリイミド前駆体の固有粘度は3.9dL/gと極めて高重合体であった。   To this solution, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added and stirred at room temperature for 2 hours to obtain a uniform and viscous polyimide precursor solution (polyimide precursor organic solvent solution). This was heated at 100 ° C. for 20 minutes to carry out a treatment for improving storage stability. The intrinsic viscosity of the polyimide precursor measured at 30 ° C. in the same solvent during polymerization was 3.9 dL / g, which was a very high polymer.

ポリイミド前駆体溶液をガラス基板に塗布し、60℃、2〜4時間で真空乾燥して得た透明で良質なポリイミド前駆体膜を1-ブタノールに2時間浸漬して残留溶媒を完全に除去した。これをそのまま基板上で減圧下300℃、1時間で熱的にイミド化を行い、基板から剥がしてから更に305℃、1時間で熱処理を行って膜厚10μmの無着色透明な半芳香族ポリイミド膜を得た。   The polyimide precursor solution was applied to a glass substrate and vacuum-dried at 60 ° C. for 2 to 4 hours. The transparent and high-quality polyimide precursor film was immersed in 1-butanol for 2 hours to completely remove the residual solvent. . This is directly imidized on the substrate under reduced pressure at 300 ° C. for 1 hour, peeled off from the substrate, and further heat treated at 305 ° C. for 1 hour to give a 10 μm thick uncolored transparent semi-aromatic polyimide. A membrane was obtained.

膜物性は、誘電率2.91、線熱膨張係数11ppm/K、ガラス転移温度442℃、、窒素雰囲気中の5%重量減少温度(昇温速度10℃/min)435℃、空気中で425℃、カットオフ波長320nmであり、目的とする特性を全て満足することができた。複屈折Δnは0.1771と、非常に高い値を示したことから、ポリイミド鎖が高度に面内配向しており、これが低熱膨張特性発現の理由である。 得られたポリイミド前駆体薄膜およびポリイミド薄膜の赤外線吸収スペクトルを図2、図3にそれぞれ示し、ポリイミド前駆体薄膜およびポリイミド薄膜のピークテーブルを下記表1、表2に記載する。   Film properties are dielectric constant 2.91, linear thermal expansion coefficient 11ppm / K, glass transition temperature 442 ° C, 5% weight loss temperature in nitrogen atmosphere (temperature increase rate 10 ° C / min) 435 ° C, 425 ° C in air, The cut-off wavelength was 320 nm, and all the desired characteristics could be satisfied. The birefringence Δn was 0.1771, which is a very high value, so the polyimide chains are highly in-plane oriented, which is the reason for the low thermal expansion characteristics. Infrared absorption spectra of the obtained polyimide precursor thin film and polyimide thin film are shown in FIGS. 2 and 3, respectively. Peak tables of the polyimide precursor thin film and polyimide thin film are shown in Tables 1 and 2 below.

Figure 0004620946
Figure 0004620946

Figure 0004620946
Figure 0004620946

(比較例1)
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミド130mLに溶解した。ジアミンのシリル化を行わないでピロメリット酸二無水物粉末10.906g(0.05モル)を徐々に加え室温で撹拌した。
(Comparative Example 1)
In a well-dried sealed reaction vessel equipped with a stirrer, 5.710 g (0.05 mol) of trans-1,4-diaminocyclohexane that had been recrystallized and purified was placed and dissolved in 130 mL of fully dehydrated N, N-dimethylacetamide. Without performing silylation of diamine, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added and stirred at room temperature.

しかし、重合初期に強固な塩が形成され、室温で数週間〜1ヶ月間攪拌を継続しても、重合が全く進行しなかった。重合溶媒としてN,N-ジメチルアセトアミドの他にN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、γ-ブチロラクトン、ジグライム、m−クレゾール、ヘキサメチルホスホルアミド、ヘキサメチルホスホルアミド/N,N-ジメチルアセトアミド混合溶媒、ヘキサメチルホスホルアミド/N-メチル-2-ピロリドン混合溶媒、テトラヒドロフラン/メタノール混合溶媒を用いて重合を試みたが、あらゆる溶媒系で全く重合は進行しなかった。   However, a strong salt was formed at the initial stage of polymerization, and polymerization did not proceed at all even when stirring was continued for several weeks to one month at room temperature. In addition to N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, γ-butyrolactone, diglyme, m -Polymerization using cresol, hexamethylphosphoramide, hexamethylphosphoramide / N, N-dimethylacetamide mixed solvent, hexamethylphosphoramide / N-methyl-2-pyrrolidone mixed solvent, tetrahydrofuran / methanol mixed solvent Attempts did not proceed at all in any solvent system.

またこれらの溶媒系で溶質濃度1〜15重量%の濃度範囲、室温〜150℃の温度範囲で重合反応を試みたが、同様に全く重合しなかった。更に、ピリジンやトリエチルアミンのような三級アミンあるいはリチウムクロライドのような無機塩類も用いたがこれらの添加効果は全く見られず重合は全く進行しなかった。   In these solvent systems, a polymerization reaction was attempted in a solute concentration range of 1 to 15% by weight and a temperature range of room temperature to 150 ° C., but no polymerization was performed in the same manner. Further, tertiary amines such as pyridine and triethylamine or inorganic salts such as lithium chloride were used, but these addition effects were not seen at all and polymerization did not proceed at all.

(実施例2)
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミド130mLに溶解した後、シリンジにてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドからなるシリル化剤15.0mL(0.05モル)をゆっくりと滴下し、室温で1時間攪拌してシリル化(シリル化率X =1.0)を行った。この溶液にピロメリット酸二無水物粉末10.906g(0.05モル)を徐々に加え室温で撹拌した。
(Example 2)
A well-dried sealed reaction vessel with a stirrer is charged with 5.710 g (0.05 mol) of trans-1,4-diaminocyclohexane that has been recrystallized and purified, dissolved in 130 mL of fully dehydrated N, N-dimethylacetamide, and then syringe Silylating agent (silylation rate X = 1.0) was slowly added dropwise with 15.0 mL (0.05 mol) of silylating agent consisting of N, O-bis (trimethylsilyl) trifluoroacetamide at room temperature and stirred at room temperature for 1 hour. . To this solution, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added and stirred at room temperature.

この方法では、ポリイミド前駆体溶液が得られたものの、その溶液中のポリイミド前駆体の一部が沈殿し、一ヶ月間攪拌を継続しても粘稠で均一な溶液は得られなかった。これはシリル化ポリイミド前駆体のN,N-ジメチルアセトアミドに対する溶解度が乏しく、重合途中で一部沈澱したためである。重合溶媒としてヘキサメチルホスホルアミドを含まない場合はリチウムクロライドの添加の有無にかかわらず如何なるシリル化率でも同様に、粘稠で均一な溶液は得られなかった。   In this method, although a polyimide precursor solution was obtained, a part of the polyimide precursor in the solution was precipitated, and a viscous and uniform solution was not obtained even if stirring was continued for one month. This is because the silylated polyimide precursor has poor solubility in N, N-dimethylacetamide and partially precipitates during polymerization. When hexamethylphosphoramide was not included as a polymerization solvent, a viscous and uniform solution was not obtained at any silylation rate regardless of the addition of lithium chloride.

(実施例3)
実施例1で重合したポリイミド前駆体の溶液をガラス基板に塗布し、60℃、2時間で真空乾燥して透明で良質なポリイミド前駆体膜を得た。残留溶媒を除去する工程を経ずに、これを基板上で減圧下300℃、1時間で熱的にイミド化を行った。
(Example 3)
The polyimide precursor solution polymerized in Example 1 was applied to a glass substrate and vacuum dried at 60 ° C. for 2 hours to obtain a transparent and good quality polyimide precursor film. Without passing through the step of removing the residual solvent, this was thermally imidized on the substrate under reduced pressure at 300 ° C. for 1 hour.

この方法では、得られたポリイミド膜が部分的に黒色化しており、また、膜の断裂も部分的に見られた。これは溶媒として使用したヘキサメチルホスホルアミドが非常に揮発しにくいため、イミド化時に膜中に滞留しやすく、ヘキサメチルホスホルアミド自身の熱分解や、ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。   In this method, the obtained polyimide film was partially blackened, and the film was partially broken. This is because the hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of the hexamethylphosphoramide itself and some reaction with the polyimide precursor. it is conceivable that.

(比較例2)
よく乾燥した攪拌機付密閉反応容器中に4,4'-メチレンビス(シクロヘキシルアミン)10.518g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミド180mLに溶解した後、ピロメリット酸二無水物粉末10.906g(0.05モル)を徐々に加え室温で24時間撹拌した。この系では脂環式ジアミンのシリル化なしで公知の方法で容易に重合が進行した。しかしながら基板上で減圧下300℃、1時間で熱的にイミド化して得られたポリイミド膜は線熱膨張係数が70ppm/Kであり低熱膨張特性を示さなかった。これは用いた脂環式ジアミンの屈曲構造により熱イミド化時の自発的面内配向が阻害されたためである。
(Comparative Example 2)
After putting 10.518 g (0.05 mol) of 4,4'-methylenebis (cyclohexylamine) into a well-dried sealed reaction vessel with a stirrer, dissolve in 180 mL of fully dehydrated N, N-dimethylacetamide, and then pyromellitic dianhydride Product powder (10.906 g, 0.05 mol) was gradually added and stirred at room temperature for 24 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine. However, the polyimide film obtained by thermal imidization at 300 ° C. for 1 hour under reduced pressure on a substrate had a linear thermal expansion coefficient of 70 ppm / K and did not exhibit low thermal expansion characteristics. This is because the in-plane orientation during thermal imidization was inhibited by the bent structure of the alicyclic diamine used.

(比較例3)
よく乾燥した攪拌機付密閉反応容器中に1,4-ジアミノシクロヘキサン(トランス/シス混合物)5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミド130mLに溶解した後、ピロメリット酸二無水物粉末10.906g(0.05モル)を徐々に加え室温で24時間撹拌した。この系では脂環式ジアミンのシリル化なしで公知の方法で容易に重合が進行した。しかしながら基板上で減圧下300℃、1時間で熱的にイミド化して得られたポリイミド膜は極めて脆弱であった。
(Comparative Example 3)
In a well-dried closed reaction vessel with a stirrer, add 1.710 g (0.05 mol) of 1,4-diaminocyclohexane (trans / cis mixture), dissolve in 130 mL of fully dehydrated N, N-dimethylacetamide, and then add pyromellitic acid. The dianhydride powder 10.906g (0.05mol) was added gradually, and it stirred at room temperature for 24 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine. However, the polyimide film obtained by thermal imidization at 300 ° C. for 1 hour under reduced pressure on the substrate was extremely fragile.

これはジアミン成分に反応性の低いシス-1,4-ジアミノシクロヘキサンが含まれていたためである。またこのポリイミド膜は線熱膨張係数が60ppm/Kであり低熱膨張特性を示さなかった。これは用いた脂環式ジアミンに折曲がり構造のシス1,4-ジアミノシクロヘキサンが含まれていたため熱イミド化時の自発的面内配向が阻害されたためである。   This is because the diamine component contained cis-1,4-diaminocyclohexane having low reactivity. This polyimide film had a linear thermal expansion coefficient of 60 ppm / K and did not exhibit low thermal expansion characteristics. This is because the alicyclic diamine used contained a cis 1,4-diaminocyclohexane with a bent structure, which inhibited the spontaneous in-plane orientation during thermal imidization.

(比較例4)
よく乾燥した攪拌機付密閉反応容器中にパラフェニレンジアミン5.407g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミド200mLに溶解した後、3,3',4,4'-ビフェニルテトラカルボン酸二無水物の粉末14.711g(0.05モル)を徐々に加え室温で3時間撹拌した。この系ではジアミンのシリル化なしで公知の方法で容易に重合が進行した。
(Comparative Example 4)
Place 5.407 g (0.05 mol) of paraphenylenediamine in a well-sealed sealed reaction vessel with a stirrer, dissolve in 200 mL of fully dehydrated N, N-dimethylacetamide, and then add 3,3 ', 4,4'-biphenyltetra 14.711 g (0.05 mol) of carboxylic dianhydride powder was gradually added and stirred at room temperature for 3 hours. In this system, polymerization proceeded easily by a known method without silylation of diamine.

基板上で減圧下350℃、1時間で熱的にイミド化して得られたポリイミド膜では線熱膨張係数は6.0ppm/Kと極めて低い熱膨張係数を示したが、誘電率は3.5であり低誘電率を示さず、更にこのポリイミド膜は著しく着色した。 これは酸二無水物成分、ジアミン成分共に芳香族モノマーを用いたために、分子内共役および電荷移動相互作用が生じたことが原因である。同様にピロメリット酸二無水物とパラフェニレンジアミンから得られた棒状構造のポリイミド膜も低熱膨張特性を示したのみで、低誘電率と高透明性を達成することはできなかった。これも酸二無水物成分、ジアミン成分共に芳香族モノマーを用いたことが原因である。   The polyimide film obtained by thermal imidization at 350 ° C. for 1 hour under reduced pressure on the substrate showed a very low coefficient of thermal expansion of 6.0 ppm / K, but the dielectric constant was as low as 3.5. The dielectric constant was not exhibited, and the polyimide film was remarkably colored. This is because an aromatic monomer is used for both the acid dianhydride component and the diamine component, resulting in intramolecular conjugation and charge transfer interaction. Similarly, a rod-shaped polyimide film obtained from pyromellitic dianhydride and paraphenylenediamine also exhibited low thermal expansion characteristics, and could not achieve low dielectric constant and high transparency. This is also due to the use of aromatic monomers for both the acid dianhydride component and the diamine component.

1,4-ジアミノシクロヘキサンの立体構造を示す図Diagram showing the three-dimensional structure of 1,4-diaminocyclohexane 本発明のポリイミド前駆体膜の赤外線吸収スペクトルを示す図The figure which shows the infrared absorption spectrum of the polyimide precursor film | membrane of this invention 本発明のポリイミド膜の赤外線吸収スペクトルを示す図The figure which shows the infrared absorption spectrum of the polyimide film of this invention

Claims (17)

トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物とピロメリット酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表されるポリイミド前駆体を製造するポリイミド前駆体の製造方法。
Figure 0004620946
(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
Trans 1,4-diaminocyclohexane and a silylating agent are reacted to form an intermediate product. Then, the intermediate product is reacted with pyromellitic dianhydride, and the repeating structural unit is represented by the following unit structural formula ( The manufacturing method of the polyimide precursor which manufactures the polyimide precursor represented by 1).
Figure 0004620946
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
前記シリル化剤は、化学構造中に塩素原子を含有しないシリル化剤を用いる請求項1記載のポリイミド前駆体の製造方法。   The method for producing a polyimide precursor according to claim 1, wherein the silylating agent uses a silylating agent that does not contain a chlorine atom in its chemical structure. 前記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いる請求項2記載のポリイミド前駆体の製造方法。   The method for producing a polyimide precursor according to claim 2, wherein one or both of N, O-bis (trimethylsilyl) trifluoroacetamide and N, O-bis (trimethylsilyl) acetamide is used as the silylating agent. 前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法であって、
化学構造全体に含有されるRのうち、シリル基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表される前記ポリイミド前駆体のシリル化率が0.9以上1.0以下になるように、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド前駆体の製造方法。
シリル化率=A/(A+B)……数式(1)
The method for producing a polyimide precursor according to any one of claims 1 to 3, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted in a predetermined ratio.
Of the Rs contained in the entire chemical structure, when the number of Rs consisting of silyl groups is A and the number of Rs consisting of H is B, the silylation rate of the polyimide precursor represented by the following formula (1) is A method for producing a polyimide precursor, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted so as to be 0.9 or more and 1.0 or less.
Silylation rate = A / (A + B) (1)
前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項1乃至請求項4のいずれか1項記載のポリイミド前駆体の製造方法であって、
反応前の前記トランス1,4-ジアミノシクロヘキサンの全部のアミノ基の数をc、前記中間生成物全部のシリル基の数をdとすると、
下記数式(2)で表される前記中間生成物のシリル化率が0.9以上1.0以下の範囲になるような割合で前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド前駆体の製造方法。
シリル化率=d/c……数式(2)
The method for producing a polyimide precursor according to any one of claims 1 to 4, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted in a predetermined ratio.
When the number of all amino groups of the trans 1,4-diaminocyclohexane before the reaction is c and the number of silyl groups of all the intermediate products is d,
The trans 1,4-diaminocyclohexane and the silylating agent at a ratio such that the silylation rate of the intermediate product represented by the following formula (2) is in the range of 0.9 to 1.0. A method for producing a polyimide precursor to be reacted.
Silylation rate = d / c Equation (2)
トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中にピロメリット酸二無水物を添加し、前記中間生成物と、前記ピロメリット酸二無水物とを反応させ、ポリイミド前駆体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体の溶液を製造するポリイミド前駆体有機溶媒溶液の製造方法。   Trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then pyromellitic dianhydride is added to the polymerization solvent, and the intermediate product, The manufacturing method of the polyimide precursor organic solvent solution which makes the said pyromellitic dianhydride react and manufactures the solution of the polyimide precursor by which the polyimide precursor was disperse | distributed or melt | dissolved in the said polymerization solvent. 請求項6記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、キャスト膜を形成した後、前記キャスト膜中のポリイミド前駆体をイミド化するポリイミド膜の製造方法であって、
前記重合溶媒に、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤と、前記ピロメリット酸二無水物と、前記中間生成物に対して親和性が高い高沸点溶媒を含有させ、
前記重合溶媒と親和性が高く、かつ前記重合溶媒よりも沸点が低い洗浄液を前記キャスト膜に接触させ、前記キャスト膜を洗浄した後、前記イミド化を行うポリイミド膜の製造方法。
A polyimide precursor organic solvent solution according to claim 6 is applied to an object to be coated, and after forming a cast film, a polyimide film manufacturing method for imidizing the polyimide precursor in the cast film,
The polymerization solvent contains the trans 1,4-diaminocyclohexane, the silylating agent, the pyromellitic dianhydride, and a high boiling point solvent having high affinity for the intermediate product,
A method for producing a polyimide film, wherein the imidization is carried out after contacting the cast film with a cleaning liquid having a high affinity with the polymerization solvent and having a boiling point lower than that of the polymerization solvent, washing the cast film.
前記高沸点溶媒としてヘキサメチルホスホルアミドを用い、
前記洗浄液としてアルコールを用いる請求項7記載のポリイミド膜の製造方法。
Using hexamethylphosphoramide as the high boiling point solvent,
The method for producing a polyimide film according to claim 7, wherein alcohol is used as the cleaning liquid.
請求項1乃至請求項5のいずれか1項記載のポリイミド前駆体製造方法で製造され、
繰り返し構造単位が上記単位構造式(1)で表され、上記単位構造式(1)中の置換基RはHまたはSi(CH3)3基である全脂環式ポリイミド前駆体であって、
1つの単位構造式中の置換基Rのうち、いずれか一方又は両方がSi(CH3)3基である単位構造を少なくとも一つ有し、
ヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの体積比3:1の混合溶媒を溶媒として30℃で測定したときの固有粘度が2.0dL/g以上であるポリイミド前駆体。
It is manufactured by the polyimide precursor manufacturing method according to any one of claims 1 to 5,
The repeating structural unit is represented by the unit structural formula (1), and the substituent R in the unit structural formula (1) is a fully alicyclic polyimide precursor that is H or Si (CH 3 ) 3 group,
At least one unit structure in which one or both of substituents R in one unit structural formula are Si (CH 3 ) 3 groups,
A polyimide precursor having an intrinsic viscosity of 2.0 dL / g or more when measured at 30 ° C. using a mixed solvent of hexamethylphosphoramide and N, N-dimethylacetamide in a volume ratio of 3: 1 as a solvent.
上記単位構造式(1)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とする請求項9項記載のポリイミド前駆体。   10. The polyimide precursor according to claim 9, wherein the steric structure of each 1,4-cyclohexane residue in the unit structural formula (1) is in a trans configuration. 全化学構造中、Si(CH3)3基からなる置換基Rの合計数をA、水素からなる置換基Rの合計数をBとすると、
下記数式(1)で表されるポリイミド前駆体のシリル化率が0以上0.9以下の範囲である請求項9又は請求項10のいずれか1項記載のポリイミド前駆体。
シリル化率=A/(A+B)……数式(1)
In the total chemical structure, when the total number of substituents R consisting of Si (CH 3 ) 3 groups is A and the total number of substituents R consisting of hydrogen is B,
The polyimide precursor according to any one of claims 9 and 10, wherein a silylation rate of the polyimide precursor represented by the following formula (1) is in a range of 0 or more and 0.9 or less.
Silylation rate = A / (A + B) (1)
トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物とピロメリット酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表されるポリイミド前駆体を製造し、
Figure 0004620946
(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
次いで加熱処理して、ポリイミドを製造するポリイミド製造方法。
Trans 1,4-diaminocyclohexane and a silylating agent are reacted to form an intermediate product. Then, the intermediate product is reacted with pyromellitic dianhydride, and the repeating structural unit is represented by the following unit structural formula ( 1) to produce a polyimide precursor represented by
Figure 0004620946
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
Next, a polyimide production method for producing polyimide by heat treatment.
前記シリル化剤は、化学構造中に塩素原子を含有しないシリル化剤を用いる請求項12記載のポリイミド製造方法。   The polyimide production method according to claim 12, wherein the silylating agent uses a silylating agent that does not contain a chlorine atom in its chemical structure. 前記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いる請求項13記載のポリイミド製造方法。   The polyimide production method according to claim 13, wherein one or both of N, O-bis (trimethylsilyl) trifluoroacetamide and N, O-bis (trimethylsilyl) acetamide is used as the silylating agent. 前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項12乃至請求項14のいずれか1項記載のポリイミド製造方法であって、
化学構造全体に含有されるRのうち、シリル基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表される前記ポリイミド前駆体のシリル化率が0.9以上1.0以下になるように、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミド製造方法。
シリル化率=A/(A+B)……数式(1)
The polyimide production method according to any one of claims 12 to 14, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio.
Of the Rs contained in the entire chemical structure, when the number of Rs consisting of silyl groups is A and the number of Rs consisting of H is B, the silylation rate of the polyimide precursor represented by the following formula (1) is A method for producing polyimide, comprising reacting the trans 1,4-diaminocyclohexane and the silylating agent so as to be 0.9 or more and 1.0 or less.
Silylation rate = A / (A + B) (1)
前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを所定割合で反応させる請求項12乃至請求項15のいずれか1項記載のポリイミドの製造方法であって、
反応前の前記トランス1,4-ジアミノシクロヘキサンの全部のアミノ基の数をc、前記中間生成物全部のシリル基の数をdとすると、
下記数式(2)で表される前記中間生成物のシリル化率が0.9以上1.0以下の範囲になるような割合で前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤とを反応させるポリイミドの製造方法。
シリル化率=d/c……数式(2)
The method for producing a polyimide according to any one of claims 12 to 15, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted in a predetermined ratio.
When the number of all amino groups of the trans 1,4-diaminocyclohexane before the reaction is c and the number of silyl groups of all the intermediate products is d,
The trans 1,4-diaminocyclohexane and the silylating agent at a ratio such that the silylation rate of the intermediate product represented by the following formula (2) is in the range of 0.9 to 1.0. A method for producing polyimide to be reacted.
Silylation rate = d / c Equation (2)
トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中にピロメリット酸二無水物を添加し、前記中間生成物と、前記ピロメリット酸二無水物とを反応させ、生成したポリイミド前駆体を前記重合溶媒中に分散又は溶解させ、
次いで加熱処理して、ポリイミドを製造するポリイミド製造方法。
Trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then pyromellitic dianhydride is added to the polymerization solvent, and the intermediate product, Reacting with the pyromellitic dianhydride, dispersing or dissolving the produced polyimide precursor in the polymerization solvent,
Next, a polyimide production method for producing polyimide by heat treatment.
JP2003383836A 2003-11-13 2003-11-13 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide Expired - Lifetime JP4620946B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003383836A JP4620946B2 (en) 2003-11-13 2003-11-13 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
PCT/JP2004/006414 WO2005047367A1 (en) 2003-11-13 2004-05-06 Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383836A JP4620946B2 (en) 2003-11-13 2003-11-13 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide

Publications (2)

Publication Number Publication Date
JP2005146073A JP2005146073A (en) 2005-06-09
JP4620946B2 true JP4620946B2 (en) 2011-01-26

Family

ID=34692441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383836A Expired - Lifetime JP4620946B2 (en) 2003-11-13 2003-11-13 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide

Country Status (1)

Country Link
JP (1) JP4620946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6768234B2 (en) * 2016-05-09 2020-10-14 三菱瓦斯化学株式会社 Polyimide and polyimide film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344625A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display panel
JPH03175422A (en) * 1989-12-05 1991-07-30 Seiko Epson Corp Liquid crystal electrooptical element
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344625A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display panel
JPH03175422A (en) * 1989-12-05 1991-07-30 Seiko Epson Corp Liquid crystal electrooptical element
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Also Published As

Publication number Publication date
JP2005146073A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR102074954B1 (en) Composition comprising polyimide copolymer and inorganic particles, method of preparing same, article including same, and display device including the article
JP5971736B2 (en) POLYAMIC ACID POLYMER COMPOSITE AND METHOD FOR PRODUCING THE SAME {POLYAMICACIDPOLYMERCOMPOSITITEANDMETHODFORPRODUCINGSAME}
KR101968258B1 (en) Poly(amide-imide) block copolymer, article including same, and display device including the article
KR102111093B1 (en) Poly(amide-imide) copolymer, method of preparing poly(amide-imede) copolymer, and article including poly(amide-imide)copolymer
KR102164314B1 (en) Polyimide film, and display device including the film
JP4815690B2 (en) Polyimide, polyimide precursor and method for producing them
JPH07324133A (en) Silicate group-containing polyimide
EP3106487B1 (en) Polyamide acid composition and polyimide composition
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP3859984B2 (en) Polyimide and method for producing the same
WO2018207706A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, flexible device, and production method for polyimide film
JP5244303B2 (en) Polyesterimide and method for producing the same
JP4788108B2 (en) Polyimide and its precursor with low dielectric constant, low linear thermal expansion coefficient, high transparency, and high glass transition temperature
TW202208164A (en) Low-dissipation flexible copper-coated laminate, manufacturing method thereof, and electronic device
JP4620946B2 (en) Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
JP4538216B2 (en) A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
KR102439488B1 (en) Method for producing polyimide film with excellent transparency and flexibility
WO2005047367A1 (en) Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film
KR102566319B1 (en) Polyimide varnish composition and method for producing film using the same
JPH0249029A (en) Fluorine-containing polyimide and production thereof
TW202221058A (en) Low-dissipation flexible copper-coated laminate, manufacturing method thereof, and electronic device
JP4627297B2 (en) Polyesterimide and its precursor with low linear thermal expansion coefficient
JP2843314B2 (en) Fluorine-containing polyimide optical material
JP2005298623A (en) Polyimide combining high organic solvent dissolvability, high thermoplasticity, high toughness and high glass transition temperature, and its manufacturing method
JP2006143943A (en) Polybenzoxazole and its production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100405

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100616

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term