JP4620897B2 - Halogen gas removal method - Google Patents

Halogen gas removal method Download PDF

Info

Publication number
JP4620897B2
JP4620897B2 JP2001124232A JP2001124232A JP4620897B2 JP 4620897 B2 JP4620897 B2 JP 4620897B2 JP 2001124232 A JP2001124232 A JP 2001124232A JP 2001124232 A JP2001124232 A JP 2001124232A JP 4620897 B2 JP4620897 B2 JP 4620897B2
Authority
JP
Japan
Prior art keywords
halogen
average
sieve
granulated product
based gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001124232A
Other languages
Japanese (ja)
Other versions
JP2002316019A (en
Inventor
義勝 川辺
八朗 平野
要一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001124232A priority Critical patent/JP4620897B2/en
Priority to DE60117909T priority patent/DE60117909T2/en
Priority to EP01126470A priority patent/EP1205230B1/en
Priority to ES01126470T priority patent/ES2260144T3/en
Priority to AT01126470T priority patent/ATE320300T1/en
Priority to US09/986,587 priority patent/US6685901B2/en
Publication of JP2002316019A publication Critical patent/JP2002316019A/en
Application granted granted Critical
Publication of JP4620897B2 publication Critical patent/JP4620897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Cl2、Br2及びI2からなる群より選ばれる少なくとも一種を含有するハロゲン系ガス(以下、本ハロゲン系ガスという)の除去方法に関し、例えば、ハロゲン系ガスを含有するドライエッチング排ガス等からハロゲン系ガスを除去する方法に関する。
【0002】
【従来の技術】
従来より、本ハロゲン系ガスを含有するドライエッチング排ガスやCVD(化学気相蒸着)チャンバーの排ガス等の処理方法として、設備の小型化及び操作の簡便化のため、活性炭等の吸着剤を使用した乾式による処理方法等が採用されている。しかし、ガス吸着時の吸着熱による発火、使用済み吸着剤の臭気及び固形廃棄物の発生等が問題であった。
【0003】
【発明が解決しようとする課題】
本発明は、上記の問題に鑑み、吸着剤の発火を抑制し、ハロゲン系ガスの処理能力が高く、使用済み吸着剤の臭気及び固形廃棄物の発生を低減した、ハロゲン系ガスの除去方法を提供する。
【0004】
【課題を解決するための手段】
本発明は、パラジウム、鉄、ニッケル、コバルト、マンガン及び銅からなる群より選ばれる一種以上の元素を含む物質(以下、本金属含有物質という)及び、一次粒子の平均粒子径10〜500μmの炭酸水素塩の粉末を混合して造粒し、得られた造粒物を、本ハロゲン系ガスに接触させてハロゲン系ガスを除去する、ハロゲン系ガスの除去方法を提供する。
【0005】
【発明の実施の形態】
本発明において、炭酸水素塩としては、炭酸水素ナトリウム、炭酸水素カリウム等が使用できる。特に、大量かつ安価に入手できることから工業的に適していることや、吸湿性が少なく、造粒物の製造や保存にあたって使用しやすいことから、炭酸水素ナトリウムが好ましい。一方、除去処理後の排ガス等へのナトリウムの混入を防ぎたい場合は炭酸水素カリウムが好ましい。
【0006】
本発明において、炭酸水素塩の粉末、及び本金属含有物質は造粒物にする。造粒物は、炭酸水素塩を70質量%以上含有することが好ましい。造粒物中において、炭酸水素塩が70質量%未満であると、ハロゲン系ガス除去剤としてのガス処理容量が低下し、除去剤充填層の入れ替え頻度が高くなるので好ましくない。炭酸水素塩の含有量は、特に80質量%以上であることが好ましい。ここで、本金属含有物質とは、金属単体でもよく、又は、それらの金属化合物、又は混合物でもよい。
【0007】
本発明では、造粒物に本金属含有物質を含有させることにより炭酸水素塩の反応性を向上させることができ、効果をより長く持続することができる。造粒物中への本金属含有物質の含有方法としては、炭酸水素塩に混合してから造粒する。造粒物中の本金属含有物質の含有量は0.001〜10質量%が好ましい。含有量が0.001質量%未満であると、造粒物の反応性向上の効果が見られないため好ましくなく、10質量%超であると、それ以上反応性が向上せず、不必要に本金属含有物質を使用することになる他、炭酸水素塩の含有量が減少するためハロゲン系ガスの除去容量が低下するので好ましくない。含有量は0.005〜5質量%が特に好ましい。なお、造粒物中において、他に含まれる材料としては、炭酸水素塩以外の活性炭等の吸着剤、バインダー等が挙げられる。
【0008】
本発明において、炭酸水素塩の粉末は、一次粒子の平均粒子径が10〜500μmであるものを使用する。一次粒子の平均粒子径が10μm未満であると、流動性がよくなく、ハンドリング等の取扱いが難しくなるので好ましくなく、また、平均粒子径が500μm超であると、技術的に造粒物の製造が困難であり、コスト的に高くなるので好ましくない。なお、一次粒子とは炭酸水素塩の単結晶であり、平均粒子径とは重量基準による平均粒子径である。
【0009】
本発明において、炭酸水素塩の粉末、及び本金属含有物質の造粒物の平均粒子径は0.5〜20mmである。造粒物の平均粒子径が0.5〜20mmであることにより、ハロゲン系ガスの処理の際、従来から使用されている充填塔等を使用できる。造粒物の平均粒子径が0.5mm未満であると、ハロゲン系ガス又はそれを含有する被処理ガスが充填層等を通過する際の圧力損失が高くなり、平均粒子径が20mmを超えると、被処理ガスと造粒物との接触面積が低下し、排ガスの除去性能を低下させる。造粒物の平均粒子径としては、特に0.5〜10mmが好ましい。
【0010】
本発明では造粒物の平均粒子径は、以下の方法により測定する。造粒物の粒子径に対応した範囲の目開きの篩を重ねあわせ、最下部に底皿を設置し、上から造粒物を注ぎ、振とう機で振とうさせた後、それぞれの標準篩上残渣の質量を測定し、各目開き値に対する篩上残渣質量の累計を折れ線グラフに表し、篩上残渣質量の累計が50%の時の粒子径を平均粒子径とする。上下の篩の目開きの差は、造粒物の粒子径にもよるが、0.5mmのピッチを使用することが好ましい。
【0011】
本発明において、造粒物は、圧縮成形法、転動式造粒法、撹拌式造粒法等の様々な方法により得ことができる。ここで、圧縮成形法は、工程が簡略なため工業的に簡便であり、バインダーを使用しなくても造粒物を得ることができること、また、硬度が高く壊れにくく、ガス処理容量の大きな造粒物を得ることができることから特に好ましい。
【0012】
造粒物を得る方法として、例えば、圧縮成形機を使用し、乾式で成形した後、粗粉砕し、篩分ける方法が挙げられる。また、水溶性のバインダーを使用して湿式の圧縮成形機で成形し、その後乾燥させる方法も挙げられる。
【0013】
本発明において、炭酸水素塩の粉末、及び本金属含有物質の造粒物は、ハロゲン系ガスを処理するために、充填層に充填されて使用される場合、強度が低いと、粉化して充填層を通過する際の圧力損失が上昇することがある。このため造粒物の強度は高くする。
【0014】
本発明における造粒物の強度評価方法として、硬度が挙げられる。ここで、硬度とは、造粒物粒子の1個を上方より垂直に荷重をかけて圧縮して破壊するに必要な力のことである。
【0015】
本発明での硬度の評価法は、平均粒子径に応じて造粒物粒子を分級し、粒子径を揃えた粒子群について行う。例えば、平均粒子径1.5mm以上2.0mm未満の造粒物については、目開き1.5mmの篩と目開き2.0mmの篩を使用して篩分け、1.5mm篩上かつ2.0mm篩下の粒子を20個採取し、各粒子の硬度を測定してその平均値を粒子強度の評価基準として採用する。
【0016】
本発明の造粒物の硬度としては、平均粒子径0.5mm以上1.0mm未満の造粒物の場合は粒子径0.5mm以上1.0mm未満の造粒物の平均硬度が1N以上であり、平均粒子径1.0mm以上1.5mm未満の造粒物の場合は粒子径1.0mm以上1.5mm未満の造粒物の平均硬度が4N以上であり、平均粒子径1.5mm以上2.0mm未満の造粒物の場合は粒子径1.5mm以上2.0mm未満の造粒物の平均硬度が10N以上であり、平均粒子径2.0mm以上20mm以下の造粒物の場合は粒子径2.0mm以上20mm以下の造粒物の平均硬度が30N以上、であることが好ましい。
【0017】
本発明では、本ハロゲン系ガスを除去する。例えば、ハロゲン系ガスを含有するドライエッチング排ガス等を処理して、該排ガス中のハロゲン系ガスを除去する。その他にも、例えば、BCl3、CCl4、SiCl4、HCl、COCl2、F2、SiF4、HF、COF2、NF3、WF6、ClF3及びHBr等のハロゲン単体又はハロゲン化合物を含んでもよい。
【0018】
本発明における、被処理ガスの温度が0℃〜100℃であると、効率的に除去処理できるので好ましい。被処理ガスの温度が0℃未満であると、反応速度が低下するので好ましくない。また、100℃以下であれば、充填塔等の設備を高価な耐熱材料又は構造とする必要がなく、操作及び設備等を簡略化できる。
【0019】
本発明において、炭酸水素塩は、ハロゲン単体又はハロゲン化合物と反応し、水溶性の塩を生成する。炭酸水素塩自身も水溶性であるために、排ガス中のハロゲン系ガスの除去に使用した後、本金属含有物質以外のほとんどの造粒物を水に溶解できる。本金属含有物質については、造粒物を水に溶解した後、濾過することにより回収することができる。また、後述のように、例えば、炭酸水素塩と活性炭を併用した場合、固形廃棄物を減少できる。
【0020】
炭酸水素塩は、ハロゲン単体又はハロゲン化合物と反応して水溶性の塩を生成するため、活性炭吸着の場合のようにハロゲン単体又はハロゲン化合物が脱離して、臭気を発生することがないため、充填層等の入れ替え作業が容易にできる。また、炭酸水素塩自身に消火性があるため発火の危険性がない。
【0021】
本発明においては、造粒物中に本金属含有物質を加えることにより炭酸水素塩とハロゲンとの反応性が向上し、同量の炭酸水素塩を使用した場合においてもより多量のハロゲン系ガスに使用できる。この機構については、明らかではないが、上記元素を含む物質がハロゲン系ガス中に含有されるCl2、Br2又はI2と炭酸水素塩が反応した際に生成する次亜ハロゲン酸塩の分解を促進するためと推定される。通常、ハロゲン系ガス中に含有されるCl2、Br2又はI2と炭酸水素塩が反応したとき、下記反応式1に従い、次亜ハロゲン酸塩が生成する。生成した次亜ハロゲン酸塩は、反応式2に従い、分解してハロゲン化ナトリウムと酸素に分解することが知られている。しかし、この次亜ハロゲン酸塩が分解せずに残留している場合は炭酸水素塩とハロゲンとの反応が進みにくくなるものと考えられる。本発明の金属又は金属化合物を混合することにより、この次亜ハロゲン酸塩の分解反応を促進させ、ハロゲン系ガスの除去効率が向上するものと考えられる。
【0022】
NaHCO3+X2→NaXO+CO2+HX・・・式1。
(X=Cl、Br、I)
NaXO→NaX+1/2O2・・・式2。
【0023】
本発明において、前記造粒物を活性炭とともに充填塔等の容器に充填してハロゲン系ガスと接触させて、ハロゲン系ガスを除去するのも好ましい。この方法により、活性炭を単独使用した場合と比較して、ハロゲン単体の除去量を増加できるのみでなく、活性炭からの臭気の発生も低減できる。具体的には、炭酸水素塩と活性炭を層状に充填塔等の容器に配置する等して使用する。
【0024】
【実施例】
以下の各例において、硬度及び平均粒子径の測定は下記の方法により行った。
硬度は、藤原製作所製の木屋式デジタル硬度計KHT−20型を使用して測定した。また、硬度は粒子の大きさにより異なるため篩分けして粒子径を揃えた。
【0025】
平均粒子径は、以下の方法により測定した。粉末試料100gを、標準篩(内径:200mm、金網ステンレス製)でそれぞれ目開き3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.00mmのものを重ねあわせ、最下部に底皿を設置した上に注ぎ、飯田製作所社製ロータップシェーカー式振とう機(周波数60Hz、290回転/分、打数165回/分)で10分間振とうさせた後、それぞれの標準篩上残渣の質量を測定し、各目開き値に対する篩上残渣質量の累計を折れ線グラフに表し、篩上残渣質量の累計が50%の時の粒子径を平均粒子径とした。
【0026】
[例1]
一次粒子の平均粒子径が91μmの食品添加物用炭酸水素ナトリウムの粉末(旭硝子社製)299.97kgに酸化パラジウム0.03kgを混合し、ロールプレス式圧縮成形機(ターボ工業社製、商品名:ローラーコンパクターWP型、ロール外径230mm、ロール長80mm)を使用して線圧36.8kN/cmで圧縮成形し、フレーク状の炭酸水素ナトリウムの粉末の成形体を得た。得られたフレーク状の成形体をフレークブレーカーで粗砕し、ロータリー式整粒機のメッシュを4.75mmに設定して全通させた後、回転篩機(ターボ工業社製、商品名:ターボスクリーナーTS型)を使用して、粒子径4.0mm以上の粒子と粒子径1.0mm以下の粒子を除去し、平均粒子径が2.3mmの炭酸水素ナトリウムの粉末の造粒物を得た。
【0027】
また、前述の硬度測定法によって、造粒物の粒子強度を測定した。すなわち得られた平均粒子径2.3mmの造粒物を0.5mm、1.0mm、1.5mm、2.0mm、2.5mmの目開きの篩で篩分け、各粒度の硬度を20個測定し平均値を求めたところ、0.5〜1.0mmの間の粒子の平均硬度が3N、1.0〜1.5mmが11N、1.5〜2.0mmが18N、2.0mm以上が58Nであった。
【0028】
次に、底面が通気性焼結板で内径300mm、長さ1300mmのフッ素樹脂ライニング付きステンレス鋼製の充填容器に、充填物として前記造粒物を30kg充填した。被処理ガスとして、標準状態での組成比がBCl3:20体積%、Cl2:60体積%、アルゴン:20体積%のガスを流量200cm3/分、温度25℃、常圧下で、上記充填容器の底部から注入した。充填容器の上部から流出したガスを分析したところ、BCl3は検出されず、Cl2濃度は0.1体積ppm以下であった。
【0029】
処理開始から362時間経過後に流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところほとんど溶解し、固形廃棄物を削減できた。さらに溶解液を濾過することにより高価な酸化パラジウムを回収できた。
【0030】
[例2]
例1において炭酸水素ナトリウムを299.7kgとし、酸化パラジウム0.03kgを酸化ニッケル0.3kgに変えた以外は、例1と同様にして試験した。例1と同様にして、流出ガスを分析したところ、BCl3は検出されず、Cl2濃度は0.1体積ppm以下であった。
【0031】
処理開始から356時間経過後に流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところほとんど溶解し、固形廃棄物を削減できた。さらに溶解液を濾過することにより酸化ニッケルを回収できた。
【0032】
[例3]
例1において炭酸水素ナトリウムと金属酸化物の配合量を297kg、3kgに変えた以外は、例1と同様にして試験した。金属酸化物については、酸化鉄、酸化コバルト、二酸化マンガン、酸化銅について試験した。例1と同様にして、流出ガスを分析したところ、いずれのガスについてもBCl3は検出されず、Cl2濃度は0.1体積ppm以下であった。
【0033】
処理開始から、酸化鉄については351時間経過後に、酸化コバルトについては349時間経過後に、二酸化マンガンについては355時間経過後に、酸化銅については352時間経過後に、流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところほとんど溶解し、固形廃棄物を削減できた。さらに溶解液を濾過することによりいずれの金属酸化物についても回収できた。
【0034】
[例4(比較例)]
例1の造粒物を炭酸水素ナトリウムのみに変えた以外は、例1と同様にして試験した。例1と同様にして、流出ガスを分析したところ、BCl3は検出されず、Cl2濃度は0.1体積ppm以下であった。
【0035】
処理開始から309時間経過後に流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところほとんど溶解し、固形廃棄物を削減できた。
【0036】
[例5]
例1と同様にして得た炭酸水素ナトリウムの粉末と酸化パラジウムの混合物の造粒物20kgと活性炭20kgとを、例1と同様にして、同じ充填容器に充填した。被処理ガスとして、標準状態での組成比がBCl3:20体積%、CCl4:0.6体積%、Cl2:41.1体積%、SiCl4:0.6体積%、HCl:4.8体積%、COCl2:0.6体積%、F2:2.7体積%、SiF4:0.6体積%、HF:4.8体積%、COF2:0.6体積%、NF3:0.8体積%、WF6:0.6体積%、ClF3:0.6体積%、HBr:4.8体積%、アルゴン:20.0体積%のガスを使用した以外は、例1と同様にして、流出ガスを分析したところ、Cl2濃度は0.1体積ppm以下で、その他アルゴン以外のBCl3、CCl4、SiCl4、HCl、COCl2、F2、SiF4、HF、COF2、NF3、WF6、ClF3、HBr等は検出されなかった。
【0037】
処理開始から300時間経過後に流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところ90質量%以上溶解した。
【0038】
[例6(比較例)]
例5において造粒物を炭酸水素ナトリウムのみに変えた以外は、例5と同様に試験した。例5と同様にして、流出ガスを分析したところ、Cl2濃度は0.1体積ppm以下で、その他アルゴン以外のBCl3、CCl4、SiCl4、HCl、COCl2、F2、SiF4、HF、COF2、NF3、WF6、ClF3、HBr等は検出されなかった。
【0039】
処理開始から270時間経過後に流出ガス中のCl2濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところ90質量%以上溶解した。
【0040】
【発明の効果】
本発明により、ハロゲン単体又はハロゲン化合物を吸着することのできる除去剤として、使用時に粉化せず、除去能力がより高く、臭気の発生が少ない造粒物が得られる。また、本発明の造粒物は、従来の活性炭を使用する充填塔等にそのまま適用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing a halogen-based gas containing at least one selected from the group consisting of Cl 2 , Br 2 and I 2 (hereinafter referred to as the present halogen-based gas), for example, dry etching containing a halogen-based gas. The present invention relates to a method for removing a halogen-based gas from exhaust gas or the like.
[0002]
[Prior art]
Conventionally, an adsorbent such as activated carbon has been used as a processing method for dry etching exhaust gas containing this halogen-based gas and exhaust gas in a CVD (chemical vapor deposition) chamber in order to reduce the size of the equipment and simplify the operation. A dry processing method is adopted. However, there were problems such as ignition due to heat of adsorption during gas adsorption, odor of used adsorbent and generation of solid waste.
[0003]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a method for removing a halogen-based gas that suppresses the ignition of the adsorbent, has a high halogen-based gas processing capacity, and reduces the odor and solid waste generation of the used adsorbent. provide.
[0004]
[Means for Solving the Problems]
The present invention relates to a substance containing at least one element selected from the group consisting of palladium, iron, nickel, cobalt, manganese and copper (hereinafter referred to as the present metal-containing substance) and carbonic acid having an average primary particle diameter of 10 to 500 μm. Provided is a halogen-based gas removal method in which hydrogen salt powder is mixed and granulated, and the resulting granulated product is brought into contact with the halogen-based gas to remove the halogen-based gas.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as the hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like can be used. In particular, sodium hydrogen carbonate is preferred because it is industrially suitable because it can be obtained in large quantities and at a low price, and it is less hygroscopic and can be easily used in the production and storage of a granulated product. On the other hand, potassium bicarbonate is preferable when it is desired to prevent sodium from being mixed into the exhaust gas after the removal treatment.
[0006]
In the present invention, the bicarbonate powder and the metal-containing substance are granulated. The granulated product preferably contains 70 mass% or more of hydrogen carbonate. If the hydrogen carbonate is less than 70% by mass in the granulated product, the gas treatment capacity as the halogen-based gas removal agent is reduced, and the frequency of replacement of the removal agent packed bed is increased, which is not preferable. The content of the bicarbonate is particularly preferably 80% by mass or more. Here, the present metal-containing substance may be a single metal, or a metal compound or a mixture thereof.
[0007]
In this invention, the reactivity of hydrogencarbonate can be improved by making this granulated material contain this metal containing substance, and an effect can be maintained longer. As a method for containing the present metal-containing substance in the granulated product, granulation is performed after mixing with the bicarbonate. The content of the present metal-containing substance in the granulated product is preferably 0.001 to 10% by mass. If the content is less than 0.001% by mass, the effect of improving the reactivity of the granulated product is not preferable, and if it is more than 10% by mass, the reactivity is not improved any more and is unnecessary. In addition to using this metal-containing substance, the content of hydrogen carbonate is reduced, so the halogen-based gas removal capacity is lowered, which is not preferable. The content is particularly preferably 0.005 to 5% by mass. In addition, in the granulated material, other materials included include adsorbents such as activated carbon other than bicarbonate, binders, and the like.
[0008]
In the present invention, the hydrogen carbonate powder having a primary particle average particle size of 10 to 500 μm is used. If the average particle size of the primary particles is less than 10 μm, the fluidity is not good and handling such as handling becomes difficult, which is not preferable, and if the average particle size is more than 500 μm, it is technically a granulated product. Is not preferable because it is difficult and expensive. The primary particles are single crystals of hydrogen carbonate, and the average particle size is the average particle size based on weight.
[0009]
In the present invention, the average particle size of the hydrogen carbonate powder and the granulated product of the metal-containing material is 0.5 to 20 mm. When the granulated product has an average particle size of 0.5 to 20 mm, a conventionally used packed tower or the like can be used in the treatment of the halogen-based gas. When the average particle size of the granulated product is less than 0.5 mm, the pressure loss when the halogen-based gas or the gas to be treated containing it passes through the packed bed or the like becomes high, and the average particle size exceeds 20 mm. The contact area between the gas to be treated and the granulated product is reduced, and the exhaust gas removal performance is reduced. The average particle size of the granulated product is particularly preferably 0.5 to 10 mm.
[0010]
In the present invention, the average particle size of the granulated product is measured by the following method. Overlay sieves in the range corresponding to the particle size of the granulated product, place a bottom pan at the bottom, pour the granulated product from the top, shake it with a shaker, and then use each standard sieve. The mass of the upper residue is measured, and the total mass of the residue on the sieve with respect to each opening value is represented by a line graph. The particle diameter when the total mass of the residue on the sieve is 50% is defined as the average particle diameter. The difference between the openings of the upper and lower sieves depends on the particle size of the granulated product, but it is preferable to use a pitch of 0.5 mm.
[0011]
In the present invention, the granulated product can be obtained by various methods such as a compression molding method, a rolling granulation method, and a stirring granulation method. Here, the compression molding method is industrially simple because the process is simple, and it is possible to obtain a granulated product without using a binder, and it is hard to break and has a large gas processing capacity. It is particularly preferable because a granule can be obtained.
[0012]
As a method for obtaining the granulated product, for example, a method of using a compression molding machine, dry molding, coarse pulverization, and sieving may be mentioned. Moreover, the method of shape | molding with a wet compression molding machine using a water-soluble binder, and making it dry after that is also mentioned.
[0013]
In the present invention, when the powder of hydrogen carbonate and the granulated product of the metal-containing material are used in a packed bed to treat a halogen-based gas, if the strength is low, the powdered powder is packed. The pressure loss when passing through the bed may increase. For this reason, the strength of the granulated product is increased.
[0014]
Hardness is mentioned as a strength evaluation method of the granulated product in the present invention. Here, the hardness is a force required to compress and destroy one of the granulated particles by applying a load vertically from above.
[0015]
The evaluation method of hardness in the present invention is performed on a particle group in which the granulated particles are classified according to the average particle diameter and the particle diameters are uniform. For example, a granulated product having an average particle diameter of 1.5 mm or more and less than 2.0 mm is sieved using a sieve having a mesh opening of 1.5 mm and a sieve having a mesh opening of 2.0 mm, and then on a 1.5 mm sieve and 2. Twenty particles under 0 mm sieve are collected, the hardness of each particle is measured, and the average value is adopted as an evaluation standard of particle strength.
[0016]
As the hardness of the granulated product of the present invention, in the case of a granulated product having an average particle size of 0.5 mm or more and less than 1.0 mm, the average hardness of the granulated product having a particle size of 0.5 mm or more and less than 1.0 mm is 1 N or more. In the case of a granulated product having an average particle size of 1.0 mm or more and less than 1.5 mm, the average hardness of the granulated product having a particle size of 1.0 mm or more and less than 1.5 mm is 4N or more, and the average particle size is 1.5 mm or more for granulation of less than 2.0mm and an average hardness of more than 10N of the granulated product of less than the particle size 1.5 mm 2.0mm, if the average particle diameter of 2.0mm or more 20mm or less of the granulation product The average hardness of the granulated product having a particle diameter of 2.0 mm or more and 20 mm or less is preferably 30 N or more.
[0017]
In the present invention, the halogen-based gas is removed. For example, a dry etching exhaust gas containing a halogen gas is treated to remove the halogen gas in the exhaust gas. In addition, for example, halogen alone or halogen compounds such as BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2 , NF 3 , WF 6 , ClF 3 and HBr are included. But you can.
[0018]
In the present invention, it is preferable that the temperature of the gas to be treated is 0 ° C. to 100 ° C., since it can be efficiently removed. If the temperature of the gas to be treated is less than 0 ° C., the reaction rate decreases, which is not preferable. Moreover, if it is 100 degrees C or less, it is not necessary to use expensive heat-resistant materials or structures for facilities, such as a packed tower, and operation and facilities can be simplified.
[0019]
In the present invention, the bicarbonate reacts with a halogen alone or a halogen compound to produce a water-soluble salt. Since the hydrogen carbonate itself is water-soluble, most of the granulated material other than the present metal-containing substance can be dissolved in water after being used for removing the halogen-based gas in the exhaust gas. About this metal containing material, it can collect | recover by filtering, after dissolving a granulated material in water. Moreover, as will be described later, for example, when hydrogen carbonate and activated carbon are used in combination, solid waste can be reduced.
[0020]
Since hydrogen carbonate reacts with halogen alone or with a halogen compound to produce a water-soluble salt, the halogen alone or halogen compound is not eliminated and no odor is generated as in the case of activated carbon adsorption. Replacing layers can be done easily. In addition, there is no risk of ignition because the hydrogen carbonate itself is extinguisher.
[0021]
In the present invention, the reactivity of hydrogen carbonate and halogen is improved by adding the metal-containing substance to the granulated product, and even when the same amount of hydrogen carbonate is used, a larger amount of halogen-based gas can be obtained. Can be used. Although it is not clear about this mechanism, decomposition of hypohalite formed when a substance containing the above element reacts with Cl 2 , Br 2 or I 2 and hydrogen carbonate contained in the halogen-based gas. Estimated to promote. Usually, when Cl 2 , Br 2 or I 2 contained in a halogen-based gas reacts with a hydrogen carbonate, a hypohalite is formed according to the following reaction formula 1. It is known that the produced hypohalite is decomposed into sodium halide and oxygen according to the reaction formula 2. However, when this hypohalite remains without being decomposed, it is considered that the reaction between the bicarbonate and the halogen is difficult to proceed. By mixing the metal or metal compound of the present invention, it is considered that the decomposition reaction of this hypohalite is promoted and the removal efficiency of the halogen-based gas is improved.
[0022]
NaHCO 3 + X 2 → NaXO + CO 2 + HX (1)
(X = Cl, Br, I)
NaXO → NaX + 1 / 2O 2 Formula 2
[0023]
In the present invention, it is also preferable to remove the halogen-based gas by filling the granulated product together with activated carbon into a container such as a packed tower and contacting with the halogen-based gas. By this method, compared with the case where activated carbon is used alone, not only the removal amount of halogen alone can be increased, but also the generation of odor from activated carbon can be reduced. Specifically, the hydrogen carbonate and the activated carbon are used by arranging them in a layer in a container such as a packed tower.
[0024]
【Example】
In each of the following examples, the hardness and average particle diameter were measured by the following methods.
The hardness was measured using a Kiya type digital hardness meter KHT-20 manufactured by Fujiwara Seisakusho. Further, since the hardness varies depending on the size of the particles, the particle diameters were made by sieving.
[0025]
The average particle size was measured by the following method. 100 g of the powder sample was overlapped with a standard sieve (inner diameter: 200 mm, made of wire mesh stainless steel) each having an opening of 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, and 1.00 mm. After pouring on the bottom plate installed at the bottom and shaking for 10 minutes with Iida Seisakusho's low-tap shaker type shaker (frequency 60 Hz, 290 rotations / minute, 165 strokes / minute), each standard sieve The mass of the upper residue was measured, and the total mass of the residue on the sieve with respect to each opening value was represented by a line graph, and the particle diameter when the total mass of the residue on the sieve was 50% was taken as the average particle diameter.
[0026]
[Example 1]
0.03 kg of palladium oxide was mixed with 299.97 kg of sodium bicarbonate powder for food additives (produced by Asahi Glass Co., Ltd.) having an average primary particle size of 91 μm, and a roll press compression molding machine (trade name, manufactured by Turbo Kogyo Co., Ltd., trade name) : Roller compactor WP type, roll outer diameter 230 mm, roll length 80 mm), and compression molded at a linear pressure of 36.8 kN / cm to obtain a flaky sodium bicarbonate powder compact. The obtained flake-shaped molded product was roughly crushed with a flake breaker, and the mesh of the rotary granulator was set to 4.75 mm and allowed to pass through all. Then, a rotary sieve (manufactured by Turbo Kogyo Co., Ltd., trade name: turbo) Screener TS type) is used to remove particles with a particle size of 4.0 mm or more and particles with a particle size of 1.0 mm or less to obtain a granulated product of sodium bicarbonate powder having an average particle size of 2.3 mm. It was.
[0027]
Further, the particle strength of the granulated product was measured by the above-described hardness measurement method. That is, the obtained granulated product having an average particle diameter of 2.3 mm is sieved with a sieve having an opening of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, and the hardness of each particle size is 20 pieces. When the average value was determined by measurement, the average hardness of the particles between 0.5 and 1.0 mm was 3N, 1.0 to 1.5 mm was 11N, 1.5 to 2.0 mm was 18N, 2.0 mm or more. Was 58N.
[0028]
Next, 30 kg of the granulated product was filled as a filling material in a filling vessel made of stainless steel with a fluororesin lining having a bottom surface of a breathable sintered plate and an inner diameter of 300 mm and a length of 1300 mm. As a gas to be processed, a gas having a composition ratio in a standard state of BCl 3 : 20% by volume, Cl 2 : 60% by volume, argon: 20% by volume is filled at the flow rate of 200 cm 3 / min, at a temperature of 25 ° C. and under normal pressure. Poured from the bottom of the container. When the gas flowing out from the upper part of the filling container was analyzed, BCl 3 was not detected and the Cl 2 concentration was 0.1 ppm by volume or less.
[0029]
After 362 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, expensive palladium oxide could be recovered by filtering the solution.
[0030]
[Example 2]
The test was conducted in the same manner as in Example 1 except that sodium hydrogen carbonate was changed to 299.7 kg and 0.03 kg of palladium oxide was changed to 0.3 kg of nickel oxide. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.
[0031]
After 356 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, nickel oxide could be recovered by filtering the solution.
[0032]
[Example 3]
The test was conducted in the same manner as in Example 1 except that the amount of sodium bicarbonate and metal oxide was changed to 297 kg and 3 kg in Example 1. For metal oxides, iron oxide, cobalt oxide, manganese dioxide, and copper oxide were tested. When the effluent gas was analyzed in the same manner as in Example 1, no BCl 3 was detected in any gas, and the Cl 2 concentration was 0.1 ppm by volume or less.
[0033]
From the start of the treatment, after 351 hours have elapsed for iron oxide, after 349 hours have elapsed for cobalt oxide, after 355 hours have elapsed for manganese dioxide, and after 352 hours have elapsed for copper oxide, the Cl 2 concentration in the effluent gas has reached 0.1. It began to rise above 1 vol ppm. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced. Further, any metal oxide could be recovered by filtering the solution.
[0034]
[Example 4 (comparative example)]
The test was conducted in the same manner as in Example 1 except that the granulated product of Example 1 was changed to only sodium bicarbonate. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.
[0035]
After 309 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was almost dissolved, and solid waste could be reduced.
[0036]
[Example 5]
In the same manner as in Example 1, 20 kg of a granulated product of a mixture of sodium hydrogen carbonate powder and palladium oxide obtained in the same manner as in Example 1 and 20 kg of activated carbon were filled in the same filling container. As the gas to be treated, the composition ratio in the standard state is BCl 3 : 20% by volume, CCl 4 : 0.6% by volume, Cl 2 : 41.1% by volume, SiCl 4 : 0.6% by volume, HCl: 4. 8% by volume, COCl 2 : 0.6% by volume, F 2 : 2.7% by volume, SiF 4 : 0.6% by volume, HF: 4.8% by volume, COF 2 : 0.6% by volume, NF 3 : 0.8 vol%, WF 6: 0.6% by volume, ClF 3: 0.6% by volume, HBr: 4.8 vol%, argon: except for using 20.0% by volume of the gas, example 1 When the effluent gas was analyzed in the same manner as described above, the Cl 2 concentration was 0.1 ppm by volume or less, and other than BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, other than argon. COF 2 , NF 3 , WF 6 , ClF 3 , HBr and the like were not detected.
[0037]
After 300 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this granulated material was melt | dissolved in water among the fillers, 90 mass% or more melt | dissolved.
[0038]
[Example 6 (comparative example)]
The test was conducted in the same manner as in Example 5 except that the granulated material was changed to only sodium hydrogen carbonate in Example 5. When the effluent gas was analyzed in the same manner as in Example 5, the Cl 2 concentration was 0.1 ppm by volume or less, and other than BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , other than argon, HF, COF 2, NF 3, WF 6, ClF 3, HBr and the like were not detected.
[0039]
After 270 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this granulated material was melt | dissolved in water among the fillers, 90 mass% or more melt | dissolved.
[0040]
【The invention's effect】
According to the present invention, as a remover capable of adsorbing a halogen simple substance or a halogen compound, a granulated product that is not pulverized during use, has a higher removal ability, and generates less odor. Further, the granulated product of the present invention can be applied as it is to a packed tower using conventional activated carbon.

Claims (5)

パラジウム、鉄、ニッケル、コバルト、マンガン及び銅からなる群より選ばれる一種以上の元素を含む物質及び、一次粒子の平均粒子径10〜500μmの炭酸水素塩の粉末を混合して造粒し、得られた造粒物を、Cl2、Br2及びI2からなる群より選ばれる少なくとも一種を含有するハロゲン系ガスに接触させてハロゲン系ガスを除去する、ハロゲン系ガスの除去方法。Obtained by mixing and granulating a substance containing one or more elements selected from the group consisting of palladium, iron, nickel, cobalt, manganese and copper and a powder of hydrogen carbonate having an average primary particle diameter of 10 to 500 μm. A method for removing a halogen-based gas, wherein the granulated product is brought into contact with a halogen-based gas containing at least one selected from the group consisting of Cl 2 , Br 2 and I 2 to remove the halogen-based gas. 前記造粒物が平均粒子径0.5〜20mmであって、下記で規定される平均硬度を有する請求項1に記載のハロゲン系ガスの除去方法。
平均粒子径0.5mm以上1.0mm未満の造粒物の場合は、平均目開き0.5mmの篩と目開き1.0mmの篩を使用して篩分け、0.5mm篩上かつ1.0mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が1N以上であり、
平均粒子径1.0mm以上1.5mm未満の造粒物の場合は、平均目開き1.0mmの篩と目開き1.5mmの篩を使用して篩分け、1.0mm篩上かつ1.5mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が4N以上であり、
平均粒子径1.5mm以上2.0mm未満の造粒物の場合は、平均目開き1.5mmの篩と目開き2.0mmの篩を使用して篩分け、1.5mm篩上かつ2.0mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が10N以上であり、
平均粒子径2.0mm以上20mm以下の造粒物の場合は、平均目開き2.0mmの篩と目開き20mmの篩を使用して篩分け、2.0mm篩上かつ20mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が30N以上である。
The method for removing a halogen-based gas according to claim 1, wherein the granulated product has an average particle diameter of 0.5 to 20 mm and has an average hardness defined below.
In the case of a granulated product having an average particle diameter of 0.5 mm or more and less than 1.0 mm, sieving is performed using a sieve having an average aperture of 0.5 mm and a sieve having an aperture of 1.0 mm, The average hardness obtained by collecting 20 particles under 0 mm sieve and measuring the hardness of each particle is 1N or more,
In the case of a granulated product having an average particle diameter of 1.0 mm or more and less than 1.5 mm, sieving is performed using a sieve having an average aperture of 1.0 mm and a sieve having an aperture of 1.5 mm. The average hardness obtained by collecting 20 particles under 5 mm sieve and measuring the hardness of each particle is 4N or more,
In the case of a granulated product having an average particle diameter of 1.5 mm or more and less than 2.0 mm, sieving is performed using a sieve having an average opening of 1.5 mm and a sieve having an opening of 2.0 mm. The average hardness obtained by collecting 20 particles under 0 mm sieve and measuring the hardness of each particle is 10 N or more,
In the case of a granulated product having an average particle size of 2.0 mm or more and 20 mm or less , a sieve having an average mesh size of 2.0 mm and a sieve having a mesh size of 20 mm is used for sieving. The average hardness obtained by collecting 20 particles and measuring the hardness of each particle is 30 N or more.
前記炭酸水素塩が炭酸水素ナトリウムである請求項1又は2に記載のハロゲン系ガスの除去方法。The method for removing a halogen-based gas according to claim 1 or 2, wherein the hydrogen carbonate is sodium hydrogen carbonate. 前記造粒物が炭酸水素ナトリウムを70質量%以上含有する請求項3に記載のハロゲン系ガスの除去方法。The method for removing a halogen-based gas according to claim 3, wherein the granulated product contains 70% by mass or more of sodium hydrogen carbonate. 前記造粒物を活性炭とともに容器に充填して前記ハロゲン系ガスと接触させてハロゲン系ガスを除去する請求項1〜5のいずれかに記載のハロゲン系ガスの除去方法。The halogen-based gas removal method according to claim 1, wherein the granulated product is filled in a container together with activated carbon and contacted with the halogen-based gas to remove the halogen-based gas.
JP2001124232A 2000-11-10 2001-04-23 Halogen gas removal method Expired - Fee Related JP4620897B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001124232A JP4620897B2 (en) 2001-04-23 2001-04-23 Halogen gas removal method
DE60117909T DE60117909T2 (en) 2000-11-10 2001-11-09 Process for removing a gas of the halogen (compound) group
EP01126470A EP1205230B1 (en) 2000-11-10 2001-11-09 Method for removing a halogen-containing gas
ES01126470T ES2260144T3 (en) 2000-11-10 2001-11-09 METHOD TO ELIMINATE A GAS FROM THE HALOGEN SERIES.
AT01126470T ATE320300T1 (en) 2000-11-10 2001-11-09 METHOD FOR REMOVAL OF A HALOGEN CONTAINING GAS
US09/986,587 US6685901B2 (en) 2000-11-10 2001-11-09 Method for removing a halogen series gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124232A JP4620897B2 (en) 2001-04-23 2001-04-23 Halogen gas removal method

Publications (2)

Publication Number Publication Date
JP2002316019A JP2002316019A (en) 2002-10-29
JP4620897B2 true JP4620897B2 (en) 2011-01-26

Family

ID=18973651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124232A Expired - Fee Related JP4620897B2 (en) 2000-11-10 2001-04-23 Halogen gas removal method

Country Status (1)

Country Link
JP (1) JP4620897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022138850A1 (en) * 2020-12-25 2022-06-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas

Also Published As

Publication number Publication date
JP2002316019A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
JP4111137B2 (en) Halogen gas removal method
JP4952250B2 (en) Halogen gas removal method and halogen gas removal agent
US7976808B2 (en) Method for removing halogen series gas and agent for removing halogen series gas
KR100243560B1 (en) Purifying method of harmful gas
US6685901B2 (en) Method for removing a halogen series gas
JP4620897B2 (en) Halogen gas removal method
JP5000700B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP5008801B2 (en) Halogen gas removal method
JP4755364B2 (en) How to remove halogens and halides
JP2001017831A (en) Treating agent for halogen gas
FI118177B (en) A process for the preparation of iron oxide hydroxide-containing adsorbent material, adsorbent material and use thereof
JP4711550B2 (en) How to remove halogen gas
JP5217819B2 (en) Halogen gas removal agent and halogen gas removal method
JP2002143640A (en) Method for removing halogen-containing gas
JP2011062697A (en) Method for removing halogen gas
JP3302137B2 (en) How to purify harmful gases
JP2002119851A (en) Carbon monoxide adsorbent and method of manufacturing for the same
JP2004305355A (en) Gas-mask and toxic gas disposing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees