JP4617677B2 - Layer thickness measurement method, system, and program for layer thickness measurement method - Google Patents

Layer thickness measurement method, system, and program for layer thickness measurement method Download PDF

Info

Publication number
JP4617677B2
JP4617677B2 JP2004027531A JP2004027531A JP4617677B2 JP 4617677 B2 JP4617677 B2 JP 4617677B2 JP 2004027531 A JP2004027531 A JP 2004027531A JP 2004027531 A JP2004027531 A JP 2004027531A JP 4617677 B2 JP4617677 B2 JP 4617677B2
Authority
JP
Japan
Prior art keywords
powder
layer thickness
molten
powder layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004027531A
Other languages
Japanese (ja)
Other versions
JP2005221282A (en
Inventor
淳一 四辻
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004027531A priority Critical patent/JP4617677B2/en
Publication of JP2005221282A publication Critical patent/JP2005221282A/en
Application granted granted Critical
Publication of JP4617677B2 publication Critical patent/JP4617677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Continuous Casting (AREA)

Description

本発明は、非接触で1又は複数の層の厚さを測定する層厚測定方法、システム等に関するものである。特に連続鋳造用モールド内の溶鋼上部に存在するパウダ溶融層厚を測定するものである。   The present invention relates to a layer thickness measuring method and system for measuring the thickness of one or more layers in a non-contact manner. In particular, the thickness of the powder melt layer existing above the molten steel in the continuous casting mold is measured.

鋼の鋳造過程において、モールド(鋳型)内に溶鋼が流入しているときに、溶鋼上にモールドパウダと呼ばれる粉末を添加する。このモールドパウダの材料は種々ある。その目的は溶鋼の保温、鋳片とモールドとの潤滑、溶鋼内部に取り込まれた非金属介在物の吸着、メニスカス部分付近における溶鋼冷却制御等である。モールドパウダは、モールド内で溶融パウダ層と粉末パウダ層とに分かれる。特に、潤滑、メニスカス部付近での溶鋼冷却については、パウダ溶融層が重要な役割を果たしており、その厚みを制御するため、パウダ溶融層厚を正確に測定する必要がある。また、パウダ溶融層厚が薄い場合には、通常、パウダ溶融層上部に形成される粉末のままのパウダ(以下、粉末パウダという)が溶鋼内に巻き込まれてしまい、非金属介在物となり、これが品質悪化につながる可能性もある。この点からもパウダ溶融層厚の管理が必要とされている。そして、その測定精度は±1mmであることが必要であろうと考えられている。   In the steel casting process, when molten steel is flowing into the mold (mold), powder called mold powder is added onto the molten steel. There are various materials for this mold powder. Its purpose is to keep the molten steel warm, lubricate the slab and mold, adsorb non-metallic inclusions taken inside the molten steel, and control the cooling of molten steel near the meniscus. The mold powder is divided into a molten powder layer and a powder powder layer in the mold. In particular, the powder melt layer plays an important role in lubrication and cooling of molten steel in the vicinity of the meniscus portion, and it is necessary to accurately measure the powder melt layer thickness in order to control the thickness. In addition, when the powder melt layer thickness is thin, normally, the powder powder (hereinafter referred to as powder powder) formed in the upper part of the powder melt layer is entangled in the molten steel, resulting in non-metallic inclusions. There is also the possibility of quality deterioration. From this point of view, management of the powder melt layer thickness is required. It is considered that the measurement accuracy needs to be ± 1 mm.

上述の目的のため、従来からパウダ溶融層厚を測定する方法があるが、その方法は接触式又は非接触式の二つの方法に大別できる。接触式としては、鉄棒部に鋼メッキやアルミメッキを施した検尺捧を溶鋼まで浸漬し、溶損状態の違いからパウダ溶融層厚を測定する方法がある(例えば特許文献1参照)。   For the above-mentioned purpose, there is a conventional method for measuring the powder melt layer thickness, and the method can be roughly divided into two methods of contact type and non-contact type. As the contact type, there is a method of measuring a powder melt layer thickness from a difference in a melted state by immersing a measuring rod with steel plating or aluminum plating on a steel bar part to molten steel (see, for example, Patent Document 1).

一方、非接触式としては、γ線の透過率が溶鋼、溶融パウダ、粉末パウダで異なることを利用した方法(例えば、特許文献2参照)、粉末パウダをガスで吹き飛ばした後、溶融パウダ面と溶網面を測定する方法(例えば、特許文献3参照)、共振型渦流(過電流)レベル計(例えば、特許文献4参照)を2つ周波数で使用し、溶鋼面、パウダ溶融層上面の高さからパウダ溶融層厚を求める方法(例えば、非特許文献1参照)がある。   On the other hand, as a non-contact type, a method using the fact that the transmittance of γ-ray is different among molten steel, molten powder, and powder powder (see, for example, Patent Document 2), after blowing powder powder with gas, Using a method for measuring the molten metal surface (for example, see Patent Document 3) and a resonant eddy current (overcurrent) level meter (for example, see Patent Document 4) at two frequencies, the height of the molten steel surface and the upper surface of the powder molten layer is increased. There is a method (for example, see Non-Patent Document 1) for determining the powder melt layer thickness.

特開平9−79805号公報Japanese Patent Laid-Open No. 9-79805 持開昭61−46361号公報No. 61-46361 特開平3−18462号公報Japanese Patent Laid-Open No. 3-18462 特開昭59−180402号公報JP 59-180402 A 中森幸雄他「パウダーフィルム厚み計、溶融パウダープール厚計の開発」、製鉄研究、第324号、1987、p.51−58Yukio Nakamori et al. “Development of Powder Film Thickness Gauge and Molten Powder Pool Thickness Gauge”, Steelmaking Research, No. 324, 1987, p. 51-58

しかしながら、接触式測定方法では、接触するが故に、接触部における溶鋼の流れが変化し、粉末パウダを巻き込んでしまう。今後、鋳造速度が増加し、溶鋼表面速度が速くなっていくことを考慮すると、巻き込みが増えることも考えられる。また、浸漬部に付着した異物が溶鋼内にてはがれ、非金属介在物となる等、品質上問題がある。   However, in the contact-type measurement method, because of contact, the flow of molten steel at the contact portion changes, and powder powder is involved. Considering that the casting speed will increase and the molten steel surface speed will increase in the future, the entrainment may increase. In addition, there is a problem in quality such that the foreign matter adhering to the immersion part is peeled off in the molten steel and becomes non-metallic inclusions.

一方、非接触式測定方法においては、γ線を利用した方法では装置が大型化するため、モールドの側面に設置することが困難であり、そのためパウダ溶融層厚を精度良く測定することは難しい。また、ガスで粉末パウダを吹き飛ばす方法では、溶融パウダ層厚が薄い状況で用いると、粉末パウダの巻き込みを助長する可能性もあるし、またその部分から放熱し、溶鋼面上に影響を与えることも考えられる。また、2つの周波数を用いた渦流法においては、粉末パウダ層の厚みの影響を受け、十分な精度が得られないという問題があった。さらに周囲温度の変化にも影響を受けやすい問題もあって、従来、測定精度の限界性能は±2mmとなっていた。   On the other hand, in the non-contact measurement method, the method using γ-rays increases the size of the apparatus, so that it is difficult to install on the side surface of the mold, and therefore it is difficult to accurately measure the powder melt layer thickness. In addition, when the powder powder is blown away with gas, if the molten powder layer is used in a thin state, there is a possibility of encouraging the entrainment of the powder powder, and heat will be radiated from that part, affecting the molten steel surface. Is also possible. Further, in the eddy current method using two frequencies, there is a problem that sufficient accuracy cannot be obtained due to the influence of the thickness of the powder powder layer. In addition, there is a problem that it is easily affected by changes in ambient temperature, and conventionally, the limit performance of measurement accuracy has been ± 2 mm.

ここで、一般的な渦流法による距離計測において、金属等の導電体までの距離を測定する際には、検出コイルと非金属との相互インダクタンスの変化をインピーダンス測定により計測し、その値を距離に換算する方法が一般的である。そして、金属層と低い導電率の層が二層ある場合、2つの周波数を用いて各層の影響を分離した例はある。   Here, in the distance measurement by a general eddy current method, when measuring the distance to a conductor such as metal, the change in mutual inductance between the detection coil and the nonmetal is measured by impedance measurement, and the value is measured by the distance. The method of converting to is common. When there are two metal layers and low conductivity layers, there is an example in which the influence of each layer is separated using two frequencies.

確かに10kHzの場合の低導電率体(電気伝導度(導電率)σ=50S/m:おおよその溶融パウダの導電率)の表皮深さは710mmである。そのため、例えば50mm程度の厚みの低導電率体であればほぼ透過する。また、100kHzの場合は表皮深さ220mm、1MHzの場合は70mmである。通常の溶融パウダ層の厚さを考えると、溶融パウダ層の減衰は1MHz程度の周波数において大きくなる。   Certainly, the skin depth of the low conductivity body (electric conductivity (conductivity) σ = 50 S / m: approximate conductivity of the molten powder) at 10 kHz is 710 mm. Therefore, for example, a low-conductivity body having a thickness of about 50 mm is almost transparent. In the case of 100 kHz, the skin depth is 220 mm, and in the case of 1 MHz, it is 70 mm. Considering the thickness of a normal molten powder layer, the attenuation of the molten powder layer increases at a frequency of about 1 MHz.

したがって、溶融パウダ層厚の測定系を構成する場合、10kHzオーダと1MHzオーダの2種類の周波数を用いれば、その減衰の大きさから二層の影響をそれぞれ分離することは、通常、問題なく行える。ところが10kHzと1MHzのように二桁も異なる周波数で問題なくコイル(検出装置)、処理系装置を設計及び製作することは非常に難しい。例えば、励磁コイルを考えてみると、10kHz程の低周波ではパワーを大きくするために巻き数を増やすなどの工夫がされるが、巻き数が増えすぎると高周波側にてコイルインピーダンスが高くなるため十分電流が流せなくなる。逆に巻き数を減らしてコイルインピーダンスを下げようとすると、低周波側の磁束が少なすぎて(磁界が小さすぎて)安定した計測が不可能になる。   Therefore, when the measurement system of the melt powder layer thickness is configured, if two types of frequencies of 10 kHz order and 1 MHz order are used, the influence of the two layers can be normally separated from the magnitude of the attenuation without any problem. . However, it is very difficult to design and manufacture a coil (detection device) and a processing system device without problems at frequencies different by two digits such as 10 kHz and 1 MHz. For example, when considering an exciting coil, ingenuity such as increasing the number of turns to increase the power at a low frequency of about 10 kHz, the coil impedance increases on the high frequency side if the number of turns increases too much. Sufficient current cannot flow. Conversely, if the coil impedance is lowered by reducing the number of turns, the magnetic flux on the low frequency side is too small (the magnetic field is too small) and stable measurement becomes impossible.

この場合、検出装置として二系統のコイルと電源を用意すれば解決はするものの、そのためにコストを費やす必要があるし、装置が大型化する等、重要な問題が発生する。また、2つの周波数の差を大きくとることが難しい点も問題として挙げられる。   In this case, although the problem can be solved by preparing two coils and a power source as the detection device, it is necessary to spend a cost for that purpose, and an important problem such as an increase in the size of the device occurs. Another problem is that it is difficult to increase the difference between the two frequencies.

そこで、本発明は鋳片品質に影響を与えない非接触式の測定方法により、安定して精度良くパウダ溶融厚等を測定できる方法、システム等を提供することを目的とする。その際、周囲の温度、湿度等の環境変化の影響を補償できるようにする。そして、できるだけ小型でモールド上に設置できるシステムを構成する。   Therefore, an object of the present invention is to provide a method, a system, and the like that can measure the powder melt thickness and the like stably and accurately by a non-contact measurement method that does not affect the quality of the slab. At that time, the influence of environmental changes such as ambient temperature and humidity can be compensated. And the system which can be installed on a mold as small as possible is comprised.

本発明に係る層厚測定方法は、連続鋳造用モールド内の溶鋼面高さ、溶融パウダ層厚及び粉末パウダ層厚という複数の異なる電気伝導度の層までの距離と厚さとを同時に測定する方法において、励磁用コイルに、溶融パウダ層と粉末パウダ層との間の変化をとらえるための最高周波数と、溶鋼の層と溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加する工程と、励磁用コイルにより各層に発生する渦電流に起因する電圧を、励磁用コイルと同一又は異なる検出用コイルで検出する工程と、励磁用コイルで印加した電圧に対する検出用コイルで検出した電圧の位相差及び検出用コイルで検出した電圧の振幅の絶対値に基づいて、周波数毎に検出した電圧のベクトルを算出する工程と、電圧のベクトルの成分を溶鋼面高さの2次式で表し、溶鋼面高さの2次式における係数を粉末パウダ層厚と溶鋼パウダ層厚とによる2次式で表した関係式に基づき、周波数毎の検出に係る電圧のベクトルから、粉末パウダ層厚、溶融パウダ層厚及び溶鋼面高さを算出する工程とを有している。
本発明においては、ある周波数の電圧で印加した励磁用コイルに発生した磁界(磁束)により各層に発生する渦電流に基づく電圧を検出コイルで検出し、その検出した電圧に基づいてある周波数の電圧との位相差及び振幅の絶対値について、電圧のベクトルを算出し、測定目的の層厚が変化することによるベクトルの変化パターンを解析しておけば、他の層、環境等の影響を排除し、測定目的となる複数の層の厚さを解析し、測定することができる。ここで、複数の層厚の関係に基づく層厚の算出を行うためには、n層あれば、n/2以上の周波数を用いて検出を行う必要がある。各層の変化により、それぞれの変化パターンがあるため、そのパターンを解析することで、溶融パウダ層厚、溶鋼面高さ及び粉末パウダ層厚について同時に解析、演算によって測定することができる。
The layer thickness measuring method according to the present invention is a method for simultaneously measuring the distance and thickness to a plurality of layers having different electrical conductivities such as the molten steel surface height, molten powder layer thickness and powder powder layer thickness in a continuous casting mold. , A plurality of excitation coils that have different orders of magnitude between the highest frequency for capturing the change between the molten powder layer and the powder powder layer and the lowest frequency for capturing the change between the molten steel layer and the molten powder layer. A step of applying a voltage having a frequency of, a step of detecting a voltage caused by an eddy current generated in each layer by the excitation coil with a detection coil that is the same as or different from the excitation coil, and a voltage applied by the excitation coil based on the absolute value of the amplitude of the detected voltage phase difference and the detection coil is detected by the detecting coil voltage, calculating a vector of the detected voltage for each frequency, the voltage Baie It represents a component of the torque by a quadratic equation of the molten steel surface level based coefficients in quadratic equation of the molten steel surface level in the relational expression indicating a quadratic equation by powder powder layer thickness and the molten steel powder layer thickness Prefecture, each frequency And calculating a powder powder layer thickness, a molten powder layer thickness, and a molten steel surface height from a voltage vector related to the detection of.
In the present invention, a voltage based on an eddy current generated in each layer by a magnetic field (magnetic flux) generated in an excitation coil applied with a voltage of a certain frequency is detected by a detection coil, and a voltage of a certain frequency is based on the detected voltage. By calculating the voltage vector for the absolute value of the phase difference and amplitude, and analyzing the vector change pattern due to the change in the layer thickness for the measurement purpose, the influence of other layers and the environment can be eliminated. It is possible to analyze and measure the thicknesses of a plurality of layers to be measured. Here, in order to calculate the layer thickness based on the relationship among a plurality of layer thicknesses, if there are n layers, it is necessary to perform detection using a frequency of n / 2 or more. Since there is a change pattern depending on the change of each layer, by analyzing the pattern, the molten powder layer thickness, the molten steel surface height, and the powder powder layer thickness can be simultaneously measured and measured.

また、本発明に係る層厚測定方法は、連続鋳造用モールド内の溶融パウダ層の電気伝導度及び厚さ範囲に基づき、励磁用コイルへの印加電圧の周波数を少なくとも2つ定める。
本発明においては、連続鋳造用モールド内の溶融パウダ層の層厚を精度よく測定するために溶融パウダ層の電気伝導度及びとり得る厚さに合わせて少なくとも2つの周波数を定める。そのため、電気伝導度の異なる連続鋳造用モールド内の溶鋼による層、溶融パウダ層及び粉末パウダ層のうち、1つの周波数による検出では、主に溶鋼による層と溶融パウダ層との変化に反応させ、もう1つの周波数による検出では、主に溶融パウダ層と粉末パウダ層との変化に反応させるようにすれば、精度のよい解析を行え、溶融パウダ層の層厚を解析、演算によって精度よく測定することができる。また、溶鋼面の高さ、粉末パウダ層厚についても測定することができる。さらに、解析、演算によって層厚の測定精度を高め、検出系装置での検出精度をカバーすることができるので、検出系装置を小型化し、設計、製作負担を軽減することができる。
The layer thickness measuring method according to the present invention determines at least two frequencies of the voltage applied to the exciting coil based on the electric conductivity and the thickness range of the molten powder layer in the continuous casting mold.
In the present invention, in order to accurately measure the thickness of the molten powder layer in the continuous casting mold, at least two frequencies are determined according to the electric conductivity of the molten powder layer and the possible thickness. Therefore, in the detection by one frequency among the layer by the molten steel, the molten powder layer and the powder powder layer in the continuous casting mold having different electric conductivities, the reaction is mainly caused by the change between the molten steel layer and the molten powder layer, In the detection by another frequency, if the reaction is mainly caused by the change between the molten powder layer and the powder powder layer, the analysis can be performed with high accuracy, and the layer thickness of the molten powder layer can be analyzed and calculated with accuracy. be able to. Further, the height of the molten steel surface and the powder powder layer thickness can also be measured. Furthermore, since the measurement accuracy of the layer thickness can be increased by analysis and calculation, and the detection accuracy in the detection system device can be covered, the detection system device can be downsized, and the design and manufacturing burden can be reduced.

また、本発明に係る層厚測定方法は、印加電圧の周波数を10kHzから5MHzの範囲で定める。
本発明においては、検出系であるコイル部分の検出における精度を高めるため、印加電圧の周波数を10kHzから5MHzの範囲で定める。
In the layer thickness measuring method according to the present invention, the frequency of the applied voltage is determined in the range of 10 kHz to 5 MHz.
In the present invention, the frequency of the applied voltage is determined in the range of 10 kHz to 5 MHz in order to increase the accuracy in detecting the coil portion that is the detection system.

また、本発明に係る層厚測定方法は、連続鋳造用モールド内の溶融パウダ層の面に正対する位置に励磁用コイル及び検出用コイルを設ける。
本発明においては、より接近させることができるように、溶融パウダ層の面に正対した位置にコイルを設け、検出精度を高めるようにする。
In the layer thickness measuring method according to the present invention, the exciting coil and the detecting coil are provided at a position facing the surface of the molten powder layer in the continuous casting mold.
In the present invention, a coil is provided at a position facing the surface of the molten powder layer so that the detection accuracy can be increased, so that the detection accuracy can be further increased.

また、本発明に係る層厚測定方法は、ベクトルの変化パターンに基づいて、周囲環境による検出特性の変化パターンを判断し、変化パターンに対応した校正をする。
本発明においては、周囲環境によるコイル等、検出系の特性の変化がベクトルの変化として現れるので、そのパターンを解析することにより、環境に応じた構成を行い、検出精度を高めることができる。
In addition, the layer thickness measurement method according to the present invention determines a detection characteristic change pattern according to the surrounding environment based on the vector change pattern , and performs calibration corresponding to the change pattern .
In the present invention, a change in the characteristics of the detection system such as a coil due to the surrounding environment appears as a change in the vector. Therefore, by analyzing the pattern, a configuration according to the environment can be performed and the detection accuracy can be increased.

また、本発明に係る層厚測定システムは、連続鋳造用モールド内の溶融パウダ層の厚さを渦電流計測方法によって測定する層厚測定システムであって、励磁用コイルに対して、溶融パウダ層と粉末パウダ層との間の変化をとらえるための最高周波数と、溶鋼の層と溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加させて、各層に発生する渦電流に起因した電圧を検出する渦流センサ部と、渦流センサ部が検出した電圧について、周波数の電圧との位相差及び振幅の絶対値を算出し、複数の周波数毎に検出した電圧のベクトルの成分を出力する測定部と、電圧のベクトルの成分を溶鋼面高さの2次式で表し、溶鋼面高さの2次式における係数を粉末パウダ層厚と溶鋼パウダ層厚とによる2次式で表した関係式に基づき、周波数毎の検出に係る電圧のベクトルの成分から、粉末パウダ層厚、溶融パウダ層厚及び溶鋼面高さを算出する測定解析部とを備えたものである。
本発明においては、渦流センサ部が検出した電圧について、測定部がベクトル成分を算出し、測定解析部がそのベクトルの成分から溶融パウダ層厚を算出するようにしたので、ベクトル成分の変化のパターンにより、他の層による影響を除去した上で溶融パウダ層厚だけを精度よく算出することができる。測定解析系による精度が向上することにより、渦流センサ部での検出精度をカバーすることができるので、検出に用いる周波数の差を大きくすることもなく、装置の小型化を図ることができる。そのため、設計、製作の負担も軽減される。
The layer thickness measuring system according to the present invention is a layer thickness measuring system for measuring the thickness of a molten powder layer in a continuous casting mold by an eddy current measuring method , and is a molten powder layer for an exciting coil. Each layer is applied with a voltage of a plurality of frequencies, each of which has an order of magnitude higher than the maximum frequency for capturing the change between the powder powder layer and the minimum frequency for capturing the change between the molten steel layer and the molten powder layer. For the voltage detected by the eddy current sensor unit that detects the voltage caused by the eddy current generated in the eddy current, and the voltage detected by the eddy current sensor unit, the phase difference from the frequency voltage and the absolute value of the amplitude are calculated, and the voltage detected for each of the multiple frequencies The measurement unit that outputs the vector component of the voltage, the vector component of the voltage is expressed by a quadratic expression of the molten steel surface height, and the coefficient in the quadratic expression of the molten steel surface height depends on the powder powder layer thickness and the molten steel powder layer thickness Secondary equation Based represent relational expression, from the components of the vector of voltage applied to the detection of each frequency, the powder powder layer thickness, in which a measurement analyzer for calculating a molten powder layer thickness, and the molten steel surface level.
In the present invention, with respect to the voltage detected by the eddy current sensor unit, the measurement unit calculates the vector component, and the measurement analysis unit calculates the molten powder layer thickness from the vector component. Thus, it is possible to accurately calculate only the molten powder layer thickness while removing the influence of other layers. By improving the accuracy of the measurement analysis system, it is possible to cover the detection accuracy in the eddy current sensor unit, so that the apparatus can be miniaturized without increasing the difference in frequency used for detection. Therefore, the burden of design and production is reduced.

また、本発明に係る層厚測定方法のプログラムは、連続鋳造用モールド内の溶鋼面高さ、溶融パウダ層厚及び粉末パウダ層厚という複数の異なる電気伝導度の層までの距離と厚さとを同時に測定する方法のプログラムであって、励磁用コイルに対して、溶融パウダ層と粉末パウダ層との間の変化をとらえるための最高周波数と、溶鋼の層と溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加させて、印加した電圧の周波数毎に各層に発生する渦電流に起因した電圧を検出し、検出した電圧の振幅の絶対値及び励磁用コイルに印加した電圧との位相差に基づいて電圧のベクトルを算出し、電圧のベクトルの成分を溶鋼面高さの2次式で表し、溶鋼面高さの2次式における係数を粉末パウダ層厚と溶鋼パウダ層厚とによる2次式で表した関係式に基づき、周波数毎の検出に係る電圧のベクトルから、粉末パウダ層厚、溶融パウダ層厚及び溶鋼面高さを算出することをコンピュータに行わせるものである。
本発明においては、位相差及び振幅の絶対値に基づいて、周波数毎に検出した電圧のベクトルを算出する。そのベクトルが、各層厚の変化によってどのような変化パターンを示すかをあらかじめ把握しておき、その関係に基づいて層厚をコンピュータに算出させる。各層の変化により、それぞれの変化パターンがあるため、そのパターンを解析することで、他の層の影響を除去した上で層厚を算出することができる。
Further, the program of the layer thickness measuring method according to the present invention includes a distance and a thickness to a plurality of layers having different electrical conductivities such as a molten steel surface height, a molten powder layer thickness, and a powder powder layer thickness in a continuous casting mold. A program for the method of simultaneous measurement , for the excitation coil to capture the maximum frequency to capture the change between the molten powder layer and the powder powder layer and the change between the molten steel layer and the molten powder layer. Applying multiple frequency voltages that differ by an order of magnitude in the lowest frequency of each, and detecting the voltage caused by the eddy current generated in each layer for each frequency of the applied voltage, the absolute value of the detected voltage amplitude and excitation The voltage vector is calculated on the basis of the phase difference from the voltage applied to the coil, and the voltage vector component is expressed by a quadratic expression of the molten steel surface height. The coefficient in the quadratic expression of the molten steel surface height is expressed by the powder powder. Layer thickness Based on the relational expression indicating a quadratic equation by the steel powder layer thickness Prefecture, made from a vector of voltage applied to the detection of each frequency, the powder powder layer thickness, calculating a molten powder layer thickness, and the molten steel surface level in the computer It is something to make.
In the present invention, a voltage vector detected for each frequency is calculated based on the absolute value of the phase difference and the amplitude. In advance, the vector indicates what change pattern is indicated by the change in each layer thickness, and the computer calculates the layer thickness based on the relationship. Since each layer has its own variation pattern due to the variation of each layer, the layer thickness can be calculated by removing the influence of other layers by analyzing the pattern.

以上のように、本発明によれば、電気伝導度の異なる層の層厚を測定する際に、ある周波数の電圧で印加した励磁用コイルに発生した磁界(磁束)により各層に発生する渦電流に基づく電圧を検出コイルで検出し、その検出した電圧に基づいてある周波数の電圧との位相差及び振幅の絶対値を出力するようにしたので、測定目的の層厚が変化することにより、位相差及び振幅の絶対値で表されるベクトルが変化することを利用し、その変化パターンを解析しておくことで、他の層、環境等の影響を排除した上で測定目的となる層の厚さを解析し、測定することができる。また、複数の層について、それらの層厚を解析演算することもできる。   As described above, according to the present invention, when measuring the layer thickness of layers having different electrical conductivities, eddy currents generated in each layer due to a magnetic field (magnetic flux) generated in an excitation coil applied at a voltage of a certain frequency. Is detected by the detection coil, and the absolute value of the phase difference and amplitude from the voltage of a certain frequency is output based on the detected voltage. By using the fact that the vector represented by the absolute value of the phase difference and amplitude changes, and analyzing the change pattern, the thickness of the layer to be measured is removed after removing the influence of other layers and the environment. Can be analyzed and measured. In addition, for a plurality of layers, the layer thicknesses can be analyzed and calculated.

また、本発明によれば、それを連続鋳造用モールド内の溶融パウダ層の層厚測定に利用することで、溶鋼面高さ及び粉末パウダ層厚の影響を除去した上で、溶融パウダ層厚を解析、演算によって精度よく測定することができ、品質のよい鋼の鋳造を行うことができる。また、溶鋼面高さ及び粉末パウダ層厚についても同一の検出で測定ができるので、便利である。   Further, according to the present invention, it is used for the measurement of the layer thickness of the molten powder layer in the mold for continuous casting, and after removing the influence of the molten steel surface height and the powder powder layer thickness, the molten powder layer thickness Can be measured accurately by analysis and calculation, and high-quality steel can be cast. Further, the molten steel surface height and the powder powder layer thickness can be measured with the same detection, which is convenient.

本実施の形態では発明の原理について説明する。ここでは励磁コイル(一次コイル)と検出コイル(二次コイル)とを有した渦流計測用センサをモールド上に、溶鋼面、溶融パウダ層及び粉末パウダ層と相対するように設置する。ここで、励磁コイルに印加する電圧の周波数には2種類の周波数を用いるものとする。本実施の形態では、約100kHzを低周波側の周波数とし、1桁オーダが離れた約1MHzを高周波側の周波数として検出を行う。幅広い周波数で問題なく溶融パウダ層厚を測定しようとすると、センサだけで精度を追求するならば約10kHz〜約5MHzの範囲で周波数を用いれば最適である。ただ、これだけの範囲をカバーできる装置を設計、製作することは通常、困難であるので、本実施の形態では、溶融パウダ層の電気伝導度、現実的な溶融パウダ層厚等を考慮して考え、低周波側の周波数は約100kHzとする。一方、高周波側の周波数については、装置の小型化という観点からは低周波側との差を適度に設定しなければならない。低周波側の周波数が約100kHzの場合は、異なる約1〜2MHzの周波数を高周波側の周波数とすることが望ましい。ここでは、溶鋼面高さ(溶鋼面高さを知ることで、溶鋼の厚さを測定することもできる)、パウダ溶融層厚又は粉末パウダ層厚における3層(溶鋼面高さを含めて)の影響による変化が考えられるので、少なくとも2つの周波数で検出を行う。これは、後述するように、検出された電圧のベクトルの成分を算出するが、層の数(溶鋼面高さを含めて)分のベクトルの変化を解析するため、層の数だけベクトルの成分が必要となるからである。本実施の形態では、2つの周波数で4つのベクトル成分を算出し、3層の層厚を解析演算して測定を行う。ここで、周波数は3種類以上であってもよい。また、層の数によっては1つでよい場合もある。   In this embodiment, the principle of the invention will be described. Here, an eddy current measurement sensor having an excitation coil (primary coil) and a detection coil (secondary coil) is placed on the mold so as to face the molten steel surface, the molten powder layer, and the powder powder layer. Here, two types of frequencies are used as the frequency of the voltage applied to the exciting coil. In the present embodiment, detection is performed with a frequency on the low frequency side of about 100 kHz and a frequency on the high frequency side of about 1 MHz separated by one digit order. If it is attempted to measure the melted powder layer thickness over a wide range of frequencies without problems, it is optimal to use a frequency in the range of about 10 kHz to about 5 MHz if accuracy is to be pursued only with a sensor. However, since it is usually difficult to design and manufacture a device that can cover such a range, in this embodiment, the electric conductivity of the molten powder layer, the actual molten powder layer thickness, etc. are considered. The frequency on the low frequency side is about 100 kHz. On the other hand, regarding the frequency on the high frequency side, the difference from the low frequency side must be set appropriately from the viewpoint of downsizing the apparatus. When the frequency on the low frequency side is about 100 kHz, it is desirable to set a different frequency of about 1 to 2 MHz as the frequency on the high frequency side. Here, the molten steel surface height (by knowing the molten steel surface height, the thickness of the molten steel can also be measured), the three layers in the powder melt layer thickness or the powder powder layer thickness (including the molten steel surface height) Therefore, detection is performed at at least two frequencies. As will be described later, this calculates the detected voltage vector component, but in order to analyze the change in the vector for the number of layers (including the molten steel surface height), the vector component is equal to the number of layers. This is because it is necessary. In the present embodiment, four vector components are calculated at two frequencies, and measurement is performed by analyzing and calculating the layer thickness of the three layers. Here, three or more types of frequencies may be used. Further, depending on the number of layers, one may be sufficient.

ここで、通常、検出コイルと溶鋼面までの距離は50mm〜100mmである。溶鋼面などの良導体との距離を測定する場合は、コイルの直径はその距離と同じ値が目安となるため、50mm〜100mm程度となる。ただ、本実施の形態では、溶鋼に比べ、電気伝導度の小さい溶融パウダ層を測定することから、電力を増強したり、差動タイプのコイルにする等、感度を上げる必要がある。また、より小型化を図るため、設置距離を小さくできない場合はさらに感度を上げる工夫が必要である。   Here, the distance from the detection coil to the molten steel surface is usually 50 mm to 100 mm. When measuring the distance to a good conductor such as a molten steel surface, the coil diameter is about 50 mm to 100 mm because the same value as the distance is a guide. However, in this embodiment, since a molten powder layer having a lower electrical conductivity than that of molten steel is measured, it is necessary to increase the sensitivity, for example, by increasing the power or using a differential type coil. Further, in order to further reduce the size, it is necessary to further improve the sensitivity when the installation distance cannot be reduced.

通常、コイルに磁性体の芯を用いると感度が増す。ただ、逆にインピーダンスが大きくなり、しかも周囲の環境(温度、湿度)による影響も大きく受けることになる。そのため、ここでは空芯、絶縁性の芯又は誘電率等の物性値の分布が小さい芯を用いる方がよい。   Usually, the sensitivity increases when a magnetic core is used for the coil. However, on the contrary, the impedance increases, and it is greatly affected by the surrounding environment (temperature, humidity). Therefore, it is better to use an air core, an insulating core, or a core having a small distribution of physical property values such as dielectric constant.

また、コイルには必ず共振周波数があるが、その周波数と測定に用いる周波数との関係も重要である。一般的にコイルは共振周波数より低い周波数で用いると、そのコイルのインピーダンスはインダクタンス成分が支配的であり、共振周波数より高い周波数で用いると、キャパシタンス成分が支配的となる。そして、共振周波数ではインピーダンスは非常に大きくなることも重要である。つまりコイルを励磁コイルとして用いるときは、インピーダンスが高い周波数で用いると、コイルに流れる電流が小さくなり、十分に誘導電流(渦電流)を発生させることができないため、共振周波数より離れた周波数で電圧を印加するようにした方がよい。   In addition, the coil always has a resonance frequency, but the relationship between the frequency and the frequency used for measurement is also important. In general, when a coil is used at a frequency lower than the resonance frequency, an inductance component is dominant in the impedance of the coil, and when used at a frequency higher than the resonance frequency, a capacitance component is dominant. It is also important that the impedance becomes very large at the resonance frequency. In other words, when the coil is used as an exciting coil, if the impedance is used at a high frequency, the current flowing through the coil becomes small and an induced current (eddy current) cannot be generated sufficiently. It is better to apply.

また、検出コイルとして用いるときも同様で、検出コイルの共振周波数又はその近傍では用いないようにする。検出コイルの場合にはさらに注意する点がある。共振周波数より低い周波数側の検出ではインダクタンス成分が支配的なため、溶鋼面、溶融パウダ層に対しては、相対位置の変化に大きく反応する(感度が良い)が、共振周波数より高い周波数側の検出ではキャパシタンス成分が支配的なため、その変化に対する反応が小さくなる。そのため、低周波側及び高周波側の周波数は検出コイルの共振周波数より低いことが望ましい。ただし、粉末パウダまでの距離を非常に近く設定する場合には、キャパシタンス成分が変化する可能性もあり、共振周波数より高い周波数を用いて粉末パウダ層を測定する場合もある。   Similarly, when used as a detection coil, it is not used at or near the resonance frequency of the detection coil. In the case of a detection coil, there are further points to be noted. Since the inductance component is dominant in the detection on the frequency side lower than the resonance frequency, the molten steel surface and the molten powder layer react greatly to changes in the relative position (high sensitivity), but on the frequency side higher than the resonance frequency. Since the capacitance component is dominant in detection, the response to the change is small. Therefore, it is desirable that the frequencies on the low frequency side and the high frequency side are lower than the resonance frequency of the detection coil. However, when the distance to the powder powder is set very close, the capacitance component may change, and the powder powder layer may be measured using a frequency higher than the resonance frequency.

このように共振周波数から離れた少なくとも2つの周波数の電圧を励磁コイルに印加して磁界(磁束)を発生させ、溶鋼、パウダ溶融層、パウダ粉末層に作られる誘導電流に基づく電圧の検出を検出コイルで行う。検出コイルにより検出された電圧の印加周波数との位相差及び振幅の絶対値(それに伴うベクトルの成分)は、溶鋼面高さ、パウダ溶融層厚又は粉末パウダ層厚によって定まる。そして、溶鋼面高さ、パウダ溶融層厚又は粉末パウダ層厚のいずれかが変化することでその変化パターンが異なる。さらに変化のパターンは用いられる周波数によっても異なる。   In this way, a voltage of at least two frequencies separated from the resonance frequency is applied to the exciting coil to generate a magnetic field (magnetic flux), and detection of the voltage based on the induced current generated in the molten steel, powder molten layer and powder powder layer is detected. Do it with a coil. The phase difference from the applied frequency of the voltage detected by the detection coil and the absolute value of the amplitude (the accompanying vector component) are determined by the molten steel surface height, the powder melt layer thickness, or the powder powder layer thickness. And the change pattern changes because either the molten steel surface height, the powder melt layer thickness, or the powder powder layer thickness changes. Furthermore, the change pattern varies depending on the frequency used.

もちろん、渦流計測においては、センサとして使用するコイルの形状、印加する電圧の周波数、測定対象物までの距離、測定対象物の電気伝導度、誘電率などによって振幅の絶対値及び位相差が変化する。そして、測定対象物の電気伝導度は環境によっても異なる。そこで、あらかじめオフラインにて、様々な条件の下において、各周波数における出力変化パターンの測定を行っておき、その解析式を求めておく。また、実際にモールド上で測定する際には、環境(温度、湿度等)に応じてセンサによる検出特性が変化していくが、これについても、変化がパターンとして現れるので、そのパターンに応じて、例えば一定時間毎に校正を行うことにより、精度良いパウダ溶融厚測定が可能となる。そして、実際の測定においては、その環境での溶鋼の電気伝導度、溶融パウダの電気伝導度及び誘電率、粉末パウダの電気伝導度及び誘電率を既知として、溶鋼面までの距離、溶融パウダ層厚、粉末パウダ層厚を解析演算により算出する。   Of course, in eddy current measurement, the absolute value and phase difference of the amplitude vary depending on the shape of the coil used as a sensor, the frequency of the applied voltage, the distance to the measurement object, the electrical conductivity of the measurement object, the dielectric constant, etc. . And the electrical conductivity of a measurement object changes with environments. In view of this, an output change pattern at each frequency is measured in advance offline under various conditions, and an analytical expression is obtained. Also, when actually measuring on the mold, the detection characteristics by the sensor change according to the environment (temperature, humidity, etc.), but this also appears as a pattern, so depending on the pattern For example, by performing calibration at regular time intervals, it is possible to accurately measure the powder melt thickness. In the actual measurement, the electrical conductivity of the molten steel in that environment, the electrical conductivity and dielectric constant of the molten powder, the electrical conductivity and dielectric constant of the powder powder are known, the distance to the molten steel surface, the molten powder layer Thickness and powder powder layer thickness are calculated by analytical calculation.

ここで、誘電率については、本実施の形態のように1MHz程度までの周波数を用いる場合には結果に対して与える影響が小さい。ただ、5MHz又はそれ以上の周波数を用いる場合、測定対象までの距離が近く、電気伝導度が小さい場合には影響をおよぼすことがあるため、測定環境によっては無視できない物性値となるので注意する必要がある。   Here, the dielectric constant has a small influence on the result when a frequency up to about 1 MHz is used as in the present embodiment. However, when using a frequency of 5 MHz or higher, it is necessary to be careful because the physical property value cannot be ignored depending on the measurement environment because the distance to the object to be measured is close and the electrical conductivity may be small. There is.

以上のように本実施の形態によれば、連続鋳造用モールド内の溶融パウダ層の層厚を精度よく測定するため、100kHz及び1MHzの周波数を励磁コイルに印加し、その誘導電流を検出した電圧の位相差及び振幅の絶対値に基づくベクトル成分が、100kHzの周波数による検出では、主に溶鋼による層と溶融パウダ層との変化に反応し、1MHzの周波数による検出では、主に溶融パウダ層と粉末パウダ層との変化に反応するので、その変化のパターンを解析演算することで溶融パウダ層厚を、解析、演算によって精度よく測定することができる。また、溶鋼面の高さ、粉末パウダ層厚についても測定することができる。さらに、解析、演算によって層厚の測定精度を高め、検出系装置での検出精度をカバーすることができるので、検出系装置を小型化し、設計、製作負担を軽減することができる。   As described above, according to the present embodiment, in order to accurately measure the thickness of the molten powder layer in the continuous casting mold, the frequency of 100 kHz and 1 MHz is applied to the exciting coil, and the induced current is detected. In the detection at a frequency of 100 kHz, the vector component based on the phase difference and the absolute value of the amplitude reacts mainly to the change between the molten steel layer and the molten powder layer. In the detection at the frequency of 1 MHz, mainly the molten powder layer Since it reacts to the change with the powder powder layer, the thickness of the molten powder layer can be accurately measured by analysis and calculation by analyzing and calculating the pattern of the change. Further, the height of the molten steel surface and the powder powder layer thickness can also be measured. Furthermore, since the measurement accuracy of the layer thickness can be increased by analysis and calculation, and the detection accuracy in the detection system device can be covered, the detection system device can be downsized, and the design and manufacturing burden can be reduced.

図1は本発明の実施例に係る層厚測定システムを示す構成図である。上述の実施の形態で説明した事項を具体的手段にしたものが本システムである。層厚測定システムは、検出部となる渦流センサ部100(励磁コイル1、検出コイル2及び3)、発振器4及びパワーアンプ5、測定部となる差動アンプ6及び検波器7並びに測定解析部となる演算装置8で構成される。   FIG. 1 is a block diagram showing a layer thickness measuring system according to an embodiment of the present invention. This system uses the items described in the above embodiment as specific means. The layer thickness measurement system includes an eddy current sensor unit 100 (excitation coil 1, detection coils 2 and 3) serving as a detection unit, an oscillator 4 and a power amplifier 5, a differential amplifier 6 and a detector 7 serving as a measurement unit, and a measurement analysis unit. It is comprised with the arithmetic unit 8 which becomes.

モールド内の溶鋼13上にパウダが散布され、溶融パウダ層14と粉末パウダ層15が形成されているが、この粉末パウダ層15の面に正対して渦流センサ部100がリフトオフ10の距離で設置されている。本実施例の渦流センサ部100は励磁コイル1並びに検出コイル2及び3とで構成される。励磁コイル1には、発振器4からの信号をパワーアンプ5により増幅した波形の電圧が印加される。励磁コイル1への電圧印加により発生した磁束が、粉末パウダ層15、溶融パウダ層14、溶鋼13と交差すると誘導電流が発生する。そして、発生した誘導電流による磁束が検出コイル2及び3に交差すると検出コイル2と3との両端に電圧が発生する。   The powder is dispersed on the molten steel 13 in the mold to form a molten powder layer 14 and a powder powder layer 15. The eddy current sensor unit 100 is installed at a distance of lift-off 10 facing the surface of the powder powder layer 15. Has been. The eddy current sensor unit 100 according to the present embodiment includes an excitation coil 1 and detection coils 2 and 3. A voltage having a waveform obtained by amplifying a signal from the oscillator 4 by the power amplifier 5 is applied to the excitation coil 1. When a magnetic flux generated by applying a voltage to the exciting coil 1 intersects the powder powder layer 15, the molten powder layer 14, and the molten steel 13, an induced current is generated. When the magnetic flux generated by the induced current intersects the detection coils 2 and 3, a voltage is generated at both ends of the detection coils 2 and 3.

図2はコイルの周波数とインピーダンスとの関係を表す図である。層厚測定の際には複数の周波数を選択する。励磁コイル1に対する周波数(発信器4からの信号の周波数に基づく)を選択する場合は、f1又はf2の領域の周波数を選択する。f0又はその近傍の周波数を選択して用いてもよいが、複数周波数を使用する場合、電気的に工夫したり、別の励磁コイルを用いる等、f0を変化させて複数にしなければならないので、構成及び処理が複雑になる。また、検出コイル2及び3については、f1領域の周波数を検出できることが望ましいが、より高周波域での検出を行わなければならない場合や、高周波域を安定させるように製作できる場合には、f2の領域の周波数を検出するために用いてもよい。ただし、f2の領域は主にキャパシタンス成分に反応するため、変化分はインダクタンス成分の測定に比べ小さくなる可能性があることに気を付ける必要がある。   FIG. 2 is a diagram showing the relationship between the coil frequency and impedance. When measuring the layer thickness, a plurality of frequencies are selected. When selecting the frequency for the exciting coil 1 (based on the frequency of the signal from the transmitter 4), the frequency in the f1 or f2 region is selected. You may select and use f0 or a frequency in the vicinity of it, but when using multiple frequencies, you must change f0 to multiple by electrically devising or using another excitation coil. Configuration and processing are complicated. For the detection coils 2 and 3, it is desirable that the frequency in the f1 region can be detected. However, when detection in a higher frequency region must be performed or when it can be manufactured to stabilize the high frequency region, It may be used to detect the frequency of the region. However, since the region of f2 mainly responds to the capacitance component, it should be noted that the change may be smaller than the measurement of the inductance component.

渦流センサ部100のコイルの構成に関しては様々な組み合わせがある。例えば、励磁コイルと検出コイルとを同一のコイルで構成するもの、検出コイルを1つで構成するもの、励磁コイルも検出コイルもそれぞれ複数で構成するもの等がある。   There are various combinations of the coil configuration of the eddy current sensor unit 100. For example, there are one in which the excitation coil and the detection coil are constituted by the same coil, one in which the detection coil is constituted by one, and one in which both the excitation coil and the detection coil are constituted by a plurality.

差動アンプ6は、検出コイル2と3との両端に発生した電圧の差分をとった信号を出力する。差動アンプ6にて差分を取ると、励磁コイル1による磁束や対象物に影響を受けていない磁束及びノイズ等、検出コイル2及び3において共通に発生する成分を除去することができる。ここで、本実施例では検出コイル2と3との間に発生した電圧の差分をとるが、作動アンプ6を用いずに、複数の検出コイルの端子を逆方向に接続してコイル同士の差分を直接とる方法もある。また、各々の検出コイルの電圧を増幅器等を通して計測した計測値の差分をとる方法もある。   The differential amplifier 6 outputs a signal obtained by taking the difference between the voltages generated at both ends of the detection coils 2 and 3. When the difference is taken by the differential amplifier 6, components generated in common in the detection coils 2 and 3, such as the magnetic flux generated by the exciting coil 1 and the magnetic flux and noise not affected by the object, can be removed. Here, in this embodiment, the difference between the voltages generated between the detection coils 2 and 3 is taken, but the difference between the coils is established by connecting the terminals of the plurality of detection coils in the reverse direction without using the operation amplifier 6. There is also a method to take directly. There is also a method of obtaining a difference between measured values obtained by measuring the voltages of the respective detection coils through an amplifier or the like.

差動アンプ6が出力した信号は検波器7に入力される。検波器7は、移相器7A、乗算器7B及びローパスフィルタ(LPF)7Cで構成される。ここで、検波器7には発振機4からの信号も参照信号(例えばsin(正弦)波形)として入力される。検波器7では、移相器7Aが参照信号を90°移相した信号(例えばcos(余弦)波形。以下移相信号という)を出力する。そして、乗算器7Bにおいて、差動アンプ6が出力した信号に参照信号及び移送信号を乗算する。そして、それぞれLPF7Cを介し、発振器4から送信された参照信号と同期(位相差0°)した成分の強度を表す信号と、90゜の位相差を有する成分の強度を表す信号とを出力する。これらの信号は、通常、それぞれcos(コサイン)成分、sin(サイン)成分とよばれる。   The signal output from the differential amplifier 6 is input to the detector 7. The detector 7 includes a phase shifter 7A, a multiplier 7B, and a low pass filter (LPF) 7C. Here, the signal from the oscillator 4 is also input to the detector 7 as a reference signal (for example, a sin (sine) waveform). In the detector 7, the phase shifter 7 </ b> A outputs a signal (for example, a cos (cosine) waveform; hereinafter referred to as a phase shift signal) obtained by shifting the reference signal by 90 °. The multiplier 7B multiplies the signal output from the differential amplifier 6 by the reference signal and the transfer signal. Then, a signal representing the intensity of the component synchronized with the reference signal transmitted from the oscillator 4 (phase difference 0 °) and a signal representing the intensity of the component having a phase difference of 90 ° are output via the LPF 7C. These signals are generally called a cosine component and a sin component, respectively.

ここで、検波器7は、移相器7Aと乗算器7B及びLPF7Cを組み合わせて自作することもできるし、市販のロックインアンプを用いてもよい。また、構成も必ずしも上述したものに限らない。また、ここではベクトルの成分となるsin成分、cos成分を検波器7から出力するようにしているが、検出した電圧に対する振幅の絶対値と位相差とを表す信号を検波器7から出力し、後述する演算装置8で、sin成分及びcos成分を算出する方法もある。各成分の二乗の和の平方根を計算したものが、振幅(出力)の絶対値となる。   Here, the detector 7 can be made by combining the phase shifter 7A, the multiplier 7B, and the LPF 7C, or a commercially available lock-in amplifier may be used. Also, the configuration is not necessarily limited to that described above. Here, the sin component and the cos component, which are vector components, are output from the detector 7, but a signal indicating the absolute value of the amplitude and the phase difference with respect to the detected voltage is output from the detector 7. There is also a method of calculating the sin component and the cos component by the arithmetic unit 8 described later. The absolute value of the amplitude (output) is obtained by calculating the square root of the sum of the squares of the components.

図3は励磁コイル1に印加されている電圧波形と、検出コイル2から出力されている波形を示した図である。励磁コイル1の波形と検出コイル2の波形の位相の差が位相差として表される。また、検出コイル2波形の振幅値が絶対値となる。   FIG. 3 is a diagram illustrating a voltage waveform applied to the excitation coil 1 and a waveform output from the detection coil 2. A phase difference between the waveform of the excitation coil 1 and the waveform of the detection coil 2 is expressed as a phase difference. The amplitude value of the detection coil 2 waveform is an absolute value.

演算装置8は、sin成分及びcos成分を解析して層厚を算出する。算出した層厚の数値は、例えば表示手段、印刷手段(図示せず)等に表示させたり、印刷させたりする。ここで、演算装置8(本実施例)の主目的は溶融パウダ層厚の算出であるが、後述するように溶鋼面高さ、粉末パウダ層厚も算出することができる。   The arithmetic device 8 calculates the layer thickness by analyzing the sin component and the cos component. The calculated numerical value of the layer thickness is displayed or printed on, for example, a display means, a printing means (not shown) or the like. Here, the main purpose of the arithmetic unit 8 (the present embodiment) is to calculate the molten powder layer thickness, but the molten steel surface height and the powder powder layer thickness can also be calculated as described later.

図4は層厚と方向変化を表す図である。図4(a)は100kHzの場合、図4(b)は1MHzの場合を表している。次に層厚の算出処理方法について説明する。低周波側を100kHz、高周波側を1MHzとし、それぞれについて溶鋼面高さ(L)、溶融パウダ層厚(W)、粉末パウダ層厚(P)として、3つのパラメータのうち、1つだけを変化させ、sin成分とcos成分との値の変化を表示した。図4から考えると、溶鋼面高さLと溶融パウダ層厚W、粉末パウダ層厚Pとの変化の方向は、100kHzで検出すると大きく異なっていることがわかる。一方、1MHzでも変化の方向は近いものの異なっていることが分かる。溶融パウダ層厚W、粉末パウダ層厚Pでの変化の方向は近いものの、100kHzと1MHzでは変化の方向は異なっており、これらを分析した係数を算出しておくことにより層厚を算出することができる。   FIG. 4 is a diagram showing the layer thickness and the direction change. 4A shows the case of 100 kHz, and FIG. 4B shows the case of 1 MHz. Next, the layer thickness calculation processing method will be described. The low frequency side is set to 100 kHz, the high frequency side is set to 1 MHz, and only one of the three parameters is changed as the molten steel surface height (L), molten powder layer thickness (W), and powder powder layer thickness (P). The change in values between the sin component and the cos component was displayed. Considering from FIG. 4, it can be seen that the direction of change between the molten steel surface height L, the molten powder layer thickness W, and the powder powder layer thickness P is greatly different when detected at 100 kHz. On the other hand, even at 1 MHz, the direction of change is close but different. Although the direction of change in the molten powder layer thickness W and the powder powder layer thickness P is close, the direction of change is different between 100 kHz and 1 MHz, and the layer thickness is calculated by calculating the coefficients obtained by analyzing these. Can do.

例えば、以下のような式にて解析が可能である。P及びWの関係を次の1次式で代表する。
A=C0・W+P …(1)
For example, analysis can be performed using the following formula. The relationship between P and W is represented by the following linear expression.
A = C0 · W + P (1)

X(cos成分)、Y(sin成分)を次の2次式(2)、(3)で表す。
X=C1・L2 +C2・L+C3 …(2)
Y=C4・L2 +C5・L+C6 …(3)
X (cos component) and Y (sin component) are represented by the following quadratic expressions (2) and (3).
X = C1 · L 2 + C2 · L + C3 (2)
Y = C4 · L 2 + C5 · L + C6 (3)

ここで、定数項C1〜C6を次式(4)〜(9)で表す。
C1=D0・A2 +D1・A+D2 …(4)
C2=D3・A2 +D4・A+D5 …(5)
C3=D6・A2 +D7・A+D8 …(6)
C4=D9・A2 +D10・A+D11 …(7)
C5=D12・A2 +D13・A+D14 …(8)
C6=D15・A2 +D16・A+D17 …(9)
Here, the constant terms C1 to C6 are expressed by the following expressions (4) to (9).
C1 = D0 · A 2 + D1 · A + D2 (4)
C2 = D3 · A 2 + D4 · A + D5 (5)
C3 = D6 · A 2 + D7 · A + D8 (6)
C4 = D9 · A 2 + D10 · A + D11 (7)
C5 = D12 · A 2 + D13 · A + D14 (8)
C6 = D15 · A 2 + D16 · A + D17 (9)

上述の式において、各式中の定数項C0〜C6及びD0〜D17のうち、独立して求めておく必要があるのはC0及びD0〜D17の19項である。これらの定数項は、連続鋳造が行われていないオフライン試験にて、L、P、W等をパラメータとして、例えば、一定の条件下での定数項を求めておく。各条件における定数項の値は、例えばデータベース化し、演算装置8内に備えた記憶手段(図示せず)又はネットワーク等で接続された記憶手段に記憶し、定数項を管理しておくこともできる。   In the above formulas, among the constant terms C0 to C6 and D0 to D17 in each formula, 19 terms C0 and D0 to D17 need to be obtained independently. These constant terms are obtained, for example, under constant conditions, for example, using L, P, W, etc. as parameters in an off-line test in which continuous casting is not performed. The value of the constant term under each condition can be stored in a storage means (not shown) provided in the computing device 8 or a storage means connected by a network or the like, for example, and the constant term can be managed. .

ここで、実際に層厚の算出を行っていると、時間変化、温度変化の蓄積などにより、特性が変化し、渦流センサ部100の検出に微小なずれが生じ、本来の層厚の値と算出された層厚の値とがずれてくる可能性がある。そのような場合には、その特性の変化に応じたパターンがcos成分、sin成分にも現れる。そこで、そのパターンの変化に応じて、一定の時間毎に渦流センサ部100の校正を行うことにより精度を保つ。また、コイルの形状、信号線の特性等を変更した場合は、その変更に合わせて式又は定数項の値も変更する。   Here, when the layer thickness is actually calculated, the characteristics change due to accumulation of time change, temperature change, etc., and a slight deviation occurs in the detection of the eddy current sensor unit 100. There is a possibility that the calculated value of the layer thickness deviates. In such a case, a pattern corresponding to the change in the characteristics also appears in the cos component and the sin component. Therefore, the accuracy is maintained by calibrating the eddy current sensor unit 100 at regular intervals according to the change in the pattern. When the shape of the coil, the characteristics of the signal line, etc. are changed, the value of the equation or constant term is also changed in accordance with the change.

また、ここでは、(1)式を1次式で表しているが、例えば二次式としたり、さらに、(2)式、(3)式についても3次式とする等、式による精度の向上を図るように設定を変更することもできる。この場合も、定数項の数もその値も変化するので、それに合わせた定数項を算出しておく必要がある。   Here, although the expression (1) is expressed by a linear expression, for example, it is a quadratic expression, and further, the expression (2) and the expression (3) are also converted to a cubic expression. You can also change the settings to improve. Also in this case, since the number of constant terms and their values change, it is necessary to calculate a constant term according to the number.

図5は2つの方法により求められた溶融パウダ層厚の関係を表す図である。横軸は接触式で実測した溶融パウダ層厚を表す。縦軸は2周波数での渦流計測とベクトル成分による解析を行った本実施例による方法である。0mm〜15mmの溶融パウダ厚に対して、計測値のはとんどが±1mm以内となっている。厚みが小さい場合にその誤差が大きくなる傾向にあるが、これは、高周波側の周波数をさらに高めることができれば、感度はさらに向上する。   FIG. 5 is a graph showing the relationship between the melt powder layer thicknesses obtained by the two methods. The horizontal axis represents the melt powder layer thickness measured by the contact method. The vertical axis represents the method according to this embodiment in which eddy current measurement at two frequencies and analysis using vector components are performed. Most of the measured values are within ± 1 mm for the melted powder thickness of 0 mm to 15 mm. When the thickness is small, the error tends to increase. However, if the frequency on the high frequency side can be further increased, the sensitivity is further improved.

温度補償に関しては、温度とベクトルの移動方向との関係をあらかじめ求めておき、コイル周辺の温度に基づいて、演算装置8において補正したり、定数項を決定したりすることで容易に行うことができる。   The temperature compensation can be easily performed by obtaining the relationship between the temperature and the moving direction of the vector in advance and correcting it in the arithmetic unit 8 or determining a constant term based on the temperature around the coil. it can.

上述の実施の形態及び実施例においては、連続鋳造用モールド内の溶融パウダ層厚W、溶鋼面高さL、粉末パウダ層厚Pを測定、算出することを目的としたが、本発明はこれに限定するものではない。1又は複数の異なる電気伝導度の層の厚さを測定するために用いることができる。   In the embodiment and examples described above, the object is to measure and calculate the molten powder layer thickness W, the molten steel surface height L, and the powder powder layer thickness P in the continuous casting mold. It is not limited to. It can be used to measure the thickness of one or more layers of different electrical conductivity.

本発明の実施例に係る層厚測定システムの構成図である。It is a block diagram of the layer thickness measurement system which concerns on the Example of this invention. コイルの周波数とインピーダンスの関係を表す図である。It is a figure showing the relationship between the frequency of a coil, and impedance. 励磁コイル1に印加されている電圧波形と、検出コイル2から出力されている波形を示した図である。FIG. 4 is a diagram illustrating a voltage waveform applied to an excitation coil and a waveform output from a detection coil. 層厚と方向変化を表す図である。It is a figure showing layer thickness and direction change. 2つの方法により求められた溶融パウダ層厚の関係を表す図である。It is a figure showing the relationship of the molten powder layer thickness calculated | required by two methods.

符号の説明Explanation of symbols

1…励磁コイル
2、3…検出コイル
4…発振器
5…パワーアンプ
6…差動アンプ
7…検波器
7A…移相器
7B…乗算器
7C…LPF
8…演算装置
10…リフトオフ
13…溶鋼
14…溶融パウダ層
15…粉末パウダ層
100…渦流センサ部
DESCRIPTION OF SYMBOLS 1 ... Excitation coil 2, 3 ... Detection coil 4 ... Oscillator 5 ... Power amplifier 6 ... Differential amplifier 7 ... Detector 7A ... Phase shifter 7B ... Multiplier 7C ... LPF
DESCRIPTION OF SYMBOLS 8 ... Arithmetic apparatus 10 ... Lift-off 13 ... Molten steel 14 ... Molten powder layer 15 ... Powder powder layer 100 ... Eddy current sensor part

Claims (7)

連続鋳造用モールド内の溶鋼面高さ、溶融パウダ層厚及び粉末パウダ層厚という複数の異なる電気伝導度の層までの距離と厚さとを同時に測定する方法において、
励磁用コイルに、前記溶融パウダ層と前記粉末パウダ層との間の変化をとらえるための最高周波数と、前記溶鋼の層と前記溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加する工程と、
前記励磁用コイルにより前記各層に発生する渦電流に起因する電圧を、前記励磁用コイルと同一又は異なる検出用コイルで検出する工程と、
前記励磁用コイルで印加した電圧に対する前記検出用コイルで検出した電圧の位相差及び前記検出用コイルで検出した電圧の振幅の絶対値に基づいて、前記周波数毎に検出した電圧のベクトルを算出する工程と、
前記電圧のベクトルの成分を溶鋼面高さの2次式で表し、該溶鋼面高さの2次式における係数を前記粉末パウダ層厚と前記溶鋼パウダ層厚とによる2次式で表した関係式に基づき、前記周波数毎の検出に係る電圧のベクトルから、前記粉末パウダ層厚、前記溶融パウダ層厚及び前記溶鋼面高さを算出する工程と
を有することを特徴とする層厚測定方法。
In the method of simultaneously measuring the distance and thickness to a plurality of layers having different electrical conductivities such as molten steel surface height, molten powder layer thickness, and powder powder layer thickness in a continuous casting mold,
The excitation coil has a maximum frequency for capturing the change between the molten powder layer and the powder powder layer, and an order of the lowest frequency for capturing the change between the molten steel layer and the molten powder layer. Applying voltages of different frequencies,
Detecting a voltage caused by an eddy current generated in each layer by the excitation coil with a detection coil that is the same as or different from the excitation coil;
Based on the phase difference of the voltage detected by the detection coil with respect to the voltage applied by the excitation coil and the absolute value of the amplitude of the voltage detected by the detection coil, a vector of the voltage detected for each frequency is calculated. Process,
The voltage vector component is expressed by a quadratic expression of the molten steel surface height, and the coefficient in the quadratic expression of the molten steel surface height is expressed by a quadratic expression based on the powder powder layer thickness and the molten steel powder layer thickness. A step of calculating the powder powder layer thickness, the molten powder layer thickness, and the molten steel surface height from a voltage vector related to detection for each frequency based on an equation; Thickness measurement method.
連続鋳造用モールド内の溶融パウダ層の電気伝導度及び厚さ範囲に基づき、前記励磁用コイルへの印加電圧の周波数を少なくとも2つ定めることを特徴とする請求項1記載の層厚測定方法。   2. The layer thickness measuring method according to claim 1, wherein at least two frequencies of the voltage applied to the exciting coil are determined based on the electric conductivity and thickness range of the molten powder layer in the continuous casting mold. 前記印加電圧の周波数を10kHzから5MHzの範囲で定めることを特徴とする請求項2記載の層厚測定方法。   3. The layer thickness measuring method according to claim 2, wherein a frequency of the applied voltage is determined in a range of 10 kHz to 5 MHz. 連続鋳造用モールド内の溶融パウダ層の面に正対する位置に前記励磁用コイル及び前記検出用コイルを設けることを特徴とする請求項1又は2記載の層厚測定方法。   3. The layer thickness measuring method according to claim 1, wherein the exciting coil and the detecting coil are provided at a position facing the surface of the molten powder layer in the continuous casting mold. 前記ベクトルの変化パターンに基づいて、周囲環境による検出特性の変化パターンを判断し、前記変化パターンに対応した校正をすることを特徴とする請求項1〜4のいずれかに記載の層厚測定方法。 Based on a change pattern of the vector, determines the change pattern of the detection characteristics caused by the ambient environment, the layer thickness measuring method according to any one of claims 1 to 4, characterized in that the calibration corresponding to the change pattern . 連続鋳造用モールド内の溶融パウダ層の厚さを渦電流計測方法によって測定する層厚測定システムであって、
励磁用コイルに対して、前記溶融パウダ層と前記粉末パウダ層との間の変化をとらえるための最高周波数と、前記溶鋼の層と前記溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加させて、各層に発生する渦電流に起因した電圧を検出する渦流センサ部と、
該渦流センサ部が検出した電圧について、前記周波数の電圧との位相差及び振幅の絶対値を算出し、前記複数の周波数毎に検出した電圧のベクトルの成分を出力する測定部と、
前記電圧のベクトルの成分を溶鋼面高さの2次式で表し、該溶鋼面高さの2次式における係数を前記粉末パウダ層厚と前記溶鋼パウダ層厚とによる2次式で表した関係式に基づき、前記周波数毎の検出に係る電圧のベクトルの成分から、前記粉末パウダ層厚、前記溶融パウダ層厚及び前記溶鋼面高さを算出する測定解析部と
を備えたことを特徴とする層厚測定システム。
A layer thickness measurement system for measuring the thickness of a molten powder layer in a continuous casting mold by an eddy current measurement method,
For the exciting coil , there are a maximum frequency for capturing a change between the molten powder layer and the powder powder layer, and an order of a minimum frequency for capturing a change between the molten steel layer and the molten powder layer. An eddy current sensor unit that detects voltages caused by eddy currents generated in each layer by applying voltages of a plurality of frequencies different by one digit ;
For the voltage detected by the eddy current sensor unit, the absolute value of the phase difference and the amplitude with the voltage of the frequency is calculated, and a measuring unit that outputs a vector component of the voltage detected for each of the plurality of frequencies,
The voltage vector component is expressed by a quadratic expression of the molten steel surface height, and the coefficient in the quadratic expression of the molten steel surface height is expressed by a quadratic expression based on the powder powder layer thickness and the molten steel powder layer thickness. And a measurement analysis unit for calculating the powder powder layer thickness, the molten powder layer thickness, and the molten steel surface height from a voltage vector component related to detection for each frequency based on an equation. Layer thickness measurement system.
連続鋳造用モールド内の溶鋼面高さ、溶融パウダ層厚及び粉末パウダ層厚という複数の異なる電気伝導度の層までの距離と厚さとを同時に測定する方法のプログラムであって、
励磁用コイルに対して、前記溶融パウダ層と前記粉末パウダ層との間の変化をとらえるための最高周波数と、前記溶鋼の層と前記溶融パウダ層との変化をとらえるための最低周波数のオーダが1桁異なる複数の周波数の電圧を印加させて、該印加した電圧の周波数毎に各層に発生する渦電流に起因した電圧を検出し、該検出した電圧の振幅の絶対値及び前記励磁用コイルに印加した電圧との位相差に基づいて電圧のベクトルを算出し、前記電圧のベクトルの成分を溶鋼面高さの2次式で表し、該溶鋼面高さの2次式における係数を前記粉末パウダ層厚と前記溶鋼パウダ層厚とによる2次式で表した関係式に基づき、前記周波数毎の検出に係る電圧のベクトルから、前記粉末パウダ層厚、前記溶融パウダ層厚及び前記溶鋼面高さを算出することをコンピュータに行わせることを特徴とする層厚測定方法のプログラム。
A program of a method for simultaneously measuring the distance and thickness to a plurality of layers having different electrical conductivities such as molten steel surface height, molten powder layer thickness and powder powder layer thickness in a continuous casting mold ,
For the exciting coil , there are a maximum frequency for capturing a change between the molten powder layer and the powder powder layer, and an order of a minimum frequency for capturing a change between the molten steel layer and the molten powder layer. A voltage having a frequency different by one digit is applied, a voltage caused by an eddy current generated in each layer is detected for each frequency of the applied voltage, and an absolute value of the detected voltage amplitude and the excitation coil are detected. A voltage vector is calculated based on the phase difference from the applied voltage, the voltage vector component is expressed by a quadratic expression of the molten steel surface height, and a coefficient in the quadratic expression of the molten steel surface height is expressed by the powder powder. Based on a relational expression represented by a quadratic expression based on the layer thickness and the molten steel powder layer thickness, the powder powder layer thickness, the molten powder layer thickness, and the molten steel surface height are calculated from a voltage vector related to detection for each frequency. It is calculated Program layer thickness measurement method characterized by causing a computer.
JP2004027531A 2004-02-04 2004-02-04 Layer thickness measurement method, system, and program for layer thickness measurement method Expired - Fee Related JP4617677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027531A JP4617677B2 (en) 2004-02-04 2004-02-04 Layer thickness measurement method, system, and program for layer thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027531A JP4617677B2 (en) 2004-02-04 2004-02-04 Layer thickness measurement method, system, and program for layer thickness measurement method

Publications (2)

Publication Number Publication Date
JP2005221282A JP2005221282A (en) 2005-08-18
JP4617677B2 true JP4617677B2 (en) 2011-01-26

Family

ID=34997044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027531A Expired - Fee Related JP4617677B2 (en) 2004-02-04 2004-02-04 Layer thickness measurement method, system, and program for layer thickness measurement method

Country Status (1)

Country Link
JP (1) JP4617677B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513821B2 (en) * 2009-09-17 2014-06-04 株式会社荏原製作所 Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
WO2011151530A1 (en) 2010-05-31 2011-12-08 Arcelormittal Investigacion Y Desarrollo, S.L. Method and device for measuring the thickness of a coating layer on a running strip
US9057146B2 (en) * 2010-08-24 2015-06-16 Varian Semiconductor Equipment Associates, Inc. Eddy current thickness measurement apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643502A (en) * 1979-09-17 1981-04-22 Mitsubishi Heavy Ind Ltd Eddy current system electric displacement meter
JPS57139603A (en) * 1981-02-23 1982-08-28 Nippon Steel Corp Detection of foreign matter layer on metal surface and equipment for the same
JPS63241304A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Method for measuring thickness of layer
JP2001133208A (en) * 1999-09-17 2001-05-18 Siemens Power Corp Method of obtaining thickness of layer composed of oxide material on coated surface of nuclear fuel rod
JP2003021501A (en) * 2000-11-24 2003-01-24 Ebara Corp Eddy current sensor
JP2003106805A (en) * 2001-07-23 2003-04-09 Ebara Corp Eddy current sensor
JP2003139885A (en) * 2001-07-31 2003-05-14 General Electric Co <Ge> Method for detecting thickness of metal used for irradiated nuclear fuel rod

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643502A (en) * 1979-09-17 1981-04-22 Mitsubishi Heavy Ind Ltd Eddy current system electric displacement meter
JPS57139603A (en) * 1981-02-23 1982-08-28 Nippon Steel Corp Detection of foreign matter layer on metal surface and equipment for the same
JPS63241304A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Method for measuring thickness of layer
JP2001133208A (en) * 1999-09-17 2001-05-18 Siemens Power Corp Method of obtaining thickness of layer composed of oxide material on coated surface of nuclear fuel rod
JP2003021501A (en) * 2000-11-24 2003-01-24 Ebara Corp Eddy current sensor
JP2003106805A (en) * 2001-07-23 2003-04-09 Ebara Corp Eddy current sensor
JP2003139885A (en) * 2001-07-31 2003-05-14 General Electric Co <Ge> Method for detecting thickness of metal used for irradiated nuclear fuel rod

Also Published As

Publication number Publication date
JP2005221282A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US6479990B2 (en) Eddy current sensor for analyzing a test object and method of operating same
JP2698749B2 (en) Combined coating thickness gauge for non-ferrous coatings on iron substrates and non-conductive coatings on conductive substrates
JP7142736B2 (en) Magnetic displacement sensor with high accuracy and stability in the presence of electromagnetic interference
US4752739A (en) Device for measuring the thickness of thin metallic layers deposited on a conductive support
US4593244A (en) Determination of the thickness of a coating on a highly elongated article
JPH07167838A (en) Arrangement of sensor for examining physical property of surface layer of metal object and method therefor
US20020149360A1 (en) Eddy current test method and appratus for selecting calibration standard to measure thickness of micro thin film metal coating on wafer products by using noncontact technique
US5394084A (en) Method and apparatus for reducing errors in eddy-current conductivity measurements due to lift-off by interpolating between a plurality of reference conductivity measurements
JPH1078336A (en) Eddy current measurement system using multiple parameters with parameter compensation
JP2011525236A (en) Position sensor
KR20050084281A (en) Method and apparatus for measuring thickness of a test object between two eddy current sensor heads
US8714234B2 (en) Sensor and method for measuring the surface level of a liquid phase metal
Wang et al. A compact and high-performance eddy-current sensor based on meander-spiral coil
JP4617677B2 (en) Layer thickness measurement method, system, and program for layer thickness measurement method
US20070229064A1 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
Ding et al. A novel PQCR-L circuit for inductive sensing and its application in displacement detection
JP2000337809A (en) Differential type eddy current range finder
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
CN1099259C (en) Cigarette and filter tip circumference measuring and controlling method
RU2456589C1 (en) Method for eddy current-measurement of thickness of metal coatings
EP3762685B1 (en) Inductive sensor device with reference sensor
US11731190B2 (en) Method and measuring instrument for measurement of the casting level in a mould
JP4267389B2 (en) Non-contact flow rate measuring method and apparatus
WO1993025864A1 (en) Magnetic measuring method and apparatus for determining the size and shape of a slot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees