JP4617604B2 - Threaded pile and method of construction - Google Patents

Threaded pile and method of construction Download PDF

Info

Publication number
JP4617604B2
JP4617604B2 JP2001159266A JP2001159266A JP4617604B2 JP 4617604 B2 JP4617604 B2 JP 4617604B2 JP 2001159266 A JP2001159266 A JP 2001159266A JP 2001159266 A JP2001159266 A JP 2001159266A JP 4617604 B2 JP4617604 B2 JP 4617604B2
Authority
JP
Japan
Prior art keywords
pile
screwed
wing
auger
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001159266A
Other languages
Japanese (ja)
Other versions
JP2002348863A (en
Inventor
正宏 林
和臣 市川
玄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001159266A priority Critical patent/JP4617604B2/en
Publication of JP2002348863A publication Critical patent/JP2002348863A/en
Application granted granted Critical
Publication of JP4617604B2 publication Critical patent/JP4617604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ねじ込み杭及びねじ込み杭の施工方法に係り、さらに詳しくは、少なくとも先端部又はその近傍に翼を取付けた杭に回転力を与えることにより、杭を地中に埋設するようにしたねじ込み杭及びねじ込み杭の施工方法に関するものである。
【0002】
【従来の技術】
杭の先端部や側面に翼状板を取付けて、地上に設置した施工機械を用いて回転力を与えることにより、翼状板の木ねじ作用により地中に埋設するねじ込み杭は、従来から種々提案されており、低振動、低騒音、無排土で施工できると共に、埋設後は翼状板の面積を利用して大きな先端支持力が得られるため土木、建築の分野で実用化されている。以下、本発明に関連すると思われる従来技術について説明する。
【0003】
特公平2−62648号公報に記載された鋼管杭の埋設工法は、鋼管製の杭本体の下端に底板を固設し、該底板に掘削刃を設けると共に、杭本体の下端部外周面に杭本体の外径のほぼ2倍強の外径を有する翼幅の大きな杭ネジ込み用の螺旋翼を、ほぼ一巻きにわたり突設した鋼管杭を、軟弱地盤にネジ込むように回転させながら地中に押圧し、下端の掘削刃によって杭本体先端の土砂を掘削軟化させて、杭側面の未掘削土砂中に螺旋翼を食い込ませて、土の耐力を反力として杭体を回転推進しつつ、掘削軟化した土砂を杭側面に押出し圧縮し、無排土で地中に杭体をネジ込んでゆくようにしたものである(従来技術1)。
【0004】
また、特開2000−110162号公報に記載された鋼管杭は、鋼管杭の下方が太径のテーパ型鋼管を用いて、杭径の最大径に準拠する許容根入れ長を大きくすることにより、杭の材料費をはじめとする埋設コストを引き下げるとともに、テーパ鋼管の下端に錐体を固着し、その上方の鋼管側面部に螺旋翼を取り付け、その螺旋翼は回転力を推力に変換するとともに、支持力を増大させるようにしたものである(従来技術2)。
【0005】
さらに、特開2000−110160号公報に記載された拡底鋼管杭は、中掘工法で地盤の掘削及び拡底鋼管杭の沈設を行い、拡底部を根固め部に定着させ、拡径部の内径とほぼ等しい径に拡径可能な付着防止翼により連結部と拡径部との間の隅角部の内側に侵入する粘性土やスライムなどの付着を防止し、高い先端支持力を確保するようにしたものである(従来技術3)。
【0006】
【発明が解決しようとする課題】
従来技術1及び2の鋼管杭は、施工機械で杭頭部にトルクを与えることにより地盤中にねじ込まれ、埋設される。このような螺旋翼を有する鋼管杭は、杭体か螺旋翼の張り出しが大きくなると、施工時に大きな抵抗が作用し、大きなトルクが必要になる。また、供用時には螺旋翼に作用する地盤反力により大きな曲げモーメントが杭体に作用する。このため、杭体は、施工時には大きなトルクに耐えられる肉厚又は強度の大きなものが必要であり、供用時には杭体の肉厚又は強度を大きなものにするか、あるいは螺旋翼の板厚を相当厚いものにする必要があり、不経済である。
【0007】
従来技術3の鋼管杭は、先端部を拡底化することにより大きな先端支持力を確保することができる。しかし、杭体に翼が設けられていないため、施工にあたっては中掘工法を採用しなければならず、施工が面倒であるばかりでなく、掘削土を地上に排出するためこれを処理しなければならない。また、拡底した鋼管径分の支持力しか確保できない。
【0008】
本発明は、上記の問題点に鑑みてなされたもので、以下の課題を解決したねじ込み杭及びねじ込み杭の施工方法を提供することを目的としたものである。
(1)杭先端部を拡径し、翼を設けることにより小さな杭体径で大きな先端支持力を得ること。
(2)杭本体からの翼の張り出し長を短かくすることにより曲げの影響を少なくし、翼及び杭本体の板厚を薄くすることにより、経済的な設計を可能にすること。
(3)オーガーを併用して施工する場合、オーガーの挿入及び回収が容易であること。
【0009】
【課題を解決するための手段】
本発明は、翼を設けた杭体を回転し、該杭体を前記翼の作用により地中に貫入するねじ込み杭において、前記杭体の先端部に、その下端部の内径が前記杭体の内径よりも大径の筒状体からなる拡径部を設け、該拡径部を、前記杭体の外径より大径で翼状に形成された継手部材を介して前記杭体の先端部に接合し、少なくとも前記拡径部の先端部又はその近傍に翼を設けたものである。
【0012】
上記のねじ込み杭において、翼を拡径部の内壁に接合した。
【0013】
本発明に係るねじ込み杭の施工方法は、翼及び継手部材に中央開口部を有する上記のねじ込み杭内にオーガーを挿入してそのオーガーヘッドを杭先端部から突出させ、該オーガーと前記翼の作用によりねじ込み杭を地中に貫入するようにしたものである。
【0014】
上記のねじ込み杭の施工方法において、オーガーの軸方向に貫通穴を設けると共にオーガーヘッドに噴出口を設け、前記貫通穴から硬化性流動物を圧送して前記噴出口から噴出させるようにした。
【0015】
【発明の実施の形態】
[実施の形態1]
図1は本発明の実施の形態1に係るねじ込み杭の斜視図、図2は図1の模式的縦断面図である。
両図において、1はねじ込み杭で、3は鋼管からなる杭体、4は鋼板を曲げ加工してなり杭体3の先端部に溶接により接合されたテーパー状の拡径部で、これら杭体3と拡径部4とにより杭本体2を構成する。6は拡径部4の先端部に溶接により接合された翼である。
【0016】
拡径部4は、上端部の外径が杭体3の外径とほぼ等しく、下部になるにしたがって拡径されて截頭円錐状に形成されており、先端部には例えば螺旋状に切除された取付部5が設けられ、この取付部5に、例えばドーナツ状の鋼板を曲げ加工した螺旋状の翼6を溶接により接合したものである。
【0017】
拡径部4の拡径角度θは、発明者らの実験結果によれば5°〜20°程度が望ましく、このように構成することにより、拡径部4を形成する鋼板の板厚を、杭体3を構成する鋼管の板厚とほぼ等しいか若干厚めにする程度でよい。拡径角度θが大きい場合は、拡径部4の板厚を大きくすれば、荷重伝達の問題に対処することができる。
また、拡径部4の長さは、杭体3の外径や地盤の状態などによって異なるが、発明者らの実験の結果によれば、杭体3の外径の0.5〜5倍程度が望ましい。
【0018】
翼6の外径は、杭体3や拡径部4の下端部の外径、あるいは地盤の状態などによって異なるが、一般に杭体3の外径の1.5〜3.5倍程度が望ましく、また、拡径部4の取付部5に接合した状態における外方への張り出し長さ(幅)と、内方への張り出し長さ(幅)とをほぼ等しくすることが望ましい。これにより、基礎杭として供用時に、翼6に作用する地盤反力がバランスして、拡径部4に作用する曲げモーメントを軽減することができる。なお、翼6の拡径部4からの張り出し長さは、杭体3の外径の20%程度であれば、翼6の推進力により杭体3を地中に貫入することができる。
【0019】
上記のように構成した本実施の形態に係るねじ込み杭1は、その杭頭部又は杭本体2の上部胴部を施工機械に設けたモータに装着し、このモータによりねじ込み杭を回転させることにより、翼6の木ねじ作用により無排土、低振動、低騒音で地中に貫入される。
このとき、翼6の下方にある土砂は翼により掘削軟化され、翼6のすき間8を通過して杭本体2の外周に移動して圧縮され、また、翼6の中央開口部7から杭本体2内にも取り込まれる。杭本体2の外周に移動した土砂は、施工中は翼6により軟化されるため摩擦抵抗が少なく、ねじ込み杭1をスムーズに貫入することができる。そして、時間の経過と共に地盤強度が回復し、基礎杭として供用時には大きな周面摩擦力が発揮され、また、翼6により大きな支持力を得ることができる。
【0020】
本実施の形態によれば、杭体2の外径に比べて大きな外径の翼6を設けても、拡径部4の外周からの張り出し長(幅)が短いため、施工に際して地盤の抵抗が小さく、このため、ねじ込み杭を小さいトルクで地中に貫入することができる。また、これにより、拡径部4の板厚を杭体2の板厚とほぼ等しいか少し厚くするだけでよく、翼6の板厚も薄くできるのでコストを低減することができ、経済的である。
さらに、翼6の拡径部4の内外への張り出し長(幅)をほぼ等しくすれば、拡径部4に作用する曲げモーメントを小さくすることができるので、上記のトルクの低減と相俟って、拡径部4及び翼6の板厚をより薄くすることができる。
【0021】
本実施の形態に係るねじ込み杭は、翼6の中心部に開口部7が設けられているので、施工時に杭本体2内に土砂が侵入する。施工中に翼6が硬い支持層に到達したときは、先端部は閉塞状態となって貫入されるが、杭体3の径が大きくなったり(したがって、翼6の開口部7が大きい)、軟かい地盤の場合には先端閉塞効果が得られないおそれがある。このような場合には、先端閉塞効果を促すために、拡径部4内に板や突起物を設けてもよい(以下の実施の形態においても同様である)。
【0022】
上記の説明では、拡径部4の先端部を螺旋状に切除して取付部5を形成し、この取付部に1枚の螺旋状の翼6を溶接により接合した場合を示したが、螺旋状の翼6を複数に分割して取付部5に接合してもよい。また、螺旋状の翼6に代えて、円形鋼板、楕円形鋼板、四角形鋼板又はドーナツ状の鋼板を複数に分割した平板状の翼を接合するなど、地中への推進力が得られるものであれば、どのような形状又は構造の翼であってもよい(以下の実施の形態においても同様である)。
【0023】
さらに、中心部に開口部7を有する開放型の翼6を用いた場合を示したが、拡径部4の先端開口部を閉塞する閉塞型の翼を用いてもよく、あるいは他の部材で先端開口部を閉塞してもよい。さらに、翼又は他の部材で拡径部4の先端開口部を部分的に閉塞し、杭体2内への土砂の侵入を調整するようにしてもよい。このように拡径部4の先端開口部の大きさは、適宜設定することができる。また、翼に貫入性を向上させるための掘削補助刃を設けてもよい。また、翼を拡径部4の先端部に設けた場合を示したが、拡径部4の先端部と外周、拡径部の先端部と杭体3の外周、あるいは拡径部4と杭体3の外周若しくはいずれか一方に設けるなど、翼の取付位置は適宜選択することができる(以下の実施の形態においても同様である)。
【0024】
[実施の形態2]
図3は本発明の実施の形態2に係るねじ込み杭の模式的縦断面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、実施の形態1のテーパー状の拡径部4に代えて、杭体3の外径より大径の鋼管等からなる円筒状の筒状体によって拡径部4aを形成し、継手部材9を介して杭体3に接合し、杭本体2を構成したものである。
【0025】
拡径部4aは、外径が杭体3の外径の1.1〜2.5倍程度で、板厚が杭体3の板厚とほぼ同じか若干厚い鋼管からなり、その長さは、実施の形態1の場合に準じて設定される。そして、拡径部4aの先端部を実施の形態1の場合と同様に螺旋状に切除して取付部5を設け、この取付部5に杭体3の外径の1.5〜3.5倍程度の螺旋状の翼6を溶接により接合したものである。
【0026】
継手部材9はその内径が杭体3の内径とほぼ等しく、外径が拡径部4aの外径とほぼ等しいドーナツ状の鋼板からなり、上面が杭体3の先端部に溶接により接合され、下面に拡径部4aの上端部が溶接により接合される。なお、継手部材9の板厚は、杭体3の外径や作用する鉛直荷重によって異なるため、数値計算によって求める。
上記の説明では、継手部材9をドーナツ状の鋼板で構成した場合を示したが、外径が拡径部4aとほぼ等しく中心部に開口部のない円板状の鋼板で構成してもよく、あるいは拡径部4aを断面楕円形の筒状体で構成し、楕円状の鋼板からなる継手部材により杭体3に接合してもよい。
本実施の形態に係るねじ込み杭の施工方法及び作用効果は、実施の形態1の場合とほぼ同様である。
【0027】
[実施の形態3]
図4は本発明の実施の形態3に係るねじ込み杭の模式的縦断面図である。なお、実施の形態2と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、実施の形態2のドーナツ状、円板状又は楕円状の鋼板からなる継手部材9に代えて、翼により継手部材9aを構成したものである。
【0028】
すなわち、杭体3の先端部を螺旋状に切除して取付部3aを形成すると共に、拡径部4aの上端部を螺旋状に切除して取付部5aを形成する。そして、内径が杭体3の内径とほぼ等しく、外径が拡径部4aの外径より大きいドーナツ状の鋼板を螺旋状に曲げ加工してなる螺旋翼状の継手部材9aを、杭体3の取付部3aに溶接により接合すると共に、その下面に、拡径部4の取付部5aを溶接により接合したものである。なお、継手部材9aは翼6の外径より大きくてもあるいは小さくてもよく、大きければ主として支持力に寄与し、小さければ主として推進に寄与する。また、翼状の継手部材9aは螺旋翼に限定するものではなく、前述の翼6の場合と同様に適宜形状又は構造の翼を用いることができる。
【0029】
本実施の形態の施工方法及び作用、効果は、実施の形態2の場合とほぼ同様であるが、継手部材9aを翼状に形成したので、施工の際のねじ込み杭の推進力、供用時の支持力に寄与することができる。
【0030】
[実施の形態4]
図5は本発明の実施の形態4に係るねじ込み杭の模式的縦断面図である。
本実施の形態は、実施の形態1において、テーパー状の拡径部4の先端部に設けた螺旋状の切除部5及び翼6を省略し、拡径部4の内壁に例えば螺旋状の翼6aを溶接により接合したものである。
【0031】
本実施の形態における施工方法、作用効果は実施の形態1の場合とほぼ同様であり、翼6aは施工時にねじ込み杭の推進力として寄与し、供用時には支持体として寄与する。
本実施の形態においても、拡径部4の先端部あるいは拡径部4や杭体3の外周に翼を設けてもよく、これにより地中への推進力及び支持力をさらに向上させることができる。なお、この場合、拡径部4の内壁に設けた翼6aをねじ込み杭1の貫入回転方向と逆向きに取付ければ、杭本体2内への土砂の侵入を抑制し、先端開口部の閉塞効果を得ることができる。
本実施の形態は、実施の形態2,3にも実施することができる。
【0032】
【実施例】
実施の形態1のねじ込み杭として、外径500mm、板厚12mm、長さ20mの杭体3の先端部に、上端部の外径500mm、下端部の外径800mm(拡径角度θ:10°)、板厚12mm、長さ1mで、先端部に角度15°で螺旋状に切除した取付部5を有する拡径部4の上端部を溶接により接合した。そして、この取付部5に、外径1000mm、内径500mm、板厚30mmのドーナツ状の鋼板の1か所を半径方向に切断して螺旋状に曲げ加工して螺旋状に形成した翼6を溶接により接合して製作した。
【0033】
施工する地盤は、20mまでは比較的軟かい砂層で、それ以深はN値50以上の砂礫層であった。
このような地盤に、施工機械により上記のねじ込み杭に回転力を与えて貫入したところ、通常のねじ込み杭と変らない効率で施工することができ、貫入後引き抜いて点検したところ、翼の変形その他異常は全くみられなかった。
【0034】
[実施の形態5]
図6は本発明の実施の形態5に係るねじ込み杭の施工方法の説明図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
図において、1は拡径部4に開放型の翼6を設けたねじ込み杭、10はねじ込み杭1内に挿入されたオーガーで、11はオーガーヘッド、12はスパイラル羽根である。15は地上に設置した施工機械(図示せず)に設けられたモータで、互いに反対方向に回転する2個の回転軸(外軸16と内軸17)を備えている。
【0035】
次に、上記のように構成した本実施の形態の施工方法について説明する。先ず、ねじ込み杭1内に、ねじ込み杭1より若干長いオーガー10を挿入し、オーガーヘッド11を杭先端部から下方に突出させる。そして、ねじ込み杭1の杭頭部をモータ15の外軸16に連結し、オーガー10の頭部を内軸17に連結する。なお、オーガーヘッド11は、その外径が杭体3の内径より若干小さいもの、又は翼6の中央開口部7から下方に突出したのち拡径されるものが用いられる。この場合においても、オーガーヘッド11の外径は、翼6の外径より小さいことが望ましい。
【0036】
ついで、モータ15により、例えばねじ込み杭1を正方向に、オーガー10を逆方向に回転させる。これにより、オーガーヘッド11がねじ込み杭1に先行して先端部近傍の地盤を掘削軟化し、ねじ込み杭1は翼6の木ねじ作用により地中に貫入される。このとき、ねじ込み杭1の先端部近傍の土砂は、翼6のすき間8を通って上方の杭本体2の外周に移動し、一部の土砂は翼6の開口部7からオーガー10のスパイラル羽根12により杭本体2内に取り込まれる。そして、杭先端部が支持層に達したときは、ねじ込み杭1をモータ15から外し、ねじ込み杭1を地中に残置した状態でオーガー10を反対方向に回転させながらモータ15を上昇させれば、オーガー10はねじ込み杭1から引き抜かれ、ねじ込み杭は地中に埋設されて施工は終了する。
【0037】
オーガー10により杭本体2内に取り込まれる土砂の量は、翼6の中央の開口部7の大きさやオーガーヘッド11の寸法、形状などによって異なるため、これらを調整することにより土砂が杭本体2から溢れないようにする。なお、オーガー10の回転方向と逆の傾斜でスパイラル羽根12を取り付ければ、杭体2内への土砂の侵入を防止することができる。この場合、杭本体2内に取り込む土砂の量が多いほどトルクは小さくなる。また、杭本体2内に取り込む土砂の量が少ないほど杭本体2の周囲の密度が高くなり、大きな周面摩擦力を発揮する。
【0038】
本実施の形態によれば、ねじ込み杭1の地盤への貫入にあたって、オーガーヘッド11により翼6に先行して地盤を掘削軟化するために、ねじ込み杭1の回転に必要なトルクは、オーガー10を使用しない場合に比べて大幅に減少する。また、ねじ込み杭1とオーガー10の回転方向が逆であるため、施工機械に作用するモータ15からの反力も、両者のトルクの差による反力になるため、大幅に減少する。また、翼6には杭体3の内径とほぼ等しい径の開口部7が設けられているので、オーガー10の挿入及び回収が容易である。なお、オーガー10は最初からねじ込み杭1内に挿入して施工してもよく、例えば支持層の近傍に達したときなどある程度ねじ込み杭1を貫入してから挿入するようにしてもよい。
【0039】
[実施の形態6]
図7は本発明の実施の形態6に係るねじ込み杭の施工方法の説明図である。なお、実施の形態5と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態においては、オーガー10の中心部の軸方向に、後述のセメントミルクや地盤固化用薬液などの硬化性流動物を先端部に圧送するための貫通穴13が設けられており、また、オーガーヘッド11にはこの硬化性流動物を噴出する噴出口14が設けられている。
【0040】
18は地上に設置された施工機械、15はこの施工機械に設けた前述のモータである。
20は例えばセメントミルクや地盤固化用薬液などの硬化性流動物のプラント(以下、硬化材プラントという)で、オーガー10に設けた貫通穴13とはホース21によりオーガー10が回転自在に連結されている。
【0041】
本実施の形態において、ねじ込み杭1の地盤への貫入は実施の形態5の場合と同様に行われる。ねじ込み杭1が適当な深さまで貫入されたときは、硬化材プラント20を駆動し、ホース21を介してオーガー10の貫通穴13に硬化性流動物を圧送してオーガーヘッド11に設けた噴出口14から噴出させ、オーガーヘッド11及び翼6の回転によって掘削軟化された土砂と攪拌させ、混合させる。このとき、ねじ込み杭1とオーガー10の回転方向が反対のため、硬化性流動物と土砂はよく攪拌されて均一性の高い混合物となる。
【0042】
杭先端部が支持層に達したときは、翼6とオーガーヘッド10により支持層を十分攪拌して土砂と硬化性流動物とをよく混合したのち、ねじ込み杭1とオーガー10の回転を停止する。
そして、モータ15をねじ込み杭1から外し、ねじ込み杭1を地中に残置した状態でオーガー10を反対方向に回転させながらモータ15を上昇させれば、オーガー10はねじ込み杭1から引き抜かれ、ねじ込み杭は地盤中に埋設されて施工は終了する。
【0043】
本実施の形態によれば、オーガー10の先端部から噴出される硬化性流動物と土砂が攪拌混合され、乱された地盤が固化されるため大きな先端支持力を発揮することができる。なお、硬化性流動物の噴出区間は、設計上必要なねじ込み杭1の周面摩擦に応じて決定されるもので、杭頭部から杭先端部までの全区間でもよいし、杭先端部の近傍だけでもよい。
【0044】
【発明の効果】
本発明は、翼を設けた杭体を回転し、該杭体を前記翼の作用により地中に貫入するねじ込み杭において、前記杭体の先端部に、その下端部の内径が前記杭体の内径よりも大径の筒状体からなる拡径部を設け、該拡径部を、前記杭体の外径より大径で翼状に形成された継手部材を介して前記杭体の先端部に接合し、少なくとも前記拡径部の先端部又はその近傍に翼を設けたので、無排土、低騒音、低振動で施工できるばかりでなく、翼の拡径部の外周からの張り出し長が短かくなり、このため、施工に際して地盤の抵抗が小さく、ねじ込み杭を小さいトルクで地中に貫入することができ、大きな先端支持力を得ることができる。また、これにより拡径部及び翼の板厚を薄くできるのでコストを低減することができ、経済的である。さらに、上記の効果に加えて、杭の推進力及び支持力に寄与することができる。
【0046】
上記のねじ込み杭において、翼を拡径部の内壁に接合したので、上記と同様の効果を得ることができ、さらに、この翼をねじ込み杭の貫入回転方向と逆向きに取付ければ、杭本体内への土砂の侵入を抑制し、先端開口部の閉塞効果を得ることができる。
【0047】
また、本発明に係るねじ込み杭の施工方法は、上記のねじ込み杭内にオーガーを挿入し、オーガーと翼の作用によりねじ込み杭を地中に貫入するようにしたので、貫入のための施工機械のトルク及び施工機械に対するモータからの反力を低減することができる。
【0048】
上記のねじ込み杭の施工方法において、掘削軟化した土砂中に硬化性流動物を噴出して土砂と攪拌混合するようにしたので、上記の効果が得られると共に、乱された地盤が固化されてさらに大きな先端支持力を発揮することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係るねじ込み杭の斜視図である。
【図2】図1の模式的縦断面図である。
【図3】本発明の実施の形態2に係るねじ込み杭の模式的縦断面図である。
【図4】本発明の実施の形態3に係るねじ込み杭の模式的縦断面図である。
【図5】本発明の実施の形態4に係るねじ込み杭の模式的縦断面図である。
【図6】本発明の実施の形態5に係るねじ込み杭の施工方法の説明図である。
【図7】本発明の実施の形態6に係るねじ込み杭の施工方法の説明図である。
【符号の説明】
1 ねじ込み杭
2 杭本体
3 杭体
4,4a 拡径部
6,6a 翼
7 中央開口部
9 継手部材
9a 翼状の継手部材
10 オーガー
11 オーガーヘッド
13 貫通穴
14 噴出口
15 モータ
18 施工機械
20 硬化材プラント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screwed pile and a method for constructing the screwed pile, and more specifically, a screwing in which the pile is buried in the ground by giving a rotational force to a pile having a blade attached at least at the tip portion or the vicinity thereof. The present invention relates to a method for constructing piles and screwed piles.
[0002]
[Prior art]
Various types of threaded piles have been proposed in the past by attaching a winged plate to the tip and side of the pile and applying a rotational force using a construction machine installed on the ground to embed it in the ground by the wood screw action of the winged plate. In addition, it can be constructed with low vibration, low noise, and no soil removal, and after embedding, it can be used in the field of civil engineering and construction because it has a large tip support force using the area of the wing plate. Hereinafter, the prior art considered to be related to the present invention will be described.
[0003]
The method of embedding steel pipe piles described in Japanese Examined Patent Publication No. 2-62648 is that a bottom plate is fixed to the lower end of a steel pipe pile main body, a drilling blade is provided on the bottom plate, and a pile is attached to the outer peripheral surface of the lower end portion of the pile main body. While rotating a steel pipe pile projecting a spiral wing with a large wing width, which has an outer diameter almost twice as large as the main body's outer diameter, into a soft ground, and projecting it into a soft ground. , The soil at the tip of the pile body is softened by digging with the excavating blade at the lower end, the spiral wings are digged into the unexcavated soil on the side of the pile, and the pile body is rotated and propelled using the soil resistance as a reaction force, Extruded and softened soil and sand are extruded and compressed on the side of the pile, and the pile body is screwed into the ground without any soil (prior art 1).
[0004]
Moreover, the steel pipe pile described in Unexamined-Japanese-Patent No. 2000-110162 uses the taper-type steel pipe below the steel pipe pile, and increases the allowable penetration length based on the maximum diameter of a pile diameter, While lowering the burial cost including the material cost of the pile, a cone is fixed to the lower end of the tapered steel pipe, a spiral wing is attached to the side surface of the steel pipe above it, and the spiral wing converts rotational force into thrust, The supporting force is increased (Prior Art 2).
[0005]
Furthermore, the expanded steel pipe pile described in JP-A-2000-110160 performs excavation of the ground and sedimentation of the expanded steel pipe pile by a medium excavation method, and fixes the expanded portion to the rooted portion, Preventing adhesion of clayey soil and slime that penetrates inside the corner between the connecting part and the expanded part by the anti-adhesion wing that can be expanded to almost the same diameter to ensure a high tip support force (Prior Art 3).
[0006]
[Problems to be solved by the invention]
The steel pipe piles of the prior arts 1 and 2 are screwed into the ground and buried by applying torque to the pile head with a construction machine. A steel pipe pile having such a spiral wing has a large resistance when a pile body or a spiral wing overhangs, and a large torque is required during construction. Moreover, a large bending moment acts on a pile body by the ground reaction force which acts on a spiral wing at the time of service. For this reason, the pile body must have a large thickness or strength that can withstand a large torque during construction, and the pile body has a large thickness or strength at the time of service, or the plate thickness of the spiral blade is equivalent. It must be thick and uneconomical.
[0007]
The steel pipe pile of the prior art 3 can ensure a big tip support force by expanding the bottom of the tip. However, since there are no wings on the pile body, it is necessary to adopt a medium digging method for construction, not only is it cumbersome, but it must be treated to discharge excavated soil to the ground. Don't be. Moreover, only the supporting force for the diameter of the expanded steel pipe can be secured.
[0008]
This invention is made | formed in view of said problem, and aims at providing the construction method of the screwed pile and the screwed pile which solved the following subjects.
(1) Obtain a large tip support force with a small pile body diameter by expanding the pile tip and providing wings.
(2) To reduce the influence of bending by shortening the overhang length of the wing from the pile body, and to make economical design possible by reducing the plate thickness of the wing and pile body.
(3) When construction is performed using an auger, it is easy to insert and collect the auger.
[0009]
[Means for Solving the Problems]
The present invention relates to a screwed pile that rotates a pile body provided with wings and penetrates the pile body into the ground by the action of the wings, and the inner diameter of the lower end portion of the pile body is the tip of the pile body. A diameter-enlarged portion made of a cylindrical body having a diameter larger than the inner diameter is provided, and the diameter-enlarged portion is formed at the tip of the pile body via a joint member formed in a wing shape having a diameter larger than the outer diameter of the pile body. It joined, is provided with a wing tip or vicinity thereof of at least the enlarged diameter portion.
[0012]
In the above screwed pile, the wing was joined to the inner wall of the enlarged diameter portion.
[0013]
The construction method of the screwed pile according to the present invention includes inserting an auger into the screwed pile having a central opening in the wing and the joint member, causing the auger head to protrude from the tip of the pile, and working the auger and the wing. The screwed pile penetrates into the ground.
[0014]
In the above threaded pile construction method, a through hole is provided in the axial direction of the auger and a jet port is provided in the auger head, and a curable fluid is pumped from the through hole to be jetted from the jet port.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
1 is a perspective view of a screwed pile according to Embodiment 1 of the present invention, and FIG. 2 is a schematic longitudinal sectional view of FIG.
In both figures, 1 is a threaded pile, 3 is a pile body made of steel pipe, 4 is a taper-shaped enlarged portion formed by bending a steel plate and joined to the tip of the pile body 3 by welding. 3 and the enlarged diameter part 4 constitute a pile main body 2. Reference numeral 6 denotes a blade joined to the tip of the enlarged diameter portion 4 by welding.
[0016]
The enlarged diameter portion 4 has an outer diameter of the upper end portion that is substantially equal to the outer diameter of the pile body 3 and is enlarged in the shape of a truncated cone as it becomes the lower portion. The attachment portion 5 is provided, and a helical blade 6 formed by bending a donut-shaped steel plate, for example, is joined to the attachment portion 5 by welding.
[0017]
The expansion angle θ of the expanded diameter portion 4 is preferably about 5 ° to 20 ° according to the experimental results of the inventors. By configuring in this way, the plate thickness of the steel plate forming the expanded diameter portion 4 is The thickness of the steel pipe constituting the pile body 3 may be approximately equal to or slightly thicker. When the diameter expansion angle θ is large, the problem of load transmission can be dealt with by increasing the plate thickness of the diameter expansion portion 4.
Moreover, although the length of the enlarged diameter part 4 changes with the outer diameter of the pile body 3, the state of the ground, etc., according to the result of inventors' experiment, it is 0.5-5 times the outer diameter of the pile body 3. Degree is desirable.
[0018]
The outer diameter of the wing 6 varies depending on the outer diameter of the lower end portion of the pile body 3 and the enlarged diameter portion 4 or the state of the ground, but is generally preferably about 1.5 to 3.5 times the outer diameter of the pile body 3. In addition, it is desirable that the outward projecting length (width) and the inward projecting length (width) in the state of being joined to the mounting portion 5 of the enlarged diameter portion 4 are substantially equal. Thereby, the ground reaction force which acts on the wing | blade 6 is balanced at the time of use as a foundation pile, and the bending moment which acts on the enlarged diameter part 4 can be reduced. In addition, if the overhang | projection length from the enlarged diameter part 4 of the wing | blade 6 is about 20% of the outer diameter of the pile body 3, the pile body 3 can be penetrated in the ground with the propulsive force of the wing | blade 6. FIG.
[0019]
The screwed pile 1 according to the present embodiment configured as described above is attached to the motor provided in the construction machine with the pile head or the upper body of the pile main body 2, and the screwed pile is rotated by this motor. By the wood screw action of the wing 6, it penetrates into the ground with no soil, low vibration and low noise.
At this time, the earth and sand below the blade 6 are excavated and softened by the blade, passed through the gap 8 of the blade 6, moved to the outer periphery of the pile body 2, and compressed, and from the central opening 7 of the blade 6 to the pile body. 2 is also taken in. Since the earth and sand moved to the outer periphery of the pile body 2 are softened by the blades 6 during the construction, the frictional resistance is low and the screwed pile 1 can be smoothly penetrated. And ground strength recovers with progress of time, a big surrounding surface frictional force is exhibited at the time of service as a foundation pile, and a big support force can be obtained with wing 6.
[0020]
According to the present embodiment, even if a wing 6 having an outer diameter larger than the outer diameter of the pile body 2 is provided, the overhang length (width) from the outer periphery of the enlarged diameter portion 4 is short, so that the resistance of the ground during construction Therefore, the screwed pile can be penetrated into the ground with a small torque. In addition, it is only necessary to make the plate thickness of the enlarged diameter portion 4 substantially the same as or slightly thicker than the pile body 2, and the plate thickness of the wing 6 can be reduced, so that the cost can be reduced and economical. is there.
Furthermore, if the extension length (width) of the blade 6 on the inside and outside of the enlarged diameter portion 4 is made substantially equal, the bending moment acting on the enlarged diameter portion 4 can be reduced, which is combined with the reduction in torque described above. Thus, the plate thickness of the enlarged diameter portion 4 and the blade 6 can be made thinner.
[0021]
Since the opening part 7 is provided in the center part of the wing | blade 6 in the screwed pile which concerns on this Embodiment, earth and sand penetrate | invade in the pile main body 2 at the time of construction. When the wing 6 reaches a hard support layer during construction, the tip portion is inserted in a closed state, but the diameter of the pile body 3 is large (therefore, the opening 7 of the wing 6 is large), In the case of soft ground, there is a possibility that the tip blocking effect cannot be obtained. In such a case, a plate or a protrusion may be provided in the enlarged diameter portion 4 in order to promote the tip closing effect (the same applies to the following embodiments).
[0022]
In the above description, the tip portion of the enlarged diameter portion 4 is spirally cut to form the attachment portion 5, and one spiral blade 6 is joined to the attachment portion by welding. The wing 6 may be divided into a plurality of pieces and joined to the mounting portion 5. Further, instead of the spiral wing 6, a flat plate wing obtained by dividing a circular steel plate, an elliptical steel plate, a square steel plate, or a donut-shaped steel plate into a plurality of pieces can be joined, and a propulsive force to the ground can be obtained. As long as it is a wing having any shape or structure, the same applies to the following embodiments.
[0023]
Furthermore, although the case where the open-type wing | blade 6 which has the opening part 7 in the center part was used was shown, the obstruction | occlusion-type wing | blade which obstruct | occludes the front-end | tip opening part of the enlarged diameter part 4 may be used, or another member is used. The tip opening may be closed. Furthermore, you may make it adjust the penetration | invasion of the earth and sand into the pile body 2 by partially obstruct | occluding the front-end | tip opening part of the enlarged diameter part 4 with a wing | blade or another member. Thus, the magnitude | size of the front-end | tip opening part of the enlarged diameter part 4 can be set suitably. Moreover, you may provide the excavation auxiliary blade for improving penetration property to a wing | blade. Moreover, although the case where the wing | blade was provided in the front-end | tip part of the enlarged diameter part 4 was shown, the front-end | tip part and outer periphery of the enlarged diameter part 4, the front-end | tip part of an enlarged diameter part, the outer periphery of the pile body 3, or the enlarged diameter part 4 and a pile The attachment position of the wing can be selected as appropriate, such as being provided on the outer periphery of the body 3 or on one of them (the same applies to the following embodiments).
[0024]
[Embodiment 2]
FIG. 3 is a schematic longitudinal sectional view of a screwed pile according to Embodiment 2 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, instead of the tapered enlarged diameter portion 4 of the first embodiment, the enlarged diameter portion 4a is formed by a cylindrical tubular body made of a steel pipe having a diameter larger than the outer diameter of the pile body 3. The pile body 2 is configured by being joined to the pile body 3 via the joint member 9.
[0025]
The expanded diameter portion 4a is made of a steel pipe having an outer diameter of about 1.1 to 2.5 times the outer diameter of the pile body 3, and a plate thickness that is substantially the same as or slightly thicker than the pile body 3, and its length is These are set according to the case of the first embodiment. And the front-end | tip part of the enlarged diameter part 4a is cut out helically similarly to the case of Embodiment 1, and the attaching part 5 is provided, 1.5-3.5 of the outer diameter of the pile body 3 is set in this attaching part 5. A spiral wing 6 of about double is joined by welding.
[0026]
The joint member 9 is made of a donut-shaped steel plate whose inner diameter is substantially equal to the inner diameter of the pile body 3, and whose outer diameter is substantially equal to the outer diameter of the enlarged diameter portion 4a, and the upper surface is joined to the tip of the pile body 3 by welding, The upper end portion of the enlarged diameter portion 4a is joined to the lower surface by welding. In addition, since the plate | board thickness of the joint member 9 changes with the outer diameter of the pile body 3, and the vertical load which acts, it calculates | requires by numerical calculation.
In the above description, the case where the joint member 9 is constituted by a doughnut-shaped steel plate is shown, but the outer diameter may be constituted by a disk-shaped steel plate that is substantially equal to the enlarged diameter portion 4a and has no opening at the center. Alternatively, the enlarged diameter portion 4a may be formed of a cylindrical body having an elliptical cross section and joined to the pile body 3 by a joint member made of an elliptical steel plate.
The construction method and effects of the screwed pile according to the present embodiment are substantially the same as those in the first embodiment.
[0027]
[Embodiment 3]
FIG. 4 is a schematic longitudinal sectional view of a screwed pile according to Embodiment 3 of the present invention. The same parts as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In the present embodiment, instead of the joint member 9 made of a donut-shaped, disc-shaped or elliptical steel plate according to the second embodiment, a joint member 9a is constituted by blades.
[0028]
That is, the tip portion of the pile body 3 is cut in a spiral shape to form the attachment portion 3a, and the upper end portion of the enlarged diameter portion 4a is cut in a spiral shape to form the attachment portion 5a. And the spiral wing-like joint member 9a formed by bending a donut-shaped steel plate having an inner diameter substantially equal to the inner diameter of the pile body 3 and having an outer diameter larger than the outer diameter of the enlarged diameter portion 4a, While joining to the attachment part 3a by welding, the attachment part 5a of the enlarged diameter part 4 is joined to the lower surface by welding. The joint member 9a may be larger or smaller than the outer diameter of the blade 6, and if it is large, it mainly contributes to the supporting force, and if it is small, it mainly contributes to propulsion. The wing-shaped joint member 9a is not limited to a spiral wing, and a wing having an appropriate shape or structure can be used as in the case of the wing 6 described above.
[0029]
Although the construction method, operation, and effect of the present embodiment are substantially the same as those of the second embodiment, the joint member 9a is formed in a wing shape, so that the propulsion force of the screwed pile at the time of construction, the support during service Can contribute to power.
[0030]
[Embodiment 4]
FIG. 5 is a schematic longitudinal sectional view of a screwed pile according to Embodiment 4 of the present invention.
In the present embodiment, the spiral cut portion 5 and the blade 6 provided at the tip of the tapered diameter-expanded portion 4 are omitted from the first embodiment, and the inner wall of the diameter-expanded portion 4 is, for example, a spiral blade. 6a is joined by welding.
[0031]
The construction method and effects in the present embodiment are substantially the same as those in the first embodiment, and the blade 6a contributes as a propulsion force of the screwed pile at the time of construction and contributes as a support at the time of use.
Also in the present embodiment, a wing may be provided on the tip of the enlarged diameter portion 4 or on the outer circumference of the enlarged diameter portion 4 or the pile body 3, thereby further improving the propulsive force and supporting force to the ground. it can. In this case, if the blade 6a provided on the inner wall of the enlarged diameter portion 4 is attached in the direction opposite to the direction in which the threaded pile 1 penetrates, the intrusion of earth and sand into the pile body 2 is suppressed and the tip opening is blocked. An effect can be obtained.
This embodiment can also be implemented in the second and third embodiments.
[0032]
【Example】
As the screwed pile of the first embodiment, an outer diameter of 500 mm, a plate thickness of 12 mm, a length of 20 m, a top end portion of a pile body 3, an upper end of an outer diameter of 500 mm, and a lower end of an outer diameter of 800 mm (expansion angle θ: 10 ° ), The upper end portion of the enlarged diameter portion 4 having a plate thickness of 12 mm and a length of 1 m and having a mounting portion 5 that is spirally cut off at an angle of 15 ° at the tip portion was joined by welding. Then, a blade 6 formed in a spiral shape by welding one portion of a donut-shaped steel plate having an outer diameter of 1000 mm, an inner diameter of 500 mm, and a plate thickness of 30 mm in a radial direction to the attachment portion 5 is welded. It was manufactured by joining.
[0033]
The ground to be constructed was a relatively soft sand layer up to 20 m, and the depth was a gravel layer with an N value of 50 or more.
When such a ground was penetrated by applying a rotational force to the above-mentioned screwed pile by a construction machine, it could be constructed with the same efficiency as a normal screwed pile. No abnormalities were found.
[0034]
[Embodiment 5]
FIG. 6 is an explanatory view of a method for constructing a screwed pile according to Embodiment 5 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the figure, 1 is a screwed pile provided with an open-type wing 6 in the enlarged diameter portion 4, 10 is an auger inserted into the screwed pile 1, 11 is an auger head, and 12 is a spiral blade. A motor 15 is provided on a construction machine (not shown) installed on the ground, and includes two rotating shafts (an outer shaft 16 and an inner shaft 17) that rotate in opposite directions.
[0035]
Next, the construction method of the present embodiment configured as described above will be described. First, an auger 10 that is slightly longer than the screwed pile 1 is inserted into the screwed pile 1, and the auger head 11 is protruded downward from the tip of the pile. Then, the pile head of the screwed pile 1 is connected to the outer shaft 16 of the motor 15, and the head of the auger 10 is connected to the inner shaft 17. The auger head 11 is used whose outer diameter is slightly smaller than the inner diameter of the pile body 3 or whose auger head 11 expands after protruding downward from the central opening 7 of the blade 6. Even in this case, it is desirable that the outer diameter of the auger head 11 is smaller than the outer diameter of the blade 6.
[0036]
Next, the motor 15 rotates, for example, the screwed pile 1 in the forward direction and the auger 10 in the reverse direction. As a result, the auger head 11 excavates and softens the ground near the tip prior to the screwed pile 1, and the screwed pile 1 penetrates into the ground by the wood screw action of the wing 6. At this time, the earth and sand near the tip of the screwed pile 1 moves to the outer periphery of the upper pile body 2 through the gap 8 of the wing 6, and a part of the earth and sand is spiral wings of the auger 10 from the opening 7 of the wing 6. 12 is taken into the pile body 2. When the tip of the pile reaches the support layer, the screwed pile 1 is removed from the motor 15, and the motor 15 is raised while rotating the auger 10 in the opposite direction with the screwed pile 1 left in the ground. The auger 10 is pulled out from the screwed pile 1, and the screwed pile is buried in the ground, and the construction is completed.
[0037]
The amount of earth and sand taken into the pile main body 2 by the auger 10 varies depending on the size of the opening 7 at the center of the wing 6 and the dimensions and shape of the auger head 11. Try not to overflow. In addition, if the spiral blades 12 are attached with an inclination opposite to the rotation direction of the auger 10, the intrusion of earth and sand into the pile body 2 can be prevented. In this case, the torque decreases as the amount of earth and sand taken into the pile body 2 increases. Moreover, the density of the circumference | surroundings of the pile main body 2 becomes high, so that the quantity of the earth and sand taken in in the pile main body 2 is small, and a large circumferential friction force is exhibited.
[0038]
According to the present embodiment, when the screwed pile 1 penetrates into the ground, the auger head 11 causes the auger 10 to rotate the screwed pile 1 in order to soften the ground by excavating and softening the ground prior to the blade 6. Compared to when not in use, it is greatly reduced. In addition, since the rotation directions of the screwed pile 1 and the auger 10 are opposite, the reaction force from the motor 15 acting on the construction machine is also a reaction force due to the difference between the torques of the two, so that it is greatly reduced. Further, since the wing 6 is provided with the opening 7 having a diameter substantially equal to the inner diameter of the pile body 3, the auger 10 can be easily inserted and recovered. The auger 10 may be inserted into the screwed pile 1 from the beginning, and may be inserted after the screwed pile 1 has penetrated to some extent, for example, when reaching the vicinity of the support layer.
[0039]
[Embodiment 6]
FIG. 7 is an explanatory view of a method for constructing a screwed pile according to Embodiment 6 of the present invention. The same parts as those in the fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, a through-hole 13 is provided in the axial direction of the central portion of the auger 10 to pump a curable fluid such as cement milk or a chemical solution for solidification to the tip, which will be described later. The auger head 11 is provided with a spout 14 for ejecting the curable fluid.
[0040]
18 is a construction machine installed on the ground, and 15 is the above-described motor provided on this construction machine.
Reference numeral 20 denotes a curable fluid plant (hereinafter referred to as a “hardening material plant”) such as cement milk and ground solidifying chemical solution. The auger 10 is rotatably connected to a through hole 13 provided in the auger 10 by a hose 21. Yes.
[0041]
In the present embodiment, penetration of the screwed pile 1 into the ground is performed in the same manner as in the fifth embodiment. When the screwed pile 1 is penetrated to an appropriate depth, the hardener plant 20 is driven, and the curable fluid is pumped through the hose 21 to the through hole 13 of the auger 10 to provide a jet port provided in the auger head 11. 14 and agitated and mixed with the earth and sand softened by the rotation of the auger head 11 and the blade 6. At this time, since the rotation directions of the screwed pile 1 and the auger 10 are opposite, the curable fluid and the earth and sand are well agitated to form a highly uniform mixture.
[0042]
When the pile tip reaches the support layer, the support layer is sufficiently agitated by the blade 6 and the auger head 10 to thoroughly mix the earth and curable fluid, and then the rotation of the screwed pile 1 and the auger 10 is stopped. .
And if the motor 15 is lifted while removing the motor 15 from the screwed pile 1 and rotating the auger 10 in the opposite direction with the screwed pile 1 left in the ground, the auger 10 is pulled out from the screwed pile 1 and screwed. The pile is buried in the ground and the construction is completed.
[0043]
According to the present embodiment, the curable fluid ejected from the tip of the auger 10 and the earth and sand are agitated and mixed, and the disturbed ground is solidified, so that a large tip support force can be exhibited. In addition, the ejection section of the curable fluid is determined according to the peripheral surface friction of the screwed pile 1 necessary for the design, and may be the entire section from the pile head to the pile tip, or the pile tip Only the neighborhood may be used.
[0044]
【The invention's effect】
The present invention relates to a screwed pile that rotates a pile body provided with wings and penetrates the pile body into the ground by the action of the wings, and the inner diameter of the lower end portion of the pile body is the tip of the pile body. A diameter-enlarged portion made of a cylindrical body having a diameter larger than the inner diameter is provided, and the diameter-enlarged portion is formed at the tip of the pile body via a joint member formed in a wing shape having a diameter larger than the outer diameter of the pile body. joined, is provided with the blade at the tip or near the at least the enlarged diameter portion, no soil discharge, low noise, not only can construction with low vibration, overhang length from the outer periphery of the enlarged diameter portion of the blade is short Thus, the ground resistance is small during construction, the screwed pile can be penetrated into the ground with a small torque, and a large tip support force can be obtained. In addition, this makes it possible to reduce the thickness of the enlarged diameter portion and the blade, thereby reducing the cost and being economical. Furthermore, in addition to the above effects, it can contribute to the propulsive force and support force of the pile.
[0046]
In the above screwed pile, since the blade is joined to the inner wall of the enlarged diameter portion, the same effect as described above can be obtained, and if the blade is mounted in the direction opposite to the penetration rotation direction of the screwed pile, the pile body The intrusion of earth and sand into the inside can be suppressed, and the blocking effect of the tip opening can be obtained.
[0047]
Further, the construction method of the screwed pile according to the present invention is such that the auger is inserted into the screwed pile and the screwed pile is penetrated into the ground by the action of the auger and the wing. Torque and reaction force from the motor against the construction machine can be reduced.
[0048]
In the construction method of the above screwed pile, since the curable fluid was ejected into the excavated and softened earth and sand and mixed with the earth and sand, the above effect was obtained, and the disturbed ground was further solidified. A large tip support force can be exhibited.
[Brief description of the drawings]
FIG. 1 is a perspective view of a screwed pile according to a first embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of FIG.
FIG. 3 is a schematic longitudinal sectional view of a screwed pile according to a second embodiment of the present invention.
FIG. 4 is a schematic longitudinal sectional view of a screwed pile according to a third embodiment of the present invention.
FIG. 5 is a schematic longitudinal sectional view of a screwed pile according to a fourth embodiment of the present invention.
FIG. 6 is an explanatory diagram of a threaded pile construction method according to Embodiment 5 of the present invention.
FIG. 7 is an explanatory diagram of a threaded pile construction method according to Embodiment 6 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Screwed-in pile 2 Pile main body 3 Pile body 4, 4a Expanded-diameter part 6, 6a Wing 7 Central opening 9 Joint member 9a Wing-like joint member 10 Auger 11 Auger head 13 Through-hole 14 Spout 15 Motor 18 Construction machine 20 Hardening material plant

Claims (4)

翼を設けた杭体を回転し、該杭体を前記翼の作用により地中に貫入するねじ込み杭において、
前記杭体の先端部に、その下端部の内径が前記杭体の内径よりも大径の筒状体からなる拡径部を設け、該拡径部を、前記杭体の外径より大径で翼状に形成された継手部材を介して前記杭体の先端部に接合し、少なくとも前記拡径部の先端部又はその近傍に翼を設けたことを特徴とするねじ込み杭。
In a screwed pile that rotates a pile body provided with wings and penetrates the pile body into the ground by the action of the wings,
Provided at the leading end of the pile body is an enlarged portion made of a cylindrical body having an inner diameter at the lower end that is larger than the inner diameter of the pile body, and the enlarged diameter portion is larger in diameter than the outer diameter of the pile body. in via a joint member formed on the wing and joined to a front end portion of the pile body, screwed pile, characterized in that a wing tip or vicinity thereof of at least the enlarged diameter portion.
前記翼を拡径部の内壁に接合したことを特徴とする請求項1に記載のねじ込み杭。The screwed pile according to claim 1, wherein the blade is joined to an inner wall of the enlarged diameter portion. 翼及び継手部材に中央開口部を有する請求項1又は2のねじ込み杭内にオーガーを挿入してそのオーガーヘッドを杭先端部から突出させ、該オーガーと前記翼の作用によりねじ込み杭を地中に貫入することを特徴とするねじ込み杭の施工方法。The auger is inserted into the screwed pile of claim 1 or 2 having a central opening in the wing and the joint member, and the auger head is protruded from the tip of the pile, and the screwed pile is brought into the ground by the action of the auger and the wing. A threaded pile construction method characterized by penetration. オーガーの軸方向に貫通穴を設けると共にオーガーヘッドに噴出口を設け、前記貫通穴から硬化性流動物を圧送して前記噴出口から噴出させることを特徴とする請求項記載のねじ込み杭の施工方法。The construction of the screwed pile according to claim 3 , wherein a through hole is provided in the axial direction of the auger, a jet port is provided in the auger head, and a curable fluid is pumped from the through hole and jetted from the jet port. Method.
JP2001159266A 2001-05-28 2001-05-28 Threaded pile and method of construction Expired - Fee Related JP4617604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159266A JP4617604B2 (en) 2001-05-28 2001-05-28 Threaded pile and method of construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159266A JP4617604B2 (en) 2001-05-28 2001-05-28 Threaded pile and method of construction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010186121A Division JP5163711B2 (en) 2010-08-23 2010-08-23 Threaded pile and method of construction

Publications (2)

Publication Number Publication Date
JP2002348863A JP2002348863A (en) 2002-12-04
JP4617604B2 true JP4617604B2 (en) 2011-01-26

Family

ID=19002879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159266A Expired - Fee Related JP4617604B2 (en) 2001-05-28 2001-05-28 Threaded pile and method of construction

Country Status (1)

Country Link
JP (1) JP4617604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453741C (en) * 2003-04-04 2009-01-21 株式会社奥特-塞特 Block-type steel pipe pile
JP4210297B2 (en) * 2006-08-31 2009-01-14 中村基礎工業株式会社 Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
CN102011395A (en) * 2010-11-12 2011-04-13 新兴河北工程技术有限公司 Piling tube
JP6644454B1 (en) * 2019-06-26 2020-02-12 株式会社シグマベース Expanded steel pipe pile and expanded bottom integrated steel pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198818A (en) * 1984-10-19 1986-05-17 Shiraishi:Kk Rotary pressing-in type steel pipe pile
JP2001059219A (en) * 1999-06-17 2001-03-06 Sumitomo Metal Ind Ltd Bored precast pile
JP2001098545A (en) * 1999-10-01 2001-04-10 Kubota Corp Foundation pile and embedded pile having spiral strip
JP2001123443A (en) * 1999-10-28 2001-05-08 Nkk Corp Screw-in type steel pipe pile, and construction method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198818A (en) * 1984-10-19 1986-05-17 Shiraishi:Kk Rotary pressing-in type steel pipe pile
JP2001059219A (en) * 1999-06-17 2001-03-06 Sumitomo Metal Ind Ltd Bored precast pile
JP2001098545A (en) * 1999-10-01 2001-04-10 Kubota Corp Foundation pile and embedded pile having spiral strip
JP2001123443A (en) * 1999-10-28 2001-05-08 Nkk Corp Screw-in type steel pipe pile, and construction method therefor

Also Published As

Publication number Publication date
JP2002348863A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP5045971B2 (en) Ready-made piles and tip fittings
JP4498348B2 (en) Screwed steel pipe pile
JP2007032044A (en) Supporting structure of foundation pile and steel pipe pile
JP2003184078A (en) Cast-in-place concrete pile and its construction method
JP4617604B2 (en) Threaded pile and method of construction
JP4117574B2 (en) Construction method of screwed pile
JP5163711B2 (en) Threaded pile and method of construction
JP3458116B2 (en) Construction method of cast-in-place pile
JP3849744B2 (en) Construction method of screwed pile
JP3937382B2 (en) Construction method of screwed steel pipe pile
JP4224905B2 (en) Threaded steel pipe pile and its construction method
JP4524955B2 (en) Pile tip reinforcement structure and pile construction method
JP4210297B2 (en) Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
JP2709445B2 (en) Steel pipe pile and method of burying steel pipe pile
JP2000291002A (en) Construction method for composite pile, steel pipe pile used for the method, and composite pile
JP4501249B2 (en) Steel pipe pile and its construction method
JP3694824B2 (en) Threaded steel pipe pile and its construction method
JP2788171B2 (en) Excavation mixer for ground improvement
JP2013057194A (en) Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
JP2004137722A (en) Drill/stir bit of underground pile formation and ground improvement method making use thereof
JP4360745B2 (en) Construction method of ready-made piles
JP4197074B2 (en) Embedded pile construction equipment
JPH06287943A (en) Foot protection method for tip of foundation pile and cylindrical foundation pile
JP4166191B2 (en) Hollow pile embedding method and excavator used therefor
JP2866248B2 (en) Construction method of hollow pipe pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees