JP4614642B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP4614642B2
JP4614642B2 JP2003306861A JP2003306861A JP4614642B2 JP 4614642 B2 JP4614642 B2 JP 4614642B2 JP 2003306861 A JP2003306861 A JP 2003306861A JP 2003306861 A JP2003306861 A JP 2003306861A JP 4614642 B2 JP4614642 B2 JP 4614642B2
Authority
JP
Japan
Prior art keywords
compressor
limit value
temperature
refrigeration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003306861A
Other languages
Japanese (ja)
Other versions
JP2005076961A (en
Inventor
一彦 三原
聡 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003306861A priority Critical patent/JP4614642B2/en
Priority to CNB2004100579881A priority patent/CN100408946C/en
Priority to CNB200810002441XA priority patent/CN100526767C/en
Publication of JP2005076961A publication Critical patent/JP2005076961A/en
Application granted granted Critical
Publication of JP4614642B2 publication Critical patent/JP4614642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、例えば店舗等において冷却貯蔵設備の庫内冷却を行うための冷凍システムに関するものである。   The present invention relates to a refrigeration system for cooling a cooling storage facility in a store or the like, for example.

従来よりコンビニエンスストア等の店舗の店内(室内)は、空気調和機によって冷暖房空調されている。また、店内には商品を陳列販売する冷蔵或いは冷凍用のオープンショーケースや扉付きのショーケース(冷却貯蔵設備)が設置されており、これらは冷凍機によって庫内冷却が行われている(特許文献1参照)。
特開2002−174470号公報
Conventionally, the inside (indoor) of a store such as a convenience store is air-conditioned and air-conditioned by an air conditioner. In addition, there are refrigerated or refrigerated open showcases and showcases with doors (cooling storage facilities) that display and sell products, and these are cooled by the refrigerator (patents). Reference 1).
JP 2002-174470 A

ところで、上記の如きショーケースなどの庫内を冷却する蒸発器は、圧縮機や凝縮器(これらは冷凍機に設置される)、膨張弁(減圧装置)と共に冷媒回路を構成する。また、圧縮機は運転周波数を制御するなどにより容量制御可能とされると共に、膨張弁は弁開度が調整可能な電動膨張弁にて構成され、蒸発器における冷媒の過熱度が一定となるように制御される。   By the way, the evaporator for cooling the interior of the showcase or the like as described above constitutes a refrigerant circuit together with a compressor, a condenser (these are installed in the refrigerator), and an expansion valve (a pressure reducing device). Further, the capacity of the compressor can be controlled by controlling the operating frequency, and the expansion valve is constituted by an electric expansion valve whose valve opening can be adjusted so that the degree of superheat of the refrigerant in the evaporator becomes constant. To be controlled.

従って、庫内の冷却が十分な場合には、膨張弁は弁開度を絞るようになるため、冷媒回路の低圧側圧力は低下していく。この低圧側圧力が平均して低い状況となると、圧縮機のCOPが低下し運転効率が悪化する。そのため、従来では冷媒回路の低圧側圧力に所定の設定値を設け、この設定値の上下に設定した上限値と下限値のうちの下限値まで低圧側圧力が低下した場合、圧縮機の運転周波数を下げて容量を低下させ、膨張弁の弁開度を拡大させる方向に制御していた。   Accordingly, when the interior is sufficiently cooled, the expansion valve throttles the valve opening, so that the low pressure side pressure of the refrigerant circuit decreases. When this low pressure side pressure becomes low on average, the COP of the compressor is lowered and the operation efficiency is deteriorated. Therefore, conventionally, when a predetermined set value is provided for the low-pressure side pressure of the refrigerant circuit, and the low-pressure side pressure falls to the lower limit value between the upper limit value and the lower limit value set above and below this set value, the operating frequency of the compressor The volume is reduced by lowering the valve and the valve opening degree of the expansion valve is controlled to increase.

そして、低圧側圧力が上限値まで上昇したら圧縮機の運転周波数(容量)を上げるものであるが、従来ではこの低圧側圧力の設定値が一定であったため、頻繁に運転周波数(容量)が切り換えられる状況となって低圧側圧力が平均して低くなり、運転効率が低下してしまう問題があった。   When the low-pressure side pressure rises to the upper limit, the operating frequency (capacity) of the compressor is increased. Conventionally, since the set value of the low-pressure side pressure was constant, the operating frequency (capacity) is frequently switched. As a result, there is a problem that the low-pressure side pressure becomes low on average and the operation efficiency decreases.

本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒回路の低圧側圧力の低下による効率の悪化を効果的に解消できる冷凍システムを提供するものである。   The present invention has been made to solve the conventional technical problems, and provides a refrigeration system that can effectively eliminate deterioration in efficiency due to a decrease in the low-pressure side pressure of a refrigerant circuit.

本発明は、容量制御可能な圧縮機と、凝縮器と、膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、圧縮機と膨張弁を制御する制御装置を備え、この制御装置は、蒸発器により冷却される被冷却空間の実際の温度と当該被冷却空間の設定温度とに基づき、膨張弁の弁開度を調整し、冷媒回路の低圧側圧力に基づき、所定の設定値の上下に設定した上限値及び下限値の当該下限値まで低圧側圧力が低下した場合に圧縮機の容量を低下させ、上限値まで上昇した場合には圧縮機の容量を上昇させると共に、被冷却空間の一定時間当たりの平均温度を算出し、該被冷却空間の平均温度が設定温度より高い場合に前記設定値、上限値及び下限値を下げ、被冷却空間の平均温度が設定温度より低い場合に前記設定値、上限値及び下限値を上げる方向で当該設定値、上限値及び下限値を変更することを特徴とする。 The present invention includes a control device for controlling a compressor and an expansion valve in a refrigeration system including a compressor capable of capacity control, a condenser, an expansion valve, and an evaporator, and having a refrigerant circuit. The control device adjusts the valve opening of the expansion valve based on the actual temperature of the cooled space cooled by the evaporator and the set temperature of the cooled space, and determines a predetermined value based on the low-pressure side pressure of the refrigerant circuit. When the low pressure side pressure drops to the lower limit of the upper limit value and lower limit value set above and below the set value, the capacity of the compressor is reduced, and when the pressure rises to the upper limit value, the capacity of the compressor is increased. The average temperature per fixed time of the space to be cooled is calculated, and when the average temperature of the space to be cooled is higher than the set temperature, the set value, the upper limit value and the lower limit value are lowered, and the average temperature of the space to be cooled is lower than the set temperature. If it is low, the set value, upper limit value and The set value in a direction to increase the limit value, and changing the upper limit value and the lower limit value.

請求項2の発明の冷凍システムは、上記において制御装置は、蒸発器の除霜終了後に前記設定値、上限値及び下限値を予め規定された低い値に戻すことを特徴とする。 The refrigeration system of the invention of claim 2 is characterized in that, in the above, the control device returns the set value, the upper limit value and the lower limit value to a predetermined low value after completion of defrosting of the evaporator.

請求項3の発明の冷凍システムは、上記において制御装置は、除霜終了後の圧縮機の運転時間に基づき、前記設定値、上限値及び下限値を上昇させることを特徴とする。 The refrigeration system of the invention of claim 3 is characterized in that, in the above, the control device increases the set value, the upper limit value, and the lower limit value based on the operation time of the compressor after completion of the defrosting.

請求項4の発明の冷凍システムは、上記において制御装置は、圧縮機の運転時間が短い程、前記設定値、上限値及び下限値の上昇幅を大きくし、圧縮機の運転時間が所定時間に達した場合には、前記設定値、上限値及び下限値の変更制御に移行することを特徴とする。 In the refrigeration system according to a fourth aspect of the present invention, the control device increases the set value, the upper limit value, and the lower limit value as the compressor operation time is shorter, and the compressor operation time is set to a predetermined time. If it has been reached, the control shifts to change control of the set value, upper limit value and lower limit value.

本発明では、容量制御可能な圧縮機と、凝縮器と、膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、圧縮機と膨張弁を制御する制御装置を備え、この制御装置は、蒸発器により冷却される被冷却空間の実際の温度と当該被冷却空間の設定温度とに基づき、膨張弁の弁開度を調整し、冷媒回路の低圧側圧力に基づき、所定の設定値の上下に設定した上限値及び下限値の当該下限値まで低圧側圧力が低下した場合に圧縮機の容量を低下させ、上限値まで上昇した場合には圧縮機の容量を上昇させると共に、被冷却空間の一定時間当たりの平均温度を算出し、該被冷却空間の平均温度が設定温度より高い場合に前記設定値、上限値及び下限値を下げ、被冷却空間の平均温度が設定温度より低い場合に前記設定値、上限値及び下限値を上げる方向で当該設定値、上限値及び下限値を変更するようにしたので、被冷却空間の平均温度が高い状態では圧縮機の容量の低下を遅くして冷凍システムの冷却能力を維持できるようになる。 In the present invention, in a refrigeration system including a compressor capable of capacity control, a condenser, an expansion valve, and an evaporator, and having a refrigerant circuit, the controller includes a control device that controls the compressor and the expansion valve. The control device adjusts the valve opening of the expansion valve based on the actual temperature of the cooled space cooled by the evaporator and the set temperature of the cooled space, and determines a predetermined value based on the low-pressure side pressure of the refrigerant circuit. When the low pressure side pressure drops to the lower limit of the upper limit value and lower limit value set above and below the set value, the capacity of the compressor is reduced, and when the pressure rises to the upper limit value, the capacity of the compressor is increased. The average temperature per fixed time of the space to be cooled is calculated, and when the average temperature of the space to be cooled is higher than the set temperature, the set value, the upper limit value and the lower limit value are lowered, and the average temperature of the space to be cooled is lower than the set temperature. When the value is low, the set value, upper limit value and The set value in the direction of raising the lower limit, since to change the upper limit value and the lower limit value, maintain the cooling capacity of late to refrigeration system a reduction in the capacity of the compressor is at an average temperature is high in the cooling space become able to.

一方、被冷却空間が充分冷却されて膨張弁が弁開度を絞り、冷媒回路の低圧側圧力が低下していく状況ではより早い段階で圧縮機の容量を低下させ、膨張弁の弁開度を拡大する方向に制御して低圧側圧力の上昇を促すことが可能となる。これにより、冷媒回路の低圧側圧力が平均して低下してしまう不都合を解消し、圧縮機のCOPを改善させて冷凍システムの運転効率を向上させることができるようになる。   On the other hand, in a situation where the space to be cooled is sufficiently cooled and the expansion valve throttles the valve opening, and the low-pressure side pressure of the refrigerant circuit decreases, the compressor capacity is reduced at an earlier stage, and the valve opening of the expansion valve It is possible to promote an increase in the low-pressure side pressure by controlling in the direction of expanding the pressure. As a result, the disadvantage that the low-pressure side pressure of the refrigerant circuit decreases on average can be solved, and the COP of the compressor can be improved and the operating efficiency of the refrigeration system can be improved.

また、請求項2の発明の如く、蒸発器の除霜終了後に前記設定値、上限値及び下限値を予め規定された低い値に戻すことにより、除霜後の急激な負荷上昇に対応できるようになる。 Further, as in the invention of claim 2, it is possible to cope with a sudden load increase after defrosting by returning the set value, the upper limit value and the lower limit value to predetermined low values after completion of the defrosting of the evaporator. become.

また、請求項3の発明では上記において、除霜終了後の圧縮機の運転時間に基づき、前記設定値、上限値及び下限値を上昇させるようにしたので、例えば請求項4の如く圧縮機の運転時間が短い程、前記設定値、上限値及び下限値の上昇幅を大きくし、圧縮機の運転時間が所定時間に達した場合には、前記設定値、上限値及び下限値の変更制御に移行するようにすることにより、除霜終了後のプルダウンに要する時間を短縮しながら、運転効率の改善を図ることができるようになる。 In the above the invention of claim 3, based on the operating time of the compressor after completion of defrost, the set value. Thus increase the upper limit value and the lower limit value, the compressor as e.g. according to claim 4 As the operating time is shorter, the increase range of the set value, the upper limit value and the lower limit value is increased. When the operating time of the compressor reaches a predetermined time, the change control of the set value, upper limit value and lower limit value is performed. By making the transition, it is possible to improve the operation efficiency while reducing the time required for pull-down after the completion of the defrosting.

以下、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した実施例の冷凍システム1の冷媒回路を含むシステム構成を説明する図である。実施例の冷凍システム1は、例えばコンビニエンスストアの室内2(店内)の空調と、そこに設置されている冷却貯蔵設備としての複数台の冷蔵ケース3、3の庫内(被冷却空間)や冷凍ケース4の庫内(被冷却空間)の冷却を実現するものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a system configuration including a refrigerant circuit of a refrigeration system 1 according to an embodiment to which the present invention is applied. The refrigeration system 1 according to the embodiment includes, for example, air conditioning in a room 2 (in a store) of a convenience store, and the inside (cooled space) of a plurality of refrigeration cases 3 and 3 as cooling storage facilities installed therein. Cooling of the inside of the case 4 (the space to be cooled) is realized.

尚、冷蔵ケース3は実施例では第1〜第6までの冷蔵ケース3が6台設置されているが、図面では第1と第2の冷蔵ケース3、3の2台のみ示す。また、これら冷蔵ケース3、3、冷凍ケース4は前面や上面が開口するオープンショーケースの他、透明ガラス扉にて開口が開閉自在に閉塞されたショーケースであり、各冷蔵ケース3、3の庫内は冷蔵温度(+3℃〜+10℃)に冷却され、飲料やサンドイッチなどの冷蔵食品が陳列されると共に、冷凍ケース4の庫内は冷凍温度(−10℃〜ー20℃)に冷却され、冷凍食品やアイスクリームなどの冷菓が陳列されるものである。   In the embodiment, the first to sixth refrigeration cases 3 are installed in the refrigeration case 3, but only two of the first and second refrigeration cases 3 and 3 are shown in the drawing. The refrigeration cases 3 and 3 and the refrigeration case 4 are open showcases whose front and upper surfaces are open, as well as showcases whose openings are freely closed by transparent glass doors. The inside of the refrigerator is cooled to a refrigeration temperature (+ 3 ° C. to + 10 ° C.), and chilled foods such as beverages and sandwiches are displayed. Frozen foods and frozen desserts such as ice cream are displayed.

この図において、6は空調用冷媒回路7を備える空気調和機(空調系統)であり、8は前記冷蔵ケース3、3や冷凍ケース4の庫内を冷却するための冷却貯蔵設備用冷媒回路9を備えた冷却装置(冷却貯蔵設備系統)である。空気調和機6は、室内2の天井などに設置された室内機11、11と、店外に設置された室外ユニット12とから構成され、これらの間に渡って空調用冷媒回路7が配管構成されている。   In this figure, 6 is an air conditioner (air conditioning system) provided with an air conditioning refrigerant circuit 7, and 8 is a refrigerant circuit 9 for cooling storage equipment for cooling the inside of the refrigerator cases 3, 3 and the freezing case 4. Is a cooling device (cooling storage equipment system). The air conditioner 6 includes indoor units 11 and 11 installed on the ceiling of the room 2 and an outdoor unit 12 installed outside the store, and an air-conditioning refrigerant circuit 7 is arranged between them. Has been.

この空調用冷媒回路7は、室外ユニット12の外装ケース内に設置された二台の圧縮機(ロータリコンプレッサ)13A(インバータによる周波数制御運転)、13B(定速運転)と、逆止弁5A、5Bと、オイルセパレータ10と、四方弁14と、熱源側熱交換器16と、膨張弁(弁開度を調整可能な電動膨張弁から成る減圧手段)17、18、19と、カスケード熱交換器21と、逆止弁22、アキュムレータ23等と、室内機11側に設置された利用側熱交換器27、27から系統構成されている(空調系統)。   The air conditioning refrigerant circuit 7 includes two compressors (rotary compressors) 13A (frequency control operation by an inverter) and 13B (constant speed operation) installed in an exterior case of the outdoor unit 12, a check valve 5A, 5B, oil separator 10, four-way valve 14, heat source side heat exchanger 16, expansion valve (pressure reducing means comprising an electric expansion valve with adjustable valve opening) 17, 18, 19, and cascade heat exchanger 21, a check valve 22, an accumulator 23, and the like, and use side heat exchangers 27 and 27 installed on the indoor unit 11 side (air conditioning system).

26は温度や圧力に基づいて空気調和機6の室外ユニット12側の機器を制御するための室外機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータにて構成される)であり、室外ユニット12に設けられている。また、24は熱源側熱交換器16に外気を通風するための送風機であり、室外ユニット12内の熱源側熱交換器16に対応する位置に設けられている。28は温度や圧力に基づいて空気調和機6の室内機11側の機器を制御するための室内機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室内機11にそれぞれ設けられている(一方は図示せず)。また、15、15は利用側熱交換器27、27に室内2(店内)空気を通風するための送風機であり、室内機11内の利用側熱交換器27、27にそれぞれ対応する位置に設けられている。   Reference numeral 26 denotes an outdoor unit controller (a controller that constitutes an air-conditioning system control means, which is constituted by a general-purpose microcomputer) for controlling equipment on the outdoor unit 12 side of the air conditioner 6 based on temperature and pressure. Yes, provided in the outdoor unit 12. Reference numeral 24 denotes a blower for ventilating the outside air to the heat source side heat exchanger 16 and is provided at a position corresponding to the heat source side heat exchanger 16 in the outdoor unit 12. Reference numeral 28 denotes an indoor unit controller (a controller that constitutes an air-conditioning system control means, which is constituted by a general-purpose microcomputer) for controlling equipment on the indoor unit 11 side of the air conditioner 6 based on temperature and pressure. Are provided in the indoor unit 11 (one is not shown). Reference numerals 15 and 15 denote blowers for ventilating the indoor 2 (in-store) air to the use side heat exchangers 27 and 27, provided at positions corresponding to the use side heat exchangers 27 and 27 in the indoor unit 11, respectively. It has been.

圧縮機13A及び13Bは相互に並列接続されており、各圧縮機13A、13Bの吐出側は逆止弁5A、5Bをそれぞれ介して合流され、四方弁14の一方の入口に接続されている(各逆止弁5A、5Bは四方弁14方向が順方向とされている)。また、四方弁14の一方の出口は熱源側熱交換器16の入口に接続されている。この熱源側熱交換器16は多数の並列配管から成る流路抵抗の比較的小さい入口側16Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側16Bとで構成されている。そして、この熱源側熱交換器16の出口側16Bの出口は膨張弁17を介して膨張弁18の入口に接続され、膨張弁18の出口は室内機11に渡って分流し、各利用側熱交換器27、27の入口に接続されている。   The compressors 13A and 13B are connected in parallel to each other, and the discharge sides of the compressors 13A and 13B are joined via check valves 5A and 5B, respectively, and connected to one inlet of the four-way valve 14 ( Each check valve 5A, 5B has a four-way valve 14 direction as a forward direction). One outlet of the four-way valve 14 is connected to the inlet of the heat source side heat exchanger 16. The heat source side heat exchanger 16 includes an inlet side 16A having a relatively small flow resistance composed of a large number of parallel pipes and an outlet side 16B in which these are aggregated into a small number of parallel pipes or a single pipe. The outlet on the outlet side 16B of the heat source side heat exchanger 16 is connected to the inlet of the expansion valve 18 via the expansion valve 17, and the outlet of the expansion valve 18 is diverted across the indoor unit 11, so that each use side heat It is connected to the inlets of the exchangers 27 and 27.

各利用側熱交換器27、27の出口は合流した後、室外ユニット12に渡り、四方弁14の他方の入口に接続され、四方弁14の他方の出口は逆止弁22を介してアキュムレータ23に接続されている。そして、このアキュムレータ23の出口が圧縮機13A、13Bの吸込側に接続されている。尚、逆止弁22はアキュムレータ23側が順方向とされている。   After the outlets of the use side heat exchangers 27 and 27 are joined, they cross the outdoor unit 12 and are connected to the other inlet of the four-way valve 14. The other outlet of the four-way valve 14 is connected to the accumulator 23 via the check valve 22. It is connected to the. And the exit of this accumulator 23 is connected to the suction side of compressor 13A, 13B. The check valve 22 has a forward direction on the accumulator 23 side.

また、膨張弁17と18の間の配管は膨張弁19の入口に接続され、膨張弁19の出口はカスケード熱交換器21の空調側通路21Aの入口に接続されている。このカスケード熱交換器21の空調側通路21Aの出口はアキュムレータ23を介して圧縮機13A、13Bの吸込側に接続されている。   The piping between the expansion valves 17 and 18 is connected to the inlet of the expansion valve 19, and the outlet of the expansion valve 19 is connected to the inlet of the air conditioning side passage 21 </ b> A of the cascade heat exchanger 21. The outlet of the air conditioning side passage 21A of the cascade heat exchanger 21 is connected to the suction side of the compressors 13A and 13B via an accumulator 23.

一方、冷却装置8は前記室外ユニット12と室内2(店内)に設置された冷蔵ケース3、3及び冷凍ケース4との間に渡って冷却貯蔵設備用冷媒回路9が配管構成されている。この冷却貯蔵設備用冷媒回路9は、室外ユニット12の外装ケース内に設置された第1の圧縮機(スクロールコンプレッサ)37と、凝縮器(熱交換器)38と、二つの四方弁39、41(この二つの四方弁により流路制御手段が構成される)と、逆止弁42と、オイルセパレータ31と、レシーバータンク36等と、冷蔵ケース3、3に設置されて冷蔵ケース3、3の庫内をそれぞれ冷却する冷蔵用蒸発器43、43、膨張弁(弁開度を調整可能な電動膨張弁)44、44、電磁弁46、46、47、逆止弁48(冷却貯蔵設備系統の一部を構成する冷蔵系統)と、冷凍ケース4に設置されて冷凍ケース4の庫内を冷却する冷凍用蒸発器49、膨張弁(弁開度を調整可能な電動膨張弁)51、電磁弁52、53、第2の圧縮機(ロータリコンプレッサ)54、逆止弁30、及び、オイルセパレータ45(冷却貯蔵設備系統の一部を構成する冷凍系統)等から構成されている。   On the other hand, the cooling device 8 is provided with a refrigerant circuit 9 for cooling storage equipment between the outdoor unit 12 and the refrigeration cases 3 and 3 and the refrigeration case 4 installed in the room 2 (inside the store). The refrigerant circuit 9 for the cooling storage facility includes a first compressor (scroll compressor) 37, a condenser (heat exchanger) 38, and two four-way valves 39, 41 installed in the outer case of the outdoor unit 12. (The flow control means is constituted by these two four-way valves), the check valve 42, the oil separator 31, the receiver tank 36, etc., the refrigeration cases 3, 3 and the refrigeration cases 3, 3 Refrigerating evaporators 43 and 43 for cooling the inside of the refrigerator, expansion valves (electric expansion valves with adjustable valve opening) 44 and 44, electromagnetic valves 46, 46 and 47, check valves 48 (for the cooling storage system) A refrigeration system constituting a part), a freezing evaporator 49 that is installed in the freezing case 4 and cools the inside of the freezing case 4, an expansion valve (an electric expansion valve whose valve opening degree can be adjusted) 51, a solenoid valve 52, 53, second compressor (rotary Presser) 54, check valve 30, and, and a refrigeration system) or the like constituting a part of the oil separator 45 (cooled storage facilities system.

32は温度や圧力に基づいて冷却装置8の室外ユニット12側の機器を制御する冷凍機コントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室外ユニット12に設けられている。また、35は凝縮器38に外気を通風するための送風機であり、室外ユニット12の凝縮器38に対応する位置に設けられている。また、50は温度や圧力に基づいて冷蔵ケース3、3側の機器を制御する冷蔵ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷蔵ケース3、3にそれぞれ設けられている(一方は図示せず)。尚、この冷蔵ケースコントローラ50と前記冷凍機コントローラ32により本発明における制御装置が構成される。更に、55は温度や圧力に基づいて冷凍ケース4側の機器を制御する冷凍ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷凍ケース4に設けられている。   32 is a refrigerator controller (a controller constituting a cooling storage facility system control means, comprising a general-purpose microcomputer) that controls equipment on the outdoor unit 12 side of the cooling device 8 based on temperature and pressure, The outdoor unit 12 is provided. Reference numeral 35 denotes a blower for passing outside air through the condenser 38, and is provided at a position corresponding to the condenser 38 of the outdoor unit 12. In addition, 50 is a refrigeration case controller (a controller that constitutes a cooling storage facility system control means, configured by a general-purpose microcomputer) that controls equipment on the refrigeration case 3, 3 side based on temperature and pressure, Refrigerating cases 3 and 3 are respectively provided (one is not shown). The refrigeration case controller 50 and the refrigerator controller 32 constitute a control device according to the present invention. Further, 55 is a refrigeration case controller (a controller constituting a cooling storage facility system control means, which is constituted by a general-purpose microcomputer) that controls equipment on the refrigeration case 4 side based on temperature and pressure. 4 is provided.

また、20、20は冷蔵用蒸発器43、43に各冷蔵ケース3、3の庫内冷気を通風するための送風機であり、冷蔵ケース3、3内の各冷蔵用蒸発器43、43にそれぞれ対応する位置に設けられている。25は冷凍用蒸発器49に冷凍ケース4の庫内冷気を通風するための送風機であり、冷凍ケース4内の冷凍用蒸発器49に対応する位置に設けられている。   Reference numerals 20 and 20 denote blowers for ventilating the cold air in the refrigerator cases 3 and 3 to the evaporators 43 and 43, respectively. The refrigerators 43 and 43 in the refrigerator cases 3 and 3, respectively. It is provided at the corresponding position. Reference numeral 25 denotes a blower for passing cold air in the refrigerator case 4 through the freezer evaporator 49, and is provided at a position corresponding to the freezer evaporator 49 in the freezer case 4.

圧縮機37の吐出側はオイルセパレータ31を介して四方弁39の一方の入口に接続され、この四方弁39の一方の出口が凝縮器38の入口に接続されている。この凝縮器38は多数の並列配管から成る流路抵抗の比較的小さい入口側38Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側38Bとで構成されている。そして、この凝縮器38の出口側38Bの出口はレシーバータンク36の入口に接続され、このレシーバータンク36の出口が四方弁41の一方の入口に接続されている。   The discharge side of the compressor 37 is connected to one inlet of the four-way valve 39 via the oil separator 31, and one outlet of the four-way valve 39 is connected to the inlet of the condenser 38. The condenser 38 includes an inlet side 38A having a relatively small flow resistance composed of a large number of parallel pipes, and an outlet side 38B in which these are aggregated into a small number of parallel pipes or a single pipe. The outlet on the outlet side 38B of the condenser 38 is connected to the inlet of the receiver tank 36, and the outlet of the receiver tank 36 is connected to one inlet of the four-way valve 41.

そして、四方弁41の一方の出口はカスケード熱交換器21のケース側通路21Bの入口に接続されている。尚、カスケード熱交換器21は、内部に構成された空調側通路21Aとケース側通路21Bをそれぞれ通過する冷媒を相互に熱交換させるものであり、これによって空調用冷媒回路7の低圧側と冷却貯蔵設備用冷媒回路9の高圧側とは熱的に結合される。   One outlet of the four-way valve 41 is connected to the inlet of the case side passage 21 </ b> B of the cascade heat exchanger 21. The cascade heat exchanger 21 exchanges heat between the refrigerant that passes through the air conditioning side passage 21A and the case side passage 21B that are formed inside, thereby cooling the low pressure side of the air conditioning refrigerant circuit 7 and cooling it. The high-pressure side of the storage facility refrigerant circuit 9 is thermally coupled.

カスケード熱交換器21のケース側通路21Bの出口は、四方弁39の他方の入口に接続されており、この四方弁39の他方の出口は四方弁41の他方の入口に接続されている。そして、この四方弁41の他方の出口は室外ユニット12から出て室内2(店内)に入り分岐する。分岐した一方の配管は更に分岐し、その分岐した一方は電磁弁47、46を順次介して膨張弁44の入口に接続され、膨張弁44の出口は第1の冷蔵ケース3の冷蔵用蒸発器43の入口に接続されている。他方は電磁弁46を介して膨張弁44の入口に接続され、膨張弁44の出口は第2の冷蔵ケース3の冷蔵用蒸発器43の入口に接続されている。   The outlet of the case side passage 21 </ b> B of the cascade heat exchanger 21 is connected to the other inlet of the four-way valve 39, and the other outlet of the four-way valve 39 is connected to the other inlet of the four-way valve 41. The other outlet of the four-way valve 41 exits from the outdoor unit 12 and branches into the room 2 (inside the store). One of the branched pipes is further branched, and one of the branched pipes is connected to the inlet of the expansion valve 44 via the solenoid valves 47 and 46 in order, and the outlet of the expansion valve 44 is the evaporator for refrigeration of the first refrigeration case 3. 43 is connected to the entrance. The other is connected to the inlet of the expansion valve 44 via the electromagnetic valve 46, and the outlet of the expansion valve 44 is connected to the inlet of the refrigeration evaporator 43 of the second refrigeration case 3.

室内2(店内)に入って分岐した他方の配管は、電磁弁52を介して膨張弁51の入口に接続され、膨張弁51の出口は冷凍用蒸発器49の入口に接続されている。尚、電磁弁53は電磁弁52と膨張弁51の直列回路に並列に接続されている。   The other pipe branched into the room 2 (inside the store) is connected to the inlet of the expansion valve 51 via the electromagnetic valve 52, and the outlet of the expansion valve 51 is connected to the inlet of the refrigeration evaporator 49. The solenoid valve 53 is connected in parallel to the series circuit of the solenoid valve 52 and the expansion valve 51.

冷凍用蒸発器49の出口は、逆止弁30を介して圧縮機54の吸込側に接続されている(逆止弁30は圧縮機54側が順方向)。この圧縮機54は圧縮機37よりも出力の小さい圧縮機であり、その吐出側はオイルセパレータ45を介して圧縮機37の吸込側に接続されている。即ち、圧縮機37と圧縮機54は冷媒回路上直列に接続される。尚、冷蔵用蒸発器43、43の出口は合流した後、圧縮機54の吐出側のオイルセパレータ45の出口側に接続されている。また、逆止弁48は圧縮機54の逆止弁30手前と電磁弁46、47間に接続され、電磁弁46、47方向が順方向とされている。更に、逆止弁42は圧縮機37の吸込側とオイルセパレータ31を出た配管の間に接続され、オイルセパレータ31方向が順方向とされている。そして、冷媒回路7、9内には例えばR−410A、R−404A等の冷媒が所定量封入される。   The outlet of the refrigeration evaporator 49 is connected to the suction side of the compressor 54 via the check valve 30 (the check valve 30 is in the forward direction on the compressor 54 side). The compressor 54 is a compressor having a smaller output than the compressor 37, and its discharge side is connected to the suction side of the compressor 37 via an oil separator 45. That is, the compressor 37 and the compressor 54 are connected in series on the refrigerant circuit. The outlets of the refrigeration evaporators 43 and 43 are connected to the outlet side of the oil separator 45 on the discharge side of the compressor 54 after joining. The check valve 48 is connected between the check valve 30 before the compressor 54 and the solenoid valves 46 and 47, and the directions of the solenoid valves 46 and 47 are the forward directions. Further, the check valve 42 is connected between the suction side of the compressor 37 and the pipe that exits the oil separator 31, and the oil separator 31 direction is the forward direction. A predetermined amount of refrigerant such as R-410A and R-404A is sealed in the refrigerant circuits 7 and 9, for example.

以上の構成で本発明の冷凍システム1の動作を説明する。尚、前記圧縮機37と13Aはインバータによりその運転周波数が制御され(容量制御)、圧縮機13Bと圧縮機54は定速で運転されるものとする。また、冷凍システム1全体の動作は汎用マイクロコンピュータから構成された主コントローラ(主制御手段)56により制御される。   The operation of the refrigeration system 1 of the present invention will be described with the above configuration. The compressors 37 and 13A are controlled in operating frequency by an inverter (capacity control), and the compressor 13B and the compressor 54 are operated at a constant speed. The operation of the entire refrigeration system 1 is controlled by a main controller (main control means) 56 composed of a general-purpose microcomputer.

ここで、主コントローラ56は前記室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55とデータ通信可能に接続されており、各コントローラから現在の運転状態に関するデータを受信して収集する。そして、受信データに基づき、後述するその時点での最適な運転パターンを決定し、この最適運転パターンに関するデータ及び各機器の運転データを室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信する。室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55は主コントローラ56から受信した最適運転パターンに関するデータ及び各機器の運転データに基づいて後述する制御動作を実行する。   Here, the main controller 56 is connected to the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 55 so as to be able to perform data communication. Receive and collect status data. Then, based on the received data, an optimum operation pattern at that time, which will be described later, is determined, and the data relating to this optimum operation pattern and the operation data of each device are stored in the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, and the refrigerator. The data is transmitted to the case controller 50 and the refrigeration case controller 55. The outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 55 are described later on the basis of the data regarding the optimum operation pattern received from the main controller 56 and the operation data of each device. Perform the action.

(1)最適運転パターン1:空気調和機の冷房運転(図1)
先ず、夏場等に主コントローラ56が空気調和機6の冷房運転が最適であると判断した場合、最適運転パターン1に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
(1) Optimal operation pattern 1: Air conditioner cooling operation (Fig. 1)
First, when the main controller 56 determines that the cooling operation of the air conditioner 6 is optimal in summer or the like, the data related to the optimal operation pattern 1 is the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller. 50 and the refrigeration case controller 55.

受信データに基づき、室外機コントローラ26は四方弁14の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させる。また、膨張弁17を全開とする。そして、圧縮機13A、13Bを運転する。尚、室外機コントローラ26は圧縮機13Aの運転周波数を調整して能力制御するものとする。   Based on the received data, the outdoor unit controller 26 communicates the one inlet of the four-way valve 14 with one outlet and the other inlet with the other outlet. Further, the expansion valve 17 is fully opened. Then, the compressors 13A and 13B are operated. The outdoor unit controller 26 controls the capacity by adjusting the operating frequency of the compressor 13A.

圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、四方弁14を経て熱源側熱交換器16の入口側16Aに入る。この熱源側熱交換器16には送風機24により外気が通風されており、冷媒はここで放熱し、凝縮液化する。即ち、この場合熱源側熱交換器16は凝縮器として機能する。この液冷媒は熱源側熱交換器16の入口側16Aから出口側16Bを経て当該出口側16Bから出る。そして、膨張弁17を通過した後、分岐する。分岐した一方は膨張弁18に至り、そこで絞られて低圧とされた後(減圧)、各利用側熱交換器27、27に分岐して流入し、そこで蒸発する。   When the compressors 13A and 13B are operated, the high-temperature and high-pressure gas refrigerant discharged from the discharge sides of the compressors 13A and 13B enters the inlet side 16A of the heat source side heat exchanger 16 via the four-way valve 14. Outside air is ventilated by the air blower 24 to the heat source side heat exchanger 16, and the refrigerant dissipates heat here to be condensed and liquefied. That is, in this case, the heat source side heat exchanger 16 functions as a condenser. The liquid refrigerant exits from the outlet side 16B from the inlet side 16A of the heat source side heat exchanger 16 via the outlet side 16B. And after passing the expansion valve 17, it branches. One of the branches reaches the expansion valve 18, where it is throttled to a low pressure (decompression), and then branches into each use side heat exchanger 27, 27 and evaporates there.

この利用側熱交換器27、27には送風機15、15により室内2(店内)の空気が通風されており、冷媒の蒸発による吸熱作用で室内2の空気は冷却される。これにより、室内2(店内)の冷房が行われる。利用側熱交換器27、27を出た低温のガス冷媒は合流した後、四方弁14の他方の入口から他方の出口へと通過し、逆止弁22、アキュムレータ23を順次経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。室内機コントローラ28は利用側熱交換器27、27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。室内機コントローラ28からの情報は主コントローラ56に送信されており、室外機コントローラ26はこの情報に基づいて圧縮機13A、13Bの運転を制御する。   The air in the room 2 (inside the store) is ventilated by the blowers 15 and 15 through the use side heat exchangers 27 and 27, and the air in the room 2 is cooled by an endothermic action due to evaporation of the refrigerant. Thereby, the room 2 (inside the store) is cooled. The low-temperature gas refrigerant that has exited from the use side heat exchangers 27 and 27 merges, and then passes from the other inlet of the four-way valve 14 to the other outlet, and sequentially passes through the check valve 22 and the accumulator 23, and then enters the compressor 13A. The circulation sucked into the suction side of 13B is repeated. The indoor unit controller 28 blows air to the use side heat exchangers 27 and 27 so that the temperature of the room 2 (inside the store) becomes the set temperature based on the temperature of the use side heat exchangers 27 and 27 and the air temperature sucked into the use side heat exchangers 27 and 27. 15 and 15 are controlled. Information from the indoor unit controller 28 is transmitted to the main controller 56, and the outdoor unit controller 26 controls the operation of the compressors 13A and 13B based on this information.

膨張弁17を通過して分岐した冷媒の他方は膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発する。係る空調用冷媒回路7の冷媒の蒸発による吸熱作用でカスケード熱交換器21は冷却され、低温となる。カスケード熱交換器21を出た低温のガス冷媒はアキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。   The other refrigerant branched after passing through the expansion valve 17 reaches the expansion valve 19 where it is throttled to a low pressure (decompression), and then flows into the air conditioning side passage 21A of the cascade heat exchanger 21 where it evaporates. The cascade heat exchanger 21 is cooled by the endothermic action due to the evaporation of the refrigerant in the air-conditioning refrigerant circuit 7 and becomes a low temperature. The low-temperature gas refrigerant exiting the cascade heat exchanger 21 repeats circulation through the accumulator 23 and sucked into the suction sides of the compressors 13A and 13B.

室外機コントローラ26は利用側熱交換器27、27の出入口の冷媒温度、或いは、利用側熱交換器27、27の温度と、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁18及び19の弁開度を調整する。   The outdoor unit controller 26 is configured such that the refrigerant temperature at the entrance / exit of the use side heat exchangers 27, 27, the temperature of the use side heat exchangers 27, 27, the refrigerant temperature at the entrance / exit of the cascade heat exchanger 21, or the cascade heat exchanger. The valve openings of the expansion valves 18 and 19 are adjusted so as to achieve an appropriate degree of superheat based on the temperature of 21.

一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。また、四方弁41の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。そして、圧縮機37及び圧縮機54を運転する。圧縮機37から吐出された高温高圧のガス冷媒は、オイルセパレータ31にてオイルを分離された後、四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱し、凝縮していく。   On the other hand, the refrigerator controller 32 causes the one inlet of the four-way valve 39 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 to communicate with one outlet and the other inlet to communicate with the other outlet. Further, the one inlet of the four-way valve 41 is communicated with one outlet, and the other inlet is communicated with the other outlet. Then, the compressor 37 and the compressor 54 are operated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 37 is separated by the oil separator 31 and then enters the inlet side 38 </ b> A of the condenser 38 through the four-way valve 39. Outside air is also passed through the condenser 38 by the blower 35, and the refrigerant flowing into the condenser 38 dissipates heat and condenses there.

この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後、カスケード熱交換器21のケース側通路21Bに入る。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、前述の如き空調用冷媒回路7の冷媒の蒸発によって低温となっているカスケード熱交換器21によって冷却され、更に過冷却状態が増す。   The refrigerant that has passed through the inlet side 38A of the condenser 38 reaches the outlet side 38B and exits there. The refrigerant from the condenser 38 enters the receiver tank 36 from the inlet side of the receiver tank 36, and is temporarily stored therein to separate the gas / liquid. The separated liquid refrigerant exits from the outlet of the receiver tank 36, passes through the four-way valve 41, and then enters the case side passage 21 </ b> B of the cascade heat exchanger 21. The refrigerant in the refrigerant circuit 9 for the cooling storage facility that has entered the case-side passage 21B is cooled by the cascade heat exchanger 21 that is at a low temperature due to the evaporation of the refrigerant in the air-conditioning refrigerant circuit 7 as described above, and is further in a supercooled state. Increase.

このカスケード熱交換器21にて過冷却された冷媒は四方弁39、四方弁41を順次通過した後に分岐し、一方は更に分岐して一方は電磁弁47、46を順次通過して膨張弁44に至り、そこで絞られた後(減圧)、第1の冷蔵ケース3の冷蔵用蒸発器43に流入し、そこで蒸発する。また、分岐した他方は電磁弁46を通過して膨張弁44に至り、そこで絞られた後(減圧)、第2の冷蔵ケース3の冷蔵用蒸発器43に流入し、そこで蒸発する。各冷蔵用蒸発器43、43には送風機20、20により冷蔵ケース3、3の庫内空気がそれぞれ通風・循環されており、冷媒の蒸発による吸熱作用で各庫内空気は冷却される。これにより、冷蔵ケース3、3の庫内冷却が行われる。冷蔵用蒸発器43、43を出た低温のガス冷媒は合流した後、圧縮機54のオイルセパレータ45の出口側に至る。   The refrigerant supercooled in the cascade heat exchanger 21 is branched after sequentially passing through the four-way valve 39 and the four-way valve 41, one is further branched, and the other is sequentially passed through the electromagnetic valves 47 and 46 and then the expansion valve 44. After being squeezed there (reduced pressure), it flows into the refrigeration evaporator 43 of the first refrigeration case 3 and evaporates there. The other branched part passes through the electromagnetic valve 46 and reaches the expansion valve 44. After being throttled (decompression), it flows into the refrigerating evaporator 43 of the second refrigerating case 3 and evaporates there. The refrigeration evaporators 43, 43 are respectively ventilated and circulated by the blowers 20, 20, and the air in the refrigeration cases 3, 3 is circulated, and the internal air is cooled by the endothermic action due to the evaporation of the refrigerant. Thereby, the refrigerator cooling of the refrigeration cases 3 and 3 is performed. The low-temperature gas refrigerant exiting the refrigeration evaporators 43, 43 joins and then reaches the outlet side of the oil separator 45 of the compressor 54.

カスケード熱交換器21を出て分岐した冷媒の他方は電磁弁52を通過して膨張弁51に至り、そこで絞られた後(減圧)、冷凍用蒸発器49に流入し、そこで蒸発する。この冷凍用蒸発器49にも送風機25により冷凍ケース4の庫内空気が通風・循環されており、冷媒の蒸発による吸熱作用で庫内空気は冷却される。これにより、冷凍ケース4の庫内冷却が行われる。   The other refrigerant branched out of the cascade heat exchanger 21 passes through the electromagnetic valve 52 and reaches the expansion valve 51. After being throttled (decompression), it flows into the refrigeration evaporator 49 where it evaporates. The internal air of the refrigeration case 4 is also ventilated and circulated by the blower 25 to the freezing evaporator 49, and the internal air is cooled by the endothermic action due to the evaporation of the refrigerant. Thereby, the inside cooling of the freezing case 4 is performed.

冷凍用蒸発器49を出た低温のガス冷媒は逆止弁30を経て圧縮機54に至り、そこで、圧縮されて冷蔵用蒸発器43、43の出口側の圧力(冷蔵系統の低圧側圧力)まで昇圧された後、圧縮機54から吐出され、オイルセパレータ45でオイルを分離された後、冷蔵用蒸発器43、43からの冷媒と合流する。この合流した冷媒は圧縮機37の吸込側に吸い込まれる循環を繰り返す。   The low-temperature gas refrigerant exiting the freezing evaporator 49 passes through the check valve 30 and reaches the compressor 54 where it is compressed and pressure on the outlet side of the refrigerating evaporators 43 and 43 (low pressure side pressure of the refrigerating system). After the pressure has been increased to about 50 ° C., the oil is discharged from the compressor 54, and the oil is separated by the oil separator 45. The merged refrigerant repeats circulation that is sucked into the suction side of the compressor 37.

このように、カスケード熱交換器21の空調側通路21Aを流れる空調用冷媒回路7の低圧側冷媒によって冷却貯蔵設備用冷媒回路9の高圧側冷媒を過冷却することができるので、冷蔵ケース3、3や冷凍ケース4の蒸発器43、43、49における冷却能力と冷却貯蔵設備用冷媒回路9の運転効率が改善される。尚、この場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒は、凝縮器38を介してカスケード熱交換器21のケース側通路21Bに流すので、空調用冷媒回路7の過熱度も適正範囲に維持できる。   Thus, since the high pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility can be supercooled by the low pressure side refrigerant of the air conditioning refrigerant circuit 7 flowing through the air conditioning side passage 21A of the cascade heat exchanger 21, the refrigeration case 3, 3 and the cooling capacity in the evaporators 43, 43, 49 of the refrigeration case 4 and the operation efficiency of the refrigerant circuit 9 for the cooling storage facility are improved. In this case, since the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility flows into the case side passage 21B of the cascade heat exchanger 21 via the condenser 38, the degree of superheat of the air conditioning refrigerant circuit 7 is also in an appropriate range. Can be maintained.

また、冷却貯蔵設備用冷媒回路9の冷凍用蒸発器49から出た冷媒の圧力は、その蒸発温度が低くなることから冷蔵用蒸発器43、43を出た冷媒より低くなるが、冷蔵用蒸発器43、43から出た冷媒と合流させる以前に圧縮機54により圧縮されて昇圧されるので、冷蔵ケース3、3と冷凍ケース4の庫内を各蒸発器43、43、49によりそれぞれ円滑に冷却しながら、冷却貯蔵設備用冷媒回路9の圧縮機37に吸い込まれる冷媒の圧力を調整して支障無く運転を行うことができるようになる。   Further, the pressure of the refrigerant discharged from the refrigeration evaporator 49 of the refrigerant circuit 9 for the cooling storage facility is lower than the refrigerant discharged from the refrigeration evaporators 43 and 43 because its evaporation temperature is lowered, but the refrigeration evaporation. Before being merged with the refrigerant discharged from the coolers 43, 43, the compressor 54 compresses and pressurizes the interior of the refrigeration cases 3, 3 and the freezing case 4 smoothly by the respective evaporators 43, 43, 49. While cooling, the pressure of the refrigerant sucked into the compressor 37 of the refrigerant circuit 9 for the cooling storage facility can be adjusted so that the operation can be performed without any trouble.

(2−1)低圧側圧力の設定値の変更制御
ここで、冷蔵ケースコントローラ50は冷蔵ケース3、3の庫内温度(被冷却空間の実際の温度)TP若しくは冷蔵用蒸発器43、43を経た吐出冷気温度或いは冷蔵用蒸発器43、43への吸込冷気温度と、冷蔵用蒸発器43の出口側の冷媒温度、或いは、冷蔵用蒸発器43の温度とに基づいて各膨張弁44、44の弁開度をそれぞれ調整する。これにより、各冷蔵ケース3、3の庫内を前述した冷蔵温度に冷却維持しながら、各冷蔵用蒸発器43、43における冷媒の過熱度を適正な値(過熱度一定)とする。
(2-1) Change control of set value of low pressure side pressure Here, the refrigeration case controller 50 controls the internal temperature of the refrigeration cases 3 and 3 (actual temperature of the space to be cooled) TP or the refrigeration evaporators 43 and 43. Each expansion valve 44, 44 is based on the discharged cold air temperature or the cold air temperature sucked into the refrigeration evaporators 43, 43, the refrigerant temperature on the outlet side of the refrigeration evaporator 43, or the temperature of the refrigeration evaporator 43. The valve opening of each is adjusted. Thereby, the superheat degree of the refrigerant in each of the refrigeration evaporators 43 and 43 is set to an appropriate value (constant superheat degree) while keeping the inside of the refrigerators of the refrigeration cases 3 and 3 at the above-described refrigeration temperature.

即ち、冷蔵ケース3の庫内温度(被冷却空間の実際の温度)TPが高く、冷却が必要な場合には、冷蔵ケースコントローラ50は当該冷蔵ケース3の冷蔵用蒸発器43に対応する膨張弁44の弁開度を拡大して冷蔵用蒸発器43に冷媒をより多く流す。また、冷蔵ケース3の庫内温度TPが低く、冷却をあまり必要としない場合には膨張弁44の弁開度を絞り、冷蔵用蒸発器43への冷媒の流入量を削減する。これにより、各冷蔵ケース3、3の庫内温度TPをそれぞれ設定温度TSに制御すると共に、冷蔵用蒸発器43における冷媒の過熱度を一定に保ち、そして、冷却が不要な場合(例えば設定温度TSより低い所定の下限温度より庫内温度TPが低く低下した場合など)には最終的に膨張弁44を閉じる。   That is, when the internal temperature of the refrigeration case 3 (actual temperature of the space to be cooled) TP is high and cooling is necessary, the refrigeration case controller 50 expands the expansion valve corresponding to the refrigeration evaporator 43 of the refrigeration case 3. The valve opening degree of 44 is enlarged and more refrigerant flows through the refrigeration evaporator 43. Further, when the internal temperature TP of the refrigeration case 3 is low and cooling is not so necessary, the opening degree of the expansion valve 44 is reduced to reduce the amount of refrigerant flowing into the refrigeration evaporator 43. As a result, the internal temperature TP of each of the refrigeration cases 3 and 3 is controlled to the set temperature TS, the degree of superheat of the refrigerant in the refrigeration evaporator 43 is kept constant, and cooling is unnecessary (for example, the set temperature) In the case where the internal temperature TP is lowered below a predetermined lower limit temperature lower than TS), the expansion valve 44 is finally closed.

また、冷凍ケースコントローラ55は冷凍ケース4の庫内温度若しくは冷凍用蒸発器49を経た吐出冷気温度或いは冷凍用蒸発器49への吸込冷気温度と、冷凍用蒸発器49の出口側の冷媒温度、或いは、冷凍用蒸発器49の温度とに基づいて膨張弁51の弁開度を調整する。これにより、冷凍ケース4の庫内を前述した冷凍温度に冷却維持しながら、適正な過熱度(過熱度一定)とする。尚、膨張弁51の制御は上述の膨張弁43と同様である。   The refrigeration case controller 55 is configured such that the inside temperature of the refrigeration case 4, the temperature of the discharged cold air passing through the refrigeration evaporator 49, or the temperature of the suction cold air into the refrigeration evaporator 49, Alternatively, the valve opening of the expansion valve 51 is adjusted based on the temperature of the freezing evaporator 49. As a result, while maintaining the inside of the freezing case 4 to be cooled to the above-described freezing temperature, an appropriate degree of superheat (constant superheat) is obtained. The control of the expansion valve 51 is the same as that of the expansion valve 43 described above.

冷凍機コントローラ32は、冷却貯蔵設備用冷媒回路9の低圧側圧力LPに基づいて圧縮機37の運転周波数(容量)CHzを制御する。この場合、冷凍機コントローラ32には予め規定された低圧側圧力の設定値LPS(低い値)がデフォルトで規定されている。尚、この設定値LPSの上下には一定のディファレンシャルを有して上限値LPSHと下限値LPSLが自動的に設定され、設定値LPSが変更されれば、自動的に平行移動で上限値LPSHと下限値LPSLも変更される。そして、冷却貯蔵設備用冷媒回路9の低圧側圧力LPが上記下限値LPSLまで低下した場合には圧縮機37の運転周波数CHzを低周波数LHzに低下させる。   The refrigerator controller 32 controls the operating frequency (capacity) CHz of the compressor 37 based on the low pressure LP of the refrigerant circuit 9 for the cooling storage facility. In this case, the refrigerator controller 32 prescribes a preset low pressure side pressure set value LPS (low value). The upper limit value LPSH and the lower limit value LPSL are automatically set with a certain differential above and below the set value LPS, and if the set value LPS is changed, the upper limit value LPSH is automatically set by parallel movement. The lower limit value LPSL is also changed. And when the low-pressure side pressure LP of the refrigerant circuit 9 for cooling storage facilities falls to the said lower limit LPSL, the operating frequency CHz of the compressor 37 is lowered to the low frequency LHz.

このように冷却貯蔵設備用冷媒回路9の低圧側圧力LPが下限値LPSLまで低下した場合に、圧縮機37の運転周波数CHzを低下させることで、冷蔵ケース3の冷蔵用蒸発器43への冷媒流入量も減少するため、冷却能力も低下する。これにより、冷蔵ケースコントローラ50は膨張弁44の弁開度を拡張させる方向に制御するので、冷却貯蔵設備用冷媒回路9の低圧側圧力LPの低下は防止される。従って、低圧側圧力LPの低下による圧縮機37のCOPの低下が防止されることになる。   Thus, when the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility is reduced to the lower limit value LPSL, the refrigerant to the refrigeration evaporator 43 of the refrigeration case 3 is reduced by reducing the operating frequency CHz of the compressor 37. Since the inflow amount also decreases, the cooling capacity also decreases. As a result, the refrigeration case controller 50 controls the expansion valve 44 so as to expand the opening of the expansion valve 44, thereby preventing a decrease in the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility. Therefore, the COP of the compressor 37 is prevented from decreasing due to the decrease in the low pressure LP.

そして、全ての膨張弁44、44、51が全閉となって低圧側圧力LPが極めて低い値に低下すると圧縮機37を停止する。その後、何れかの膨張弁44、44、51が開き、低圧側圧力LPが上昇すれば、冷凍機コントローラ32は圧縮機37を起動すると共に、低圧側圧力LPが上記上限値LPSHまで上昇すると、圧縮機37の運転周波数CHzを高周波数HHzに上昇させて運転する。   When all the expansion valves 44, 44, 51 are fully closed and the low-pressure side pressure LP is lowered to an extremely low value, the compressor 37 is stopped. Thereafter, if any one of the expansion valves 44, 44, 51 is opened and the low pressure side pressure LP is increased, the refrigerator controller 32 starts the compressor 37, and when the low pressure side pressure LP is increased to the upper limit value LPSH, The compressor 37 is operated by increasing the operating frequency CHz to the high frequency HHz.

前述の如く冷却貯蔵設備用冷媒回路9の低圧側圧力LPの低下に伴って圧縮機37の運転周波数CHzを低下させることで、低圧側圧力LPの低下を防止することができるものであるが、設定値LPSが一定のときには、特に各冷蔵ケース3の庫内負荷が軽いなどの状況下で、頻繁に圧縮機37の運転周波数CHzの切り替えが行われ、低圧側圧力LPが平均的に低くなると共に、オーバーシュートが発生するため、運転周波数CHzが高い状態で運転・停止を繰り返すようになる不都合が発生する。   As described above, the lowering of the low-pressure side pressure LP can be prevented by lowering the operating frequency CHz of the compressor 37 in accordance with the lowering of the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility. When the set value LPS is constant, the operating frequency CHz of the compressor 37 is frequently switched, particularly under a situation where the load in the refrigerator of each refrigeration case 3 is light, and the low-pressure side pressure LP becomes low on average. At the same time, since overshoot occurs, there arises a problem that the operation / stop is repeated with the operation frequency CHz being high.

そこで、本発明では冷凍機コントローラ32は冷蔵ケースコントローラ50から前記冷蔵ケース3の庫内温度(被冷却空間の実際の温度)TPと設定温度TSを受信し、一定時間t(例えば30分)当たりの庫内温度TPの平均値(移動平均。以後、平均温度TPAと云う)を算出する。次に、この平均温度TPAと設定温度TSとの偏差e(e=TPA−TS)に基づいて上記設定値LPSを変更する。以下に係る低圧側圧力LPの設定値LPSの変更制御について説明する。   Therefore, in the present invention, the refrigerator controller 32 receives the internal temperature (actual temperature of the space to be cooled) TP and the set temperature TS of the refrigerated case 3 from the refrigerated case controller 50, and per predetermined time t (for example, 30 minutes). The average value (moving average, hereinafter referred to as the average temperature TPA) of the internal temperature TP of the container is calculated. Next, the set value LPS is changed based on a deviation e (e = TPA−TS) between the average temperature TPA and the set temperature TS. The change control of the set value LPS of the low-pressure side pressure LP according to the following will be described.

この場合の制御は、現在の設定値LPSにおける飽和温度−偏差e(温度)を算出し、これを圧力に換算して変更後の設定値LPSとするものである(LPS=現在の設定値の飽和温度−偏差)。即ち、庫内温度TPが設定温度TSより高い場合には、偏差eはプラスとなるので、冷凍機コントローラ32は設定値LPSを下げる方向に変更すると共に、この偏差eがプラスに大きい程、即ち、庫内温度TPが設定温度TSより高い程、設定値LPSを大きく下げる方向に変更する。一方、庫内温度TPが設定温度TSより低い場合には、偏差eはマイナスとなるので、冷凍機コントローラ32は設定値LPSを上げる方向に変更すると共に、この偏差eがマイナスに大きい程、即ち、庫内温度TPが設定温度TSより低い程、設定値LPSを大きく上げる方向に変更することになる。   In this case, the control is to calculate the saturation temperature-deviation e (temperature) at the current set value LPS, and convert this to pressure to obtain the changed set value LPS (LPS = current set value Saturation temperature-deviation). That is, when the internal temperature TP is higher than the set temperature TS, the deviation e becomes positive. Therefore, the refrigerator controller 32 changes the setting value LPS to a lowering direction, and the larger the deviation e is, that is, As the internal temperature TP is higher than the set temperature TS, the set value LPS is changed so as to greatly decrease. On the other hand, when the internal temperature TP is lower than the set temperature TS, the deviation e becomes negative. Therefore, the refrigerator controller 32 changes the direction so as to increase the set value LPS, and the larger the deviation e is, that is, The lower the set temperature LPS is, the higher the set value LPS is increased.

このように、冷蔵ケース3の庫内温度(被冷却空間の実際の温度)TPと当該庫内の設定温度TSとの偏差eに基づき、設定値LPSを変更すると共に、庫内温度TPが設定温度TSより高い場合に設定値LPSを下げ、庫内温度TPが設定温度TSより低い場合に設定値LPSを上げる方向で当該設定値LPSを変更するので、庫内温度TPが高い状態では圧縮機37の運転周波数CHz(容量)の低下を遅くして冷蔵用蒸発器43の冷却能力を維持できるようになる。   As described above, the set value LPS is changed and the internal temperature TP is set based on the deviation e between the internal temperature of the refrigerator case 3 (actual temperature of the space to be cooled) TP and the internal set temperature TS. The set value LPS is decreased when the temperature is higher than the temperature TS, and the set value LPS is changed in the direction of increasing the set value LPS when the internal temperature TP is lower than the set temperature TS. It is possible to maintain the cooling capacity of the refrigeration evaporator 43 by slowing the decrease in the operation frequency CHz (capacity) of 37.

一方、庫内温度TPが充分冷却されて膨張弁44が弁開度を絞り、冷却貯蔵設備用冷媒回路9の低圧側圧力が低下していく状況では、より早い段階で圧縮機37の運転周波数CHz(容量)を低下させ、膨張弁44の弁開度を拡大する方向に制御して低圧側圧力の上昇を促すことが可能となる。これにより、冷却貯蔵設備用冷媒回路9の低圧側圧力LPが平均して低下してしまう不都合を解消し、圧縮機37のCOPを改善させて冷凍システム1の運転効率を向上させることができるようになる。尚、特に実施例のようにインバータによる運転周波数制御が行われる圧縮機37を用いた場合、当該圧縮機37の全停止の周期も、設定値LPSを変更する判定の判断基準に加えるものとする。   On the other hand, in the situation where the internal temperature TP is sufficiently cooled and the expansion valve 44 reduces the valve opening, and the low pressure side pressure of the refrigerant circuit 9 for the cooling storage facility decreases, the operating frequency of the compressor 37 is earlier. CHz (capacity) is decreased, and the valve opening degree of the expansion valve 44 is controlled to be increased so that an increase in the low-pressure side pressure can be promoted. As a result, the disadvantage that the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility decreases on average can be solved, and the COP of the compressor 37 can be improved and the operating efficiency of the refrigeration system 1 can be improved. become. Note that, in particular, when the compressor 37 in which the operation frequency control is performed by the inverter is used as in the embodiment, the cycle of the total stop of the compressor 37 is also added to the determination criterion for changing the set value LPS. .

(2−2)冷蔵用蒸発器の除霜時の低圧側圧力の設定値の変更制御
次に、冷蔵ケースコントローラ50は所定時刻に、或いは、所定時間おきに冷蔵用蒸発器43の除霜を行う。この除霜は膨張弁44を全閉とし、冷蔵用蒸発器43への冷媒の流入を断った状態で送風機20により冷蔵用蒸発器43に通風することにより実行されるものであるが、この冷蔵用蒸発器43の除霜開始は冷凍機コントローラ32にも通知される。冷凍機コントローラ32はこの冷蔵用蒸発器43の除霜中は、前記低圧側圧力LPの設定値LPSの変更制御を行わず、除霜開始前の設定値LPSを維持する。
(2-2) Control of changing set value of low-pressure side pressure during defrosting of refrigeration evaporator Next, the refrigeration case controller 50 defrosts the refrigeration evaporator 43 at a predetermined time or every predetermined time. Do. This defrosting is performed by fully closing the expansion valve 44 and ventilating the refrigerant into the refrigeration evaporator 43 by passing air through the refrigeration evaporator 43 by the blower 20. The start of defrosting of the evaporator 43 is also notified to the refrigerator controller 32. During the defrosting of the refrigeration evaporator 43, the refrigerator controller 32 does not perform the change control of the set value LPS of the low pressure LP, and maintains the set value LPS before the start of the defrosting.

そして、例えば所定時間経過後に冷蔵ケースコントローラ50は冷蔵用蒸発器43の除霜を終了し、前述した膨張弁44の弁開度の制御を再開するものであるが、冷凍機コントローラ32はこの冷蔵用蒸発器43の除霜終了後に前記低圧側圧力LPの設定値LPSを前述したデフォルトの低い値に戻す。   For example, after a predetermined time has elapsed, the refrigeration case controller 50 ends the defrosting of the refrigeration evaporator 43 and resumes the control of the valve opening degree of the expansion valve 44 described above. After the defrosting of the evaporator 43 is completed, the set value LPS of the low-pressure side pressure LP is returned to the default low value described above.

ここで、除霜終了後は冷蔵ケース3の庫内温度TPは高くなっており、膨張弁44が開放されると冷却貯蔵設備用冷媒回路9にとっては負荷が急激に上昇することになる。そのため、除霜開始前の設定値LPSが高い値とされていると、圧縮機37の運転周波数CHzが早期に低下せられてしまい、負荷上昇に追従できなくなるが、除霜終了後にデフォルトの低い値に設定値LPSを戻すことで除霜後の急激な負荷上昇に対応できるようになる。   Here, after the defrosting is completed, the internal temperature TP of the refrigeration case 3 is high, and when the expansion valve 44 is opened, the load increases rapidly for the refrigerant circuit 9 for the cooling storage facility. Therefore, if the set value LPS before the start of defrosting is set to a high value, the operating frequency CHz of the compressor 37 is lowered early and cannot follow the load increase, but the default is low after the end of the defrosting. By returning the set value LPS to the value, it becomes possible to cope with a rapid load increase after defrosting.

ここで、上述の如く除霜終了後に低圧側圧力LPの設定値LPSをデフォルトの低い値に戻すことで、除霜終了後のプルダウン中、圧縮機37は高周波数HHzで長時間或いは、全過程を運転されることになる。従って、冷蔵ケース3の庫内温度TPは早期に前記下限温度まで低下し、それによって膨張弁44も閉じられるようになる。従って、膨張弁51が閉じていれば圧縮機37も早期に停止するようになり、そのままでは圧縮機37が頻繁な運転−停止を繰り返すようになる。   Here, by returning the set value LPS of the low-pressure side pressure LP to the default low value after defrosting as described above, during the pull-down after the defrosting, the compressor 37 is operated at a high frequency HHz for a long time or in the whole process. Will be driving. Therefore, the internal temperature TP of the refrigeration case 3 is quickly lowered to the lower limit temperature, and the expansion valve 44 is closed accordingly. Therefore, if the expansion valve 51 is closed, the compressor 37 also stops early, and the compressor 37 repeats frequent operation-stop as it is.

そこで、本発明では除霜終了後の圧縮機37の運転時間TO(運転を開始してから停止するまでの時間)を計測しており、この運転時間TOが例えば12分より短かかった場合には、冷蔵用蒸発器43における冷媒の蒸発温度で2degに相当する分だけ上記設定値LPSを上昇させる。また、運転時間TOが例えば12分以上15分未満であった場合には、冷蔵用蒸発器43における冷媒の蒸発温度で1degに相当する分だけ上記設定値LPSを上昇させる。即ち、運転時間TOが短い程、設定値LPSの上昇幅を大きくする。   Therefore, in the present invention, the operation time TO of the compressor 37 after the defrosting is finished (the time from the start of operation to the stop) is measured, and when this operation time TO is shorter than 12 minutes, for example. Increases the set value LPS by an amount corresponding to 2 deg at the refrigerant evaporation temperature in the refrigeration evaporator 43. When the operation time TO is, for example, 12 minutes or more and less than 15 minutes, the set value LPS is increased by an amount corresponding to 1 deg at the refrigerant evaporation temperature in the refrigeration evaporator 43. That is, the shorter the operation time TO is, the larger the increase range of the set value LPS is.

これにより、圧縮機37の運転時間に基づいて徐々に低圧側圧力LPの設定値LPSを上昇させていくことにより、除霜終了後のプルダウンに要する時間を短縮しながら、圧縮機37の運転時間を延ばしていき、頻繁な運転−停止を解消して運転効率の改善を図る。そして、冷凍機コントローラ32は圧縮機37の運転時間TOが15分以上となった場合には前記偏差eに基づく設定値LPSの変更制御(2−1)に移行する。   Accordingly, the operation time of the compressor 37 is reduced while gradually reducing the time required for pull-down after the completion of the defrosting by gradually increasing the set value LPS of the low-pressure side pressure LP based on the operation time of the compressor 37. To improve driving efficiency by eliminating frequent operation-stops. When the operation time TO of the compressor 37 becomes 15 minutes or longer, the refrigerator controller 32 shifts to the setting value LPS change control (2-1) based on the deviation e.

(3)最適運転パターン2:空気調和機の暖房運転(図2)
次に、冬場等の空気調和機6の暖房運転について図2を用いて説明する。尚、この場合にも前述した低圧側圧力の設定値の変更制御は行われる。主コントローラ56が空気調和機6の暖房運転が最適であると判断した場合、最適運転パターン2に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
(3) Optimal operation pattern 2: Heating operation of the air conditioner (Fig. 2)
Next, the heating operation of the air conditioner 6 in winter will be described with reference to FIG. Also in this case, the above-described change control of the set value of the low-pressure side pressure is performed. When the main controller 56 determines that the heating operation of the air conditioner 6 is optimal, the data regarding the optimal operation pattern 2 includes the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 50. It is transmitted to the case controller 55.

受信データに基づき、室外機コントローラ26は四方弁14の一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。また、膨張弁17は全閉、膨張弁18は全開とされる。そして、圧縮機13A、13Bを運転する。圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、オイルセパレータ10から四方弁14を経て利用側熱交換器27、27に入る。この利用側熱交換器27、27には前述の如く送風機15、15により室内2(店内)の空気が通風されており、冷媒はここで放熱し、室内2の空気を加熱する一方自らは凝縮液化する。これにより、室内2(店内)の暖房が行われる。   Based on the received data, the outdoor unit controller 26 switches so that one inlet of the four-way valve 14 communicates with the other outlet and the other inlet communicates with one outlet. The expansion valve 17 is fully closed and the expansion valve 18 is fully opened. Then, the compressors 13A and 13B are operated. When the compressors 13A and 13B are operated, the high-temperature and high-pressure gas refrigerant discharged from the discharge sides of the compressors 13A and 13B enters the use-side heat exchangers 27 and 27 through the four-way valve 14 from the oil separator 10. The air in the room 2 (inside the store) is ventilated by the blowers 15 and 15 through the use side heat exchangers 27 and 27 as described above, and the refrigerant dissipates heat and heats the air in the room 2 while condensing itself. Liquefaction. Thereby, the room 2 (inside the store) is heated.

利用側熱交換器27、27で液化した冷媒は利用側熱交換器27、27から出て膨張弁18を通り、膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発して吸熱した後、アキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。   The refrigerant liquefied in the use side heat exchangers 27, 27 exits from the use side heat exchangers 27, 27, passes through the expansion valve 18, reaches the expansion valve 19, where it is throttled to a low pressure (decompression), and then cascaded. After flowing into the air conditioning side passage 21A of the heat exchanger 21 and evaporating and absorbing heat there, the circulation is repeated through the accumulator 23 and sucked into the suction sides of the compressors 13A and 13B.

室外機コントローラ26は、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁19の弁開度を調整する。また、室内機コントローラ28は利用側熱交換器27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。また、前述同様に室外機コントローラ26により圧縮機13A、13Bの運転が制御される。   The outdoor unit controller 26 adjusts the valve opening degree of the expansion valve 19 based on the refrigerant temperature at the inlet / outlet of the cascade heat exchanger 21 or the temperature of the cascade heat exchanger 21 so that the degree of superheat is appropriate. The indoor unit controller 28 also blows air to the use side heat exchangers 27 and 27 so that the temperature of the room 2 (inside the store) is set to the set temperature based on the temperature of the use side heat exchanger 27 and the air temperature sucked into the use side heat exchanger 27. 15 and 15 are controlled. Further, the operation of the compressors 13A and 13B is controlled by the outdoor unit controller 26 as described above.

一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換えると共に、四方弁41の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。尚、他の電磁弁等は前述した冷房運転時と同様である。即ち、電磁弁46、46、47、52を開き、圧縮機37及び54を運転する。   On the other hand, the refrigerator controller 32 switches the one-way inlet 39 of the four-way valve 39 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 to communicate with the other outlet, and the other inlet communicates with one outlet. The one inlet 41 is switched to communicate with the other outlet, and the other inlet is communicated with one outlet. The other solenoid valves and the like are the same as in the cooling operation described above. That is, the electromagnetic valves 46, 46, 47 and 52 are opened, and the compressors 37 and 54 are operated.

これにより、圧縮機37から吐出された高温高圧のガス冷媒は、四方弁39、41を順次通過して先ずカスケード熱交換器21のケース側通路21Bに入る。即ち、圧縮機37から吐出された高温高圧のガス冷媒は凝縮器38に行く前に、直接カスケード熱交換器21のケース側通路21Bに供給される。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、カスケード熱交換器21において放熱するので、前述の如く空調側通路21Aで蒸発する空調用冷媒回路7の冷媒によって冷却され、熱量を受け渡す。これにより、空調用冷媒回路7の冷媒は冷却貯蔵設備用冷媒回路9の冷媒の廃熱を汲み上げることになる。   Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 37 sequentially passes through the four-way valves 39 and 41 and first enters the case-side passage 21B of the cascade heat exchanger 21. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 37 is directly supplied to the case side passage 21 </ b> B of the cascade heat exchanger 21 before going to the condenser 38. Since the refrigerant of the refrigerant circuit 9 for the cooling storage facility that has entered the case side passage 21B dissipates heat in the cascade heat exchanger 21, it is cooled by the refrigerant of the air conditioning refrigerant circuit 7 that evaporates in the air conditioning side passage 21A as described above. Deliver heat. As a result, the refrigerant in the air conditioning refrigerant circuit 7 pumps up the waste heat of the refrigerant in the refrigerant circuit 9 for the cooling storage facility.

このカスケード熱交換器21のケース側通路21Bを通過した冷媒は、次に四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱する。   The refrigerant that has passed through the case side passage 21B of the cascade heat exchanger 21 then enters the inlet side 38A of the condenser 38 via the four-way valve 39. Outside air is also ventilated by the blower 35 to the condenser 38, and the refrigerant flowing into the condenser 38 dissipates heat.

この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後に分岐し、前述同様に電磁弁46、47、52に向かうことになる。   The refrigerant that has passed through the inlet side 38A of the condenser 38 reaches the outlet side 38B and exits there. The refrigerant from the condenser 38 enters the receiver tank 36 from the inlet side of the receiver tank 36, and is temporarily stored therein to separate the gas / liquid. The separated liquid refrigerant exits from the outlet of the receiver tank 36, passes through the four-way valve 41, and then branches, and goes to the electromagnetic valves 46, 47, and 52 as described above.

このような運転により、空気調和機6の空調用冷媒回路7の暖房運転時には、カスケード熱交換器21で冷却貯蔵設備用冷媒回路9の高圧側冷媒の廃熱を回収して空調用冷媒回路7の利用側熱交換器27、27に搬送することができるようになる。これにより、空気調和機6の暖房能力の改善を図ることができるようになり、総じて、室内空調と冷蔵ケース3、3、冷凍ケース4の庫内冷却を行う冷凍システム1の効率改善を図り、省エネ化を図ることが可能となる。   By such operation, during the heating operation of the air conditioning refrigerant circuit 7 of the air conditioner 6, the waste heat of the high-pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility is recovered by the cascade heat exchanger 21 and the air conditioning refrigerant circuit 7. It becomes possible to convey to the use side heat exchangers 27, 27. As a result, the heating capacity of the air conditioner 6 can be improved, and the efficiency of the refrigeration system 1 that cools the indoor air conditioning and the refrigeration cases 3 and 3 and the refrigeration case 4 as a whole is improved. Energy saving can be achieved.

特にこの場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒を、凝縮器38より先にカスケード熱交換器21に流すので、冷却貯蔵設備用冷媒回路9の高圧側冷媒からの廃熱回収を効率的に行い、空調用冷媒回路7の利用側熱交換器27、27における暖房能力をより一層向上させることができるようになる。   Particularly in this case, since the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility is passed through the cascade heat exchanger 21 before the condenser 38, the waste heat recovery from the high pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility is performed. The heating capacity in the use side heat exchangers 27 and 27 of the air conditioning refrigerant circuit 7 can be further improved.

ここで、店内2が比較的暖かいなど空気調和機6が軽負荷となると、室外機コントローラ26は膨張弁19の弁開度を絞って冷媒流量を低減させていくようになるので、カスケード熱交換器21における冷却貯蔵設備用冷媒回路9の冷媒の放熱量が過剰となってくるが、本発明では冷却貯蔵設備用冷媒回路9の高圧側の冷媒をカスケード熱交換器21に流した後、凝縮器38に流すようにしているので、空調用冷媒回路7の暖房運転時において冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における冷媒の放熱量が過剰となった場合には、凝縮器38にて当該過剰な熱量が放出される。これにより、安定した廃熱回収運転を実現することができるようになる。   Here, when the air conditioner 6 is lightly loaded, such as when the store 2 is relatively warm, the outdoor unit controller 26 reduces the refrigerant flow rate by reducing the valve opening of the expansion valve 19, so that cascade heat exchange is performed. However, in the present invention, the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility is passed through the cascade heat exchanger 21 and then condensed. Therefore, when the heat radiation amount of the refrigerant in the cascade heat exchanger 21 of the cooling storage facility refrigerant circuit 9 becomes excessive during the heating operation of the air conditioning refrigerant circuit 7, the condenser 38. The excess amount of heat is released at. As a result, a stable waste heat recovery operation can be realized.

また、上述した如く四方弁39及び41を用いて流路を切り換え、空調用冷媒回路7の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路9の凝縮器38及びその出口に接続されたレシーバータンク36に流れる冷媒の流通方向を同一としている。これにより、冷房運転時と暖房運転時とで凝縮器38やレシーバータンク36内の冷媒の流れが反対となる場合に比して冷却貯蔵設備用冷媒回路9内を流れる冷媒の圧力損失の発生を防止若しくは抑制することができるようになり、効率的な運転が可能となる。特に、二個の四方弁39、41にて流路を切り換えているので冷却貯蔵設備用冷媒回路9の構成を簡素化することができるようになる。   Further, as described above, the flow paths are switched using the four-way valves 39 and 41, and the cooling air circuit 7 is connected to the condenser 38 and the outlet of the refrigerant circuit 9 for the cooling storage facility during the cooling operation and the heating operation. The flow direction of the refrigerant flowing through the receiver tank 36 is the same. As a result, the pressure loss of the refrigerant flowing in the refrigerant circuit 9 for the cooling storage facility is reduced compared to the case where the refrigerant flows in the condenser 38 and the receiver tank 36 are opposite between the cooling operation and the heating operation. It becomes possible to prevent or suppress, and efficient operation becomes possible. In particular, since the flow path is switched by the two four-way valves 39, 41, the configuration of the refrigerant circuit 9 for the cooling storage facility can be simplified.

(4)最適運転パターン3:空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない時の制御(図3)
ここで、上述の如き空気調和機6の暖房運転時に、室内(店内)空気の負荷が一層小さくなり、暖房能力が過大となると、室外機コントローラ26は室内温度の情報に基づいて圧縮機13Bの運転周波数を低下させ、暖房能力を低下させていく。一方、このような制御を行い、且つ、上述のように凝縮器38にて過剰な熱量が放出されたとしても、冷却装置8の冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における放熱が殆ど必要とされない状況となると、図2の回路のままでは空気調和機6の暖房能力が過剰となる。
(4) Optimal operation pattern 3: Control when almost no heat radiation is required in the cascade heat exchanger of the cooling device during heating operation of the air conditioner (FIG. 3)
Here, during the heating operation of the air conditioner 6 as described above, if the indoor (in-store) air load is further reduced and the heating capacity becomes excessive, the outdoor unit controller 26 determines the compressor 13B based on the indoor temperature information. The operating frequency is lowered and the heating capacity is lowered. On the other hand, even if such control is performed and an excessive amount of heat is released in the condenser 38 as described above, the heat radiation in the cascade heat exchanger 21 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 is reduced. In a situation that is hardly required, the heating capacity of the air conditioner 6 becomes excessive with the circuit of FIG.

係る場合には、冷凍機コントローラ32は図2から図3の状態に各四方弁39、41を切り換える。即ち、この場合冷凍機コントローラ32は四方弁39の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。また、四方弁41の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。   In such a case, the refrigerator controller 32 switches the four-way valves 39 and 41 from the state shown in FIGS. That is, in this case, the refrigerator controller 32 switches the four-way valve 39 so that the one inlet communicates with one outlet and the other inlet communicates with the other outlet. The one-way inlet of the four-way valve 41 is switched to one outlet and the other inlet is switched to communicate with the other outlet.

これにより、圧縮機37から吐出された高温高圧の冷媒は、図1の場合と同様に凝縮器38を通過して放熱してからカスケード熱交換器21に流れるようになるので、空調用冷媒回路7の冷媒がカスケード熱交換器21にて過剰に加熱される不都合を回避することと、冷却貯蔵設備の過冷却により効率を向上させることができるようになる。ここで、この場合にも前述した低圧側圧力の設定値の変更制御は行われる。   As a result, the high-temperature and high-pressure refrigerant discharged from the compressor 37 passes through the condenser 38 and dissipates heat in the same manner as in FIG. 1, and then flows into the cascade heat exchanger 21, so that the air-conditioning refrigerant circuit It is possible to avoid the disadvantage that the refrigerant No. 7 is excessively heated in the cascade heat exchanger 21 and to improve the efficiency by overcooling the cooling storage facility. Here, also in this case, the above-described change control of the set value of the low-pressure side pressure is performed.

尚、実施例ではコンビニエンスストアにおいて室内の空調と冷却貯蔵設備の冷却を行う冷凍システムにて本発明を説明したが、それに限らず、冷却貯蔵設備の冷却のみを行うものでも本発明は有効である。更に、実施例では圧縮機の容量制御をインバータによる運転周波数の制御によって実現したが、それに限らず、種々の容量制御を適用可能である。更にまた、上記設定値LPSの変更制御は、庫内温度TPと設定温度TSによらず、冷蔵用蒸発器43における冷媒の蒸発温度が測定できる場合には、当該蒸発温度とその設定温度に基づいて行ってもよい。また、上記実施例では圧縮機37と13Aをインバータにより運転周波数制御することで容量制御するものとしたが、容量制御の意味としてはそれに限らず、圧縮機を複数台並列接続(例えば複数の定速圧縮機の並列接続、一つの定速圧縮機と一つのインバータ制御圧縮機の並列接続など)して運転される台数を切り換え、或いはそれに加えて運転周波数を制御する場合も含むものである。   In the embodiment, the present invention has been described with a refrigeration system that cools indoor air-conditioning and cooling storage equipment in a convenience store. However, the present invention is not limited thereto, and the present invention is also effective when only cooling storage equipment is cooled. . Further, in the embodiment, the capacity control of the compressor is realized by controlling the operation frequency by the inverter. However, the present invention is not limited to this, and various capacity controls can be applied. Furthermore, when the evaporating temperature of the refrigerant in the refrigeration evaporator 43 can be measured regardless of the inside temperature TP and the set temperature TS, the change control of the set value LPS is based on the evaporating temperature and the set temperature. You may go. Further, in the above embodiment, the compressors 37 and 13A are controlled in capacity by controlling the operation frequency by an inverter. However, the meaning of capacity control is not limited to this, and a plurality of compressors are connected in parallel (for example, a plurality of constants). This includes the case of switching the number of units operated by parallel connection of high-speed compressors, parallel connection of one constant-speed compressor and one inverter-controlled compressor, or controlling the operation frequency in addition to that.

本発明を適用した実施例の冷凍システムの冷媒回路を含むシステム構成を説明する図である(空気調和機の冷房運転時)。It is a figure explaining the system configuration containing the refrigerant circuit of the refrigerating system of the example to which the present invention is applied (at the time of cooling operation of the air conditioner). 本発明を適用した実施例の冷凍システムの空気調和機の暖房運転を説明する図である。It is a figure explaining the heating operation of the air conditioner of the refrigeration system of the Example to which this invention is applied. 本発明を適用した実施例の冷凍システムの空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない場合の運転を説明する図である。It is a figure explaining the operation | movement when hardly radiating heat in the cascade heat exchanger of the cooling device at the time of the heating operation of the air conditioner of the refrigeration system of the Example to which this invention is applied.

符号の説明Explanation of symbols

1 冷凍システム
3 冷蔵ケース
4 冷凍ケース
6 空気調和機
7 空調用冷媒回路
8 冷却装置
9 冷却貯蔵設備用冷媒回路
13A、13B、37、54 圧縮機
14 四方弁
16 熱源側熱交換器
21 カスケード熱交換器
28 利用側熱交換器
32 冷凍機コントローラ
38 凝縮器
39、41 四方弁(流路制御手段)
43 冷蔵用蒸発器
44、51 膨張弁
49 冷凍用蒸発器
50 冷蔵ケースコントローラ
DESCRIPTION OF SYMBOLS 1 Refrigeration system 3 Refrigeration case 4 Refrigeration case 6 Air conditioner 7 Air-conditioning refrigerant circuit 8 Cooling device 9 Refrigerating circuit for cooling storage equipment 13A, 13B, 37, 54 Compressor 14 Four-way valve 16 Heat source side heat exchanger 21 Cascade heat exchange 28 Use side heat exchanger 32 Refrigerator controller 38 Condenser 39, 41 Four-way valve (flow path control means)
43 Refrigerating evaporator 44, 51 Expansion valve 49 Refrigerating evaporator 50 Refrigerating case controller

Claims (4)

容量制御可能な圧縮機と、凝縮器と、膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、
前記圧縮機と膨張弁を制御する制御装置を備え、
該制御装置は、前記蒸発器により冷却される被冷却空間の実際の温度と当該被冷却空間の設定温度とに基づき、前記膨張弁の弁開度を調整し、前記冷媒回路の低圧側圧力に基づき、所定の設定値の上下に設定した上限値及び下限値の当該下限値まで前記低圧側圧力が低下した場合に前記圧縮機の容量を低下させ、前記上限値まで上昇した場合には前記圧縮機の容量を上昇させると共に、
前記被冷却空間の一定時間当たりの平均温度を算出し、該被冷却空間の平均温度が前記設定温度より高い場合に前記設定値、上限値及び下限値を下げ、前記被冷却空間の平均温度が前記設定温度より低い場合に前記設定値、上限値及び下限値を上げる方向で当該設定値、上限値及び下限値を変更することを特徴とする冷凍システム。
In a refrigeration system in which a refrigerant circuit is configured by including a compressor capable of controlling capacity, a condenser, an expansion valve, and an evaporator,
A control device for controlling the compressor and the expansion valve;
The control device adjusts the valve opening of the expansion valve based on the actual temperature of the space to be cooled cooled by the evaporator and the set temperature of the space to be cooled, and adjusts the low pressure side pressure of the refrigerant circuit. On the basis of the upper limit value set above and below a predetermined set value and the lower limit pressure, when the low-pressure side pressure is reduced, the capacity of the compressor is reduced, and when the pressure is increased to the upper limit value, the compression is performed. While increasing the capacity of the machine,
An average temperature per fixed time of the cooled space is calculated, and when the average temperature of the cooled space is higher than the set temperature, the set value, the upper limit value and the lower limit value are lowered, and the average temperature of the cooled space is When the temperature is lower than the set temperature, the set value, the upper limit value, and the lower limit value are changed in a direction of increasing the set value, the upper limit value, and the lower limit value .
前記制御装置は、前記蒸発器の除霜終了後に前記設定値、上限値及び下限値を予め規定された低い値に戻すことを特徴とする請求項1の冷凍システム。 The refrigeration system according to claim 1 , wherein the control device returns the set value, the upper limit value, and the lower limit value to a predetermined low value after the defrosting of the evaporator is completed . 前記制御装置は、前記除霜終了後の前記圧縮機の運転時間に基づき、前記設定値、上限値及び下限値を上昇させることを特徴とする請求項2の冷凍システム。 The said control apparatus raises the said setting value, an upper limit, and a lower limit based on the operation time of the said compressor after the said defrost completion | finish , The refrigeration system of Claim 2 characterized by the above-mentioned . 前記制御装置は、前記圧縮機の運転時間が短い程、前記設定値、上限値及び下限値の上昇幅を大きくし、前記圧縮機の運転時間が所定時間に達した場合には、前記設定値、上限値及び下限値の変更制御に移行することを特徴とする請求項3の冷凍システム。 The control device increases the set value, the upper limit value and the lower limit value as the operation time of the compressor is shorter, and when the operation time of the compressor reaches a predetermined time, the set value 4. The refrigeration system according to claim 3 , wherein the control proceeds to change control of the upper limit value and the lower limit value .
JP2003306861A 2003-08-29 2003-08-29 Refrigeration system Expired - Lifetime JP4614642B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003306861A JP4614642B2 (en) 2003-08-29 2003-08-29 Refrigeration system
CNB2004100579881A CN100408946C (en) 2003-08-29 2004-08-27 Refrigerating system
CNB200810002441XA CN100526767C (en) 2003-08-29 2004-08-27 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306861A JP4614642B2 (en) 2003-08-29 2003-08-29 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2005076961A JP2005076961A (en) 2005-03-24
JP4614642B2 true JP4614642B2 (en) 2011-01-19

Family

ID=34409826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306861A Expired - Lifetime JP4614642B2 (en) 2003-08-29 2003-08-29 Refrigeration system

Country Status (2)

Country Link
JP (1) JP4614642B2 (en)
CN (1) CN100526767C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335346B2 (en) * 2008-09-26 2013-11-06 三洋電機株式会社 Cooling system
JP2011089714A (en) * 2009-10-23 2011-05-06 Hitachi Appliances Inc Refrigerating device
JP5758663B2 (en) * 2011-03-23 2015-08-05 三菱電機株式会社 Air conditioner
JP6304330B2 (en) 2016-09-02 2018-04-04 ダイキン工業株式会社 Refrigeration equipment
CN112665119B (en) * 2021-02-02 2022-03-25 南通华信中央空调有限公司 Defrosting control method for direct expansion type air conditioner
CN113899159B (en) * 2021-10-29 2022-08-16 珠海格力电器股份有限公司 Refrigerator control method and device, refrigerator and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102284A (en) * 1996-06-17 1998-01-06 Toyota Autom Loom Works Ltd Variable displacement compressor and its control method
US6233957B1 (en) * 1999-06-07 2001-05-22 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner
JP3780784B2 (en) * 1999-11-25 2006-05-31 株式会社豊田自動織機 Control valve for air conditioner and variable capacity compressor
US6601397B2 (en) * 2001-03-16 2003-08-05 Copeland Corporation Digital scroll condensing unit controller

Also Published As

Publication number Publication date
CN100526767C (en) 2009-08-12
CN101196357A (en) 2008-06-11
JP2005076961A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US6393858B1 (en) Refrigeration system
JP4624223B2 (en) Refrigeration system
JP2004170001A (en) Refrigerating system
JP4123257B2 (en) Refrigeration equipment
JP4614642B2 (en) Refrigeration system
JP4346473B2 (en) Air-conditioning refrigeration equipment
JP2007100987A (en) Refrigerating system
JP5033337B2 (en) Refrigeration system and control method thereof
JP4169638B2 (en) Refrigeration system
JP4104519B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
JP4660334B2 (en) Refrigeration system
JP2007085720A (en) Refrigeration system
JP2004271123A (en) Temperature control device for heat exchanger
JP4618313B2 (en) Refrigeration equipment
JP4169667B2 (en) Refrigeration system
JP4073375B2 (en) Refrigeration system and control method of refrigeration system
JP2005049062A (en) Air-conditioning system, refrigeration system, control method and control program for air-conditioning system, and storage medium
JP2005049064A (en) Air-conditioning refrigeration unit
JP2004361001A (en) Refrigerating system
JP3858918B2 (en) Refrigeration equipment
JP2005282887A (en) Air conditioning refrigeration device and control method of the same
JP4488767B2 (en) Air-conditioning refrigeration equipment
JP2004271125A (en) Refrigeration system
JP2005106365A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080829

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R151 Written notification of patent or utility model registration

Ref document number: 4614642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

EXPY Cancellation because of completion of term