JP4610596B2 - Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method - Google Patents

Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method Download PDF

Info

Publication number
JP4610596B2
JP4610596B2 JP2007267836A JP2007267836A JP4610596B2 JP 4610596 B2 JP4610596 B2 JP 4610596B2 JP 2007267836 A JP2007267836 A JP 2007267836A JP 2007267836 A JP2007267836 A JP 2007267836A JP 4610596 B2 JP4610596 B2 JP 4610596B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
mmol
molecular weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007267836A
Other languages
Japanese (ja)
Other versions
JP2008070893A (en
Inventor
幸広 見山
貴康 仁平
秀幸 遠藤
裕善 袋
裕 長瀬
映一 秋山
修克 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Sagami Chemical Research Institute (Sagami CRI)
Original Assignee
Nissan Chemical Corp
Sagami Chemical Research Institute (Sagami CRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Sagami Chemical Research Institute (Sagami CRI) filed Critical Nissan Chemical Corp
Priority to JP2007267836A priority Critical patent/JP4610596B2/en
Publication of JP2008070893A publication Critical patent/JP2008070893A/en
Application granted granted Critical
Publication of JP4610596B2 publication Critical patent/JP4610596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は液晶の配向処理剤及びそれを用いた液晶素子に関するものであり、更に詳しくはラビング処理を必要とすることなく、高分子薄膜表面に光を照射することにより液晶分子を配向させる方法に於いて用いられる新規な液晶配向処理剤、液晶素子及び液晶の配向方法に関するものであり、特定の単位構造を有する高分子を含有する液晶配向処理剤を用いることにより、上記方法の従来の技術に対して、高感度化を実現し、且つ液晶配向の高い熱的安定性、高い耐光性を達成することを特徴とする。   The present invention relates to a liquid crystal alignment treatment agent and a liquid crystal element using the same, and more specifically, to a method for aligning liquid crystal molecules by irradiating light onto a polymer thin film surface without requiring a rubbing treatment. The present invention relates to a novel liquid crystal aligning agent, a liquid crystal element and a liquid crystal aligning method used in the above, and by using a liquid crystal aligning agent containing a polymer having a specific unit structure, On the other hand, it is characterized by realizing high sensitivity and achieving high thermal stability and high light resistance of liquid crystal alignment.

液晶表示素子は、液晶の電気光学的変化を利用した表示素子であり、装置的に小型軽量であり、消費電力が小さい等の特性が注目され、近年、各種ディスプレイ用の表示装置として目覚ましい発展を遂げている。中でも正の誘電率異方性を有するネマティック液晶を用い、相対向する一対の電極基板のそれぞれの界面で液晶分子を基板に対し平行に配列させ、且つ、液晶分子の配向方向が互いに直交するように両基板を張り合わせた、ツイステッドネマティック型(TN型)の電界効果型液晶表示素子はその代表的なものである。   A liquid crystal display element is a display element that utilizes electro-optical changes of liquid crystal, and has been noticed with characteristics such as small size and light weight and low power consumption. In recent years, it has made remarkable progress as a display device for various displays. It is accomplished. In particular, nematic liquid crystal having positive dielectric anisotropy is used, liquid crystal molecules are arranged parallel to the substrate at the respective interfaces of a pair of opposing electrode substrates, and the alignment directions of the liquid crystal molecules are orthogonal to each other. A typical example is a twisted nematic (TN type) field-effect liquid crystal display element in which both substrates are bonded to each other.

このようなTN型の液晶表示素子に於いては、液晶分子の長軸方向を基板表面に均一且つ平行に配向させること、更に液晶分子を基板に対して一定の傾斜配向角(以下、プレチルト角という)をもって配向させることが重要である。このように液晶分子を配向させる方法としては、従来より2つの方法が知られている。   In such a TN liquid crystal display element, the major axis direction of the liquid crystal molecules is aligned uniformly and parallel to the substrate surface, and the liquid crystal molecules are aligned with a certain tilt alignment angle (hereinafter referred to as pretilt angle). It is important to align the Two methods are conventionally known as methods for aligning liquid crystal molecules in this way.

第一の方法は、酸化珪素等の無機物を基板に対して斜めから蒸着することにより基板上に無機膜を形成し、蒸着方向に液晶分子を配向させる方法である。この方法では、一定のプレチルト角を有する安定した配向は得られるものの工業的に効率的ではない。   The first method is a method in which an inorganic film such as silicon oxide is vapor-deposited obliquely with respect to the substrate to form an inorganic film on the substrate and align liquid crystal molecules in the vapor deposition direction. Although this method can obtain a stable alignment having a constant pretilt angle, it is not industrially efficient.

第二の方法は、基板表面に有機被膜を設け、その表面を綿、ナイロン、ポリエステル等の布で一定方向にラビングし、ラビング方向に液晶分子を配向させる方法である。有機被膜は、通常、液晶配向処理剤を基板表面に塗布することにより形成される。この方法は、比較的容易に安定した配向が得られるため、工業的には専らこの方法が採用されている。有機被膜(液晶配向膜または配向膜という。)としては、ポリビニルアルコール、ポリオキシエチレン、ポリアミド、ポリイミド等の高分子化合物からなる膜が挙げられるが、機械的強度,化学的安定性、熱的安定性等の点からポリイミド膜が最も一般的に使用されている。このような液晶配向膜に使用されているポリイミドの代表的な例としては、特開昭61−47932号公報に開示されるものがある。   The second method is a method in which an organic film is provided on the substrate surface, the surface is rubbed in a certain direction with a cloth such as cotton, nylon, polyester, and the liquid crystal molecules are aligned in the rubbing direction. The organic coating is usually formed by applying a liquid crystal aligning agent to the substrate surface. Since this method can obtain stable orientation relatively easily, this method is exclusively employed industrially. Examples of organic coatings (referred to as liquid crystal alignment films or alignment films) include films made of polymer compounds such as polyvinyl alcohol, polyoxyethylene, polyamide, and polyimide, but mechanical strength, chemical stability, and thermal stability. A polyimide film is most commonly used in view of properties. A typical example of polyimide used in such a liquid crystal alignment film is disclosed in Japanese Patent Application Laid-Open No. 61-47932.

ポリイミド膜をラビングする液晶配向処理方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化への要求は益々高まり、それに対応した新しい表示方式が開発されるに伴って、ラビング法の様々な問題が指摘されるようになった。例えば、TN型液晶表示のツイスト角を高くしたSTN(スーパーツイステッドネマティック)方式、強誘電性液晶、反強誘電性液晶を用いたFLC(フェロエレクトリック)、AFLC(アンチフェロエレクトリック)方式、個々の電極にスイッチング素子を形成したAM(アクティブマトリクス)方式等がそれである。STN方式ではコントラストが高いためラビングによって生じた配向膜表面の傷が表示欠陥となってしまい、FLC、AFLC方式では単純なラビング処理だけではスメクチック液晶の均一配向と高速応答を両立させることが難しく、AM方式ではラビングによる機械的な力や静電気がスイッチング素子を破壊したり、ラビングによる発塵が表示欠陥を誘発したり、または液晶の汚染を引き起こし表示品位の低下を招くこともある等、ラビング法の様々な問題が明
らかになってきている。特にAM方式は液晶をTFT(薄膜トランジスタ)等の半導体素子で駆動する方式であり、元来極めてクリーンさ(清浄性)が要求される半導体技術に於いて、ラビングのようなプロセスは厳密には最適とは言えない。
The liquid crystal alignment treatment method for rubbing the polyimide film is an industrially useful method that is simple and excellent in productivity. However, the demand for higher performance and higher definition of liquid crystal display elements has been increased, and various new problems have been pointed out in the rubbing method as new display systems corresponding to the demand have been developed. For example, STN (super twisted nematic) system with a high twist angle of TN liquid crystal display, ferroelectric liquid crystal, FLC (ferroelectric) using antiferroelectric liquid crystal, AFLC (antiferroelectric) system, individual electrodes For example, an AM (active matrix) system in which switching elements are formed on the substrate. In the STN method, since the contrast is high, scratches on the alignment film surface caused by rubbing become display defects, and in the FLC and AFLC methods, it is difficult to achieve both uniform alignment of the smectic liquid crystal and high-speed response by simple rubbing treatment. In the AM system, the rubbing method, such as mechanical force or static electricity due to rubbing may destroy the switching element, dust generation due to rubbing may cause display defects, or liquid crystal may be contaminated and display quality may be deteriorated. Various problems are becoming clear. In particular, the AM system is a system in which liquid crystal is driven by a semiconductor element such as a TFT (thin film transistor), and a process such as rubbing is strictly optimal in a semiconductor technology that originally requires extremely clean (cleanliness). It can not be said.

これらの問題を解決する目的で、ラビングなしで液晶を配向させるいわゆる「ラビングレス」配向法が検討され、様々な方法が提案されている。例えば、配向膜表面にフォトクロミック分子を導入し、光によって配向膜表面の分子を配向させる方法(特開平4−2844号公報)、LB膜(ラングミュアブロジェット膜)を用いて配向膜を構成する分子膜配向させる方法(小林等、ジャパニーズ ジャーナル オブ アプライド フィジックス、27巻、475ページ(1998年))(S.Kobayashi et.al.,Jpn
.J.Appl.Phys.,27,475(1998))、あらかじめ配向処理された基板上に配向膜を圧着して配向を移し取る方法(特開平6−43458号公報)等が検討されているが、工業的な生産性を考慮した場合に、ラビング法の代替となりうるものとは言えない。
In order to solve these problems, a so-called “rubbing-less” alignment method for aligning liquid crystals without rubbing has been studied, and various methods have been proposed. For example, molecules that constitute an alignment film using a method of introducing photochromic molecules into the alignment film surface and aligning the molecules on the alignment film surface with light (JP-A-4-2844), LB film (Langmuir Blodget film) Method of film orientation (Kobayashi et al., Japanese Journal of Applied Physics, 27, 475 (1998)) (S. Kobayashi et al., Jpn)
. J. et al. Appl. Phys. 27, 475 (1998)), a method of transferring an orientation by pressure-bonding an orientation film on a pre-aligned substrate (JP-A-6-43458), etc. has been studied. Is not an alternative to the rubbing method.

これに対して、配向膜表面の周期的な凹凸を人為的に形成し、この凹凸に沿って液晶分子を配向させる様々な方法も提案されている。その最も単純な方法は、予め周期的な凹凸を有するレプリカを作製し、その上に熱可逆的な膜を加熱圧着し、膜上に凹凸を移し取る方法である。(特開平4−172320号公報、特開平4−296820号公報、特開平4−311926号公報等。)この方法では確かに表面に周期的な凹凸を有する膜を効率的に作製することは可能であるが、ラビング法で用いられているポリイミド膜ほどの実用上の信頼性を得ることは出来なかった。これに対して、信頼性の高いポリイミド膜に高エネルギーの光、例えば電子線(特開平4−97130号公報)、α線(特開平2−19836号公報)、X線(特開平2−2515号公報)、エキシマレーザー(特開平5−53513号公報)等を照射し、膜表面に周期的な凹凸を形成する方法が提案されている。しかし、これらの高エネルギーの光源を用いることは、大型の基板全面に均一に配向処理を連続的に行うという工業的な生産性を考慮した場合、効率的な配向処理方法とは言い難いものであった。   On the other hand, various methods for artificially forming periodic irregularities on the alignment film surface and aligning liquid crystal molecules along the irregularities have been proposed. The simplest method is a method in which a replica having periodic unevenness is prepared in advance, a thermoreversible film is thermocompression-bonded thereon, and the unevenness is transferred onto the film. (Japanese Patent Laid-Open No. 4-172320, Japanese Patent Laid-Open No. 4-296820, Japanese Patent Laid-Open No. 4-31926, etc.) With this method, it is possible to efficiently produce a film having periodic irregularities on the surface. However, practical reliability as high as the polyimide film used in the rubbing method could not be obtained. On the other hand, high energy light such as an electron beam (JP-A-4-97130), α-ray (JP-A-2-19836), X-ray (JP-A-2-2515) is applied to a highly reliable polyimide film. No.), excimer laser (Japanese Patent Laid-Open No. 5-53513), and the like have been proposed to form periodic irregularities on the film surface. However, using these high-energy light sources is not an efficient alignment method in view of industrial productivity in which alignment processing is continuously performed uniformly over the entire surface of a large substrate. there were.

一方、信頼性の高いポリイミド膜表面に周期的な凹凸を形成する効率的な方法として、フォトリソグラフィー法がある。即ち、近年開発された光硬化性ポリイミドを用いてフォトリソグラフィー法により周期的な凹凸を形成しようとする試みである。この方法によって、確かにポリイミド膜表面に凹凸を形成することはできるものの、元来光硬化性のポリイミドは絶縁膜として開発されたものであるため、液晶を配向させるための特性は不十分なものとなり、更にバッファー層をコーティングする等の必要性を生じ(特開平4−245224号公報)、結果的にプロセスが複雑となり、工業的な生産性を考慮するとラビング法の代替となり得るだけの効率的な配向処理方法とはなり得なかった。   On the other hand, there is a photolithography method as an efficient method for forming periodic irregularities on the surface of a highly reliable polyimide film. That is, it is an attempt to form periodic irregularities by a photolithographic method using a recently developed photocurable polyimide. Although it is possible to form irregularities on the surface of the polyimide film by this method, the photocurable polyimide was originally developed as an insulating film, so the characteristics for aligning the liquid crystal are insufficient. Further, the necessity of coating a buffer layer or the like is generated (Japanese Patent Laid-Open No. 4-245224). As a result, the process becomes complicated, and considering the industrial productivity, it is efficient enough to replace the rubbing method. It was not possible to be a proper orientation treatment method.

最近見いだされた新たな配向処理方法として、偏光した紫外線等を高分子膜表面に照射し、ラビング処理することなく液晶分子を配向させる方法が提案されている。その例として以下の報告がある。   As a new alignment treatment method recently discovered, a method of irradiating polarized ultraviolet rays or the like on the surface of a polymer film and aligning liquid crystal molecules without rubbing treatment has been proposed. The following reports are examples.

ギボンズ等、ネーチャー、351巻、49ページ(1991年)(W.M.Gibbons et.al.,Nature,351,49(1991))、川西等、モレキュラ
ー クリスタル アンド リキッド クリスタル、218巻、153ページ(1992年)(Y.Kawanishi et.al.,Mol.Cryst.Liq.Cryst.,
218,153(1992))、シャト等、ジャパニーズ ジャーナル オブ アプライド フィジックス、31巻、2155ページ(1992年)(M.Shadt et.al.
,Jpn.J.Appl.Phys.,31,2155(1992))、飯村等、ジャパニーズ ジャーナル オブ アプライド フィジックス、32巻、L93ページ(1993年
)(Y.Iimura et.al.,Jpn.J.Appl.Phys.,32,L9
3(1993))。
Gibbons et al., Nature, 351, 49 (1991) (WM Gibbons et., Nature, 351, 49 (1991)), Kawanishi et al., Molecular Crystal and Liquid Crystal, 218, 153 ( (1992) (Y. Kawanishi et.al., Mol. Cryst. Liq. Cryst.,
218, 153 (1992)), Shato et al., Japanese Journal of Applied Physics, Vol. 31, p. 2155 (1992) (M. Shadt et al.
, Jpn. J. et al. Appl. Phys. , 31, 2155 (1992)), Iimura et al., Japanese Journal of Applied Physics, 32, L93 (1993) (Y. Iimura et. Al., Jpn. J. Appl. Phys., 32, L9).
3 (1993)).

これらの方法は、従来のラビング処理を必要とせず、偏光した光照射により一定方向に液晶を配向させることが特徴である。この方法によれば、ラビング法による膜表面の傷や静電気等の問題がなく、また工業的な生産性を考慮した際の製造プロセスとしてより簡便であることが利点である。即ち、ここに提案されている偏光した光照射を利用する液晶配向処理方法は、未だ基礎的な研究段階ではあるが、今後ラビング処理を用いない新たな液晶配向処理方法として注目される方法と目される。   These methods do not require a conventional rubbing process and are characterized by aligning liquid crystals in a certain direction by irradiation with polarized light. According to this method, there are no problems such as scratches on the film surface or static electricity due to the rubbing method, and it is advantageous that it is simpler as a manufacturing process when considering industrial productivity. In other words, the liquid crystal alignment method using polarized light irradiation proposed here is still in the basic research stage, but will be attracting attention as a new liquid crystal alignment method that does not use rubbing in the future. Is done.

これまでの報告においては、液晶配向膜材料として、偏光した光に対する光化学的感度を得る必要性から、高分子の側鎖に光反応性基を導入した高分子化合物を用いることが提案されている。その代表的な例としてポリビニルシンナメートが挙げられており、この場合光照射による側鎖部分での二量化により高分子膜中に異方性を発現し液晶を配向させるものと考えられている。また、その他として高分子材料中に低分子の二色性アゾ系色素を分散し、この膜表面に対して偏光した光を照射することで一定の方向に液晶分子を配向させうることが述べられている。また更には、特定のポリイミド膜に偏光した紫外線等を照射することによって液晶分子が配向することが報告されている。この場合光照射により、一定方向のポリイミド主鎖が分解することにより液晶の配向を発現しているものと考えられる。   In the previous reports, it has been proposed to use a polymer compound in which a photoreactive group is introduced into the side chain of a polymer, because it is necessary to obtain photochemical sensitivity to polarized light as a liquid crystal alignment film material. . A typical example is polyvinyl cinnamate. In this case, it is considered that the liquid crystal is aligned by developing anisotropy in the polymer film by dimerization in the side chain portion by light irradiation. In addition, it is stated that a liquid crystal molecule can be aligned in a certain direction by dispersing a low-molecular dichroic azo dye in a polymer material and irradiating this film surface with polarized light. ing. Furthermore, it has been reported that liquid crystal molecules are aligned by irradiating a specific polyimide film with polarized ultraviolet rays or the like. In this case, it is considered that the alignment of the liquid crystal is expressed by the decomposition of the polyimide main chain in a certain direction by light irradiation.

ポリビニルシンナメート等に代表される高分子側鎖に光反応性基を導入した高分子材料系では、配向の熱的安定性が十分ではなく実用の面では未だ十分な信頼性が得られていない。また低分子の二色性色素を高分子中に分散した場合には、液晶を配向させる色素自体が低分子であり、実用的な観点から考えて、その分散系は熱的または光に対する安定性の面に課題が残されている。更に、特定のポリイミドに偏光した紫外線を照射する方法に於いては、ポリイミド自体としては耐熱性等の信頼性は高いものの、その配向機構が光による分解に起因していると考えられることから、今後実用面に於いて必ずしも十分な信頼性が得られない可能性がある。更に、十分な液晶配向を得るための光照射エネルギーが高くなってしまい、生産性が低下するといった問題を有している。   In polymer material systems in which photoreactive groups are introduced into polymer side chains such as polyvinyl cinnamate, the thermal stability of orientation is not sufficient, and sufficient reliability is not yet obtained in practical use. . In addition, when a low-molecular dichroic dye is dispersed in a polymer, the dye itself that aligns the liquid crystal is a low-molecular substance. From a practical viewpoint, the dispersion system is stable against heat or light. There are still issues to be solved. Furthermore, in the method of irradiating polarized UV light to a specific polyimide, although the polyimide itself has high reliability such as heat resistance, it is considered that its orientation mechanism is caused by decomposition by light, In the future, sufficient reliability may not be obtained in practical use. Furthermore, the light irradiation energy for obtaining sufficient liquid crystal alignment becomes high, resulting in a problem that productivity is lowered.

これらの点で、従来の光照射による液晶配向に対して提案されている材料は配向力及びその安定性、更に感度という面で必ずしも十分ではなく、光照射によるラビングレス配向を実用化する上で大きな課題となっているのが実状である。
特開昭61−47932号公報 特開平4−2844号公報 特開平6−43458号公報 特開平4−172320号公報 特開平4−296820号公報 特開平4−311926号公報等 特開平4−97130号公報 特開平2−19836号公報 特開平2−2515号公報 特開平5−53513号公報 特開平4−245224号公報 小林等、ジャパニーズ ジャーナル オブ アプライド フィジックス、27巻、475ページ(1998年)(S.Kobayashi et.al.,Jpn.J.Appl.Phys.,27,475(1998)) ギボンズ等、ネーチャー、351巻、49ページ(1991年)(W.M.Gibbons et.al.,Nature,351,49(1991))、 川西等、モレキュラー クリスタル アンド リキッド クリスタル、218巻、153ページ(1992年)(Y.Kawanishi et.al.,Mol.Cryst.Liq.Cryst.,218,153(1992))、 シャト等、ジャパニーズ ジャーナル オブ アプライド フィジックス、31巻、2155ページ(1992年)(M.Shadt et.al.,Jpn.J.Appl.Phys.,31,2155(1992))、 飯村等、ジャパニーズ ジャーナル オブ アプライド フィジックス、32巻、L93ページ(1993年)(Y.Iimura et.al.,Jpn.J.Appl.Phys.,32,L93(1993))
In these respects, the materials proposed for the conventional liquid crystal alignment by light irradiation are not necessarily sufficient in terms of alignment force, stability and sensitivity, and in order to put rubbing-less alignment by light irradiation into practical use. The actual situation is a major issue.
JP-A 61-47932 JP-A-4-2844 JP-A-6-43458 JP-A-4-172320 JP-A-4-296820 JP 4-31926 A, etc. JP-A-4-97130 Japanese Patent Laid-Open No. 2-19836 JP-A-2-2515 JP-A-5-53513 JP-A-4-245224 Kobayashi et al., Japanese Journal of Applied Physics, 27, 475 (1998) (S. Kobayashi et. Al., Jpn. J. Appl. Phys., 27, 475 (1998)). Gibbons et al., Nature, 351, 49 (1991) (WM Gibbons et., Nature, 351, 49 (1991)), Kawanishi et al., Molecular Crystal and Liquid Crystal, 218, 153 (1992) (Y. Kawanishi et. Al., Mol. Cryst. Liq. Cryst., 218, 153 (1992)), Shuto et al., Japanese Journal of Applied Physics, Vol. 31, p. 2155 (1992) (M. Shadt et. Al., Jpn. J. Appl. Phys., 31, 2155 (1992)), Iimura et al., Japanese Journal of Applied Physics, 32, L93 (1993) (Y. Iimura et. Al., Jpn. J. Appl. Phys., 32, L93 (1993))

本発明の目的は、液晶配向膜への光照射により液晶配向膜のラビングを必要とせずに液晶を配向させる液晶配向処理剤であって、特定の単位構造を有する高分子材料系で、均一且つ安定な液晶配向を効率的に発現し、更に発現した配向が高い熱的安定性及び耐光性を有するものである液晶配向処理剤を提供することにある。   An object of the present invention is a liquid crystal alignment treatment agent that aligns liquid crystal without requiring rubbing of the liquid crystal alignment film by light irradiation to the liquid crystal alignment film, and is a polymer material system having a specific unit structure, which is uniform and An object of the present invention is to provide a liquid crystal aligning agent that efficiently expresses stable liquid crystal alignment, and further has high thermal stability and light resistance.

本発明者らは、上記課題を解決すべく鋭意努力検討した結果本発明を完成させるに至った。即ち、本発明は、液晶配向処理剤を用いて基板上に形成された高分子薄膜に光または電子線を基板面に対して照射し、次いで該基板上にラビング処理なしに液晶を配向させる方法において用いられるところの液晶配向処理剤であって、高分子主鎖中に下記一般式(1)〜(7)   As a result of diligent efforts to solve the above problems, the present inventors have completed the present invention. That is, the present invention is a method of irradiating a polymer thin film formed on a substrate with a liquid crystal aligning agent to the substrate surface with light or an electron beam, and then aligning the liquid crystal on the substrate without rubbing treatment. In the polymer main chain, the following general formulas (1) to (7)

Figure 0004610596
Figure 0004610596

(R1、R2及びR3はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基
またはプロパルギル基を表す。)
で表されるいずれかの結合を有し、上記結合の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する数平均分子量が1000〜300000の高分子化合物からなる、液晶配向処理剤及びそれを用いた液晶素子、並びに該液晶配向処理剤を用いる液晶の配向方法に関する。
(R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group.)
And a divalent or trivalent aromatic group is directly bonded to both ends of the bond, or a divalent or trivalent aromatic group is directly bonded to one end of the bond. And a liquid crystal aligning agent comprising a polymer compound having a number average molecular weight of 1,000 to 300,000 in which a divalent or trivalent alicyclic hydrocarbon group is directly bonded to the other end, and a liquid crystal element using the same, and The present invention relates to a liquid crystal alignment method using the liquid crystal alignment treatment agent.

上述したように、偏光照射を用いた液晶配向を実際に応用する場合には、液晶を単に初期的配向させるだけでなく、信頼性且つ生産性の観点から、より効率的に且つ安定な配向を発現させることが必要とされる。また、実際の工業的な応用を考えた場合、熱的にまたは光にも高い安定性をもった高分子構造を選択することが望まれ、且つより幅広い構造選択幅をもつ高分子材料系を使用した液晶処理剤を見いだすことが望まれる。   As described above, when the liquid crystal alignment using polarized light irradiation is actually applied, not only the initial alignment of the liquid crystal but also the more efficient and stable alignment from the viewpoint of reliability and productivity. It is required to be expressed. In consideration of actual industrial application, it is desired to select a polymer structure having high stability against heat or light, and a polymer material system having a wider range of structure selection is desired. It is desired to find the liquid crystal processing agent used.

本発明に於ける液晶配向処理剤とは、液晶の配向、プレチルト角等の制御を行うために、ガラスまたはプラスチック等の電極基板に塗布して該基板上に高分子薄膜を形成するものを意味する。即ち、本発明の液晶配向処理剤は、透明電極のついたガラスまたはプラスチックフィルム等の電極基板上に、本発明の液晶配向処理剤を塗布、焼成することにより高分子薄膜を形成し、次いで膜面に光または電子線を照射することによりラビング処理を必要としない液晶配向膜を作製するために使用するものである。本発明の液晶配向処理剤は、通常、溶液の形で使用される。   The liquid crystal aligning agent in the present invention means a material that forms a polymer thin film on an electrode substrate such as glass or plastic in order to control liquid crystal alignment, pretilt angle, and the like. To do. That is, the liquid crystal aligning agent of the present invention forms a polymer thin film by applying and baking the liquid crystal aligning agent of the present invention on an electrode substrate such as a glass or plastic film with a transparent electrode, It is used to produce a liquid crystal alignment film that does not require rubbing by irradiating the surface with light or an electron beam. The liquid crystal aligning agent of the present invention is usually used in the form of a solution.

本発明の液晶配向処理剤で形成される高分子薄膜としては、該高分子薄膜を形成する高分子化合物が主鎖中に上記一般式(1)〜(7)で表されるいずれかの結合を有し、且つ上記結合の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合し、もう一方の片端に2価または3価の脂環式炭化水素基が直接結合した構造が導入されていることが、光または電子線照射時の効率的且つ均一安定な液晶配向の発現等、本発明の効果を奏する上で重要である。また、この構造を含有する高分子の単位構造が20から100モル%含まれることが、効率的に液晶を配向させる観点から好ましい。上記の芳香族基及び脂環式炭化水素基は置換基を有していてもよい。更に、高分子の持つガラス転移点が200℃以上であることが配向の熱的安定性を得る上で好ましい。基板上に形成された高分子薄膜が光照射によって化学的に変化し、その反応生成物が200℃以上のガラス転移点を有するものであってもよい。なお、光または電子線の照射により二量化反応または異性化反応が誘起される下記一般式(8)〜(17)   As the polymer thin film formed with the liquid crystal aligning agent of the present invention, the polymer compound forming the polymer thin film is bonded to any one of the general formulas (1) to (7) in the main chain. And a divalent or trivalent aromatic group is directly bonded to both ends of the bond, or a divalent or trivalent aromatic group is directly bonded to one end of the bond, and the other end is The introduction of a structure in which a divalent or trivalent alicyclic hydrocarbon group is directly bonded exhibits the effects of the present invention, such as the expression of an efficient and uniform stable liquid crystal alignment during light or electron beam irradiation. Is important above. Moreover, it is preferable from a viewpoint of aligning a liquid crystal efficiently that 20-100 mol% of polymer unit structures containing this structure are contained. Said aromatic group and alicyclic hydrocarbon group may have a substituent. Furthermore, the glass transition point of the polymer is preferably 200 ° C. or higher in order to obtain thermal stability of the orientation. The polymer thin film formed on the substrate may be chemically changed by light irradiation, and the reaction product may have a glass transition point of 200 ° C. or higher. In addition, dimerization reaction or isomerization reaction is induced by irradiation with light or electron beam. The following general formulas (8) to (17)

Figure 0004610596
Figure 0004610596

(R4、R5、R6、R7、R8及びR9はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、置換アルキル基、置換アルコキシ基、カルボキシル基、アルコキシカルボニル基またはシアノ基を表す。)
で表される置換基を含有する必要はない。
(R 4 , R 5 , R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, a substituted alkoxy group, a carboxyl group, an alkoxycarbonyl group or a cyano group. .)
It is not necessary to contain the substituent represented by.

前記一般式(1)〜(7)中R1〜R3で表される置換基のうちアルキル基としては、メチル、エチル、プロピル、i−プロピル、ブチル、i−ブチル、s−プロピル及びt−ブチル等の低級アルキル基に加え、通常用いられる炭素数24程度までの長鎖アルキル基が好適な例として挙げられる。また、置換アルキル基としては、トリフルオロメチル、2,2,2−トリフルオロエチル、ペルフルオロエチル、3,3,3−トリフルオロプロピル、ペルフルオロプロピル、ヘキサフルオロ−i−プロピル、3,3,4,4,4−ペンタフルオロブチル及びペルフルオロブチル等の低級含フッ素アルキル基、通常用いられる炭素数24程度までの長鎖含フッ素アルキル基、ベンジル基、及びベンゼン環上にハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基等が置換したベンジル基等が好適な例として挙げられる。 Among the substituents represented by R 1 to R 3 in the general formulas (1) to (7), examples of the alkyl group include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-propyl, and t. In addition to a lower alkyl group such as -butyl, a long-chain alkyl group having up to about 24 carbon atoms that is usually used can be mentioned as a suitable example. Examples of the substituted alkyl group include trifluoromethyl, 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, perfluoropropyl, hexafluoro-i-propyl, 3,3,4 , 4,4-pentafluorobutyl, perfluorobutyl and other lower fluorine-containing alkyl groups, commonly used long-chain fluorine-containing alkyl groups having up to about 24 carbon atoms, benzyl groups, and halogen atoms, alkyl groups, alkoxy groups on the benzene ring Preferred examples include a benzyl group substituted with a group, an alkoxycarbonyl group, and the like.

本発明に於ける高分子化合物としては、上記一般式(1)〜(7)で表されるいずれかの結合を有し、上記結合の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造を含有していれば特に限定されないが、上記の観点から、ポリアミド、ポリウレタン、ポリウレア、または上記一般式(1)〜(7)で表されるいずれかの結合を含有するポリイミド前駆体またはそのポリイミド前駆体を化学的または熱的にイミド化して得られるポリイミド等が好ましい。   The polymer compound in the present invention has any of the bonds represented by the general formulas (1) to (7), and a divalent or trivalent aromatic group is directly bonded to both ends of the bond. Or a structure in which a divalent or trivalent aromatic group is directly bonded to one end of the bond and a divalent or trivalent alicyclic hydrocarbon group is directly bonded to the other end. Although not particularly limited, from the above viewpoint, the polyimide precursor or the polyimide precursor containing any one of the bonds represented by the general formulas (1) to (7) is chemically obtained from the above viewpoint. Alternatively, polyimide obtained by thermal imidization is preferable.

例えば、高分子化合物として下記一般式(18)または、一般式(19a)および(19b)   For example, as the polymer compound, the following general formula (18) or general formulas (19a) and (19b)

Figure 0004610596
Figure 0004610596

(R10、R11、R12及びR13は一般式(20)〜(23) (R 10 , R 11 , R 12 and R 13 are the general formulas (20) to (23)

Figure 0004610596
Figure 0004610596

(X1、X2、X3、X4、X5及びX6はそれぞれ独立に単結合、O、CO2、OCO、CH2O、NHCOまたはCONHを表し、R14、R15、R16、R17、R18及びR19はそれぞれ独立に水素原子、ハロゲン原子、C1〜C24のアルキル基、C1〜C24の含フッ素アルキル基、アリル基、プロパルギル基、フェニル基または置換フェニル基を表し、Y1はO、S
、CO、CO2SO2、CH2、NH、NHCO、Y2−Ar1−Y3、Y4−(CH2)n1
5またはY6−Ar2−R20−Ar3−Y7を表し、Y2、Y3、Y4、Y5、Y6及びY7はそ
れぞれ独立にO、S、CO、CO2、SO2、CH2、NHまたはNHCOを表し、n1は1〜10の整数を表し、R20はC1〜C5の直鎖状または分岐状の低級アルキレン基、フルオロアルキレン基もしくはアルキレンジオキシ基を表し、更に、Ar1、Ar2及びAr3
それぞれ独立に下記一般式(24)、(25)または(26)
(X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represents a single bond, O, CO 2 , OCO, CH 2 O, NHCO or CONH, and R 14 , R 15 , R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, halogen atom, C 1 -C 24 alkyl group, C 1 -C 24 fluorine-containing alkyl group, allyl group, propargyl group, phenyl group or substituted phenyl. Y 1 represents O, S
, CO, CO 2, SO2, CH 2, NH, NHCO, Y 2 -Ar 1 -Y 3, Y 4 - (CH 2) n 1 -
Y 5 or Y 6 —Ar 2 —R 20 —Ar 3 —Y 7 , wherein Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and Y 7 are each independently O, S, CO, CO 2 , SO 2 , CH 2 , NH or NHCO, n 1 represents an integer of 1 to 10, R 20 represents a C 1 to C 5 linear or branched lower alkylene group, fluoroalkylene group or alkylenedioxy In addition, Ar 1 , Ar 2 and Ar 3 each independently represent the following general formula (24), (25) or (26)

Figure 0004610596
Figure 0004610596

(X7、X8、X9、X10及びX11はそれぞれ独立に単結合、O、CO2、OCO、CH2
、NHCOまたはCONHを表し、R21、R22、R23、R24及びR25はそれぞれ独立に水素原子、ハロゲン原子、C1〜C24のアルキル基、C1〜C24の含フッ素アルキル基、アリル基、プロパルギル基、フェニル基または置換フェニル基を表し、m1は1〜4の整数を
表し、m2は1〜3の整数を表す。ただし、R14、R15、R16、R17、R18、R19、R21
、R22、R23、R24及びR25が水素原子またはハロゲン原子を表す場合には、X1、X2、X3、X4、X5、X6、X7、X8、X9、X10及びX11は単結合を表す。)
で表される基を示す。)
で表される2価の有機基を示し、Ra1、Ra2、Ra3及びRa4はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基またはプロパルギル基を表す。)
で表される繰り返し単位よりなるポリアミドを挙げることができる。
(X 7 , X 8 , X 9 , X 10 and X 11 are each independently a single bond, O, CO 2 , OCO, CH 2 O
Represents NHCO or CONH, and R 21 , R 22 , R 23 , R 24 and R 25 each independently represent a hydrogen atom, a halogen atom, a C 1 -C 24 alkyl group, or a C 1 -C 24 fluorine-containing alkyl group. , An allyl group, a propargyl group, a phenyl group or a substituted phenyl group, m 1 represents an integer of 1 to 4, and m 2 represents an integer of 1 to 3. However, R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 21
, R 22 , R 23 , R 24 and R 25 represent a hydrogen atom or a halogen atom, X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 and X 11 represent a single bond. )
The group represented by these is shown. )
R a1 , R a2 , R a3 and R a4 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group. )
And polyamides composed of repeating units represented by the formula:

更に、実用性及び汎用性を考慮すれば、上記一般式(18)に於けるR10及びR11、または一般式(19a)及び(19b)に於けるR12及びR13がそれぞれ独立に下記式(27)〜(41) Further, in consideration of practicality and versatility, R 10 and R 11 in the general formula (18) or R 12 and R 13 in the general formulas (19a) and (19b) are each independently Formulas (27) to (41)

Figure 0004610596
Figure 0004610596

で表される基から選ばれるものであることが好ましい。 It is preferable that it is what is chosen from group represented by these.

上記一般式(20)〜(26)中、R14、R15、R16、R17、R18、R19、R21、R22、R23、R24、及びR25で表されるC1〜C24のアルキル基としては、メチル、エチル、
プロピル、i−プロピル、ブチル、i−ブチル、s−ブチル及びt−ブチル等の低級アルキル基に加え、通常用いられる長鎖アルキル基、及びシクロヘキシル基、ビシクロヘキシル基等の脂環式炭化水素基を含むアルキル基が挙げられる。C1〜C24の含フッ素アルキ
ル基としては、トリフルオロメチル、2,2,2−トリフルオロエチル、ペルフルオロエチル、3,3,3−トリフルオロプロピル、ペルフルオロプロピル、ヘキサフルオロ−i−プロピル、3,3,4,4,4−ペンタフルオロブチル及びペルフルオロブチル等の低
級含フッ素アルキル基に加え、通常用いられる長鎖含フッ素アルキル基が挙げられる。
C represented by R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 21 , R 22 , R 23 , R 24 , and R 25 in the general formulas (20) to (26). Examples of the 1 to C 24 alkyl group include methyl, ethyl,
In addition to lower alkyl groups such as propyl, i-propyl, butyl, i-butyl, s-butyl and t-butyl, commonly used long-chain alkyl groups, and alicyclic hydrocarbon groups such as cyclohexyl and bicyclohexyl groups An alkyl group containing Examples of the fluorine-containing alkyl group of C 1 -C 24, trifluoromethyl, 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, perfluoropropyl, hexafluoro -i- propyl, In addition to lower fluorine-containing alkyl groups such as 3,3,4,4,4-pentafluorobutyl and perfluorobutyl, commonly used long-chain fluorine-containing alkyl groups can be mentioned.

また、置換フェニル基における置換基としては、ハロゲン原子、アルキル基、含フッ素アルキル基、アルコキシ基、含フッ素アルコキシ基、アルコキシカルボニル基、含フッ素アルコキシカルボニル基等が挙げられる。   In addition, examples of the substituent in the substituted phenyl group include a halogen atom, an alkyl group, a fluorine-containing alkyl group, an alkoxy group, a fluorine-containing alkoxy group, an alkoxycarbonyl group, and a fluorine-containing alkoxycarbonyl group.

上記一般式中、Ra1、Ra2、Ra3及びRa4で表される基は前記一般式(1)中のR1
表される基と同様である。Ra1、Ra2、Ra3及びRa4で表される基が水素原子以外の基を含む上記ポリアミドは、以下に示す方法で得られる。
In the above general formula, the groups represented by R a1 , R a2 , R a3 and R a4 are the same as the groups represented by R 1 in the general formula (1). The above-mentioned polyamide in which the group represented by R a1 , R a2 , R a3 and R a4 contains a group other than a hydrogen atom can be obtained by the method shown below.

a1、Ra2、Ra3及びRa4で表される基が水素原子であるポリアミドのアミド基のN位に既知の高分子反応(モーレイ等、ジャーナル オブ アプライド ポリマー サイエンス、45巻、1983ページ(1992年)(T.H.Mourcy et.al.,J.A
ppl.Polym.Sci.,45,1983(1992))、高柳等、ジャーナル
オブ ポリマー サイエンス、ポリマー ケミストリー エディション、19巻、1133ページ(1981年)(M.Takayanagi et.al.,J.Polym.Sc
i.,Polym.Chem.Ed.,19,1133(1981))等参照)を利用して所望の置換基を所望の割合で導入することにより得られる。
A known polymer reaction at the N-position of the amide group of the polyamide in which the groups represented by R a1 , R a2 , R a3 and R a4 are hydrogen atoms (Moray et al., Journal of Applied Polymer Science, Volume 45, 1983 ( (1992) (TH Mourcy et al., JA)
ppl. Polym. Sci. , 45, 1983 (1992)), Takayanagi et al., Journal
Of Polymer Science, Polymer Chemistry Edition, Vol. 19, p. 1133 (1981) (M. Takayanagi et.al., J. Polym. Sc)
i. , Polym. Chem. Ed. , 19, 1133 (1981))) and the like, by introducing a desired substituent at a desired ratio.

また、以下に例示するジアミンモノマー化合物のN位にあらかじめ所望の置換基を導入し、得られた化合物をモノマーとして用いて重合反応を行うことにより製造することも可能である。   Moreover, it is also possible to manufacture by introducing a desired substituent into the N-position of the diamine monomer compound exemplified below in advance and performing a polymerization reaction using the obtained compound as a monomer.

上記一般式(18)中のR10に対応するジカルボン酸成分を構築するためのモノマー化合物の具体例としては、テレフタル酸、イソフタル酸、2−メチル−イソフタル酸、4−メチル−イソフタル酸、5−メチル−イソフタル酸、5−アリルオキシイソフタル酸、5−アリルオキシカルボニルイソフタル酸、5−プロパルギルオキシイソフタル酸、5−アセチルオキシイソフタル酸、5−ベンゾイルアミノイソフタル酸、テトラフルオロイソフタル酸、メチルテレフタル酸、テトラフルオロテレフタル酸、2,6−ナフタレンジカルボン酸、1,6−ナフタレンジカルボン酸、2,6−アントラセンジカルボン酸、1,6−アントラセンジカルボン酸、4,4′−ジカルボキシビフェニル、3,4′−ジカルボキシビフェニル、2,3′−ジカルボキシビフェニル、2,4′−ジカルボキシビフェニル、4,4′−ジカルボキシジフェニルエーテル、3,4′−ジカルボキシジフェニルエーテル、2,3′−ジカルボキシジフェニルエーテル、2,4′−ジカルボキシジフェニルエーテル、3,3′−ジカルボキシジフェニルエーテル、3,3′−ジメチル−4,4′−ジカルボキシビフェニル、4,4′−ジメチル−3,3′−ジカルボキシビフェニル、2,2′−ジメチル−4,4′−ジカルボキシビフェニル、3,3′−ジメトキシ−4,4′−ジカルボキシビフェニル、4,4′−ジメトキシ−3,3′−ジカルボキシビフェニル、2,2′−ジメトキシ−4,4′−ジカルボキシビフェニル、4,4′−ジカルボキシベンゾフェノン、3,4′−ジカルボキシベンゾフェノン、3,3′−ジカルボキシベンゾフェノン、4,4′−ジカルボキシジフェニルメタン、3,4′−ジカルボキシジフェニルメタン、3,3′−ジカルボキシジフェニルメタン、3,3′−ジメチル−4,4′−ジカルボキシジフェニルメタン、2,2′−ジメチル−4,4′−ジカルボキシジフェニルメタン、4,4′−ジメチル−3,3′−ジカルボキシジフェニルメタン、3,3′−ジメトキシ−4,4′−ジカルボキシジフェニルメタン、2,2′−ジメトキシ−4,4′−ジカルボキシジフェニルメタン、4,4′−ジメトキシ−3,3′−ジカルボキシジフェニルメタン、4,4′−ジカルボキシベンズアニリド、3,4′−ジカルボキシベンズアニリド、4,4′−ジカルボキシジフェニルスルホン、3,4′−ジカルボキシジフェニルスルホン、3,3′−ジカルボキシジフェニルスルホン、2,2−ビス(4−カルボキシフェニル)プロパン、1,4−ビス(4−カルボキシフェノキシ)ベンゼ
ン、1,3−ビス(4−カルボキシフェノキシ)ベンゼン、1,3−ビス(4−カルボキシベンズアミド)ベンゼン、1,4−ビス(4−カルボキシベンズアミド)ベンゼン、ビス(4−カルボキシフェノキシフェニル)メタン、4,4′−ビス(4−カルボキシフェノキシ)ジフェニルスルホン、2,2−ビス[4−(4−カルボキシフェノキシ)フェニル]プロパン、2,2−ビス(4−カルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−カルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、1,5−ビス(4−カルボキシフェニル)ペンタン、1,4−ビス(4−カルボキシフェニル)ブタン、1,3−ビス(4−カルボキシフェニル)プロパン、ジ(4−カルボキシフェニル)ペンタン−1,5−ジオエート、ジ(4−カルボキシフェニル)ヘキサン−1,6−ジオエート、ジ(4−カルボキシフェニル)ヘプタン−1,7−ジオエート等の芳香族または芳香族含有ジカルボン酸及びこれらの酸ハロゲン化物並びにアルキルエステル化物、更には1,3−ジカルボキシシクロヘキサン、1,4−ジカルボキシシクロヘキサン、1,2−ジカルボキシシクロブタン、1,3−ジカルボキシシクロブタン、ビス(4−カルボキシシクロヘキシル)メタン、ビス(4−カルボキシ−3−メチルシクロヘキシル)メタン、ビス(4−カルボキシシクロヘキシル)エーテル、ビス(4−カルボキシ−3−メチルシクロヘキシル)エーテル等の脂環式ジカルボン酸及びこれらの酸ハロゲン化物並びにアルキルエステル化物が挙げられ、またこれらの2種類以上の混合物を使用することもできる。
Specific examples of the monomer compound for constructing the dicarboxylic acid component corresponding to R 10 in the general formula (18) include terephthalic acid, isophthalic acid, 2-methyl-isophthalic acid, 4-methyl-isophthalic acid, 5 -Methyl-isophthalic acid, 5-allyloxyisophthalic acid, 5-allyloxycarbonylisophthalic acid, 5-propargyloxyisophthalic acid, 5-acetyloxyisophthalic acid, 5-benzoylaminoisophthalic acid, tetrafluoroisophthalic acid, methylterephthalic acid , Tetrafluoroterephthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,6-anthracenedicarboxylic acid, 1,6-anthracenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3,4 '-Dicarboxybiphenyl, 2,3'-di Ruboxybiphenyl, 2,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether, 3,4'-dicarboxydiphenyl ether, 2,3'-dicarboxydiphenyl ether, 2,4'-dicarboxydiphenyl ether, 3 , 3'-dicarboxydiphenyl ether, 3,3'-dimethyl-4,4'-dicarboxybiphenyl, 4,4'-dimethyl-3,3'-dicarboxybiphenyl, 2,2'-dimethyl-4,4 '-Dicarboxybiphenyl, 3,3'-dimethoxy-4,4'-dicarboxybiphenyl, 4,4'-dimethoxy-3,3'-dicarboxybiphenyl, 2,2'-dimethoxy-4,4'- Dicarboxybiphenyl, 4,4'-dicarboxybenzophenone, 3,4'-dicarboxybenzophene 3,3'-dicarboxybenzophenone, 4,4'-dicarboxydiphenylmethane, 3,4'-dicarboxydiphenylmethane, 3,3'-dicarboxydiphenylmethane, 3,3'-dimethyl-4,4'- Dicarboxydiphenylmethane, 2,2'-dimethyl-4,4'-dicarboxydiphenylmethane, 4,4'-dimethyl-3,3'-dicarboxydiphenylmethane, 3,3'-dimethoxy-4,4'-dicarboxy Diphenylmethane, 2,2'-dimethoxy-4,4'-dicarboxydiphenylmethane, 4,4'-dimethoxy-3,3'-dicarboxydiphenylmethane, 4,4'-dicarboxybenzanilide, 3,4'-di Carboxybenzanilide, 4,4'-dicarboxydiphenyl sulfone, 3,4'-dicarboxy Sidiphenylsulfone, 3,3'-dicarboxydiphenylsulfone, 2,2-bis (4-carboxyphenyl) propane, 1,4-bis (4-carboxyphenoxy) benzene, 1,3-bis (4-carboxyphenoxy) ) Benzene, 1,3-bis (4-carboxybenzamido) benzene, 1,4-bis (4-carboxybenzamido) benzene, bis (4-carboxyphenoxyphenyl) methane, 4,4'-bis (4-carboxyphenoxy) ) Diphenylsulfone, 2,2-bis [4- (4-carboxyphenoxy) phenyl] propane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 2,2-bis [4- (4-carboxyphenoxy) ) Phenyl] hexafluoropropane, 1,5-bis (4-carboxyphene) L) pentane, 1,4-bis (4-carboxyphenyl) butane, 1,3-bis (4-carboxyphenyl) propane, di (4-carboxyphenyl) pentane-1,5-dioate, di (4-carboxy) Aromatic or aromatic-containing dicarboxylic acids such as phenyl) hexane-1,6-dioate, di (4-carboxyphenyl) heptane-1,7-dioate and their acid halides and alkyl esterified products, and further 1,3 -Dicarboxycyclohexane, 1,4-dicarboxycyclohexane, 1,2-dicarboxycyclobutane, 1,3-dicarboxycyclobutane, bis (4-carboxycyclohexyl) methane, bis (4-carboxy-3-methylcyclohexyl) methane Bis (4-carboxycyclohexyl) ether, Scan (4-carboxy-3-methylcyclohexyl) alicyclic dicarboxylic acids and halides and alkyl ester of these acids are exemplified such as ether, it can also be used mixtures of two or more thereof.

更に、光反応の感度の観点および原料の入手し易さ等から、1,3−ジカルボキシシクロヘキサン、1,4−ジカルボキシシクロヘキサン、イソフタル酸、テレフタル酸、4−メチルイソフタル酸、メチルテレフタル酸、4,4′−ジカルボキシビフェニル、3,3′−ジメチル−4,4′−ジカルボキシビフェニル、4,4′−ジカルボキシジフェニルエーテル、3、4′−ジカルボキシジフェニルエーテル、4,4′−ジカルボキシジフェニルメタン、3,3′−ジメチル−4,4′−ジカルボキシジフェニルメタン等のジカルボン酸およびその誘導体を使用することが好ましい。   Furthermore, from the viewpoint of the sensitivity of photoreaction and the availability of raw materials, etc., 1,3-dicarboxycyclohexane, 1,4-dicarboxycyclohexane, isophthalic acid, terephthalic acid, 4-methylisophthalic acid, methyl terephthalic acid, 4,4'-dicarboxybiphenyl, 3,3'-dimethyl-4,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether, 3,4'-dicarboxydiphenyl ether, 4,4'-dicarboxy It is preferable to use dicarboxylic acids such as diphenylmethane and 3,3′-dimethyl-4,4′-dicarboxydiphenylmethane and their derivatives.

上記一般式(18)中のR11に対応するジアミン成分を構築するためのモノマー化合物の具体例としては、p−フェニレンジアミン、m−フェニレンジアミン、2−メチル−m−フェニレンジアミン、4−メチル−m−フェニレンジアミン、5−メチル−m−フェニレンジアミン、2,4,6−トリメチル−m−フェニレンジアミン、5−アリルオキシ−m−フェニレンジアミン、5−アリルオキシメチル−m−フェニレンジアミン、メチル−p−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、2,6−ナフタレンジアミン、1,6−ナフタレンジアミン、2,6−アントラセンジアミン、1,6−アントラセンジアミン、2,7−ジアミノフルオレン、4,4′−ジアミノビフェニル、3,4′−ジアミノビフェニル、2,3′−ジアミノビフェニル、2,4′−ジアミノビフェニル、4,4′−ジアミノジフェニルエーテル、3,4′−ジアミノジフェニルエーテル、2,3′−ジアミノジフェニルエーテル、2,4′−ジアミノジフェニルエーテル、3,3′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルスルフィド、3,3′−ジメチル−4,4′−ジアミノビフェニル、4,4′−ジメチル−3,3′−ジアミノビフェニル、2,2′−ジメチル−4,4′−ジアミノビフェニル、3,3′−ジメトキシ−4,4′−ジアミノビフェニル、4,4′−ジメトキシ−3,3′−ジアミノビフェニル、2,2′−ジメトキシ−4,4′−ジアミノビフェニル、4,4′−ジアミノベンゾフェノン、3,4′−ジアミノベンゾフェノン、3,3′−ジアミノベンゾフェノン、4,4′−ジアミノジフェニルメタン、3,4′−ジアミノジフェニルメタン、3,3′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、4,4′−ジメチル−3,3′−ジアミノジフェニルメタン、2,2′−ジメチル−4,4′−ジアミノジフェニルメタン、3,3′,5,5′−テトラメチル−4,4′−ジアミノジフェニルメタン、3,3′−ジメトキシ−4,4′−ジアミノジフェニルメタン、4,4′−ジメトキシ−3,3′−ジアミノジフェニルメタン、2,2′−
ジメトキシ−4,4′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルエタン、4,4′−ジアミノジフェニルアミン、3,4′−ジアミノジフェニルアミン、4,4′−ジアミノベンズアニリド、3,4′−ジアミノベンズアニリド、4,4′−ジアミノジフェニルスルホン、3,4′−ジアミノジフェニルスルホン、3,3′−ジアミノジフェニルスルホン、2,2′−ジアミノジフェニルプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノベンズアミド)ベンゼン、1,4−ビス(4−アミノベンズアミド)ベンゼン、4,4′−(4−アミノフェノキシフェニル)メタン、4,4′−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,5−ビス(4−アミノフェニル)ペンタン、1,4−ビス(4−アミノフェニル)ブタン、1,3−ビス(4−アミノフェニル)プロパン、ジ(4−アミノフェニル)ペンタン−1,5−ジオエート、ジ(4−アミノフェニル)ヘキサン−1,6−ジオエート、ジ(4−アミノフェニル)ヘプタン−1,7−ジオエート等の芳香族または芳香族含有ジアミン化合物が挙げられる。また、プレチルト角を高める目的で、4,4′−ジアミノ−3−ドデシルジフェニルエーテル、1−ドデシルオキシ−2,4−ジアミノベンゼン等に代表される長鎖アルキル基を有するジアミンを使用することもできる。これらの2種類以上の混合物を使用することもできる。
Specific examples of the monomer compound for constructing the diamine component corresponding to R 11 in the general formula (18) include p-phenylenediamine, m-phenylenediamine, 2-methyl-m-phenylenediamine, and 4-methyl. -M-phenylenediamine, 5-methyl-m-phenylenediamine, 2,4,6-trimethyl-m-phenylenediamine, 5-allyloxy-m-phenylenediamine, 5-allyloxymethyl-m-phenylenediamine, methyl- p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,6-naphthalenediamine, 1,6-naphthalenediamine, 2,6-anthracenediamine, 1,6-anthracenediamine, 2,7-diaminofluorene 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl 2,3'-diaminobiphenyl, 2,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 3, 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-dimethyl-3,3'-diaminobiphenyl, 2,2'- Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'-dimethoxy-3,3'-diaminobiphenyl, 2,2'-dimethoxy-4,4 '-Diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, , 3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4 '-Dimethyl-3,3'-diaminodiphenylmethane,2,2'-dimethyl-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 3,3 '-Dimethoxy-4,4'-diaminodiphenylmethane, 4,4'-dimethoxy-3,3'-diaminodiphenylmethane, 2,2'-
Dimethoxy-4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethane, 4,4'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 4,4'-diaminobenzanilide, 3,4'-diamino Benzanilide, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-diaminodiphenylpropane, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminobenzamido) benzene, 1,4-bis (4-aminobenzamido) benzene, 4,4 '-(4-amino) Phenoxyphenyl) methane, 4,4'-bis (4-aminophenoxy) diphenylsulfur 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane, 1,5-bis (4-aminophenyl) pentane, 1,4-bis (4-aminophenyl) butane, 1,3-bis (4-aminophenyl) propane, di (4-aminophenyl) ) Aromatic or aromatic-containing diamine compounds such as pentane-1,5-dioate, di (4-aminophenyl) hexane-1,6-dioate, and di (4-aminophenyl) heptane-1,7-dioate. It is done. In addition, for the purpose of increasing the pretilt angle, a diamine having a long-chain alkyl group represented by 4,4′-diamino-3-dodecyldiphenyl ether, 1-dodecyloxy-2,4-diaminobenzene, or the like can be used. . A mixture of two or more of these can also be used.

更に、光反応の感度の観点および原料の入手し易さ等から、p−フェニレンジアミン、m−フェニレンジアミン、メチル−p−フェニレンジアミン、4−メチル−m−フェニレンジアミン、2,4,6−トリメチル−m−フェニレンジアミン、4,4′−ジアミノビフェニル、3,3′−ジメチル−4,4′−ジアミノビフェニル、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルスルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン等のジアミン化合物を使用することが好ましい。   Furthermore, p-phenylenediamine, m-phenylenediamine, methyl-p-phenylenediamine, 4-methyl-m-phenylenediamine, 2,4,6-, from the viewpoint of the sensitivity of photoreaction and the availability of raw materials. Trimethyl-m-phenylenediamine, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3 ' It is preferable to use a diamine compound such as -dimethyl-4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane.

上記一般式(19a)および(19b)中のR12及びR13に対応するアミノカルボン酸成分を構築するためのモノマー化合物の具体例としては、m−アミノ安息香酸、p−アミノ安息香酸、4−メチル−m−アミノ安息香酸、3−メチル−p−アミノ安息香酸、2−アミノ−6−カルボキシナフタレン、1−アミノ−5−カルボキシナフタレン、1−アミノ−6−カルボキシアントラセン、2−アミノ−7−カルボキシアントラセン、4−(4−アミノフェニル)安息香酸、3−(4−アミノフェニル)安息香酸、4−(3−アミノフェニル)安息香酸、4−(4−アミノフェノキシ)安息香酸、3−(4−アミノフェノキシ)安息香酸、4−(3−アミノフェノキシ)安息香酸、4−アミノ−4′−カルボキシベンゾフェノン、3−アミノ−4′−カルボキシベンゾフェノン、4−アミノ−3′−カルボキシベンゾフェノン、4−(4−アミノ−3−メチルフェニル)o−トルイル酸、4−(4−アミノ−2−メチルフェニル)o−トルイル酸、4−アミノフェニル−4−カルボキシフェニルメタン、3−アミノフェニル−4−カルボキシフェニルメタン、4−アミノフェニル−3−カルボキシフェニルメタン、4−アミノ−4′−カルボキシジフェニルメタン、4−アミノフェニル−4−カルボキシフェニルスルホン、3−アミノフェニル−4−カルボキシフェニルスルホン、4−アミノフェニル−3−カルボキシフェニルスルホン、2,2−(4−アミノフェニル−4−カルボキシフェニル)プロパン、2,2−(3−アミノフェニル−4−カルボキシフェニル)プロパン、2,2−(4−アミノフェニル−3−カルボキシフェニル)プロパン、4−アミノフェニル−4−カルボキシベンズアニリド、3−アミノ−4′−カルボキシベンズアニリド、4−アミノ−3′−カルボキシベンズアニリド、4−[3−(4−アミノフェノキシ)フェノキシ]安息香酸、4−[4−(4−アミノフェノキシ)フェノキシ]安息香酸、1−(4−アミノベンズアミド)−
3−(4−カルボキシベンズアミド)ベンゼン、1−(4−アミノベンズアミド)−4−(4−カルボキシベンズアミド)ベンゼン、4−[4−(4−アミノフェノキシ)フェニル]安息香酸、4−[4−{4−(4−アミノフェノキシ)フェニル}フェノキシ]安息香酸、4−[4−[2−{4−(4−アミノフェノキシ)フェニル}イソプロピリデン]フェノキシ]安息香酸、4−[4−[2−{4−(4−アミノフェノキシ)フェニル}ヘキサフルオロイソプロピリデン]フェノキシ]安息香酸、4−[4−(4−アミノフェノキシ)ブトキシ]安息香酸、4−[5−(4−アミノフェノキシ)ペンチロキシ]安息香酸、4−[6−(4−アミノフェノキシ)ヘキシロキシ]安息香酸、4−[5−(4−アミノフェノキシ)−1,5−ジオキソペンチル]安息香酸、4−[6−(4−アミノフェノキシ)−1,6−ジオキソヘキシル]安息香酸、4−[7−(4−アミノフェノキシ)−1,7−ジオキソヘプチル]安息香酸等の芳香族または芳香族含有アミノカルボン酸、更には3−アミノシクロヘキサンカルボン酸、4−アミノシクロヘキサンカルボン酸、1−アミノシクロブタンカルボン酸、2−アミノシクロブタンカルボン酸、4−(4−アミノシクロヘキシルメチル)シクロヘキサンカルボン酸、4−(4−アミノ−3−メチルシクロヘキシルメチル)−3−メチル−シクロヘキサンカルボン酸、4−(4−アミノシクロヘキシロキシ)シクロヘキサンカルボン酸、4−(4−アミノ−3−メチルシクヘキシロキシ)−3−メチル−シクロヘキサンカルボン酸等の脂環式アミノカルボン酸が挙げらる。また、これらの2種類以上の混合物を使用することもできる。
Specific examples of monomer compounds for constructing aminocarboxylic acid components corresponding to R 12 and R 13 in the general formulas (19a) and (19b) include m-aminobenzoic acid, p-aminobenzoic acid, 4 -Methyl-m-aminobenzoic acid, 3-methyl-p-aminobenzoic acid, 2-amino-6-carboxynaphthalene, 1-amino-5-carboxynaphthalene, 1-amino-6-carboxyanthracene, 2-amino- 7-carboxyanthracene, 4- (4-aminophenyl) benzoic acid, 3- (4-aminophenyl) benzoic acid, 4- (3-aminophenyl) benzoic acid, 4- (4-aminophenoxy) benzoic acid, 3 -(4-aminophenoxy) benzoic acid, 4- (3-aminophenoxy) benzoic acid, 4-amino-4'-carboxybenzophenone, 3-amino 4'-carboxybenzophenone, 4-amino-3'-carboxybenzophenone, 4- (4-amino-3-methylphenyl) o-toluic acid, 4- (4-amino-2-methylphenyl) o-toluic acid, 4-aminophenyl-4-carboxyphenylmethane, 3-aminophenyl-4-carboxyphenylmethane, 4-aminophenyl-3-carboxyphenylmethane, 4-amino-4'-carboxydiphenylmethane, 4-aminophenyl-4- Carboxyphenylsulfone, 3-aminophenyl-4-carboxyphenylsulfone, 4-aminophenyl-3-carboxyphenylsulfone, 2,2- (4-aminophenyl-4-carboxyphenyl) propane, 2,2- (3- Aminophenyl-4-carboxyphenyl) propane, , 2- (4-aminophenyl-3-carboxyphenyl) propane, 4-aminophenyl-4-carboxybenzanilide, 3-amino-4'-carboxybenzanilide, 4-amino-3'-carboxybenzanilide, 4 -[3- (4-aminophenoxy) phenoxy] benzoic acid, 4- [4- (4-aminophenoxy) phenoxy] benzoic acid, 1- (4-aminobenzamide)-
3- (4-carboxybenzamido) benzene, 1- (4-aminobenzamido) -4- (4-carboxybenzamido) benzene, 4- [4- (4-aminophenoxy) phenyl] benzoic acid, 4- [4- {4- (4-aminophenoxy) phenyl} phenoxy] benzoic acid, 4- [4- [2- {4- (4-aminophenoxy) phenyl} isopropylidene] phenoxy] benzoic acid, 4- [4- [2 -{4- (4-aminophenoxy) phenyl} hexafluoroisopropylidene] phenoxy] benzoic acid, 4- [4- (4-aminophenoxy) butoxy] benzoic acid, 4- [5- (4-aminophenoxy) pentyloxy ] Benzoic acid, 4- [6- (4-aminophenoxy) hexyloxy] benzoic acid, 4- [5- (4-aminophenoxy) -1,5- Oxopentyl] benzoic acid, 4- [6- (4-aminophenoxy) -1,6-dioxohexyl] benzoic acid, 4- [7- (4-aminophenoxy) -1,7-dioxoheptyl] benzoic acid Aromatic or aromatic-containing aminocarboxylic acids such as acids, 3-aminocyclohexanecarboxylic acid, 4-aminocyclohexanecarboxylic acid, 1-aminocyclobutanecarboxylic acid, 2-aminocyclobutanecarboxylic acid, 4- (4-aminocyclohexyl) Methyl) cyclohexanecarboxylic acid, 4- (4-amino-3-methylcyclohexylmethyl) -3-methyl-cyclohexanecarboxylic acid, 4- (4-aminocyclohexyloxy) cyclohexanecarboxylic acid, 4- (4-amino-3- Fats such as methylcyclohexyloxy) -3-methyl-cyclohexanecarboxylic acid Ageraru the expression aminocarboxylic acids. A mixture of two or more of these can also be used.

更に、光反応の感度の観点および原料の入手し易さ等から、p−アミノ安息香酸、m−アミノ安息香酸、メチル−p−アミノ安息香酸、4−メチル−m−アミノ安息香酸、4−(4−アミノフェノキシ)安息香酸、3,3′−ジメチル−4−(4′−アミノフェニル)安息香酸、4−(4−アミノフェニル)安息香酸、(4−アミノフェニル−4′−カルボキシフェニル)メタン、3,3′−ジメチル−(4−アミノフェニル−4′−カルボキシフェニル)メタン、4−アミノフェニル−4−カルボキシフェニルスルホン等のアミノカルボン酸化合物を使用することが好ましい。   Furthermore, from the viewpoint of the sensitivity of photoreaction and the availability of raw materials, p-aminobenzoic acid, m-aminobenzoic acid, methyl-p-aminobenzoic acid, 4-methyl-m-aminobenzoic acid, 4- (4-Aminophenoxy) benzoic acid, 3,3′-dimethyl-4- (4′-aminophenyl) benzoic acid, 4- (4-aminophenyl) benzoic acid, (4-aminophenyl-4′-carboxyphenyl) It is preferred to use aminocarboxylic acid compounds such as methane, 3,3'-dimethyl- (4-aminophenyl-4'-carboxyphenyl) methane, 4-aminophenyl-4-carboxyphenylsulfone.

アミド基の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造を含有する繰り返し単位は液晶の配向安定性の観点から全ポリマー成分の20〜100モル%含むことが好ましく、50〜100モル%が更に好適である。   A divalent or trivalent aromatic group is directly bonded to both ends of the amide group, or a divalent or trivalent aromatic group is directly bonded to one end of the bond and a divalent or trivalent is bonded to the other end. The repeating unit containing a structure in which the alicyclic hydrocarbon group is directly bonded is preferably contained in an amount of 20 to 100 mol%, more preferably 50 to 100 mol%, from the viewpoint of the alignment stability of the liquid crystal. .

また、本発明に係る高分子化合物としてのポリアミドは、アミド基の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造を含有していればよく、芳香族基または脂環式炭化水素基を有しないジカルボン酸、ジアミン、アミノカルボン酸でも上記の成分と組み合わせることにより併用することもできる。敢えてその具体例をあげるならば、ジカルボン酸成分として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、マゼライン酸、セバチン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸等のジカルボン酸及びこれらの酸ハロゲン化物、酸無水物並びにアルキルエステル化物等が挙げられ、またこれらの2種以上の混合物を使用することもできる。更に、ジアミン成分としては、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン等の脂肪族ジアミン、更には、m−キシリレンジアミン、p−キシリレンジアミンまたは、   In the polyamide as the polymer compound according to the present invention, a divalent or trivalent aromatic group is directly bonded to both ends of the amide group, or a divalent or trivalent aromatic group is bonded to one end of the bond. A dicarboxylic acid that is directly bonded and has a structure in which a divalent or trivalent alicyclic hydrocarbon group is directly bonded to the other end, and does not have an aromatic group or an alicyclic hydrocarbon group, Diamine and aminocarboxylic acid can be used in combination with the above components. Specific examples of the dicarboxylic acid component include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, mazeline acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1 , 10-decanedicarboxylic acid and the like, and acid halides, acid anhydrides and alkyl esterified products thereof, and a mixture of two or more of these can also be used. Furthermore, the diamine component includes 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, , 8-diaminooctane, 1,9-diaminononane, aliphatic diamines such as 1,10-diaminodecane, further m-xylylenediamine, p-xylylenediamine or

Figure 0004610596
Figure 0004610596

(式中、mは1〜10の整数を表す。)
等のジアミノシロキサンが挙げられる。これらのジアミン成分の1種類または2種類以上を混合して使用することもできる。
(In the formula, m represents an integer of 1 to 10.)
And the like. These diamine components may be used alone or in combination of two or more.

また、アミノカルボン酸成分としては、3−アミノプロピオン酸、4−アミノ酪酸、5−アミノペンタン酸、6−アミノヘキサン酸、7−アミノヘプタン酸、8−アミノオクタン酸、9−アミノノナン酸、10−アミノデカン酸、11−アミノウンデカン酸等の脂肪族アミノカルボン酸成分が挙げられ、これらのアミノカルボン酸成分の2種類以上を混合して使用することもできる。   Examples of the aminocarboxylic acid component include 3-aminopropionic acid, 4-aminobutyric acid, 5-aminopentanoic acid, 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10 Examples include aliphatic aminocarboxylic acid components such as aminodecanoic acid and 11-aminoundecanoic acid, and two or more of these aminocarboxylic acid components can be used in combination.

このようなポリアミドの合成法は特に限定されるものではない。一般にはジカルボン酸またはその誘導体とジアミンを等モル量仕込み、有機溶剤中で重縮合反応を行うか、または1種類のアミノカルボン酸の重縮合反応または2種類以上のアミノカルボン酸の共重合反応を行うことによって得ることができる。   The method for synthesizing such a polyamide is not particularly limited. In general, an equimolar amount of dicarboxylic acid or its derivative and diamine are charged, and a polycondensation reaction is performed in an organic solvent, or a polycondensation reaction of one kind of aminocarboxylic acid or a copolymerization reaction of two or more kinds of aminocarboxylic acids. Can be obtained by doing.

これらの重縮合反応は縮合剤の存在下好適に進行するが、ここで用いられる縮合剤としては、モノマーとしてジカルボン酸またはアミノカルボン酸を用いる場合には、亜リン酸トリフェニル、テトラクロロシラン、ジメチルクロロシラン等を、モノマーとしてジカルボン酸ハロゲン化物を用いる場合には、トリメチルアミン、ピリジン、N,N−ジメチルアニリン等を例示することができる。   These polycondensation reactions proceed suitably in the presence of a condensing agent. As the condensing agent used here, when dicarboxylic acid or aminocarboxylic acid is used as a monomer, triphenyl phosphite, tetrachlorosilane, dimethyl When dicarboxylic acid halide is used as a monomer, such as chlorosilane, trimethylamine, pyridine, N, N-dimethylaniline and the like can be exemplified.

また、この反応は有機溶媒中で行うことが好ましく、使用される溶媒の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプラクタム、テトラヒドロフラン、ジオキサン、トルエン、クロロホルム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、及びブチルラクトン、クレゾール等を挙げることができる。   This reaction is preferably carried out in an organic solvent. Specific examples of the solvent used include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaps. Examples include lactam, tetrahydrofuran, dioxane, toluene, chloroform, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, butyl lactone, and cresol.

この縮合反応に於ける反応温度は、通常−100℃から200℃程度の温度範囲が好ましい。   The reaction temperature in this condensation reaction is usually preferably in the temperature range of about -100 ° C to 200 ° C.

一方、モノマーとして上記のジカルボン酸無水物またはアルキルエステル化合物を用いる場合には、一般に上記の縮合剤及び溶媒を用いずに、ジアミン化合物を混合し、真空中、加熱溶解することにより好適に重縮合反応が進行する。   On the other hand, when the above dicarboxylic acid anhydride or alkyl ester compound is used as a monomer, polycondensation is preferably performed by mixing the diamine compound without using the above condensing agent and solvent, and dissolving by heating in vacuum. The reaction proceeds.

以上述べたような製造方法により得られるポリアミドの数平均分子量は1000〜300000であることが重要であり、より好ましくは3000〜300000であることがポリマーの特性を生かす上で好ましい。分子量はゲルパーミエーションクロマトグラフィー、浸透圧法、光分散法、粘度法等の公知の方法により測定される。   It is important that the number average molecular weight of the polyamide obtained by the production method as described above is 1000 to 300,000, and more preferably 3000 to 300,000 for taking advantage of the properties of the polymer. The molecular weight is measured by a known method such as gel permeation chromatography, osmotic pressure method, light dispersion method, viscosity method and the like.

また、ポリアミド塗膜を形成する際には通常は上記重合溶液をそのまま基板に塗布し、基板上で加熱してポリアミド塗膜を形成することができる。また、生成したポリアミド溶液を大過剰の水、メタノールのごとき貧溶媒中に投入し、沈殿回収した後に溶媒に再溶解して用いてもよい。上記ポリアミド溶液の希釈溶液及び/または沈殿回収したポリアミドの再溶解溶媒は、ポリアミドを溶解するものであれば特に限定されない。   Moreover, when forming a polyamide coating film, the said polymer solution is normally apply | coated to a board | substrate as it is, and it can heat on a board | substrate and can form a polyamide coating film. Further, the produced polyamide solution may be poured into a poor solvent such as a large excess of water or methanol, recovered by precipitation, and then redissolved in a solvent for use. The dilute solution of the polyamide solution and / or the redissolved solvent of the recovered polyamide is not particularly limited as long as it dissolves the polyamide.

それらの溶媒の具体例としては、2−ピロリドン、N−メチルピロリドン、N−エチルピロリドン、N−ビニルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチルラクトン等を挙げることができる。これらは単独でまたは混合して使用してよい。更に、単独では均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。   Specific examples of these solvents include 2-pyrrolidone, N-methylpyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and γ-butyllactone. Can do. These may be used alone or in combination. Furthermore, even if it is a solvent which cannot obtain a uniform solution by itself, the solvent may be added and used within a range where a uniform solution can be obtained. Examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol.

この溶液を基板上に塗布し、溶媒を蒸発させることにより基板上にポリアミド被膜を形成させることができる。この際の温度は溶媒が蒸発すれば十分であり、通常は80〜200℃が好ましい。   A polyamide film can be formed on the substrate by applying this solution onto the substrate and evaporating the solvent. The temperature at this time is sufficient if the solvent evaporates, and is usually preferably 80 to 200 ° C.

上記のようにして得られた本発明の液晶配向処理剤溶液を、スピンコート、転写印刷法等の方法を用いて基板上に塗布し、これを上記の条件で加熱焼成して高分子薄膜を形成する。この際の高分子薄膜の厚みとしては、特に限定されるものではないが、通常の液晶配向膜として使用される上で10〜3000nmが適当である。   The liquid crystal aligning agent solution of the present invention obtained as described above is applied onto a substrate using a method such as spin coating or transfer printing, and this is heated and fired under the above conditions to form a polymer thin film. Form. The thickness of the polymer thin film at this time is not particularly limited, but is suitably 10 to 3000 nm when used as a normal liquid crystal alignment film.

次いで、該高分子薄膜表面に光または電子線が照射される。使用する光の波長としては特に限定されないが、一般には100nm〜400nmの範囲であることが好ましく、更に好ましくは、使用する高分子の種類によってフィルター等を介して適宜波長を選択することが好ましい。また、光の照射時間は、一般には数秒から数時間の範囲であるが、使用する高分子により適宜選択することが可能である。   Subsequently, light or an electron beam is irradiated to the polymer thin film surface. The wavelength of the light to be used is not particularly limited, but generally it is preferably in the range of 100 nm to 400 nm, and more preferably, the wavelength is suitably selected through a filter or the like depending on the type of polymer to be used. The light irradiation time is generally in the range of several seconds to several hours, but can be appropriately selected depending on the polymer used.

更に、光を照射する方法は特に限定されないが、偏光を用いることが均一な液晶配向を得る上で好ましい。この場合、偏光した紫外線を照射する方法は特に限定されない。偏光面を回転させて照射してもよく、また偏光紫外線の入射角を変えて2回以上照射してもよい。また、実質的に偏光が得られればよく、無偏光の紫外線を基板の法線から一定角度傾けて照射してもよい。   Furthermore, the method of irradiating light is not particularly limited, but it is preferable to use polarized light for obtaining uniform liquid crystal alignment. In this case, the method of irradiating polarized ultraviolet rays is not particularly limited. Irradiation may be performed by rotating the polarization plane, or irradiation may be performed twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.

このようにして偏光した紫外線を照射した2枚の基板を作成した後、膜面を互いに対向させ液晶を狭持することにより液晶分子を配向させることができ、且つその配向は熱的にも安定である。   After making two substrates irradiated with polarized ultraviolet rays in this way, the liquid crystal molecules can be aligned by sandwiching the liquid crystal with the film surfaces facing each other, and the alignment is also thermally stable. It is.

本発明に係る高分子化合物として、更に下記一般式(42a)及び(42b)   As the polymer compound according to the present invention, the following general formulas (42a) and (42b)

Figure 0004610596
Figure 0004610596

(R26は4価の有機基を表し、R26′は3価の有機基を表し、R27は2価または3価の芳香族基または脂環式炭化水素基と結合したアミド基を含有する2価の有機基を表す。)
で示されるポリイミド前駆体及びそれを化学的または熱的にイミド化して得られるポリイミドを他の好適な例として挙げることができる。
(R 26 represents a tetravalent organic group, R 26 ′ represents a trivalent organic group, and R 27 contains an amide group bonded to a divalent or trivalent aromatic group or an alicyclic hydrocarbon group. Represents a divalent organic group.)
Other preferred examples include a polyimide precursor represented by the following formula and a polyimide obtained by chemically or thermally imidizing it.

また、上記一般式(42a)及び(42b)中のR27が下記一般式(43)〜(48) In the general formulas (42a) and (42b), R 27 represents the following general formulas (43) to (48).

Figure 0004610596
Figure 0004610596

(X12〜X30はそれぞれ独立に単結合、O、CO2、OCOまたはCH2Oを表し、R28〜R46はそれぞれ独立に水素原子、ハロゲン原子、C1〜C24のアルキル基、C1〜C24の含フッ素アルキル基、アリル基、プロパルギル基、フェニル基または置換フェニル基を表し、Ra5〜Ra15はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基また
はプロパルギル基を表し、Y8及びY9はO、S、SO2、CH2、NH、NHCOまたはC
ONHを表し、m1は1〜4の整数を表す。ただし、R28〜R46が水素原子またはハロゲ
ン原子である場合には、X12〜X30は単結合である。)
で表される基から選ばれるものであることがより好ましい。
(X 12 to X 30 each independently represents a single bond, O, CO 2 , OCO or CH 2 O, and R 28 to R 46 each independently represents a hydrogen atom, a halogen atom, a C 1 to C 24 alkyl group, C 1 -C 24 represents a fluorine-containing alkyl group, allyl group, propargyl group, phenyl group or substituted phenyl group, and R a5 to R a15 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group. Y 8 and Y 9 are O, S, SO 2 , CH 2 , NH, NHCO or C
Represents ONH, and m 1 represents an integer of 1 to 4. However, when R 28 to R 46 is a hydrogen atom or a halogen atom, X 12 to X 30 is a single bond. )
More preferably, it is selected from the group represented by:

上記一般式中のR28〜R46のC1〜C24のアルキル基としては、メチル、エチル、プロ
ピル、i−プロピル、ブチル、i−ブチル、s−ブチル及びt−ブチル等の低級アルキル基に加え、通常用いられる長鎖アルキル基及びシクロヘキシル基、ビシクロヘキシル基等の脂環式炭化水素基を含むアルキル基が挙げられる。C1〜C24の含フッ素アルキル基と
しては、トリフルオロメチル、2,2,2−トリフルオロエチル、ペルフルオロエチル、3,3,3−トリフルオロプロピル、ペルフルオロプロピル、ヘキサフルオロ−i−プロピル、3,3,4,4,4−ペンタフルオロブチル及びペルフルオロブチル等の低級含フッ素アルキル基に加え、通常用いられる長鎖含フッ素アルキル基が挙げられる。また、置換フェニル基における置換基としては、ハロゲン原子、アルキル基、含フッ素アルキル基、アルコキシ基、含フッ素アルコキシ基、アルコキシカルボニル基、含フッ素アルコキシカルボニル基等が挙げられる。
The alkyl group of C 1 -C 24 of R 28 to R 46 in the general formula, methyl, ethyl, propyl, i- propyl, butyl, i- butyl, s- butyl and t- butyl lower alkyl group such as In addition to these, alkyl groups containing alicyclic hydrocarbon groups such as commonly used long-chain alkyl groups and cyclohexyl groups and bicyclohexyl groups can be mentioned. Examples of the fluorine-containing alkyl group of C 1 -C 24, trifluoromethyl, 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, perfluoropropyl, hexafluoro -i- propyl, In addition to lower fluorine-containing alkyl groups such as 3,3,4,4,4-pentafluorobutyl and perfluorobutyl, commonly used long-chain fluorine-containing alkyl groups can be mentioned. In addition, examples of the substituent in the substituted phenyl group include a halogen atom, an alkyl group, a fluorine-containing alkyl group, an alkoxy group, a fluorine-containing alkoxy group, an alkoxycarbonyl group, and a fluorine-containing alkoxycarbonyl group.

上記一般式中、Ra5〜Ra15で表される基は前記一般式(1)中のR1で表される基と同様である。Ra5〜Ra15で表される基が水素原子以外の基を含む上記ポリイミド前駆体及
びポリイミドは、以下に例示するジアミンモノマー化合物のアミド基のN位にあらかじめ所望の置換基を導入し、得られた化合物をモノマーとして用いて重合反応を行うことにより製造することができる。
In the above general formula, the group represented by R a5 to R a15 is the same as the group represented by R 1 in the general formula (1). The polyimide precursor and polyimide in which the groups represented by R a5 to R a15 contain groups other than hydrogen atoms are obtained by introducing a desired substituent in advance to the N-position of the amide group of the diamine monomer compound exemplified below. It can manufacture by performing a polymerization reaction using the obtained compound as a monomer.

また、R27の更に好ましい例として、下記式(49)〜(56) Further, as more preferred examples of R 27, the following formulas (49) to (56)

Figure 0004610596
Figure 0004610596

(式(51)中のR47はハロゲン原子、C1〜C24のアルキル基、C1〜C24のアルコキシ基またはC1〜C24のアルコキシカルボニル基を表す。)
で表される基が挙げられる。
(R 47 in formula (51) represents a halogen atom, a C 1 to C 24 alkyl group, a C 1 to C 24 alkoxy group, or a C 1 to C 24 alkoxycarbonyl group.)
The group represented by these is mentioned.

上記式(51)中のR47のC1〜C24のアルキル基としては、メチル、エチル、プロピ
ル、i−プロピル、ブチル、i−ブチル、s−ブチル及びt−ブチル等の低級アルキル基に加え、通常用いられる長鎖アルキル基、及びシクロヘキシル基、ビシクロヘキシル基等の脂環式炭化水素基を含むアルキル基が挙げられる。C1〜C24のアルコキシ基としては
、メトキシ、エトキシ、プロポキシ、i−プロポキシ、ブトキシ、i−ブトキシ、s−ブトキシ及びt−ブトキシ等に加え、長鎖アルコキシ基及びシクロヘキシル基、ビシクロヘキシル基等の脂環式炭化水素基を含むアルコキシ基が挙げられる。C1〜C24のアルコキ
シカルボニル基としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、i−プロポキシカルボニル、ブトキシカルボニル、i−ブトキシカルボニル、s−ブトキシカルボニル及びt−ブトキシカルボニルに加え、長鎖アルキコキシカルボニル基、及びシクロヘキシル基、ビシクロヘキシル基等の脂環式炭化水素基を含むアルコキシカ
ルボニル基が挙げられる。
The alkyl group of C 1 -C 24 of R 47 in the formula (51), methyl, ethyl, propyl, i- propyl, butyl, i- butyl, a lower alkyl group such as s- butyl and t- butyl In addition, a long-chain alkyl group usually used and an alkyl group containing an alicyclic hydrocarbon group such as a cyclohexyl group or a bicyclohexyl group can be mentioned. The alkoxy group of C 1 -C 24, methoxy, ethoxy, propoxy, i- propoxy, butoxy, i- butoxy, in addition to the s- butoxy and t- butoxy, and the like, long chain alkoxy and cyclohexyl, bicyclohexyl group And an alkoxy group containing an alicyclic hydrocarbon group. The alkoxycarbonyl group of C 1 -C 24, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, i- propoxycarbonyl, butoxycarbonyl, i- butoxycarbonyl, s- butoxy addition to carbonyl and t- butoxycarbonyl, long chain Arukikoki Examples thereof include alkoxycarbonyl groups including a cyclocarbonyl group and an alicyclic hydrocarbon group such as a cyclohexyl group and a bicyclohexyl group.

上記一般式(42a)中のR26に対応するテトラカルボン酸成分を構築するためのモノマー化合物の具体例としては、1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、2,3,4,5−テトラヒドロフランテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、1−(3,4−ジカルボキシシクロヘキシル)コハク酸、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3′,4,4′−ビフェニルテトラカルボン酸、2,3,3′,4′−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エーテル、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5−ピリジンテトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物、1,2,3,4−ブタンテトラカルボン酸等の脂肪族テトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物等が挙げられる。また、これらのテトラカルボン酸及びその誘導体の1種または2種以上を混合して使用することもできる。 Specific examples of the monomer compound for constructing the tetracarboxylic acid component corresponding to R 26 in the general formula (42a) include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4 -Cyclopentanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1- (3,4-dicarboxycyclohexyl) succinic acid, 3,4 -Dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, pyromellitic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 1,2,5,6-naphthalene tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 '-Benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1 , 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) ) Diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid and their dianhydrides and their dicarboxylic acid diacid halides, 1,2,3,4-butane Tiger aliphatic tetracarboxylic acids such as carboxylic acids and dianhydrides thereof and the like of these dicarboxylic acid diacid halides. Moreover, 1 type, or 2 or more types of these tetracarboxylic acid and its derivative (s) can also be mixed and used.

上記一般式(42b)中のR26′に対応するトリカルボン酸成分を構築するためのモノマー化合物の具体例としては、1,2.3−シクロブタントリカルボン酸、1,2,3−シクロペンタントリカルボン酸、1,2,4−シクロペンタントリカルボン酸、2,3,4−テトラヒドロフラントリカルボン酸、2,3,5−テトラヒドロフラントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1−(3−カルボキシシクロヘキシル)コハク酸、1−(4−カルボキシシクロヘキシル)コハク酸、トリメリット酸、2,3,6−ナフタレントリカルボン酸、1,2,5−ナフタレントリカルボン酸、1,2,6−ナフタレントリカルボン酸、1,4,8−ナフタレントリカルボン酸、2,3,6−アントラセントリカルボン酸、1,2,5−アントラセントリカルボン酸、4−(3,4−ジカルボキシフェニル)安息香酸、3−(3,4−ジカルボキシフェニル)安息香酸、4−(3,4−ジカルボキシフェノキシ)安息香酸、3−(3,4−ジカルボキシフェノキシ)安息香酸、3,4,4′−ベンゾフェノントリカルボン酸、4−カルボキシフェニル−3′,4′−ジカルボキシフェニルスルホン、4−カルボキシフェニル−3′,4′−ジカルボキシフェニルメタン、及びこれらの無水物並びにこれらのジカルボン酸酸ハロゲン化物、1,2,4−ブタントリカルボン酸等の脂肪族トリカルボン酸及びこれらの酸無水物並びにこれらのジカルボン酸酸ハロゲン化物等が挙げられる。また、これらのトリカルボン酸及びその誘導体の1種または2種以上を混合して使用することもできる。 Specific examples of the monomer compound for constructing the tricarboxylic acid component corresponding to R 26 ′ in the general formula (42b) include 1,2.3-cyclobutanetricarboxylic acid and 1,2,3-cyclopentanetricarboxylic acid. 1,2,4-cyclopentanetricarboxylic acid, 2,3,4-tetrahydrofurantricarboxylic acid, 2,3,5-tetrahydrofurantricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 1- (3-carboxycyclohexyl) Succinic acid, 1- (4-carboxycyclohexyl) succinic acid, trimellitic acid, 2,3,6-naphthalenetricarboxylic acid, 1,2,5-naphthalenetricarboxylic acid, 1,2,6-naphthalenetricarboxylic acid, 1, 4,8-naphthalenetricarboxylic acid, 2,3,6-anthracentricarboxylic acid, 1 , 2,5-anthracentricarboxylic acid, 4- (3,4-dicarboxyphenyl) benzoic acid, 3- (3,4-dicarboxyphenyl) benzoic acid, 4- (3,4-dicarboxyphenoxy) benzoic acid 3- (3,4-dicarboxyphenoxy) benzoic acid, 3,4,4′-benzophenone tricarboxylic acid, 4-carboxyphenyl-3 ′, 4′-dicarboxyphenylsulfone, 4-carboxyphenyl-3 ′, 4'-dicarboxyphenylmethane, and anhydrides thereof, and dicarboxylic acid halides thereof, aliphatic tricarboxylic acids such as 1,2,4-butanetricarboxylic acid, and acid anhydrides thereof, and dicarboxylic acid halogens thereof And the like. Moreover, 1 type, or 2 or more types of these tricarboxylic acid and its derivative (s) can also be mixed and used.

上記一般式(42a)及び(42b)中のR27のジアミン成分を構築するためのモノマー化合物の具体例としては、4,4′−ジアミノベンズアニリド、3,4′−ジアミノベンズアニリド、1,3−ジ[4−アミノベンズアミド]ベンゼン、1,4−ジ[4−アミノベンズアミド]ベンゼン、及び下記式で表されるジアミン成分等が挙げられる。 Specific examples of the monomer compound for constructing the diamine component of R 27 in the general formulas (42a) and (42b) include 4,4′-diaminobenzanilide, 3,4′-diaminobenzanilide, 1, Examples include 3-di [4-aminobenzamido] benzene, 1,4-di [4-aminobenzamido] benzene, and a diamine component represented by the following formula.

Figure 0004610596
Figure 0004610596

また、これらのジアミン成分の2種類以上を混合して使用することもできる。
更に液晶配向の安定性の観点から、4,4′−ジアミノベンズアニリド、1,3−ジ[4−アミノベンズアミド]ベンゼン、及び下記式で示されるジアミン成分を含有することが好ましい。
Also, two or more of these diamine components can be mixed and used.
Further, from the viewpoint of stability of liquid crystal alignment, it is preferable to contain 4,4′-diaminobenzanilide, 1,3-di [4-aminobenzamido] benzene, and a diamine component represented by the following formula.

Figure 0004610596
Figure 0004610596

以上のアミド基の両端に2価または3価の芳香族基が直接結合するか、または片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造を含有する繰り返し単位は、液晶の配向安定性の観点から全ポリマー成分の20〜100モル%含むことが好ましく、50〜100モル%が更に好適である。   A divalent or trivalent aromatic group is directly bonded to both ends of the amide group, or a divalent or trivalent aromatic group is directly bonded to one end and a divalent or trivalent is bonded to the other end. The repeating unit containing a structure to which an alicyclic hydrocarbon group is directly bonded preferably contains 20 to 100 mol%, more preferably 50 to 100 mol% of the total polymer component from the viewpoint of the alignment stability of the liquid crystal. .

更に、本発明の効果を発現しうる範囲であれば、一般的にポリイミド合成に使用されるジアミン成分を使用することもできる。その具体例を挙げるならば、p−フェニレンジアミン、m−フェニレンジアミン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、4,4′−ジアミノビフェニル、3,3′−ジメチル−4,4′−ジアミノビフェニル、3,3′−ジメトキシ−4,4′−ジアミノビフェニル、4,4′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルエーテル、2,2−ビス(4−アミノフェニル)プロパン、ビス(4−アミノ−3,5−ジエチルフェニル)メタン、4,4′−ジアミノジフェニルスルホン、4,4′−ジアミノベンゾフェノン、2,6−ジアミノナフタレン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、9,10−ビス(4−アミノフェニル)アントラセン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4′−ジ(4−アミノフェノキシ)ジフェニルスルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン等の芳香族ジアミン、ビス(4−アミノシクロヘキシル)メタン及びビス(4−アミノ−3−メチルシクロヘキシル)メタン等の脂環式ジアミン及び1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン等の脂肪族ジアミン、更には、m−キシリレンジアミン、p−キシリレンジアミンまたは、   Furthermore, a diamine component generally used for polyimide synthesis can be used as long as the effects of the present invention can be exhibited. Specific examples thereof include p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4. '-Diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 2,2-bis (4-aminophenyl) propane, bis (4-amino-3,5-diethylphenyl) methane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminobenzophenone, 2,6-diaminonaphthalene, 1,4-bis (4-aminophenoxy) benzene 1,4-bis (4-aminophenyl) benzene, 9,10-bis (4-aminophenyl) anthracene 1,3-bis (4-aminophenoxy) benzene, 4,4'-di (4-aminophenoxy) diphenyl sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2- Aromatic diamines such as bis (4-aminophenyl) hexafluoropropane and 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis (4-aminocyclohexyl) methane and bis (4-amino -3-methylcyclohexyl) methane and other alicyclic diamines and 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1 , 7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, etc. Diamine, furthermore, m- xylylenediamine, p- xylylenediamine, or,

Figure 0004610596
Figure 0004610596

(式中、mは1〜10の整数を表す。)
等のジアミノシロキサンが挙げられる。
(In the formula, m represents an integer of 1 to 10.)
And the like.

また、プレチルト角を高める目的で、4,4′−ジアミノ−3−ドデシルジフェニルエーテル、1−ドデシルオキシ−2,4−ジアミノベンゼン等に代表される長鎖アルキル基を有するジアミンを使用することができる。これらのジアミン成分の1種類または2種類以上を混合して使用することもできる。   For the purpose of increasing the pretilt angle, a diamine having a long-chain alkyl group represented by 4,4′-diamino-3-dodecyldiphenyl ether, 1-dodecyloxy-2,4-diaminobenzene, or the like can be used. . These diamine components may be used alone or in combination of two or more.

このようなポリイミドの製造方法は特に限定されるものではない。一般にはテトラカルボン酸及びそのその誘導体とジアミンを反応・重合させポリイミド前駆体とした後、これを閉環イミド化するが、この際用いるテトラカルボン酸及びその誘導体としてはテトラカルボン酸二無水物を用いるのが一般的である。テトラカルボン酸二無水物のモル数とジアミンの総モル数との比は0.8から1.2であることが好ましい。通常の重縮合反応同様、このモル比が1に近いほど生成する重合体の重合度は大きくなる。   The method for producing such polyimide is not particularly limited. In general, tetracarboxylic acid and its derivative and diamine are reacted and polymerized to form a polyimide precursor, which is then ring-closed imidized. Tetracarboxylic acid and its derivative are tetracarboxylic dianhydride. It is common. The ratio of the number of moles of tetracarboxylic dianhydride to the total number of moles of diamine is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1, the greater the degree of polymerization of the polymer produced.

重合度が小さすぎると配向膜として使用する際にポリイミド膜の強度が不十分で、液晶の配向が不安定になる。また、重合度が大きすぎるとポリイミド膜形成時の作業性が悪くなる場合がある。従って、本反応に係るポリイミド前駆体の数平均分子量は1000〜300000であることが重要であり、より好ましくは3000〜300000であることがポリマーの特性を生かす上で好ましい。分子量はゲルパーミエーションクロマトグラフィー、浸透圧法、光分散法、粘度法等の公知の方法により測定される。   If the degree of polymerization is too small, the polyimide film has insufficient strength when used as an alignment film, and the alignment of the liquid crystal becomes unstable. On the other hand, if the degree of polymerization is too large, workability at the time of forming the polyimide film may be deteriorated. Therefore, it is important that the number average molecular weight of the polyimide precursor according to this reaction is 1000 to 300,000, and more preferably 3000 to 300,000 in order to make use of the characteristics of the polymer. The molecular weight is measured by a known method such as gel permeation chromatography, osmotic pressure method, light dispersion method, viscosity method and the like.

テトラカルボン酸二無水物とジアミンの反応・重合させる方法は、特に限定されるものではなく、一般的にはN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の有機極性溶媒中で1級ジアミンとテトラカルボン酸二無水物を反応させてポリイミド前駆体を合成した後、脱水閉環イミド化する方法がとられる。   The method of reacting and polymerizing tetracarboxylic dianhydride and diamine is not particularly limited, and generally N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, etc. In this organic polar solvent, a primary diamine and tetracarboxylic dianhydride are reacted to synthesize a polyimide precursor, followed by dehydrating ring-closing imidization.

テトラカルボン酸及びその誘導体とジアミンの反応重合温度は−20〜150℃の任意の温度を採用することができるが、特に−5〜100℃の範囲が好ましい。更に、このポリイミド前駆体を100〜400℃で加熱脱水するか、または通常用いられているトリエチルアミン/無水酢酸等のイミド化触媒を用いて化学的イミド化を行うことにより、イミド化することができる。   The reaction polymerization temperature of tetracarboxylic acid and its derivative and diamine may be any temperature of -20 to 150 ° C, and particularly preferably in the range of -5 to 100 ° C. Furthermore, the polyimide precursor can be imidized by heat dehydration at 100 to 400 ° C. or by chemical imidization using a commonly used imidation catalyst such as triethylamine / acetic anhydride. .

また、ポリイミド塗膜を形成する際には通常はポリイミド前駆体溶液をそのまま基板に塗布し、基板上で加熱イミド化してポリイミド塗膜を形成することができる。この際に用いられるポリイミド前駆体溶液は、上記重合溶液をそのまま用いてもよく、また、生成したポリイミド前駆体溶液を大過剰の水、メタノールのごとき貧溶媒中に投入し、沈殿回収した後に溶媒に再溶解して用いてもよい。上記ポリイミド前駆体溶液の希釈溶液及び/または沈殿回収したポリイミド前駆体の再溶解溶媒は、ポリイミド前駆体を溶解するものであれば特に限定されない。   Moreover, when forming a polyimide coating film, a polyimide precursor solution is normally apply | coated to a board | substrate as it is, and a polyimide coating film can be formed by heating imidation on a board | substrate. The polyimide precursor solution used in this case may use the polymerization solution as it is, or the produced polyimide precursor solution is poured into a poor solvent such as a large excess of water or methanol, and the solvent is recovered after precipitation. It may be redissolved in The dilute solution of the polyimide precursor solution and / or the re-dissolving solvent for the recovered polyimide precursor is not particularly limited as long as it dissolves the polyimide precursor.

それらの溶媒の具体例としては、N−メチル−2−ピロリドン、N,N−ジメチルアセ
トアミド、N,N−ジメチルホルムアミド等を挙げることができる。これらは単独でまたは混合して使用してよい。更に、単独では均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。
Specific examples of these solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like. These may be used alone or in combination. Furthermore, even if it is a solvent which cannot obtain a uniform solution by itself, the solvent may be added and used within a range where a uniform solution can be obtained. Examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol.

また、基板上で加熱イミド化させる温度は100〜400℃の任意の温度を採用することができるが、特に150〜350℃の範囲が好ましい。
一方、ポリイミドが溶媒に溶解する場合には、テトラカルボン酸二無水物とジアミンを反応させて得られたポリイミド前駆体溶液を溶液中でイミド化し、ポリイミド溶液とすることができる。
Moreover, although the arbitrary temperature of 100-400 degreeC can be employ | adopted for the temperature made to heat imidize on a board | substrate, the range of 150-350 degreeC is especially preferable.
On the other hand, when the polyimide is dissolved in a solvent, a polyimide precursor solution obtained by reacting tetracarboxylic dianhydride and diamine can be imidized in the solution to obtain a polyimide solution.

このようにして得られたポリイミド溶液はそのまま使用することもでき、また、メタノール、エタノール等の貧溶媒に沈殿させ、単離した後、適当な溶媒に再溶解させて使用することもできる。   The polyimide solution thus obtained can be used as it is, or can be used after being precipitated in a poor solvent such as methanol and ethanol, isolated and then redissolved in an appropriate solvent.

再溶解させる溶媒は、得られたポリイミドを溶解するものであれば特に限定されないが、その例としては、2−ピロリドン、N−メチル−2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチルラクトン等を挙げることができる。   The solvent to be re-dissolved is not particularly limited as long as it can dissolve the obtained polyimide. Examples thereof include 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, N , N-dimethylacetamide, N, N-dimethylformamide, γ-butyllactone and the like.

その他、単独ではポリイミドを溶解させない溶媒であっても溶解性を損なわない範囲であれば上記溶媒に加えてもかまわない。均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。   In addition, even a solvent that does not dissolve polyimide alone may be added to the above solvent as long as the solubility is not impaired. Even a solvent in which a uniform solution cannot be obtained, the solvent may be added to the extent that a uniform solution is obtained. Examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol.

この溶液を基板上に塗布し、溶媒を蒸発させることにより基板上にポリイミド被膜を形成させることができる。この際の温度は溶媒が蒸発すれば十分であり、通常は80〜200℃が好ましい。   A polyimide film can be formed on the substrate by applying this solution onto the substrate and evaporating the solvent. The temperature at this time is sufficient if the solvent evaporates, and is usually preferably 80 to 200 ° C.

上記のようにして得られた本発明の液晶配向処理剤溶液を、スピンコート、転写印刷法等の方法を用いて基板上に塗布し、これを上記の条件で加熱焼成して高分子薄膜を形成する。この際の高分子薄膜の厚みとしては、特に限定されるものではないが、通常の液晶配向膜として使用される上で10〜3000nmが適当である。   The liquid crystal aligning agent solution of the present invention obtained as described above is applied onto a substrate using a method such as spin coating or transfer printing, and this is heated and fired under the above conditions to form a polymer thin film. Form. The thickness of the polymer thin film at this time is not particularly limited, but is suitably 10 to 3000 nm when used as a normal liquid crystal alignment film.

次いで、該高分子薄膜表面に、光または電子線が照射される。使用する光の波長としては特に限定されないが、一般には100nm〜400nmの範囲であることが好ましく、更に好ましくは、使用する高分子の種類によってフィルター等を介して適宜波長を選択することが好ましい。また、光の照射時間は、一般には数秒から数時間の範囲であるが、使用する高分子により適宜選択することが可能である。   Next, the surface of the polymer thin film is irradiated with light or an electron beam. The wavelength of the light to be used is not particularly limited, but generally it is preferably in the range of 100 nm to 400 nm, and more preferably, the wavelength is suitably selected through a filter or the like depending on the type of polymer to be used. The light irradiation time is generally in the range of several seconds to several hours, but can be appropriately selected depending on the polymer used.

更に、光を照射する方法は特に限定されないが、偏光を用いることが均一な液晶配向を得る上で好ましい。更に、偏光した紫外線を照射する方法は特に限定されない。偏光面を回転させて照射してもよく、また偏光紫外線の入射角を変えて2回以上照射してもよい。また、実質的に偏光が得られればよく、無偏光の紫外線を基板の法線から一定角度傾けて照射してもよい。   Furthermore, the method of irradiating light is not particularly limited, but it is preferable to use polarized light for obtaining uniform liquid crystal alignment. Furthermore, the method of irradiating polarized ultraviolet rays is not particularly limited. Irradiation may be performed by rotating the polarization plane, or irradiation may be performed twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.

このようにして偏光した紫外線を照射した2枚の基板を作成した後、膜面を互いに対向させ液晶を狭持することにより液晶分子を配向させることができ、且つその配向は熱的に
も安定である。
After making two substrates irradiated with polarized ultraviolet rays in this way, the liquid crystal molecules can be aligned by sandwiching the liquid crystal with the film surfaces facing each other, and the alignment is also thermally stable. It is.

本発明に係る高分子化合物として、更に下記一般式(57) As the polymer compound according to the present invention, the following general formula (57)

Figure 0004610596
Figure 0004610596

(R48及びR49はそれぞれ独立に下記式(58)〜(69) (R 48 and R 49 are each independently the following formulas (58) to (69)

Figure 0004610596
Figure 0004610596

で表される基から選ばれ、Ra16及びRa17はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基またはプロパギル基を表す。)
で表される繰り返し単位を含むポリウレタンを他の好適な例として挙げることができる。
R a16 and R a17 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group. )
As another suitable example, a polyurethane containing a repeating unit represented by

上記一般式中、Ra16及びRa17で表される基は前記一般式(2)中のR1で表される基
と同様である。Ra16及びRa17で表される基が水素原子以外の基を含む上記ポリウレタンは、以下に示す方法で得られるRa16及びRa17で表される基が水素原子であるポリウレタンのウレタン基のN位に既知の高分子反応(モーレイ等、ジャーナル オブ アプライド
ポリマー サイエンス、45巻、1983ページ(1992年)(T.H.Mourey
et.al.,J.Appl.Polym.Sci.,45,1983(1992))、高柳等、ジャーナル オブ ポリマー サイエンス、ポリマー ケミストリー エディション
、19巻、1133ページ(1981年)(M.Takayanagi et.al.,
J.Polym.Sci.,Polym.Chem.Ed.,19,1133(1981))等参照)を利用して所望の置換基を所望の割合で導入することにより得られる。
In the above general formula, the groups represented by R a16 and R a17 are the same as the groups represented by R 1 in the general formula (2). The above-mentioned polyurethane in which the groups represented by R a16 and R a17 contain a group other than a hydrogen atom is the urethane group N of the polyurethane in which the groups represented by R a16 and R a17 obtained by the following method are hydrogen atoms. Known polymer reactions (Moray et al., Journal of Applied)
Polymer Science, 45, 1983 (1992) (TH Mourey)
et. al. , J .; Appl. Polym. Sci. , 45, 1983 (1992)), Takayanagi et al., Journal of Polymer Science, Polymer Chemistry Edition, Vol. 19, p. 1133 (1981) (M. Takayanagi et.al.,
J. et al. Polym. Sci. , Polym. Chem. Ed. , 19, 1133 (1981))) and the like, by introducing a desired substituent at a desired ratio.

上記一般式(57)中のR48に対応するジイソシアネート成分を構築するためのモノマー化合物の具体例としては、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、4−メチル−1,3−フェニレンジイソシアネート、5−メチル−1,4−フェニレンジイソシアネート、2,2−ビス(イソシアネートフェニル)プロパン、4,4′−ジイソシアネートビフェニル、3,3′−ジメチル−4,4′−ジイソシアネートビフェニル、4,4′−ジイソシアネートジフェニルエーテル、3,4′−ジイソシアネートジフェニルエーテル、4,4′−ジイソシアネートジフェニルメタン、3,3′−ジメチル−4,4′−ジイソシアネートジフェニルメタン、4,4′−ジイソシアネートジフェニルスルホン、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート等を好適な例として挙げられる。また、これらの2種類以上の混合物を使用することもできる。 Specific examples of the monomer compound for constructing the diisocyanate component corresponding to R 48 in the general formula (57) include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 4-methyl-1,3- Phenylene diisocyanate, 5-methyl-1,4-phenylene diisocyanate, 2,2-bis (isocyanatephenyl) propane, 4,4'-diisocyanate biphenyl, 3,3'-dimethyl-4,4'-diisocyanate biphenyl, 4, 4'-diisocyanate diphenyl ether, 3,4'-diisocyanate diphenyl ether, 4,4'-diisocyanate diphenyl methane, 3,3'-dimethyl-4,4'-diisocyanate diphenyl methane, 4,4'-diisocyanate diphenyl sulfone, 1, - cyclohexane diisocyanate, Preferred examples thereof include a 1,4-cyclohexane diisocyanate. A mixture of two or more of these can also be used.

一方、上記一般式(57)中のR49に対応するジオール成分を構築するためのモノマー化合物の具体例としては、レゾルシノール、ハイドロキノン、4−メチルレゾルシノール、5−メチルハイドロキノン、ビスフェノールA、4,4′−ビフェノール、3,3′−ジメチル−4,4′−ビフェノール、4,4′−ジヒドロキシジフェニルエーテル、3,4′−ジヒドロキシジフェニルエーテル、4,4′−ジヒドロキシジフェニルメタン、3,3′−ジメチル−4,4′−ジヒドロキシジフェニルメタン、4,4′−ジヒドロキシジフェニルスルホン、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール等を好適な例として挙げられる。また、これらの2種類以上の混合物を使用することもできる。 Meanwhile, specific examples of the monomer compounds for building diol component corresponding to R 49 in the general formula (57), resorcinol, hydroquinone, 4-methyl resorcinol, 5-methyl-hydroquinone, bisphenol A, 4, 4 '-Biphenol, 3,3'-dimethyl-4,4'-biphenol, 4,4'-dihydroxydiphenyl ether, 3,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylmethane, 3,3'-dimethyl-4 Preferred examples include 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylsulfone, 1,3-cyclohexanediol, 1,4-cyclohexanediol, and the like. A mixture of two or more of these can also be used.

また、本発明に係る高分子化合物としてのポリウレタンは、ウレタン基の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造を含有していればよく、芳香族基または脂環式炭化水素基を有しないジイソシアネート化合物、ジオール化合物でも上記の成分と組み合わせることにより併用することもできる。その具体例をあげるならば、ジイソシアネート化合物として、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、m−キシリレンジイソシアネート等が挙げられ、またこれらの2種以上の混合物を使用することもできる。更に、ジオール化合物としては、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、トリエチレングリコール、m−キシリレングリコール、p−キシリレングリコール等が挙げられる。これらのジオール成分の1種類または2種類以上を混合して使用することもできる。   In the polyurethane as the polymer compound according to the present invention, a divalent or trivalent aromatic group is directly bonded to both ends of the urethane group, or a divalent or trivalent aromatic group is bonded to one end of the bond. A diisocyanate compound which does not have an aromatic group or an alicyclic hydrocarbon group, as long as it contains a structure which is directly bonded and a divalent or trivalent alicyclic hydrocarbon group is directly bonded to the other end; Diol compounds can also be used in combination by combining with the above components. Specific examples thereof include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, m-xylylene diisocyanate and the like as diisocyanate compounds, and use a mixture of two or more of these. You can also. Furthermore, examples of the diol compound include ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, m-xylylene glycol, and p-xylylene glycol. One kind or two or more kinds of these diol components can be mixed and used.

このようなポリウレタンの合成法は特に限定されるものではない。一般にはジイソシアネートとジオールを等モル量仕込み、有機溶媒中で重付加反応を行うことによって得ることができる。これらの重付加反応は触媒の存在下好適に進行するが、ここで用いられる触媒としては、トリエチルアミン、トリブチルアミン、ジイソブチルアミン、ジブチルアミン、ジエチルアミン、ピリジン、2,6−ジメチルピリジン等を例示することができる。   The method for synthesizing such polyurethane is not particularly limited. In general, it can be obtained by preparing equimolar amounts of diisocyanate and diol and performing a polyaddition reaction in an organic solvent. These polyaddition reactions proceed suitably in the presence of a catalyst, but examples of the catalyst used here include triethylamine, tributylamine, diisobutylamine, dibutylamine, diethylamine, pyridine, 2,6-dimethylpyridine and the like. Can do.

また、この反応は有機溶媒中で行うことが好ましく、使用される溶媒の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピ
ロリドン、N−メチルカプラクタム、テトラヒドロフラン、ジオキサン、トルエン、クロロホルム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、ブチルラクトン、クレゾール等を挙げることができる。
This reaction is preferably carried out in an organic solvent. Specific examples of the solvent used include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaps. Examples include lactam, tetrahydrofuran, dioxane, toluene, chloroform, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, butyl lactone, and cresol.

この重付加反応に於ける反応温度は、通常−20℃から200℃程度の温度範囲が好ましい。   The reaction temperature in this polyaddition reaction is usually preferably in the temperature range of about -20 ° C to 200 ° C.

以上述べたような製造方法により得られるポリウレタンの数平均分子量は1000以上、300000以下であることが重要であり、より好ましくは3000以上、300000以下であることがポリマーの特性を生かす上で好ましい。分子量はゲルパーミエーションクロマトグラフィー、浸透圧法、光分散法、粘度法等の公知の方法により測定される。   It is important that the number average molecular weight of the polyurethane obtained by the production method as described above is 1,000 or more and 300,000 or less, and more preferably 3000 or more and 300,000 or less in view of the characteristics of the polymer. The molecular weight is measured by a known method such as gel permeation chromatography, osmotic pressure method, light dispersion method, viscosity method and the like.

また、ポリウレタン塗膜を形成する際には通常は上記重合溶液をそのまま基板に塗布し、基板上で加熱してポリウレタン塗膜を形成することができる。また、生成したポリウレタン溶液を大過剰の水、メタノールのごとき貧溶媒中に投入し、沈殿回収した後に溶媒に再溶解して用いてもよい。上記ポリウレタン溶液の希釈溶液及び/または沈殿回収したポリウレタンの再溶解溶媒は、ポリウレタンを溶解するものであれば特に限定されない。   Moreover, when forming a polyurethane coating film, the said polymer solution is normally apply | coated to a board | substrate as it is, and it can heat on a board | substrate and can form a polyurethane coating film. The produced polyurethane solution may be poured into a poor solvent such as a large excess of water or methanol, recovered by precipitation, and then redissolved in a solvent. The diluted solution of the polyurethane solution and / or the redissolved solvent of the recovered polyurethane is not particularly limited as long as it dissolves the polyurethane.

それらの溶媒の具体例としては、2−ピロリドン、N−メチル−2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチルラクトン等を挙げることができる。これらは単独でまたは混合して使用してよい。更に、単独では均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。   Specific examples of these solvents include 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, γ-butyllactone, etc. Can be mentioned. These may be used alone or in combination. Furthermore, even if it is a solvent which cannot obtain a uniform solution by itself, the solvent may be added and used within a range where a uniform solution can be obtained. Examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol.

この溶液を基板上で塗布、溶媒を蒸発させることにより基板上にポリウレタン被膜を形成させることができる。この際の温度は溶媒が蒸発すれば十分であり、通常は80〜200℃が好ましい。   A polyurethane film can be formed on the substrate by applying this solution on the substrate and evaporating the solvent. The temperature at this time is sufficient if the solvent evaporates, and is usually preferably 80 to 200 ° C.

上記のようにして得られた本発明の液晶配向処理剤溶液を、スピンコート、転写印刷法等の方法を用いて基板上に塗布し、これを上記の条件で加熱焼成して高分子薄膜を形成する。この際の高分子薄膜の厚みとしては、特に限定されるものではないが、通常の液晶配向膜として使用される上で10〜3000nmが適当である。   The liquid crystal aligning agent solution of the present invention obtained as described above is applied onto a substrate using a method such as spin coating or transfer printing, and this is heated and fired under the above conditions to form a polymer thin film. Form. The thickness of the polymer thin film at this time is not particularly limited, but is suitably 10 to 3000 nm when used as a normal liquid crystal alignment film.

次いで、該高分子薄膜表面に光または電子線が照射される。使用する光の波長としては特に限定されないが、一般には100nm〜400nmの範囲であることが好ましく、更に好ましくは、使用する高分子の種類によってフィルター等を介して適宜波長を選択することが好ましい。また、光の照射時間は、一般には数秒から数時間の範囲であるが、使用する高分子により適宜選択することが可能である。   Subsequently, light or an electron beam is irradiated to the polymer thin film surface. The wavelength of the light to be used is not particularly limited, but generally it is preferably in the range of 100 nm to 400 nm, and more preferably, the wavelength is suitably selected through a filter or the like depending on the type of polymer to be used. The light irradiation time is generally in the range of several seconds to several hours, but can be appropriately selected depending on the polymer used.

更に、光を照射する方法は特に限定されないが、偏光を用いることが均一な液晶配向を得る上で好ましい。この場合、偏光した紫外線を照射する方法は特に限定されない。偏光面を回転させて照射してもよく、また偏光紫外線の入射角を変えて2回以上照射してもよい。また、実質的に偏光が得られればよく、無偏光の紫外線を基板の法線から一定角度傾けて照射してもよい。   Furthermore, the method of irradiating light is not particularly limited, but it is preferable to use polarized light for obtaining uniform liquid crystal alignment. In this case, the method of irradiating polarized ultraviolet rays is not particularly limited. Irradiation may be performed by rotating the polarization plane, or irradiation may be performed twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.

このようにして偏光した紫外線を照射した2枚の基板を作成した後、膜面を互いに対向させ液晶を狭持することにより液晶分子を配向させることができ、且つその配向は熱的にも安定である。   After making two substrates irradiated with polarized ultraviolet rays in this way, the liquid crystal molecules can be aligned by sandwiching the liquid crystal with the film surfaces facing each other, and the alignment is also thermally stable. It is.

本発明に係る高分子化合物として、更に下記一般式(70)   As the polymer compound according to the present invention, the following general formula (70)

Figure 0004610596
Figure 0004610596

(R50及びR51はそれぞれ独立に上記式(58)〜(69)で表される基から選ばれ、Ra18〜Ra21はそれぞれ水素原子、アルキル基、置換アルキル基、アリル基またはプロパルギル基を表す。)
で表される繰り返し単位を含むポリウレアを他の好適な例として挙げることができる。
(R 50 and R 51 are each independently selected from the groups represented by the above formulas (58) to (69), and R a18 to R a21 are each a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group, or a propargyl group. Represents.)
Another preferred example is polyurea containing a repeating unit represented by:

上記一般式中、Ra18〜Ra21で表される基は前記一般式(3)中のR1及びR2で表される基と同様である。Ra18〜Ra21で表される基が水素原子以外の基を含む上記ポリウレアは、以下に示す方法で得られる。Ra18〜Ra21で表される基が水素原子であるポリウレアのウレア基のN位に既知の高分子反応(モーレイ等、ジャーナル オブ アプライド ポリ
マー サイエンス、45巻、1983ページ(1992年)(T.H.Mourey et.al.,J.Appl.Polym.Sci.,45,1983(1992))、高柳等、ジャーナル オブ ポリマー サイエンス、ポリマー ケミストリー エディション、1
9巻、1133ページ(1981年)(M.Takayanagi et.al.,J.
Polym.Sci.,Polym.Chem.Ed.,19,1133(1981))等参照)を利用して所望の置換基を所望の割合で導入することにより得られる。
In the above general formula, the groups represented by R a18 to R a21 are the same as the groups represented by R 1 and R 2 in the general formula (3). The polyurea in which the groups represented by R a18 to R a21 contain a group other than a hydrogen atom can be obtained by the method shown below. A known polymer reaction at the N-position of the urea group of polyurea in which the groups represented by R a18 to R a21 are hydrogen atoms (Moray et al., Journal of Applied Polymer Science, 45, 1983 (1992) (T. H. Mourey et.al., J. Appl.Polym.Sci., 45, 1983 (1992)), Takayanagi et al., Journal of Polymer Science, Polymer Chemistry Edition, 1
9, p. 1133 (1981) (M. Takayanagi et.al., J. MoI.
Polym. Sci. , Polym. Chem. Ed. , 19, 1133 (1981))) and the like, by introducing a desired substituent at a desired ratio.

上記一般式(70)中のR50に対応するジイソシアネート成分を構築するためのモノマー化合物の具体例としては、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、4−メチル−1,3−フェニレンジイソシアネート、5−メチル−1,4−フェニレンジイソシアネート、2,2−ビス(イソシアネートフェニル)プロパン、4,4′−ジイソシアネートジフェニル、3,3′−ジメチル−4,4′−ジイソシアネートジフェニル、4,4′−ジイソシアネートジフェニルエーテル、3,4′−ジイソシアネートジフェニルエーテル、4,4′−ジイソシアネートジフェニルメタン、3,3′−ジメチル−4,4′−ジイソシアネートジフェニルメタン、4,4′−ジイソシアネートジフェニルスルホン、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート等を好適な例として挙げられる。また、これらの2種類以上の混合物を使用することもできる。 Specific examples of the monomer compound for constructing the diisocyanate component corresponding to R 50 in the general formula (70) include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 4-methyl-1,3- Phenylene diisocyanate, 5-methyl-1,4-phenylene diisocyanate, 2,2-bis (isocyanatephenyl) propane, 4,4'-diisocyanate diphenyl, 3,3'-dimethyl-4,4'-diisocyanate diphenyl, 4, 4'-diisocyanate diphenyl ether, 3,4'-diisocyanate diphenyl ether, 4,4'-diisocyanate diphenyl methane, 3,3'-dimethyl-4,4'-diisocyanate diphenyl methane, 4,4'-diisocyanate diphenyl sulfone, 1, - cyclohexane diisocyanate, Preferred examples thereof include a 1,4-cyclohexane diisocyanate. A mixture of two or more of these can also be used.

一方、上記一般式(70)中のR51に対応するジアミン成分を構築するためのモノマー化合物の具体例としては、m−フェニレンジアミン、p−フェニレンジアミン、4−メチル−m−フェニレンジアミン、5−メチル−p−フェニレンジアミン、2,2−ビス(4−アミノフェニル)プロパン、4,4′−ジアミンジフェニル、4,4′−ジアミノ−3,3′−ジメチルジフェニル、4,4′−ジアミノジフェニルエーテル、3,4′−ジアミノジフェニルエーテル、4、4′−ジアミノジフェニルメタン、4,4′−ジアミノ−3,3′−ジメチルジフェニルメタン、4,4′−ジアミノジフェニルスルホン、1,3−シクロヘキサンジアミン等を好適な例として挙げることができる。また、これらの2種類以上の混合物を使用することもできる。 On the other hand, specific examples of the monomer compound for constructing the diamine component corresponding to R 51 in the general formula (70) include m-phenylenediamine, p-phenylenediamine, 4-methyl-m-phenylenediamine, 5 -Methyl-p-phenylenediamine, 2,2-bis (4-aminophenyl) propane, 4,4'-diaminediphenyl, 4,4'-diamino-3,3'-dimethyldiphenyl, 4,4'-diamino Diphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diaminodiphenylsulfone, 1,3-cyclohexanediamine, etc. It can be mentioned as a suitable example. A mixture of two or more of these can also be used.

また、本発明に係る高分子化合物としてのポリウレアは、ウレア基の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する構造
を含有していればよく、芳香族基または脂環式炭化水素基を有しないジイソシアネート化合物、ジアミン化合物でも上記の成分と組み合わせることにより併用することもできる。その具体例をあげるならば、ジイソシアネート化合物として、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、m−キシリレンジイソシアネート等が挙げられ、またこれらの2種以上の混合物を使用することもできる。更に、ジアミン化合物としては、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン等の脂肪族ジアミン、更には、m−キシリレンジアミン、p−キシリレンジアミン等が挙げられる。これらのジアミン成分の1種類または2種類以上を混合して使用することもできる。
The polyurea as the polymer compound according to the present invention has a divalent or trivalent aromatic group directly bonded to both ends of the urea group or a divalent or trivalent aromatic group at one end of the bond. A diisocyanate compound which does not have an aromatic group or an alicyclic hydrocarbon group, as long as it contains a structure which is directly bonded and a divalent or trivalent alicyclic hydrocarbon group is directly bonded to the other end; A diamine compound can be used in combination with the above components. Specific examples thereof include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, m-xylylene diisocyanate and the like as diisocyanate compounds, and use a mixture of two or more of these. You can also. Furthermore, examples of the diamine compound include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, , 8-diaminooctane, 1,9-diaminononane, aliphatic diamines such as 1,10-diaminodecane, m-xylylenediamine, p-xylylenediamine and the like. These diamine components may be used alone or in combination of two or more.

このようなポリウレアの合成法は特に限定されるものではない。一般にはジイソシアネートとジアミンを等モル量仕込み、有機溶媒中で重付加反応を行うことによって得ることができる。使用される溶媒の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプラクタム、テトラヒドロフラン、ジオキサン、トルエン、クロロホルム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、ブチルラクトン、クレゾール等を挙げることができる。   The method for synthesizing such polyurea is not particularly limited. In general, it can be obtained by preparing an equimolar amount of diisocyanate and diamine and performing a polyaddition reaction in an organic solvent. Specific examples of the solvent used include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcapractam, tetrahydrofuran, dioxane, toluene, chloroform, dimethyl sulfoxide, tetra Examples include methylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, butyllactone, cresol and the like.

この重付加反応に於ける反応温度は、通常−20℃から150℃程度の温度範囲が好ましい。   The reaction temperature in this polyaddition reaction is usually preferably in the temperature range of about -20 ° C to 150 ° C.

以上述べたような製造方法により得られるポリウレアの数平均分子量は1000〜300000であることが重要であり、より好ましくは3000〜300000であることがポリマーの特性を生かす上で好ましい。分子量はゲルパーミエーションクロマトグラフィー、浸透圧法、光分散法、粘度法等の公知の方法により測定される。   It is important that the number average molecular weight of the polyurea obtained by the production method as described above is 1000 to 300,000, and more preferably 3000 to 300,000 in view of the characteristics of the polymer. The molecular weight is measured by a known method such as gel permeation chromatography, osmotic pressure method, light dispersion method, viscosity method and the like.

また、ポリウレア塗膜を形成する際には通常は上記重合溶液をそのまま基板に塗布し、基板上で加熱してポリウレア塗膜を形成することができる。また、生成したポリウレア溶液を大過剰の水、メタノールのごとき貧溶媒中に投入し、沈殿回収した後に溶媒に再溶解して用いてもよい。上記ポリウレア溶液の希釈溶液及び/または沈殿回収したポリウレアの再溶解溶媒は、ポリウレアを溶解するものであれば特に限定されない。   Moreover, when forming a polyurea coating film, the said polymerization solution is normally apply | coated to a board | substrate as it is, and a polyurea coating film can be formed by heating on a board | substrate. The produced polyurea solution may be poured into a poor solvent such as a large excess of water or methanol, recovered by precipitation, and then redissolved in a solvent for use. The polyurea diluted solution and / or the precipitate-recovered polyurea redissolving solvent is not particularly limited as long as it dissolves polyurea.

それらの溶媒の具体例としては、2−ピロリドン、N−メチル−2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチルラクトン等を挙げることができる。これらは単独でまたは混合して使用してよい。更に、単独では均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。   Specific examples of these solvents include 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, γ-butyllactone, etc. Can be mentioned. These may be used alone or in combination. Furthermore, even if it is a solvent which cannot obtain a uniform solution by itself, the solvent may be added and used within a range where a uniform solution can be obtained. Examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and ethylene glycol.

この溶液を基板上で塗布、溶媒を蒸発させることにより基板上にポリウレア被膜を形成させることができる。この際の温度は溶媒が蒸発すれば十分であり、通常は80〜200℃が好ましい。   A polyurea film can be formed on the substrate by applying this solution on the substrate and evaporating the solvent. The temperature at this time is sufficient if the solvent evaporates, and is usually preferably 80 to 200 ° C.

上記のようにして得られた本発明の液晶配向処理剤溶液を、スピンコート、転写印刷法等の方法を用いて基板上に塗布し、これを上記の条件で加熱焼成して高分子薄膜を形成する。この際の高分子薄膜の厚みとしては、特に限定されるものではないが、通常の液晶配向膜として使用される上で10〜3000nmが適当である。   The liquid crystal aligning agent solution of the present invention obtained as described above is applied onto a substrate using a method such as spin coating or transfer printing, and this is heated and fired under the above conditions to form a polymer thin film. Form. The thickness of the polymer thin film at this time is not particularly limited, but is suitably 10 to 3000 nm when used as a normal liquid crystal alignment film.

次いで、該高分子薄膜表面に光または電子線が照射される。使用する光の波長としては特に限定されないが、一般には100nm〜400nmの範囲であることが好ましく、更に好ましくは、使用する高分子の種類によってフィルター等を介して適宜波長を選択することが好ましい。また、光の照射時間は、一般には数秒から数時間の範囲であるが、使用する高分子により適宜選択することが可能である。   Subsequently, light or an electron beam is irradiated to the polymer thin film surface. The wavelength of the light to be used is not particularly limited, but generally it is preferably in the range of 100 nm to 400 nm, and more preferably, the wavelength is suitably selected through a filter or the like depending on the type of polymer to be used. The light irradiation time is generally in the range of several seconds to several hours, but can be appropriately selected depending on the polymer used.

更に、光を照射する方法は特に限定されないが、偏光を用いることが均一な液晶配向を得る上で好ましい。この場合、偏光した紫外線を照射する方法は特に限定されない。偏光面を回転させて照射してもよく、また偏光紫外線の入射角を変えて2回以上照射してもよい。また、実質的に偏光が得られればよく、無偏光の紫外線を基板の法線から一定角度傾けて照射してもよい。   Furthermore, the method of irradiating light is not particularly limited, but it is preferable to use polarized light for obtaining uniform liquid crystal alignment. In this case, the method of irradiating polarized ultraviolet rays is not particularly limited. Irradiation may be performed by rotating the polarization plane, or irradiation may be performed twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.

このようにして偏光した紫外線を照射した2枚の基板を作成した後、膜面を互いに対向させ液晶を狭持することにより液晶分子を配向させることができ、且つその配向は熱的にも安定である。   After making two substrates irradiated with polarized ultraviolet rays in this way, the liquid crystal molecules can be aligned by sandwiching the liquid crystal with the film surfaces facing each other, and the alignment is also thermally stable. It is.

以下に実施例、参考例、及び比較例を挙げ、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples, reference examples, and comparative examples, but the present invention is not limited to these.

実施例1〜3

Figure 0004610596
Examples 1-3
Figure 0004610596

窒素気流下、4−(4−アミノフェノキシ)安息香酸(以下APBAと略す)とm−アミノ安息香酸(以下MABAと略す)をそれぞれ所定のモル比になるように混合し、N−メチルピロリドン(以下NMPと略す)及び総モノマーの1,2当量のピリジン(以下Pyと略す)、更に同じく1.2当量の亜リン酸トリフェニル(以下TPPと略す)を加え、100℃に加熱した後、所定の時間攪拌した。実際に用いた上記のモノマー、試薬及び溶媒の量、及び反応時間を以下の表1に示す。得られた反応溶液にNMPを加え総固形分7%になるよう希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行い、上記構造式PA−1〜PA−3で表されるポリアミドをそれぞれ得た。得られたポリアミドの収量、ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量を表2に示す。   Under a nitrogen stream, 4- (4-aminophenoxy) benzoic acid (hereinafter abbreviated as APBA) and m-aminobenzoic acid (hereinafter abbreviated as MABA) were mixed at a predetermined molar ratio, and N-methylpyrrolidone ( (Hereinafter abbreviated as NMP) and 1,2 equivalents of pyridine (hereinafter abbreviated as Py) of the total monomer, and also 1.2 equivalents of triphenyl phosphite (hereinafter abbreviated as TPP), and heated to 100 ° C, Stir for a predetermined time. The amounts of the above-mentioned monomers, reagents and solvents actually used, and the reaction time are shown in Table 1 below. NMP was added to the resulting reaction solution to dilute to a total solid content of 7%, and then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated again for purification to obtain polyamides represented by the structural formulas PA-1 to PA-3. Table 2 shows the yield of the obtained polyamide, the number average molecular weight and the weight average molecular weight determined by gel permeation chromatography.

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

実施例4

Figure 0004610596
Example 4
Figure 0004610596

窒素気流下、APBA0.92g(4mmol)と4−メチル−m−アミノ安息香酸(以下Me−MABAと略す)0.60g(4mmol)をNMPに4.75mlに溶解し、この溶液にPy0.78ml及びTPP2.52mlを加え、100℃に加熱した後19時間攪拌した。得られた反応溶液をNMP11.6mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−4で表されるポリアミド1.49gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−4の数平均分子量及び重量平均分子量はそれぞれ1.06×104及び1.89×104であった。 Under a nitrogen stream, 0.92 g (4 mmol) of APBA and 0.60 g (4 mmol) of 4-methyl-m-aminobenzoic acid (hereinafter abbreviated as Me-MABA) were dissolved in 4.75 ml of NMP, and Py0.78 ml was dissolved in this solution. And 2.52 ml of TPP were added, and the mixture was heated to 100 ° C. and stirred for 19 hours. The obtained reaction solution was diluted with 11.6 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 1.49 g of polyamide represented by the structural formula PA-4 was obtained. The number average molecular weight and weight average molecular weight of PA-4 determined by gel permeation chromatography were 1.06 × 10 4 and 1.89 × 10 4 , respectively.

実施例5

Figure 0004610596
Example 5
Figure 0004610596

アルゴンガス雰囲気下、p−アミノ安息香酸(以下PABAと略す)0.20g(1.458mmol)とMABA0.30g(2.188mmol)をNMPに1.31mlに溶解し、この溶液にPy0.31ml及びTPP1.00mlを加え、100℃に加熱した後18時間攪拌した。得られた反応溶液をNMP4mlで希釈した後、過剰のメタノール50mlにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−5で表されるポリアミド0.412gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−5の数平均分子量及び重量平均分子量はそれぞれ6.74×103及び1.26×104であった。 Under an argon gas atmosphere, 0.20 g (1.458 mmol) of p-aminobenzoic acid (hereinafter abbreviated as PABA) and 0.30 g (2.188 mmol) of MABA were dissolved in 1.31 ml of NMP, and 0.31 ml of Py and TPP 1.00ml was added, and it heated at 100 degreeC, Then, it stirred for 18 hours. The resulting reaction solution was diluted with 4 ml of NMP and then poured into 50 ml of excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 0.412 g of polyamide represented by the structural formula PA-5 was obtained. The number average molecular weight and weight average molecular weight of PA-5 determined by gel permeation chromatography were 6.74 × 10 3 and 1.26 × 10 4 , respectively.

実施例6

Figure 0004610596
Example 6
Figure 0004610596

アルゴンガス雰囲気下、PABA0.27g(2.0mmol)とMe−MABA0.30g(2.0mmol)をNMPに1.33mlに溶解し、この溶液にPy0.39ml及びTPP1.26mlを加え、100℃に加熱した後18時間攪拌した。得られた反応溶液をNMP4mlで希釈した後、過剰のメタノール50mlにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−6で表されるポリアミド0.480gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−6の数平均分子量及び重量平均分子量はそれぞれ7.56×103及び2.
52×104であった。
Under an argon gas atmosphere, 0.27 g (2.0 mmol) of PABA and 0.30 g (2.0 mmol) of Me-MABA were dissolved in 1.33 ml of NMP, and 0.39 ml of Py and 1.26 ml of TPP were added to this solution. After heating, the mixture was stirred for 18 hours. The resulting reaction solution was diluted with 4 ml of NMP and then poured into 50 ml of excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 0.480 g of polyamide represented by the structural formula PA-6 was obtained. The number average molecular weight and weight average molecular weight of PA-6 determined by gel permeation chromatography are 7.56 × 10 3 and 2.
It was 52 × 10 4 .

実施例7

Figure 0004610596
Example 7
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と4,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて30分攪拌した。得られた反応溶液をNMP30mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−7で表されるポリアミド3.85gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−7の数平均分子量及び重量平均分子量はそれぞれ1.40×104及び2.90×
104であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 2.00 g (10.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in NMP to a concentration of 1.0 mol / l, Mix and freeze at -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 30 minutes. The resulting reaction solution was diluted with 30 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.85 g of polyamide represented by the structural formula PA-7 was obtained. The number average molecular weight and weight average molecular weight of PA-7 determined by gel permeation chromatography are 1.40 × 10 4 and 2.90 ×, respectively.
10 4 .

実施例8

Figure 0004610596
Example 8
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と3,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて15分攪拌した。得られた反応溶液をNMP30mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−8で表されるポリアミド3.82gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−8の数平均分子量及び重量平均分子量はそれぞれ1.32×104及び2.98×
104であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 2.00 g (10.0 mmol) of 3,4'-diaminodiphenyl ether were dissolved in NMP to a concentration of 1.0 mol / l, Mix and freeze at -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 15 minutes. The resulting reaction solution was diluted with 30 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.82 g of polyamide represented by the structural formula PA-8 was obtained. The number average molecular weight and the weight average molecular weight of PA-8 determined by gel permeation chromatography are 1.32 × 10 4 and 2.98 ×, respectively.
10 4 .

実施例9

Figure 0004610596
Example 9
Figure 0004610596

アルゴンガス雰囲気下、テレフタル酸ジクロライド2.03g(10.0mmol)と3,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP30mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−9で表されるポリアミド3.71gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−9の数平均分子量及び重量平均分子量はそれぞれ1.33×104及び2.59×
104であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of terephthalic acid dichloride and 2.00 g (10.0 mmol) of 3,4'-diaminodiphenyl ether were dissolved in NMP to a concentration of 1.0 mol / l, Mix and freeze at -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The resulting reaction solution was diluted with 30 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.71 g of polyamide represented by the structural formula PA-9 was obtained. The number average molecular weight and the weight average molecular weight of PA-9 determined by gel permeation chromatography are 1.33 × 10 4 and 2.59 ×, respectively.
10 4 .

実施例10

Figure 0004610596
Example 10
Figure 0004610596

窒素気流下、4,4′−ジカルボキシジフェニルエーテル1.29g(5.0mmol)とm−フェニレンジアミン0.54g(5.0mmol)をNMP5.55mlに溶解し、この溶液にPy0.97ml及びTPP3.14mlを加え、80℃に加熱した後6時間攪拌した。得られた反応溶液をNMP14mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−10で表されるポリアミド1.72gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−10の数平均分子量及び重量平均分子量はそれぞれ1.32×104及び2.88×104であった。 Under a nitrogen stream, 1.29 g (5.0 mmol) of 4,4′-dicarboxydiphenyl ether and 0.54 g (5.0 mmol) of m-phenylenediamine were dissolved in 5.55 ml of NMP, and Py0.97 ml and TPP3. 14 ml was added and the mixture was heated to 80 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 14 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 1.72 g of polyamide represented by the structural formula PA-10 was obtained. The number average molecular weight and the weight average molecular weight of PA-10 determined by gel permeation chromatography were 1.32 × 10 4 and 2.88 × 10 4 , respectively.

実施例11

Figure 0004610596
Example 11
Figure 0004610596

窒素気流下、4,4′−ジカルボキシジフェニルエーテル1.29g(5.0mmol)と4−メチル−m−フェニレンジアミン0.61g(5.0mmol)をNMP6.09mlに溶解し、この溶液にPy0.97ml及びTPP3.14mlを加え、100℃に加熱した後17時間攪拌した。得られた反応溶液をNMP14.5mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−11で表されるポリアミド1.84gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−11の数平均分子量及び重量平均分子量はそれぞれ1.24×104及び2.47×104であった。 Under a nitrogen stream, 1.29 g (5.0 mmol) of 4,4′-dicarboxydiphenyl ether and 0.61 g (5.0 mmol) of 4-methyl-m-phenylenediamine were dissolved in 6.09 ml of NMP. 97 ml and 3.14 ml of TPP were added, and the mixture was heated to 100 ° C. and stirred for 17 hours. The obtained reaction solution was diluted with 14.5 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 1.84 g of polyamide represented by the structural formula PA-11 was obtained. The number average molecular weight and the weight average molecular weight of PA-11 determined by gel permeation chromatography were 1.24 × 10 4 and 2.47 × 10 4 , respectively.

実施例12

Figure 0004610596
Example 12
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と4,4′−ジアミノジフェニルメタン1.98g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて30分攪拌した。得られた反応溶液をNMP30mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−12で表されるポリアミド3.61gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−12の数平均分子量及び重量平均分子量はそれぞれ3.81×103及び5.41
×103であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 1.98 g (10.0 mmol) of 4,4′-diaminodiphenylmethane were dissolved in NMP to a concentration of 1.0 mol / l, Mix and freeze at -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 30 minutes. The resulting reaction solution was diluted with 30 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.61 g of polyamide represented by the structural formula PA-12 was obtained. The number average molecular weight and the weight average molecular weight of PA-12 determined by gel permeation chromatography are 3.81 × 10 3 and 5.41, respectively.
× 10 3

実施例13

Figure 0004610596
Example 13
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と4,4′−ジアミノベンゾフェノン2.12g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて30分攪拌した。得られた反応溶液をNMP32mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−13で表されるポリアミド3.90gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−13の数平均分子量及び重量平均分子量はそれぞれ3.31×103及び5.55×
103であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 2.12 g (10.0 mmol) of 4,4′-diaminobenzophenone were dissolved in NMP to a concentration of 1.0 mol / l, Mix and freeze at -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 30 minutes. The resulting reaction solution was diluted with 32 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.90 g of polyamide represented by the structural formula PA-13 was obtained. The number average molecular weight and the weight average molecular weight of PA-13 determined by gel permeation chromatography are 3.31 × 10 3 and 5.55 ×, respectively.
10 3 .

実施例14

Figure 0004610596
Example 14
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と4,4′−ジアミノジフェニルスルホン2.48g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて3時間攪拌した。得られた反応溶液をNMP35mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−14で表されるポリアミド4.19gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−14の数平均分子量及び重量平均分子量はそれぞれ3.98×103及び8.1
8×103であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 2.48 g (10.0 mmol) of 4,4′-diaminodiphenylsulfone were dissolved in NMP to a concentration of 1.0 mol / l. The mixture was frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 3 hours. The obtained reaction solution was diluted with 35 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 4.19 g of polyamide represented by the structural formula PA-14 was obtained. The number average molecular weight and weight average molecular weight of PA-14 determined by gel permeation chromatography are 3.98 × 10 3 and 8.1, respectively.
It was 8 × 10 3 .

実施例15

Figure 0004610596
Example 15
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド4.06g(20.0mmol)と3,3′−ジメチル−4,4′−ジアミノビフェニル4.25g(20.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて30分攪拌した。得られた反応溶液をNMP64mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−15で表されるポリアミド7.65gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−15の数平均分子量及び重量平均分子量はそれぞれ6.67×103及び1.23×104であった。 Under an argon gas atmosphere, 4.06 g (20.0 mmol) of isophthalic acid dichloride and 4.25 g (20.0 mmol) of 3,3′-dimethyl-4,4′-diaminobiphenyl each have a concentration of 1.0 mol / l. And dissolved in NMP, mixed and frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 30 minutes. The obtained reaction solution was diluted with 64 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 7.65 g of polyamide represented by the structural formula PA-15 was obtained. The number average molecular weight and the weight average molecular weight of PA-15 determined by gel permeation chromatography were 6.67 × 10 3 and 1.23 × 10 4 , respectively.

実施例16

Figure 0004610596
Example 16
Figure 0004610596

アルゴンガス雰囲気下、テレフタル酸ジクロライド2.03g(10.0mmol)と2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン4.10g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP47mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−16で表されるポリアミド5.58gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−16の数平均分子量及び重量平均分子量はそれぞれ4.42×104及び8.17×104であった。 Under an argon gas atmosphere, 2.03 g (10.0 mmol) of terephthalic acid dichloride and 4.10 g (10.0 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane were each added at 1.0 mol / l. It melt | dissolved in NMP so that it might become a density | concentration, it mixed at the temperature of -78 degreeC, and it was frozen. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The obtained reaction solution was diluted with 47 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 5.58 g of polyamide represented by the structural formula PA-16 was obtained. The number average molecular weight and weight average molecular weight of PA-16 determined by gel permeation chromatography were 4.42 × 10 4 and 8.17 × 10 4 , respectively.

実施例17

Figure 0004610596
Example 17
Figure 0004610596

アルゴンガス雰囲気下、テレフタル酸ジクロライド2.03g(10.0mmol)と4−メチル−m−フェニレンジアミン1.22g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP25mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−17で表されるポリアミド2.99gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−17の数平均分子量及び重量平均分子量はそれぞれ9.33×103及び1.74
×104であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of terephthalic acid dichloride and 1.22 g (10.0 mmol) of 4-methyl-m-phenylenediamine were dissolved in NMP to a concentration of 1.0 mol / l. The mixture was frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The obtained reaction solution was diluted with 25 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.99 g of polyamide represented by the structural formula PA-17 was obtained. The number average molecular weight and weight average molecular weight of PA-17 determined by gel permeation chromatography were 9.33 × 10 3 and 1.74, respectively.
× 10 4

実施例18

Figure 0004610596
Example 18
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ビフェニル2.79g(10.0mmol)と4−メチル−m−フェニレンジアミン1.22g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて30分攪拌した。得られた反応溶液をNMP30mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−18で表されるポリアミド3.73gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−18の数平均分子量及び重量平均分子量はそれぞれ5.04×103及び8.61×103であった。 Under an argon gas atmosphere, 2,4'-di (chlorocarbonyl) biphenyl 2.79 g (10.0 mmol) and 4-methyl-m-phenylenediamine 1.22 g (10.0 mmol) were each added at a concentration of 1.0 mol / l. It melt | dissolved in NMP so that it might become, It was made to mix and freeze at the temperature of -78 degreeC. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 30 minutes. The resulting reaction solution was diluted with 30 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.73 g of polyamide represented by the structural formula PA-18 was obtained. The number average molecular weight and weight average molecular weight of PA-18 determined by gel permeation chromatography were 5.04 × 10 3 and 8.61 × 10 3 , respectively.

実施例19

Figure 0004610596
Example 19
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル2.95g(10.0mmol)と2,4,6−トリメチル−m−フェニレンジアミン1.50g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP35mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−19で表されるポリアミド3.56gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−19の数平均分子量及び重量平均分子量はそれぞれ9.48×103及び1.55×104であった。 Under an argon gas atmosphere, 1.04 mol each of 2.4 g (10.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and 1.50 g (10.0 mmol) of 2,4,6-trimethyl-m-phenylenediamine were obtained. The solution was dissolved in NMP to a concentration of / l, mixed and frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The obtained reaction solution was diluted with 35 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.56 g of polyamide represented by the structural formula PA-19 was obtained. The number average molecular weight and weight average molecular weight of PA-19 determined by gel permeation chromatography were 9.48 × 10 3 and 1.55 × 10 4 , respectively.

参考例1

Figure 0004610596
Reference example 1
Figure 0004610596

ジメチル5−ヒドロキシイソフタル酸2.400g(11.42mmol)、3−ブロモプロペン1.4g(11.6mmol)および炭酸カリウム1.6g(11.6mmol)をアセトン40mLに分散し、還流温度で15時間撹拌した。室温まで冷却後、ジエチルエーテル150mLを加えて不溶の塩を炉別した。炉液を濃縮しシリカゲルカラムクロマトグラフィー(展開溶媒:ジエチルエーテル/ヘキサン=1/2)で精製したところ、上記構造式1で表されるジメチル5−アリロキシイソフタル酸2.612gを無色固体粉末として得た(収率:94.1%)。   2.400 g (11.42 mmol) of dimethyl 5-hydroxyisophthalic acid, 1.4 g (11.6 mmol) of 3-bromopropene and 1.6 g (11.6 mmol) of potassium carbonate are dispersed in 40 mL of acetone, and the mixture is refluxed for 15 hours. Stir. After cooling to room temperature, 150 mL of diethyl ether was added to separate insoluble salts. When the furnace liquid was concentrated and purified by silica gel column chromatography (developing solvent: diethyl ether / hexane = 1/2), 2.612 g of dimethyl 5-allyloxyisophthalic acid represented by the above structural formula 1 was obtained as a colorless solid powder. Obtained (yield: 94.1%).

IR(KBr,cm-1):2955(w),1736(s),1595(w),1458(w),1437(w),1341,1318(w),1252(s),1115(w),1044,1011(w),928(w),876(w),756.
1H−NMR δ(250MHz,CDCl3,ppm):3.94(6H,s),4.6
(2H,dt),5.4(2H,m),6.0(1H,m),7.77(2H,s),8.3(1H,s).
IR (KBr, cm −1 ): 2955 (w), 1736 (s), 1595 (w), 1458 (w), 1437 (w), 1341, 1318 (w), 1252 (s), 1115 (w) , 1044, 1011 (w), 928 (w), 876 (w), 756.
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 3.94 (6H, s), 4.6
(2H, dt), 5.4 (2H, m), 6.0 (1H, m), 7.77 (2H, s), 8.3 (1H, s).

上記の反応で得られたジメチル5−アリロキシイソフタル酸1.109g(4.432mmol)をメタノール50mLに溶解し、ここへ水酸化バリウム(8水和物)2.8g(8.9mmol)を加えて2.5日室温で撹拌した。1N塩酸を加えて酸性化した後、メタノールを留去した。析出物を濾別後水洗し乾燥したところ、上記構造式2で表される
5−アリロキシイソフタル酸0.924gを無色粉末として得た。(収率:93.8%)
1.109 g (4.432 mmol) of dimethyl 5-allyloxyisophthalic acid obtained in the above reaction is dissolved in 50 mL of methanol, and 2.8 g (8.9 mmol) of barium hydroxide (octahydrate) is added thereto. For 2.5 days at room temperature. After adding 1N hydrochloric acid to acidify, methanol was distilled off. The precipitate was separated by filtration, washed with water, and dried to obtain 0.924 g of 5-allyloxyisophthalic acid represented by the above structural formula 2 as a colorless powder. (Yield: 93.8%)

IR(KBr,cm-1):3100−2500(br),1692(s),1592,1462,1420,1316,1277(s),1127(w),1038,939,912,762,694.
1H−NMR δ(500MHz,Acetone−d6,ppm):4.744(2H,
dt,J=1.5,5.1Hz),5.299(1H,dd,J=1.5,10.6Hz),5.474(1H,dd,J=1.7,17.3Hz),6.12(1H,m),7.787(2H,d,J=1.4Hz),8.285(1H,t),11.5(1H,bs).
元素分析結果:(分子式:C11105、分子量:222.20)
計算値(%);C:59.46,H:4.54.
実測値(%);C:59.53,H:4.51.
IR (KBr, cm −1 ): 3100-2500 (br), 1692 (s), 1592, 1462, 1420, 1316, 1277 (s), 1127 (w), 1038, 939, 912, 762, 694.
1 H-NMR δ (500 MHz, Acetone-d 6 , ppm): 4.744 (2H,
dt, J = 1.5, 5.1 Hz), 5.299 (1H, dd, J = 1.5, 10.6 Hz), 5.474 (1H, dd, J = 1.7, 17.3 Hz) 6.12 (1H, m), 7.787 (2H, d, J = 1.4 Hz), 8.285 (1H, t), 11.5 (1H, bs).
Elemental analysis results: (molecular formula: C 11 H 10 O 5 , molecular weight: 222.20)
Calculated value (%); C: 59.46, H: 4.54.
Actual value (%); C: 59.53, H: 4.51.

実施例20

Figure 0004610596
Example 20
Figure 0004610596

窒素気流下、参考例1で得られた5−アリロキシイソフタル酸0.44g(2.0mmol)と4,4′−ジアミノジフェニルエーテル0.40g(2.0mmol)をNMP2.84mlに溶解し、この溶液にPy0.39ml及びTPP1.26mlを加え、100℃に加熱した後6時間攪拌した。得られた反応溶液をNMP6.4mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−20で表されるポリアミド0.80gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−20の数平均分子量及び重量平均分子量はそれぞれ5.99×103及び1.33×104であった。 Under a nitrogen stream, 0.44 g (2.0 mmol) of 5-allyloxyisophthalic acid obtained in Reference Example 1 and 0.40 g (2.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in 2.84 ml of NMP. To the solution, 0.39 ml of Py and 1.26 ml of TPP were added, heated to 100 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 6.4 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 0.80 g of polyamide represented by the structural formula PA-20 was obtained. The number average molecular weight and the weight average molecular weight of PA-20 determined by gel permeation chromatography were 5.99 × 10 3 and 1.33 × 10 4 , respectively.

実施例21

Figure 0004610596
Example 21
Figure 0004610596

窒素気流下、参考例1で得られた5−アリロキシイソフタル酸0.44g(2.0mmol)とm−フェニレンジアミン0.22g(2.0mmol)をNMP1.82mlに溶解し、この溶液にPy0.39ml及びTPP1.26mlを加え、100℃に加熱した後6時間攪拌した。得られた反応溶液をNMP5.0mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−21で表されるポリアミド0.64gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−21の数平均分子量及び重量平均分子量はそれぞれ8.20×103及び1.42×104であった。 Under a nitrogen stream, 0.44 g (2.0 mmol) of 5-allyloxyisophthalic acid obtained in Reference Example 1 and 0.22 g (2.0 mmol) of m-phenylenediamine were dissolved in 1.82 ml of NMP. .39 ml and TPP 1.26 ml were added, and the mixture was heated to 100 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 5.0 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 0.64 g of polyamide represented by the structural formula PA-21 was obtained. The number average molecular weight and weight average molecular weight of PA-21 determined by gel permeation chromatography were 8.20 × 10 3 and 1.42 × 10 4 , respectively.

実施例22

Figure 0004610596
Example 22
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)と3,3′−ジメチル−4,4′−ジアミノジフェニルメタン2.26g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP32mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−22で表されるポリアミド3.90gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−22の数平均分子量及び重量平均分子量はそれぞれ1.76×104及び6.71×104であった。 Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride and 2.26 g (10.0 mmol) of 3,3′-dimethyl-4,4′-diaminodiphenylmethane each have a concentration of 1.0 mol / l. And dissolved in NMP, mixed and frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The resulting reaction solution was diluted with 32 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.90 g of polyamide represented by the structural formula PA-22 was obtained. The number average molecular weight and the weight average molecular weight of PA-22 determined by gel permeation chromatography were 1.76 × 10 4 and 6.71 × 10 4 , respectively.

実施例23

Figure 0004610596
Example 23
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル2.95g(10.0mmol)と3,3′−ジメチル−4,4′−ジアミノジフェニルメタン2.26g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP39mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−23で表されるポリアミド4.95gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−23の数平均分子量及び重量平均分子量はそれぞれ1.58×104及び4.01×104であった。 Under an argon gas atmosphere, 2.95 g (10.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and 2.26 g (10.0 mmol) of 3,3′-dimethyl-4,4′-diaminodiphenylmethane were each 1 It was dissolved in NMP to a concentration of 0.0 mol / l, mixed and frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The obtained reaction solution was diluted with 39 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 4.95 g of polyamide represented by the structural formula PA-23 was obtained. The number average molecular weight and weight average molecular weight of PA-23 determined by gel permeation chromatography were 1.58 × 10 4 and 4.01 × 10 4 , respectively.

実施例24

Figure 0004610596
Example 24
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド2.03g(10.0mmol)、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン1.13g(5.0mmol)及び4,4′−ジアミノジフェニルエーテル1.00g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP31mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−24で表されるポリアミド3.91gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−24の数平均分子量及び重量平均分子量はそれぞれ1.72×104及び4
.39×104であった。
Under an argon gas atmosphere, 2.03 g (10.0 mmol) of isophthalic acid dichloride, 1.13 g (5.0 mmol) of 3,3′-dimethyl-4,4′-diaminodiphenylmethane and 1.00 g of 4,4′-diaminodiphenyl ether (5.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The resulting reaction solution was diluted with 31 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.91 g of polyamide represented by the structural formula PA-24 was obtained. The number average molecular weight and weight average molecular weight of PA-24 determined by gel permeation chromatography were 1.72 × 10 4 and 4 respectively.
. It was 39 × 10 4 .

参考例2

Figure 0004610596
Reference example 2
Figure 0004610596

2−アミノ−4−ニトロトルエン5.16g(3.9mmol)をNMP10mLに溶解し、氷浴にて冷却した。ここへ4,4′−ジ(クロロカルボニル)ジフェニルエーテル5.00g(16.9mmol)のNMP20mL溶液を20分かけて滴下し、更に室温に戻しながら1時間半撹拌した。この溶液を氷水500mLに投入し、生じた沈殿を回収し、充分に水洗した。この沈殿をNMP20mLとエタノール100mLの混合溶媒中に分散させ80℃で加熱洗浄して濾別したところ、上記構造式3で表される4,4′−ジ[N−(2−メチル−5−ニトロフェニル)カルボニルアミノ]ジフェニルエーテル7.38gを白色粉末として得た(収率:82.7%)。   2-Amino-4-nitrotoluene 5.16 g (3.9 mmol) was dissolved in 10 mL of NMP and cooled in an ice bath. A solution of 4,4'-di (chlorocarbonyl) diphenyl ether (5.00 g, 16.9 mmol) in NMP (20 mL) was added dropwise over 20 minutes, and the mixture was further stirred for 1 hour and a half while returning to room temperature. This solution was poured into 500 mL of ice water, and the resulting precipitate was recovered and thoroughly washed with water. This precipitate was dispersed in a mixed solvent of 20 mL of NMP and 100 mL of ethanol, washed with heating at 80 ° C., and filtered. As a result, 4,4′-di [N- (2-methyl-5- 7.38 g of (nitrophenyl) carbonylamino] diphenyl ether were obtained as a white powder (yield: 82.7%).

IR(KBr,cm-1):3274,1655(s),1595,1524(s),1499,1476(w),1350(s),1321,1252(s),1170(w),1076(w),1013(w),885(w),822(w),739(w),658(w).
1H−NMR δ(500MHz,DMSO−d6,ppm):2.51(6H,s),7
.24(4H,d,J=8.7Hz),7.58(2H,d,J=8.5Hz),8.04(2H,dd,J=2.4,8.4Hz),8.10(4H,d,J=8.7Hz),8.35(2H,d,J=2.3Hz),10.15(2H,s).
元素分析結果:(分子式:C282247、分子量:526.50)
計算値(%);C:63.87,H:4.22,N:10.64.
実測値(%);C:63.83,H:4.15,N:10.56.
IR (KBr, cm −1 ): 3274, 1655 (s), 1595, 1524 (s), 1499, 1476 (w), 1350 (s), 1321, 1252 (s), 1170 (w), 1076 (w ), 1013 (w), 885 (w), 822 (w), 739 (w), 658 (w).
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.51 (6H, s), 7
. 24 (4H, d, J = 8.7 Hz), 7.58 (2H, d, J = 8.5 Hz), 8.04 (2H, dd, J = 2.4, 8.4 Hz), 8.10 (4H, d, J = 8.7 Hz), 8.35 (2H, d, J = 2.3 Hz), 10.15 (2H, s).
Elemental analysis result: (molecular formula: C 28 H 22 N 4 O 7 , molecular weight: 526.50)
Calculated value (%); C: 63.87, H: 4.22, N: 10.64.
Found (%); C: 63.83, H: 4.15, N: 10.56.

上記の反応で得られた4,4′−ジ[N−(2−メチル−5−ニトロフェニル)カルボニルアミノ]ジフェニルエーテル3.00g(5.70mmol)をエタノール50mLおよびNMP80mLの混合溶媒に溶解し、そこへ5%Pd−カーボン粉末0.240gを分散させた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて6時間撹拌した。セライトを用いて触媒を除去した後、減圧下溶液を留去して生じた沈殿をエタノール50mLに分散させ80℃で加熱洗浄して濾別したところ、上記構造式(I)で表される4,4′−ジ[N−(2−メチル−5−アミノフェニル)カルボニルアミノ]ジフェニルエーテル2.50gを白色粉末として得た(収率:94.0%)。   Dissolving 3.00 g (5.70 mmol) of 4,4′-di [N- (2-methyl-5-nitrophenyl) carbonylamino] diphenyl ether obtained in the above reaction in a mixed solvent of 50 mL of ethanol and 80 mL of NMP, Thereto, 0.240 g of 5% Pd-carbon powder was dispersed. After sufficiently degassing at -78 ° C under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 6 hours. After removing the catalyst using Celite, the precipitate formed by distilling off the solution under reduced pressure was dispersed in 50 mL of ethanol, heated and washed at 80 ° C., and filtered. As a result, 4 represented by the structural formula (I) was obtained. , 4′-di [N- (2-methyl-5-aminophenyl) carbonylamino] diphenyl ether was obtained as a white powder (yield: 94.0%).

IR(KBr,cm-1):3427,3345,3275(br),1655(s),1601,1586,1543(s),1505(s),1493,1454,1327(w),1281,1258(s),1169,1107(w),1011(w),897(w),856(w),843,681.
1H−NMR δ(500MHz,DMSO−d6,ppm):2.06(6H,s),4
.90(4H,s),6.40(2H,dd,J=2.2,8.1Hz),6.60(2H,d,J=2.1Hz),6.88(2H,d,J=8.1Hz),7.17(4H,d,J=8.7Hz),8.03(4H,d,J=8.7Hz),9.63(2H,s).
元素分析結果:(分子式:C282643、分子量:466.53)
計算値(%);C:69.68,H:6.28,N:17.41.
実測値(%);C:69.90,H:6.40,N:17.14.
IR (KBr, cm −1 ): 3427, 3345, 3275 (br), 1655 (s), 1601, 1586, 1543 (s), 1505 (s), 1493, 1454, 1327 (w), 1281, 1258 ( s), 1169, 1107 (w), 1011 (w), 897 (w), 856 (w), 843, 681.
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.06 (6H, s), 4
. 90 (4H, s), 6.40 (2H, dd, J = 2.2, 8.1 Hz), 6.60 (2H, d, J = 2.1 Hz), 6.88 (2H, d, J = 8.1 Hz), 7.17 (4H, d, J = 8.7 Hz), 8.03 (4H, d, J = 8.7 Hz), 9.63 (2H, s).
Elemental analysis result: (molecular formula: C 28 H 26 N 4 O 3 , molecular weight: 466.53)
Calculated value (%); C: 69.68, H: 6.28, N: 17.41.
Actual value (%); C: 69.90, H: 6.40, N: 17.14.

実施例25

Figure 0004610596
Example 25
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド1.02g(5.0mmol)と参考例2で得られた化合物(I)で表される4,4′−ジ[N−(2−メチル−5−アミノフェニル)カルボニルアミノ]ジフェニルエーテル2.33g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP25.0mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−25で表されるポリアミド3.15gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−25の数平均分子量及び重量平均分子量はそれぞれ1.61×104及び3.05×104であった。 Under an argon gas atmosphere, 1.02 g (5.0 mmol) of isophthalic acid dichloride and 4,4′-di [N- (2-methyl-5-aminophenyl) represented by the compound (I) obtained in Reference Example 2 were used. ) Carbonylamino] diphenyl ether (2.33 g, 5.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, and mixed and frozen at a temperature of -78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The reaction solution obtained was diluted by adding 25.0 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 3.15 g of polyamide represented by the structural formula PA-25 was obtained. The number average molecular weight and weight average molecular weight of PA-25 determined by gel permeation chromatography were 1.61 × 10 4 and 3.05 × 10 4 , respectively.

参考例3

Figure 0004610596
Reference example 3
Figure 0004610596

4,4′−ジアミノジフェニルエーテル5.00g(25.0mmol)をNMP30mLに溶解し、氷浴にて冷却した。ここへ4−ニトロ安息香酸クロリド9.78g(52.7mmol)のNMP30mL溶液を1時間かけて滴下し、更に室温に戻しながら2時間撹拌した。この溶液を氷水500mLに投入し、生じた沈殿を回収、充分に水洗した。この沈殿を酢酸エチル/THF混合溶媒で再結晶精製したところ、上記構造式4で表される4,4′−ジ(4−ニトロベンズアミド)ジフェニルエーテル11.63gを白色粉末として得た(収率:93.4%)。   5.00 g (25.0 mmol) of 4,4′-diaminodiphenyl ether was dissolved in 30 mL of NMP and cooled in an ice bath. To this, a solution of 9.78 g (52.7 mmol) of 4-nitrobenzoyl chloride in 30 mL of NMP was added dropwise over 1 hour, and the mixture was further stirred for 2 hours while returning to room temperature. This solution was poured into 500 mL of ice water, and the resulting precipitate was recovered and thoroughly washed with water. When this precipitate was recrystallized and purified with a mixed solvent of ethyl acetate / THF, 11.63 g of 4,4′-di (4-nitrobenzamide) diphenyl ether represented by the above structural formula 4 was obtained as a white powder (yield: 93.4%).

IR(KBr,cm-1):3360,2924,1649(s),1603(s),1539(s),1507(s),1408(w),1350,1327,1253,1225,1096(w),1015(w),870,853,826,698(w).
1H−NMR δ(500MHz,DMSO−d6,ppm):7.06(4H,d,J=
8.9Hz),7.80(4H,d,J=8.9),8.19(4H,d,J=8.8Hz),8.38(4H,d,J=8.8Hz),10.61(2H,s).
元素分析結果:(分子式:C261847、分子量:498.45)
計算値(%);C:62.65,H:3.65,N:12.84.
実測値(%);C:62.60,H:3.54,N:12.19.
IR (KBr, cm −1 ): 3360, 2924, 1649 (s), 1603 (s), 1539 (s), 1507 (s), 1408 (w), 1350, 1327, 1253, 1225, 1096 (w) , 1015 (w), 870, 853, 826, 698 (w).
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 7.06 (4H, d, J =
8.9 Hz), 7.80 (4H, d, J = 8.9), 8.19 (4H, d, J = 8.8 Hz), 8.38 (4H, d, J = 8.8 Hz), 10.61 (2H, s).
Elemental analysis result: (molecular formula: C 26 H 18 N 4 O 7 , molecular weight: 498.45)
Calculated value (%); C: 62.65, H: 3.65, N: 12.84.
Actual value (%); C: 62.60, H: 3.54, N: 12.19.

上記の反応で得られた4,4′−ジ(4−ニトロベンズアミド)ジフェニルエーテル3.50g(7.02mmol)をエタノール100mLおよびTHF300mLの混合溶媒に溶解し、そこへ5%Pd−カーボン粉末0.38gを分散させた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて18時間撹拌した。セライトを用いて触媒を除去した後、減圧下溶液を留去して生じた沈殿をエタノール/THF混合溶媒で再結晶精製したところ、上記構造式(II)で表される4,4′−ジ(4−アミノベンズアミド)ジフェニルエーテル2.98gを白色粉末として得た(収率:96.8%)。   3.54 g (7.02 mmol) of 4,4′-di (4-nitrobenzamide) diphenyl ether obtained by the above reaction was dissolved in a mixed solvent of 100 mL of ethanol and 300 mL of THF, and 5% Pd-carbon powder was added to the solution in an amount of 0. 38 g was dispersed. After sufficiently degassing at -78 ° C under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 18 hours. After removing the catalyst using celite, the precipitate formed by distilling off the solution under reduced pressure was recrystallized and purified with a mixed solvent of ethanol / THF. As a result, 4,4′-dibenzene represented by the above structural formula (II) was obtained. 2.98 g of (4-aminobenzamide) diphenyl ether was obtained as a white powder (yield: 96.8%).

IR(KBr,cm-1):3440,3347,3288(br),3210,1609(s),1570(w),1501(s),1406,1310,1269,1223(s),1182,876(w),841,766(w),689(w).
1H−NMR δ(500MHz,DMSO−d6,ppm):5.73(4H,s),6
.59(4H,d,J=8.6Hz),6.96(4H,d,J=9.0Hz),7.72(8H,m),9.76(2H,s).
元素分析結果:(分子式:C262243、分子量:438.48)
計算値(%);C:71.21,H:5.07,N:14.60.
実測値(%);C:71.01,H:5.24,N:14.33.
IR (KBr, cm −1 ): 3440, 3347, 3288 (br), 3210, 1609 (s), 1570 (w), 1501 (s), 1406, 1310, 1269, 1223 (s), 1182, 876 ( w), 841, 766 (w), 689 (w).
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 5.73 (4H, s), 6
. 59 (4H, d, J = 8.6 Hz), 6.96 (4H, d, J = 9.0 Hz), 7.72 (8H, m), 9.76 (2H, s).
Elemental analysis result: (molecular formula: C 26 H 22 N 4 O 3 , molecular weight: 438.48)
Calculated value (%); C: 71.21, H: 5.07, N: 14.60.
Actual value (%); C: 71.01, H: 5.24, N: 14.33.

実施例26

Figure 0004610596
Example 26
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド1.02g(5.0mmol)と参考例3で得られた化合物(II)で表される4,4′−ジ(4−アミノベンズアミド)ジフェニルエーテル2.19g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP24.0mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−26で表されるポリアミド2.92gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−26の数平均分子量及び重量平均分子量はそれぞれ1.91×104及び4.08×104であっ
た。
Under an argon gas atmosphere, 2.19 g (5 of 4,4′-di (4-aminobenzamide) diphenyl ether represented by 1.02 g (5.0 mmol) of isophthalic acid dichloride and the compound (II) obtained in Reference Example 3 0.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The resulting reaction solution was diluted by adding 24.0 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 2.92 g of polyamide represented by the structural formula PA-26 was obtained. The number average molecular weight and weight average molecular weight of PA-26 determined by gel permeation chromatography were 1.91 × 10 4 and 4.08 × 10 4 , respectively.

実施例27

Figure 0004610596
Example 27
Figure 0004610596

窒素気流下、1,3−ジカルボキシシクロヘキサン1.72g(10.0mmol)と4,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をNMP24.67mlに溶解し、この溶液にPy3.56ml及びTPP7.45mlを加え、80℃に加熱した後6時間攪拌した。得られた反応溶液をNMP28mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−27で表されるポリアミド3.15gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−27の数平均分子量及び重量平均分子量はそれぞれ4.45×104及び8.23×104であった。 Under a nitrogen stream, 1.72 g (10.0 mmol) of 1,3-dicarboxycyclohexane and 2.00 g (10.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in 24.67 ml of NMP, and 3.56 ml of Py and 7.45 ml of TPP was added, and the mixture was heated to 80 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 28 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.15 g of polyamide represented by the structural formula PA-27 was obtained. The number average molecular weight and weight average molecular weight of PA-27 determined by gel permeation chromatography were 4.45 × 10 4 and 8.23 × 10 4 , respectively.

実施例28

Figure 0004610596
Example 28
Figure 0004610596

窒素気流下、1,4−ジカルボキシシクロヘキサン1.72g(10.0mmol)と3,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をNMP24.67mlに溶解し、この溶液にPy3.56ml及びTPP7.45mlを加え、80℃に加熱した後6時間攪拌した。得られた反応溶液をNMP28mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−28で表されるポリアミド3.05gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−28の数平均分子量及び重量平均分子量はそれぞれ2.14×104及び4.35×104であった。 Under a nitrogen stream, 1.72 g (10.0 mmol) of 1,4-dicarboxycyclohexane and 2.00 g (10.0 mmol) of 3,4'-diaminodiphenyl ether were dissolved in 24.67 ml of NMP, and 3.56 ml of Py and 7.45 ml of TPP was added, and the mixture was heated to 80 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 28 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.05 g of polyamide represented by the structural formula PA-28 was obtained. The number average molecular weight and weight average molecular weight of PA-28 determined by gel permeation chromatography were 2.14 × 10 4 and 4.35 × 10 4 , respectively.

実施例29

Figure 0004610596
Example 29
Figure 0004610596

窒素気流下、1,3−ジカルボキシシクロヘキサン0.86g(5.0mmol)、1,4−ジカルボキシシクロヘキサン0.86(5.0mmol)及び4,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をNMP24.67mlに溶解し、この溶液にPy3.56ml及びTPP7.45mlを加え、80℃に加熱した後6時間攪拌した。得られた反応溶液をNMP28mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−29で表されるポリアミド2.98gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−29の数平均分子量及び重量平均分子量はそれぞれ3.76×104及び5.96×104であった。 Under a nitrogen stream, 1,3-dicarboxycyclohexane 0.86 g (5.0 mmol), 1,4-dicarboxycyclohexane 0.86 (5.0 mmol) and 4,4′-diaminodiphenyl ether 2.00 g (10.0 mmol) ) Was dissolved in 24.67 ml of NMP, 3.56 ml of Py and 7.45 ml of TPP were added to this solution, and the mixture was heated to 80 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 28 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.98 g of polyamide represented by the structural formula PA-29 was obtained. The number average molecular weight and weight average molecular weight of PA-29 determined by gel permeation chromatography were 3.76 × 10 4 and 5.96 × 10 4 , respectively.

実施例30

Figure 0004610596
Example 30
Figure 0004610596

窒素気流下、1,3−ジカルボキシシクロヘキサン0.86g(5.0mmol)、1,4−ジカルボキシシクロヘキサン0.86(5.0mmol)及び3,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をNMP24.67mlに溶解し、この溶液にPy3.56ml及びTPP7.45mlを加え、80℃に加熱した後6時間攪拌した。得られた反応溶液をNMP28mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−30で表されるポリアミド2.79gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−30の数平均分子量及び重量平均分子量はそれぞれ1.87×104及び4.64×104であった。 Under a nitrogen stream, 1,3-dicarboxycyclohexane 0.86 g (5.0 mmol), 1,4-dicarboxycyclohexane 0.86 (5.0 mmol) and 3,4 g-diaminodiphenyl ether 2.00 g (10.0 mmol) ) Was dissolved in 24.67 ml of NMP, 3.56 ml of Py and 7.45 ml of TPP were added to this solution, and the mixture was heated to 80 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 28 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.79 g of polyamide represented by the structural formula PA-30 was obtained. The number average molecular weight and the weight average molecular weight of PA-30 determined by gel permeation chromatography were 1.87 × 10 4 and 4.64 × 10 4 , respectively.

実施例31
アルゴンガス雰囲気下、実施例1で得られたPA−1、0.30gをジメチルスルホキシド(以下DMSOと略す)6mlに溶解し、この溶液に1N−水酸化カリウムメタノール溶液2mlを加え、室温で1時間撹拌した。その後ヨードメタン0.4mlを加え更に室温で30分攪拌した。得られた反応溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.27gを得た。得られたポリマーの1H−NMRスペ
クトルを測定したところ、PA−1で表される構造中のアミド基のN位のうち31モル%がメチル基に置換されたポリアミド(以下PA−31と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−31の数平均分子量及び重量平均分子量はそ
れぞれ1.43×104及び2.96×104であった。
Example 31
Under an argon gas atmosphere, PA-1 obtained in Example 1 (0.30 g) was dissolved in 6 ml of dimethyl sulfoxide (hereinafter abbreviated as DMSO), and 2 ml of 1N potassium hydroxide methanol solution was added to this solution. Stir for hours. Thereafter, 0.4 ml of iodomethane was added and the mixture was further stirred at room temperature for 30 minutes. The obtained reaction solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.27 g of a polymer. When the 1 H-NMR spectrum of the obtained polymer was measured, a polyamide in which 31 mol% of the N-position of the amide group in the structure represented by PA-1 was substituted with a methyl group (hereinafter referred to as PA-31). )Met. The number average molecular weight and weight average molecular weight of PA-31 determined by gel permeation chromatography were 1.43 × 10 4 and 2.96 × 10 4 , respectively.

実施例32
アルゴンガス雰囲気下、実施例6で得られたPA−6、0.80gをDMSO13mlに溶解し、この溶液に1N−水酸化カリウムメタノール溶液7mlを加え、室温で1時間撹拌した。その後ヨードメタン1.2mlを加え更に室温で30分攪拌した。得られた反応溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.88gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−6
で表される構造中のアミド基のN位のうち24モル%がメチル基に置換されたポリアミド(以下PA−32と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−32の数平均分子量及び重量平均分子量はそれぞれ5.63×103及び8.4
7×103であった。
Example 32
Under an argon gas atmosphere, 0.86 g of PA-6 obtained in Example 6 was dissolved in 13 ml of DMSO, 7 ml of 1N potassium hydroxide methanol solution was added to this solution, and the mixture was stirred at room temperature for 1 hour. Thereafter, 1.2 ml of iodomethane was added and the mixture was further stirred at room temperature for 30 minutes. The obtained reaction solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.88 g of polymer. When the 1 H-NMR spectrum of the obtained polymer was measured, PA-6 was measured.
Of the amide group in the structure represented by the following formula: Polyamide (hereinafter referred to as PA-32) in which 24 mol% was substituted with a methyl group. The number average molecular weight and the weight average molecular weight of PA-32 determined by gel permeation chromatography are 5.63 × 10 3 and 8.4, respectively.
It was 7 × 10 3 .

実施例33
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)110mg(2.75mmol)をDMSO20ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に実施例6で得られたポリアミドPA−6、0.86gを加えて溶解させ、更に室温にて4時間撹拌した。次に、ヨードメタン0.5ml(8.03mmol)を加え、室温にて更に15時間撹拌し、この溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.69gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−6で表される構造中のアミド基のN
位のうち37モル%がメチル基に置換されたポリアミド(以下、PA−33と称する)であった。また、ゲルパーミエーションクロマトグラフィーで求めたPA−33の数平均分子量及び重量平均分子量はそれぞれ6.21×103及び9.34×103であった。
Example 33
Under an argon gas atmosphere, 110 mg (2.75 mmol) of sodium hydride (oily, 60%) was dispersed in 20 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.86 g of polyamide PA-6 obtained in Example 6 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.5 ml (8.03 mmol) of iodomethane was added, and the mixture was further stirred at room temperature for 15 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.69 g of polymer. . When the 1 H-NMR spectrum of the obtained polymer was measured, N of the amide group in the structure represented by PA-6 was measured.
37 mol% of the position was a polyamide substituted with a methyl group (hereinafter referred to as PA-33). The number average molecular weight and weight average molecular weight of PA-33 determined by gel permeation chromatography were 6.21 × 10 3 and 9.34 × 10 3 , respectively.

参考例4

Figure 0004610596
Reference example 4
Figure 0004610596

2−アミノトルエン4.788g(44.68mmol)をNMP14mLに溶解し、氷浴にて冷却した。ここへ3,5−ジニトロ安息香酸クロリド10.396g(45.10mmol)のNMP30mL溶液を20分かけて滴下し、更に室温に戻しながら1時間撹拌した。この溶液を水500mLに投入し、生じた沈殿を回収、充分に水洗した。クロロホルム/THF混合溶媒で再結晶精製したところ、上記構造式5で表される3,5−ジニトロ−2′−メチルベンズアニリド10.20gを黄色針状結晶として得た(収率:75.8%)。   2.788 g (44.68 mmol) of 2-aminotoluene was dissolved in 14 mL of NMP and cooled in an ice bath. To this was added dropwise a solution of 10.396 g (45.10 mmol) of 3,5-dinitrobenzoyl chloride in 30 mL of NMP over 20 minutes, and the mixture was further stirred for 1 hour while returning to room temperature. This solution was poured into 500 mL of water, and the resulting precipitate was recovered and thoroughly washed with water. When recrystallized and purified with a mixed solvent of chloroform / THF, 10.20 g of 3,5-dinitro-2'-methylbenzanilide represented by the above structural formula 5 was obtained as a yellow needle crystal (yield: 75.8). %).

IR(KBr,cm-1):3256,3104,1649(s),1586(w),1537(s),1491(w),1456,1343(s),1312,1275,1165(w),1076,914,762,729,706.
1H−NMR δ(500MHz,DMSO−d6,ppm):2.26(3H,s),7
.25(2H,m),7.34(2H,m),9.02(1H,t,J=2.0Hz),9.17(2H,d,J=1.9Hz),10.61(1H,s).
元素分析結果:(分子式:C141135、分子量:301.25)
計算値(%);C:55.81,H:3.69,N:13.94.
実測値(%);C:55.94,H:3.53,N:13.83.
IR (KBr, cm −1 ): 3256, 3104, 1649 (s), 1586 (w), 1537 (s), 1491 (w), 1456, 1343 (s), 1312, 1275, 1165 (w), 1076 914, 762, 729, 706.
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.26 (3H, s), 7
. 25 (2H, m), 7.34 (2H, m), 9.02 (1H, t, J = 2.0 Hz), 9.17 (2H, d, J = 1.9 Hz), 10.61 ( 1H, s).
Elemental analysis result: (molecular formula: C 14 H 11 N 3 O 5 , molecular weight: 301.25)
Calculated value (%); C: 55.81, H: 3.69, N: 13.94.
Actual value (%); C: 55.94, H: 3.53, N: 13.83.

上記の反応で得られた3,5−ジニトロ−2′−メチルベンズアニリド7.00g(23.3mmol)をエタノール200mLおよびTHF150mLの混合溶媒に溶解し、そこへ5%Pd−カーボン粉末0.938gを分散させた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて17時間撹拌した。セライトを用いて触媒を除去した後、溶液を濃縮して析出した沈殿を酢酸エチル中に分散させて洗浄し濾別したところ、上記構造式(III)で表される3,5−ジアミノ−2′−メチルベンズアニリド5.52gを白色粉末として得た(収率:98.4%)。   7.05-g (23.3 mmol) of 3,5-dinitro-2'-methylbenzanilide obtained by the above reaction was dissolved in a mixed solvent of 200 mL of ethanol and 150 mL of THF, and 0.938 g of 5% Pd-carbon powder was added thereto. Was dispersed. After sufficiently degassing at -78 ° C under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 17 hours. After removing the catalyst using celite, the solution was concentrated and the deposited precipitate was dispersed in ethyl acetate, washed and filtered. As a result, 3,5-diamino-2 represented by the above structural formula (III) was obtained. 5.52 g of '-methylbenzanilide was obtained as a white powder (yield: 98.4%).

IR(KBr,cm-1):3455,3401,3328(s),3237(br),2924(s),2855,1634(s),1593(s),1512(s),1491(s),1368,1273,1198,1117(w),992(w),839,758,683,610.
1H−NMR δ(500MHz,DMSO−d6,ppm):2.21(3H,s),4
.91(2H,s),5.99(1H,t,J=1.9Hz),6.33(2H,d,J=1.9Hz),7.11 (1H,m),7.18(1H,m),7.23(1H,d
,J=7.4Hz),7.32(1H,d,J=7.3Hz),9.40(1H,s).元素分析結果:(分子式:C14153O、分子量:241.29)
計算値(%);C:69.68,H:6.28,N:17.41.
実測値(%);C:69.69,H:6.41,N:16.99.
IR (KBr, cm −1 ): 3455, 3401, 3328 (s), 3237 (br), 2924 (s), 2855, 1634 (s), 1593 (s), 1512 (s), 1491 (s), 1368, 1273, 1198, 1117 (w), 992 (w), 839, 758, 683, 610.
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.21 (3H, s), 4
. 91 (2H, s), 5.99 (1H, t, J = 1.9 Hz), 6.33 (2H, d, J = 1.9 Hz), 7.11 (1H, m), 7.18 ( 1H, m), 7.23 (1H, d
, J = 7.4 Hz), 7.32 (1H, d, J = 7.3 Hz), 9.40 (1H, s). Elemental analysis result: (molecular formula: C 14 H 15 N 3 O, molecular weight: 241.29)
Calculated value (%); C: 69.68, H: 6.28, N: 17.41.
Found (%); C: 69.69, H: 6.41, N: 16.99.

実施例34

Figure 0004610596
Example 34
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド1.02g(5.0mmol)と参考例4で得られた化合物(III)で表される3,5−ジアミノ−2′−メチルベンズアニリド1.20g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP17mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−34で表されるポリアミド2.11gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−34の数平均分子量及び重量平均分子量はそれぞれ2.43×104及び4.45×104であった。 Under an argon gas atmosphere, 1.02 g (5.0 mmol) of isophthalic acid dichloride and 1.20 g of 3,5-diamino-2′-methylbenzanilide represented by the compound (III) obtained in Reference Example 4 (5. 0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The resulting reaction solution was diluted by adding 17 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 2.11 g of polyamide represented by the structural formula PA-34 was obtained. The number average molecular weight and weight average molecular weight of PA-34 determined by gel permeation chromatography were 2.43 × 10 4 and 4.45 × 10 4 , respectively.

実施例35

Figure 0004610596
Example 35
Figure 0004610596

アルゴンガス雰囲気下、テレフタル酸ジクロライド1.02g(5.0mmol)と参考例4で得られた化合物(III)で表される3,5−ジアミノ−2′−メチルベンズアニリド1.20g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP17mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−35で表されるポリアミド2.15gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−35の数平均分子量及び重量平均分子量はそれぞれ1.57×104及び3.63×104であった。 Under an argon gas atmosphere, 1.02 g (5.0 mmol) of terephthalic acid dichloride and 1.20 g of 3,5-diamino-2′-methylbenzanilide represented by the compound (III) obtained in Reference Example 4 (5. 0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The resulting reaction solution was diluted by adding 17 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.15 g of polyamide represented by the structural formula PA-35 was obtained. The number average molecular weight and weight average molecular weight of PA-35 determined by gel permeation chromatography were 1.57 × 10 4 and 3.63 × 10 4 , respectively.

実施例36

Figure 0004610596
Example 36
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル1.48g(5.0mmol)と参考例4で得られた化合物(III)で表される3,5−ジアミノ−2′−メチルベンズアニリド1.20g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP19mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−36で表されるポリアミド2.63gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−36の数平均分子量及び重量平均分子量はそれぞれ2.24×104及び4.28
×104であった。
Under an argon gas atmosphere, 1.48 g (5.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and 3,5-diamino-2′-methyl represented by the compound (III) obtained in Reference Example 4 Benzanilide 1.20 g (5.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The resulting reaction solution was diluted by adding 19 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.63 g of polyamide represented by the structural formula PA-36 was obtained. The number average molecular weight and weight average molecular weight of PA-36 determined by gel permeation chromatography are 2.24 × 10 4 and 4.28, respectively.
× 10 4

参考例5

Figure 0004610596
Reference Example 5
Figure 0004610596

2−アミノトルエン1.743g(16.10mmol)をNMP6mLに溶解し、氷浴にて冷却した。ここへ4−ニトロ安息香酸クロリド3.019g(16.27mmol)のNMP10mL溶液を5分かけて滴下し、更に室温に戻しながら30分間撹拌した。この溶液を水500mLに投入し、生じた沈殿を回収、充分に水洗した。乾燥後シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)で精製し、更にクロロホルム/ヘキサン混合溶媒で再結晶精製したところ、上記構造式6で表される4−ニトロ−2′−メチルベンズアニリド3.604gを淡黄色針状結晶として得た(収率:87.4%)。   1.743 g (16.10 mmol) of 2-aminotoluene was dissolved in 6 mL of NMP and cooled in an ice bath. To this, a solution of 3.019 g (16.27 mmol) of 4-nitrobenzoyl chloride in 10 mL of NMP was added dropwise over 5 minutes, and the mixture was further stirred for 30 minutes while returning to room temperature. This solution was poured into 500 mL of water, and the resulting precipitate was recovered and thoroughly washed with water. After drying, the residue was purified by silica gel column chromatography (developing solvent: chloroform), and further recrystallized and purified by a chloroform / hexane mixed solvent. As a result, 3.604 g of 4-nitro-2'-methylbenzanilide represented by the above structural formula 6 was obtained. Was obtained as pale yellow needles (yield: 87.4%).

IR(KBr,cm-1):3304,1649,1603(w),1586(w),1520(s),1454,1343,1308,1109(w),856(w),841(w),758,710(w).
1H−NMR δ(250MHz,CDCl3,ppm):2.35(3H,s),7.1
8(1H,m),7.29(2H,m),7.7(1H,bs),7.9(1H,bd),8.05(2H,d),8.36(2H,d).
IR (KBr, cm −1 ): 3304, 1649, 1603 (w), 1586 (w), 1520 (s), 1454, 1343, 1308, 1109 (w), 856 (w), 841 (w), 758 , 710 (w).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 2.35 (3H, s), 7.1
8 (1H, m), 7.29 (2H, m), 7.7 (1H, bs), 7.9 (1H, bd), 8.05 (2H, d), 8.36 (2H, d ).

上記の反応で得られた4−ニトロ−2′−メチルベンズアニリド3.00g(11.7mmol)をエタノール20mLおよびTHF20mLの混合溶媒に溶解し、そこへ5%Pd−カーボン粉末0.25gを分散させた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて18時間撹拌した。セライトを用いて触媒を除去した後、溶液を濃縮したところ、上記構造式7で表される4−アミノ−2′−メチルベンズアニリド2.51gを淡褐色固体として得た(収率:95.5%)。   Dissolve 3.00 g (11.7 mmol) of 4-nitro-2'-methylbenzanilide obtained by the above reaction in a mixed solvent of 20 mL of ethanol and 20 mL of THF, and disperse 0.25 g of 5% Pd-carbon powder therein. I let you. After sufficiently degassing at -78 ° C under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 18 hours. After removing the catalyst using Celite, the solution was concentrated to obtain 2.51 g of 4-amino-2′-methylbenzanilide represented by the above structural formula 7 as a light brown solid (yield: 95. 5%).

IR(KBr,cm-1):3476(w),3349,3289(w),1624(s),1603,1568(w),1526(w),1501(s),1453(w),1292,1271,1182,843(w),747,588(w).
1H−NMR δ(250MHz,CDCl3,ppm):2.33(3H,s),4.0
3(2H,bs),6.71 (2H,d),7.1(1H,m),7.2(2H,m)
,7.6(1H,bs),7.72(2H,d),7.95(1H,d).
IR (KBr, cm −1 ): 3476 (w), 3349, 3289 (w), 1624 (s), 1603, 1568 (w), 1526 (w), 1501 (s), 1453 (w), 1292, 1271, 1182, 843 (w), 747, 588 (w).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 2.33 (3H, s), 4.0
3 (2H, bs), 6.71 (2H, d), 7.1 (1H, m), 7.2 (2H, m)
, 7.6 (1H, bs), 7.72 (2H, d), 7.95 (1H, d).

上記の反応で得られた4−アミノ−2′−メチルベンズアニリド4.76g(21.0mmol)をNMP20mLに溶解し、氷浴にて冷却した。ここへ3,5−ジニトロ安息香酸クロリド4.86g(21.1mmol)のNMP10mL溶液を滴下した。室温に
戻しながら30分間撹拌した後、氷水800mLに溶液を投入した。沈殿物を濾取し水洗した後、重曹水600mLに分散した。再び沈殿を濾取し充分に水洗した。この沈殿をNMP50mLとエタノール150mLの混合溶媒中に分散させ80℃で加熱洗浄して濾別したところ、上記構造式8で表される3,5−ジニトロ−4′−[N−(2−メチルフェニル)カルバモイル]ベンズアニリド7.30gを白色粉末として得た(収率:82.3%)。
4.76 g (21.0 mmol) of 4-amino-2′-methylbenzanilide obtained by the above reaction was dissolved in 20 mL of NMP and cooled in an ice bath. To this was added dropwise a 10 mL solution of NMP in 4.86 g (21.1 mmol) of 3,5-dinitrobenzoyl chloride. After stirring for 30 minutes while returning to room temperature, the solution was poured into 800 mL of ice water. The precipitate was collected by filtration and washed with water, and then dispersed in 600 mL of sodium bicarbonate water. The precipitate was again collected by filtration and washed thoroughly with water. When this precipitate was dispersed in a mixed solvent of 50 mL of NMP and 150 mL of ethanol, washed with heating at 80 ° C. and filtered, 3,5-dinitro-4 ′-[N- (2-methyl) represented by the above structural formula 8 was obtained. Phenyl) carbamoyl] benzanilide was obtained as a white powder (yield: 82.3%).

IR(KBr,cm-1):3461,3308,3090(w),1684,1651(s),1597,1535(s),1454,1400(w),1345,1319,1273,1190(w),916(w),858(w),764,731,588(w).
1H−NMR δ(500MHz,DMSO−d6,ppm):2.26(3H,s),7
.12(1H,m),7.22(1H,m),7.28(1H,d,J=7.3Hz),7.36(1H,d,J=7.3Hz),7.95(2H,d,J=8.7Hz),8.05(2H,d,J=8.7Hz),9.04(1H,t,J=2.1Hz),9.21(2H,d,J=2.0Hz),9.84(1H,s),11.07(1H,s).
元素分析結果:(分子式:C211646、分子量:420.38)
計算値(%);C:59.99,H:3.84,N:13.32.
実測値(%);C:59.85,H:3.73,N:13.27.
IR (KBr, cm −1 ): 3461, 3308, 3090 (w), 1684, 1651 (s), 1597, 1535 (s), 1454, 1400 (w), 1345, 1319, 1273, 1190 (w), 916 (w), 858 (w), 764, 731, 588 (w).
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.26 (3H, s), 7
. 12 (1 H, m), 7.22 (1 H, m), 7.28 (1 H, d, J = 7.3 Hz), 7.36 (1 H, d, J = 7.3 Hz), 7.95 ( 2H, d, J = 8.7 Hz), 8.05 (2H, d, J = 8.7 Hz), 9.04 (1H, t, J = 2.1 Hz), 9.21 (2H, d, J = 2.0 Hz), 9.84 (1H, s), 11.07 (1H, s).
Elemental analysis result: (molecular formula: C 21 H 16 N 4 O 6 , molecular weight: 420.38)
Calculated value (%); C: 59.99, H: 3.84, N: 13.32.
Actual value (%); C: 59.85, H: 3.73, N: 13.27.

上記の反応で得られた3,5−ジニトロ−4′−[N−(2−メチルフェニル)カルバモイル]ベンズアニリド5.00g(11.9mmol)をエタノール100mLおよびNMP200mLの混合溶媒に溶解し、そこへ5%Pd−カーボン粉末0.500gを分散させた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて6時間撹拌した。セライトを用いて触媒を除去した後、減圧下溶液を留去して生じた沈殿を酢酸エチル50mLとエタノール150mLの混合溶媒中に分散させて洗浄し濾別したところ、上記構造式(IV)で表される3,5−ジアミノ−4′−[N−(2−メチルフェニル)カルバモイル]ベンズアニリド4.03gを白色粉末として得た(収率:94.0%)。   5.00 g (11.9 mmol) of 3,5-dinitro-4 ′-[N- (2-methylphenyl) carbamoyl] benzanilide obtained by the above reaction was dissolved in a mixed solvent of 100 mL of ethanol and 200 mL of NMP, and 0.500 g of 5% Pd-carbon powder was dispersed. After sufficiently degassing at -78 ° C under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 6 hours. After removing the catalyst using celite, the precipitate formed by distilling off the solution under reduced pressure was dispersed in a mixed solvent of 50 mL of ethyl acetate and 150 mL of ethanol, washed, and filtered. As a result, the structural formula (IV) 4.03 g of 3,5-diamino-4 ′-[N- (2-methylphenyl) carbamoyl] benzanilide represented was obtained as a white powder (yield: 94.0%).

IR(KBr,cm-1):3410,3324(br),3218,1645(s),1591(s),1518(s),1460,1402,1362,1318,1252,1192(w),853,750,689(w).
1H−NMR δ(500MHz,DMSO−d6,ppm):2.24(3H,s),4
.95(4H,s),6.02(1H,t,J=1.9Hz),6.32(2H,d,J=1.9Hz),7.15(1H,m),7.21(1H,m),7.26(1H,d,J=7.2Hz),7.34(1H,d,J=7.3Hz),7.89(2H,d,J=8.8Hz),7.95(2H,d,J=8.8Hz),9.72(1H,s),10.19(1H,s).
元素分析結果:(分子式:C212042、分子量:360.41)
計算値(%);C:69.98,H:5.59,N:15.54.
実測値(%);C:69.47,H:5.66,N:15.36.
IR (KBr, cm −1 ): 3410, 3324 (br), 3218, 1645 (s), 1591 (s), 1518 (s), 1460, 1402, 1362, 1318, 1252, 1192 (w), 853 750, 689 (w).
1 H-NMR δ (500 MHz, DMSO-d 6 , ppm): 2.24 (3H, s), 4
. 95 (4H, s), 6.02 (1H, t, J = 1.9 Hz), 6.32 (2H, d, J = 1.9 Hz), 7.15 (1H, m), 7.21 ( 1H, m), 7.26 (1H, d, J = 7.2 Hz), 7.34 (1H, d, J = 7.3 Hz), 7.89 (2H, d, J = 8.8 Hz), 7.95 (2H, d, J = 8.8 Hz), 9.72 (1H, s), 10.19 (1H, s).
Elemental analysis result: (molecular formula: C 21 H 20 N 4 O 2 , molecular weight: 360.41)
Calculated value (%); C: 69.98, H: 5.59, N: 15.54.
Actual value (%); C: 69.47, H: 5.66, N: 15.36.

実施例37

Figure 0004610596
Example 37
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド1.02g(5.0mmol)と参考例5で得られた化合物(IV)で表される3,5−ジアミノ−4′−[N−(2−メチルフェニル)カルバモイル]ベンズアニリド1.80g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて後4時間攪拌した。得られた反応溶液をNMP21.0mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−37で表されるポリアミド1.24gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−37の数平均分子量及び重量平均分子量はそれぞれ5.44×103及び9.69×103であった。 Under an argon gas atmosphere, isophthalic acid dichloride (1.02 g, 5.0 mmol) and 3,5-diamino-4 ′-[N- (2-methylphenyl) represented by the compound (IV) obtained in Reference Example 5 were used. [Carbamoyl] benzanilide 1.80 g (5.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, and mixed and frozen at a temperature of −78 ° C. The solution was then melted by slowly warming to room temperature and stirred for another 4 hours at room temperature. The resulting reaction solution was diluted by adding 21.0 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 1.24 g of polyamide represented by the structural formula PA-37 was obtained. The number average molecular weight and weight average molecular weight of PA-37 determined by gel permeation chromatography were 5.44 × 10 3 and 9.69 × 10 3 , respectively.

実施例38

Figure 0004610596
Example 38
Figure 0004610596

アルゴンガス雰囲気下、トリメシン酸1.05g(5.0mmol)と4,4′−ジアミノジフェニルエーテル1.00g(5.0mmol)をNMP50mlに溶解し、この溶液にPy6.0ml及びTPP8.0mlを加え、80℃に加熱した後4時間攪拌した。この操作により上記構造式で表されるポリアミド(*)(構造式は便宜上(*)のように表記したが、実際には多分岐構造を有している)が得られる。次いで、反応溶液にアニリン0.5gを加え、更に80℃で13時間攪拌した。得られた反応溶液を過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−38(構造式は便宜上このように表記したが、実際には多分岐構造を有している)で表される多分岐型ポリアミド2.15gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−38の数平均分子量及び重量平均分子量はそれぞれ1.94×104及び1.96×105であった。 Under an argon gas atmosphere, 1.05 g (5.0 mmol) of trimesic acid and 1.00 g (5.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in 50 ml of NMP, and 6.0 ml of Py and 8.0 ml of TPP were added to this solution. After heating to 80 ° C., the mixture was stirred for 4 hours. By this operation, a polyamide (*) represented by the above structural formula (the structural formula is expressed as (*) for convenience, but actually has a multi-branched structure) is obtained. Next, 0.5 g of aniline was added to the reaction solution, and the mixture was further stirred at 80 ° C. for 13 hours. The obtained reaction solution was poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, the multi-branched polyamide represented by the structural formula PA-38 (the structural formula was expressed in this way for convenience but actually has a multi-branched structure). 2.15 g was obtained. The number average molecular weight and weight average molecular weight of PA-38 determined by gel permeation chromatography were 1.94 × 10 4 and 1.96 × 10 5 , respectively.

実施例39

Figure 0004610596
Example 39
Figure 0004610596

実施例38と同様な手法で得られた分岐状ポリアミド(*)の反応溶液にo−トリジン0.6gを加え、80℃で14時間攪拌した。得られた反応溶液を過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−39(構造式は便宜上このように表記したが、実際には分岐状構造を有している)で表される多分岐型ポリアミド2.07gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−39の数平均分子量及び重量平均分子量はそれぞれ1.51×104及び1.02×105であった。 To the reaction solution of the branched polyamide (*) obtained in the same manner as in Example 38, 0.6 g of o-tolidine was added and stirred at 80 ° C. for 14 hours. The obtained reaction solution was poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, the multi-branched polyamide represented by the structural formula PA-39 (the structural formula was expressed in this way for convenience but actually has a branched structure). 2.07 g was obtained. The number average molecular weight and weight average molecular weight of PA-39 determined by gel permeation chromatography were 1.51 × 10 4 and 1.02 × 10 5 , respectively.

実施例40

Figure 0004610596
Example 40
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル2.95g(10.0mmol)と4,4′−ジアミノジフェニルメタン1.98g(10.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP37mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−41で表されるポリアミド4.68gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−41の数平均分子量及び重量平均分子量はそれぞれ1.62×104及び3.77×104であった。 Under an argon gas atmosphere, 2.95 g (10.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and 1.98 g (10.0 mmol) of 4,4′-diaminodiphenylmethane were each brought to a concentration of 1.0 mol / l. It melt | dissolved in NMP so that it might become, It mixed at the temperature of -78 degreeC, and it was made to freeze. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The resulting reaction solution was diluted with 37 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 4.68 g of polyamide represented by the structural formula PA-41 was obtained. The number average molecular weight and weight average molecular weight of PA-41 determined by gel permeation chromatography were 1.62 × 10 4 and 3.77 × 10 4 , respectively.

参考例6

Figure 0004610596
Reference Example 6
Figure 0004610596

4−アセトキシ安息香酸3.000g(16.65mmol)および塩化チオニル5mLを混合し、DMF1滴を加えて50℃で2時間撹拌した。減圧下塩化チオニルを溜去した後、氷冷下NMP5mLを加えた。2−アミノトルエン1.784g(16.65mmol)を加えて氷冷のまま10分間撹拌した後、溶液を400mLの氷水に投入した。生じた沈殿を充分水洗したところ、上記構造式9で表される4−アセトキシ−2′−メチルベンズアニリド3.634gを無色固体として得た(収率:81.04%)。   4-acetoxybenzoic acid (3.000 g, 16.65 mmol) and thionyl chloride (5 mL) were mixed, 1 drop of DMF was added, and the mixture was stirred at 50 ° C. for 2 hours. After distilling off thionyl chloride under reduced pressure, 5 mL of NMP was added under ice cooling. After adding 1.784 g (16.65 mmol) of 2-aminotoluene and stirring for 10 minutes with ice cooling, the solution was poured into 400 mL of ice water. The resulting precipitate was sufficiently washed with water to obtain 3.634 g of 4-acetoxy-2′-methylbenzanilide represented by the above structural formula 9 as a colorless solid (yield: 81.04%).

IR(KBr,cm-1):3285,1759,1649(s),1603(w),1586(w),1524,1505,1456,1370(w),1314,1202(s),1169,1019(w),914(w),750(w),685(w).
1H−NMR δ(250 MHz,CDCl3,ppm):2.36(3H,s),2.37(3H,s),7.15(1H,m),7.2−7.3(4H,m),7.63(1H,bs),7.93−7.96(3H,m).
IR (KBr, cm −1 ): 3285, 1759, 1649 (s), 1603 (w), 1586 (w), 1524, 1505, 1456, 1370 (w), 1314, 1202 (s), 1169, 1019 ( w), 914 (w), 750 (w), 685 (w).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 2.36 (3H, s), 2.37 (3H, s), 7.15 (1H, m), 7.2-7.3 ( 4H, m), 7.63 (1H, bs), 7.93-7.96 (3H, m).

上記の反応で得られた4−アセトキシ−2′−メチルベンズアニリド3.625g(13.46mmol)をアセトン30mLおよびメタノール10mLの混合溶媒に溶解し0℃に冷却した。ここへナトリウムメトキシドのメタノール溶液(1mol/l)15mLを滴下した。1N塩酸で弱酸性化した後、溶媒を溜去した。析出物を充分に水洗後、乾燥したところ、上記構造式10で表される4−ヒドロキシ−2′−メチルベンズアニリド1.592gを無色固体として得た(収率:52.04%)。   4-Acetoxy-2′-methylbenzanilide (3.625 g, 13.46 mmol) obtained in the above reaction was dissolved in a mixed solvent of 30 mL of acetone and 10 mL of methanol and cooled to 0 ° C. 15 mL of a methanol solution (1 mol / l) of sodium methoxide was added dropwise thereto. After weak acidification with 1N hydrochloric acid, the solvent was distilled off. The precipitate was sufficiently washed with water and dried to obtain 1.592 g of 4-hydroxy-2'-methylbenzanilide represented by the above structural formula 10 as a colorless solid (yield: 52.04%).

IR(KBr,cm-1):3264(bs),1620(s),1599(s),1576,1537,1505,1441,1377(w),1312,1273(s),1229,1173,1111(w),847(w),750,588(w).
1H−NMR δ(250 MHz,CDCl3,ppm):2.35(3H,s),6.96(2H,d,J=8.8Hz),7.1−7.3(3H,m),7.6(1H,d),
7.95(2H,d,J=8.8Hz),8.83(1H,bs),8.95(1H,s).
IR (KBr, cm −1 ): 3264 (bs), 1620 (s), 1599 (s), 1576, 1537, 1505, 1441, 1377 (w), 1312, 1273 (s), 1229, 1173, 1111 ( w), 847 (w), 750, 588 (w).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 2.35 (3H, s), 6.96 (2H, d, J = 8.8 Hz), 7.1-7.3 (3H, m ), 7.6 (1H, d),
7.95 (2H, d, J = 8.8 Hz), 8.83 (1H, bs), 8.95 (1H, s).

上記の反応で得られた4−ヒドロキシ−2′−メチルベンズアニリド0.990g(4.356mmol)および2,4−ジニトロフルオロベンゼン0.811g(4.358mmol)をアセトン20mLに溶解した。ここへ炭酸カリウム0.6g(4.3mmol)を加えて、還流温度で1時間撹拌した。反応溶液をろ過し、濾物を充分にアセトンで洗浄した。濾液を濃縮しカラムクロマトグラフィー(展開溶媒:クロロホルム)で精製したところ、上記構造式11で表される4−(2,4−ジニトロフェノキシ)−2′−メチルベンズアニリド1.553gを淡黄色固体として得た(収率:90.63%)。   0.990 g (4.356 mmol) of 4-hydroxy-2'-methylbenzanilide obtained by the above reaction and 0.811 g (4.358 mmol) of 2,4-dinitrofluorobenzene were dissolved in 20 mL of acetone. To this was added 0.6 g (4.3 mmol) of potassium carbonate, and the mixture was stirred at reflux temperature for 1 hour. The reaction solution was filtered, and the residue was thoroughly washed with acetone. The filtrate was concentrated and purified by column chromatography (developing solvent: chloroform). As a result, 1.553 g of 4- (2,4-dinitrophenoxy) -2′-methylbenzanilide represented by the above structural formula 11 was obtained as a pale yellow solid. (Yield: 90.63%).

IR(KBr,cm-1):3281(w),3086(s),1649(s),1603,1526(s),1458(w),1372,1356,1318(w),1281,1198(w),909(w),866(w),837(w),743(w),503(w).
1H−NMR δ(250 MHz,Acetone−d6,ppm):2.37(3H,s),7.13−7.32(3H,m),7.4−7.5(3H,m),7.60(1H,d,J=7.5Hz),8.22(2H,d,J=8.8Hz),8.58(1H,dd,J=2.8,9.0Hz),8.94(1H,d,J=2.8Hz),9.16(1H,bs).
IR (KBr, cm −1 ): 3281 (w), 3086 (s), 1649 (s), 1603, 1526 (s), 1458 (w), 1372, 1356, 1318 (w), 1281, 1198 (w) ), 909 (w), 866 (w), 837 (w), 743 (w), 503 (w).
1 H-NMR δ (250 MHz, Acetone-d 6 , ppm): 2.37 (3H, s), 7.13-7.32 (3H, m), 7.4-7.5 (3H, m ), 7.60 (1H, d, J = 7.5 Hz), 8.22 (2H, d, J = 8.8 Hz), 8.58 (1H, dd, J = 2.8, 9.0 Hz) , 8.94 (1H, d, J = 2.8 Hz), 9.16 (1H, bs).

4−(2,4−ジニトロフェノキシ)−2′−メチルベンズアニリド1.55g(3.90mmol)をTHF70mLおよびエタノール30mLの混合溶媒に溶解し、ここへ5%Pd−カーボン粉末0.166gを加えた。−78℃で充分に減圧脱気した後、系内を水素ガスで置換し温度を室温まで上げて15時間撹拌した。セライトを用いて触媒を除去した後、溶液を濃縮したところ、上記構造式(V)で表される4−(2,4−ジアミノフェノキシ)−2′−メチルベンズアニリド1.26gを淡褐色固体として得た(収率:96.7%)。   4- (2,4-dinitrophenoxy) -2'-methylbenzanilide 1.55 g (3.90 mmol) is dissolved in a mixed solvent of 70 mL of THF and 30 mL of ethanol, and 0.166 g of 5% Pd-carbon powder is added thereto. It was. After sufficiently degassing at −78 ° C. under reduced pressure, the system was replaced with hydrogen gas, the temperature was raised to room temperature, and the mixture was stirred for 15 hours. After removing the catalyst using Celite, the solution was concentrated to obtain 1.26 g of 4- (2,4-diaminophenoxy) -2′-methylbenzanilide represented by the structural formula (V) as a light brown solid. (Yield: 96.7%).

IR(KBr,cm-1):3349(br),2955(w),1626(s),1605(s),1499(s),1456,1314(w),1231(s),1167,851,754,596(w).
1H−NMR δ(250 MHz,CDCl3,ppm):2.14(3H,s),4.52(2H,bs),4.68(2H,bs),5.78(1H,dd,J=2.5,8.4Hz),5.99(1H,d,J=2.5Hz),6.50(1H,d,J=8.4Hz),6.84(2H,d,J=8.8Hz),7.05−7.26(4H,m),7.86(2H,d,J=8.8Hz),9.64(1H,s).
EI−MS(m/z):333(M+),227(M−toluylamino)+,199(M−CONHC77+,123(2,4−Diaminophenoxyl)+,106(toluylanilino)+
元素分析結果:(分子式:C201932、分子量:333.39)
計算値(%);C:72.05,H:5.74,N:12.60.
実測値(%);C:71.78,H:6.14,N:11.62.
IR (KBr, cm −1 ): 3349 (br), 2955 (w), 1626 (s), 1605 (s), 1499 (s), 1456, 1314 (w), 1231 (s), 1167, 851, 754,596 (w).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 2.14 (3H, s), 4.52 (2H, bs), 4.68 (2H, bs), 5.78 (1H, dd, J = 2.5, 8.4 Hz), 5.99 (1H, d, J = 2.5 Hz), 6.50 (1H, d, J = 8.4 Hz), 6.84 (2H, d, J = 8.8 Hz), 7.05-7.26 (4H, m), 7.86 (2H, d, J = 8.8 Hz), 9.64 (1H, s).
EI-MS (m / z): 333 (M + ), 227 (M-toluylamino) + , 199 (M-CONHC 7 H 7 ) + , 123 (2,4-Diaminophenoxyl) + , 106 (toluylylino) + .
Elemental analysis :( molecular formula: C 20 H 19 N 3 O 2, molecular weight: 333.39)
Calculated value (%); C: 72.05, H: 5.74, N: 12.60.
Found (%); C: 71.78, H: 6.14, N: 11.62.

実施例41

Figure 0004610596
Example 41
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル1.48g(5.0mmol)と参考例6で得られた化合物(V)で表される4−(2,4−ジアミノフェノキシ)−2′−メチルベンズアニリド1.67g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて1時間攪拌した。得られた反応溶液をNMP24mlを加えて希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ上記構造式PA−41で表されるポリアミド2.84gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−41の数平均分子量及び重量平均分子量はそれぞれ1.02×104及び1.92×104であった。 4- (2,4-diaminophenoxy) represented by 1.48 g (5.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and the compound (V) obtained in Reference Example 6 under an argon gas atmosphere 1.67 g (5.0 mmol) of −2′-methylbenzanilide was dissolved in NMP so as to have a concentration of 1.0 mol / l, and mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 1 hour. The obtained reaction solution was diluted by adding 24 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 2.84 g of polyamide represented by the structural formula PA-41 was obtained. The number average molecular weight and weight average molecular weight of PA-41 determined by gel permeation chromatography were 1.02 × 10 4 and 1.92 × 10 4 , respectively.

実施例42
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)36.3mg(0.91mmol)をDMSO12ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に実施例1で得られたポリアミドPA−1、0.60gを加えて溶解させ更に室温にて4時間撹拌した。次に、ヨードエタン0.52g(3.33mmol)を加え室温にて更に2時間撹拌し、この溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.57gを得た。得られたポリマーの1
H−NMRスペクトルを測定したところ、PA−1で表される構造中のアミド基のN位のうち27モル%がエチル基に置換されたポリアミド(以下、PA−42と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−42の数平均分子量及び重量平均分子量はそれぞれ1.36×104及び2.66×104であった。
Example 42
Under an argon gas atmosphere, 36.3 mg (0.91 mmol) of sodium hydride (oily, 60%) was dispersed in 12 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.60 g of polyamide PA-1 obtained in Example 1 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.52 g (3.33 mmol) of iodoethane was added, and the mixture was further stirred at room temperature for 2 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.57 g of a polymer. 1 of the resulting polymer
When the H-NMR spectrum was measured, it was a polyamide (hereinafter referred to as PA-42) in which 27 mol% of the N-position of the amide group in the structure represented by PA-1 was substituted with an ethyl group. The number average molecular weight and weight average molecular weight of PA-42 determined by gel permeation chromatography were 1.36 × 10 4 and 2.66 × 10 4 , respectively.

実施例43
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)48.4mg(1.21mmol)をDMSO10ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に実施例1で得られたポリアミドPA−1、0.50gを加えて溶解させ更に室温にて4時間撹拌した。次に、2−ヨードプロパン0.57g(3.35mmol)を加え50℃にて更に4時間撹拌し、この溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.53gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−1で表される構造中のアミド基
のN位のうち7.8モル%がイソプロピル基に置換されたポリアミド(以下、PA−43と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−43の数平均分子量及び重量平均分子量はそれぞれ1.45×104及び3.04×104であった。
Example 43
Under an argon gas atmosphere, 48.4 mg (1.21 mmol) of sodium hydride (oily, 60%) was dispersed in 10 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.50 g of polyamide PA-1 obtained in Example 1 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.57 g (3.35 mmol) of 2-iodopropane was added and the mixture was further stirred at 50 ° C. for 4 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried. Got. When the 1 H-NMR spectrum of the obtained polymer was measured, polyamide (hereinafter referred to as PA-) in which 7.8 mol% of the N-position of the amide group in the structure represented by PA-1 was substituted with an isopropyl group was measured. 43). The number average molecular weight and weight average molecular weight of PA-43 determined by gel permeation chromatography were 1.45 × 10 4 and 3.04 × 10 4 , respectively.

実施例44
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)36.3mg(0.91mmol)をDMSO12ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に実施例1で得られたポリアミドPA−1、0.60gを加えて溶解させ更に室温にて4時間撹拌した。次に、アリルブロミド0.44g(3.63mmol)を加え室温にて更に2時間撹拌し、この溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.58gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−1で表される構造中のアミド基のN位
のうち23モル%がアリル基に置換されたポリアミド(以下、PA−44と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−44の数平均分子量及び重量平均分子量はそれぞれ1.66×104及び3.40×104であった。
Example 44
Under an argon gas atmosphere, 36.3 mg (0.91 mmol) of sodium hydride (oily, 60%) was dispersed in 12 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.60 g of polyamide PA-1 obtained in Example 1 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.44 g (3.63 mmol) of allyl bromide was added and the mixture was further stirred at room temperature for 2 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.58 g of a polymer. . When the 1 H-NMR spectrum of the obtained polymer was measured, a polyamide (hereinafter referred to as PA-44) in which 23 mol% of the N-position of the amide group in the structure represented by PA-1 was substituted with an allyl group was measured. It was called). The number average molecular weight and weight average molecular weight of PA-44 determined by gel permeation chromatography were 1.66 × 10 4 and 3.40 × 10 4 , respectively.

実施例45
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)36.3mg(0.91mmol)をDMSO12ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に実施例1で得られたポリアミドPA−1、0.60gを加えて溶解させ更に室温にて4時間撹拌した。次に、ベンジルブロミド0.62g(3.63mmol)を加え室温にて更に2時間撹拌し、この溶液を過剰のメタノールにあけ析出した高分子を濾過し乾燥したところ、ポリマー0.64gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−1で表される構造中のアミド基のN
位のうち23モル%がベンジル基に置換されたポリアミド(以下、PA−45と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−45の数平均分子量及び重量平均分子量はそれぞれ1.60×104及び3.26×104であった。
Example 45
Under an argon gas atmosphere, 36.3 mg (0.91 mmol) of sodium hydride (oily, 60%) was dispersed in 12 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.60 g of polyamide PA-1 obtained in Example 1 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.62 g (3.63 mmol) of benzyl bromide was added and the mixture was further stirred at room temperature for 2 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.64 g of polymer. . When the 1 H-NMR spectrum of the obtained polymer was measured, N of the amide group in the structure represented by PA-1 was measured.
Among these, 23 mol% was a polyamide substituted with a benzyl group (hereinafter referred to as PA-45). The number average molecular weight and weight average molecular weight of PA-45 determined by gel permeation chromatography were 1.60 × 10 4 and 3.26 × 10 4 , respectively.

実施例46

Figure 0004610596
Example 46
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジ(クロロカルボニル)ジフェニルエーテル1.48g(5.0mmol)と3,3′,5,5′−テトラメチル−4,4′−ジアミノジフェニルメタン1.57g(5.0mmol)をそれぞれ1.0mol/lの濃度となるようにNMPに溶解し、−78℃の温度で混合し凍結させた。次に、室温までゆっくりと加温して溶液を融解させ、室温にて4時間攪拌した。得られた反応溶液をNMP38mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−46で表されるポリアミド2.68gを得た。ゲルパーミエーションクロマトグラフィーで求めたPA−46の数平均分子量及び重量平均分子量はそれぞれ1.43×104及び2.49×104であった。 Under an argon gas atmosphere, 1.48 g (5.0 mmol) of 4,4′-di (chlorocarbonyl) diphenyl ether and 1.57 g of 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane (5 0.0 mmol) was dissolved in NMP to a concentration of 1.0 mol / l, mixed and frozen at a temperature of −78 ° C. Next, the solution was melted by slowly warming to room temperature and stirred at room temperature for 4 hours. The obtained reaction solution was diluted with 38 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.68 g of polyamide represented by the structural formula PA-46 was obtained. The number average molecular weight and weight average molecular weight of PA-46 determined by gel permeation chromatography were 1.43 × 10 4 and 2.49 × 10 4 , respectively.

実施例47
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)36.3mg(0.91mmol)をDMSO12ml中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得
た。室温に冷却した後、この溶液に実施例1で得られたポリアミドPA−1、0.60gを加えて溶解させ更に室温にて4時間撹拌した。次に、1−ヨードヘキサデカン1.28g(3.63mmol)を加え室温にて更に4時間撹拌し、この溶液を過剰のメタノール/ヘキサン混合溶媒にあけ析出した高分子を濾過し乾燥したところ、ポリマー0.59gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PA−1で表さ
れる構造中のアミド基のN位のうち19モル%がヘキサデシル基に置換されたポリアミド(以下、PA−47と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPA−47の数平均分子量及び重量平均分子量はそれぞれ1.59×104及び3.
36×104であった。
Example 47
Under an argon gas atmosphere, 36.3 mg (0.91 mmol) of sodium hydride (oily, 60%) was dispersed in 12 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 0.60 g of polyamide PA-1 obtained in Example 1 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 1.28 g (3.63 mmol) of 1-iodohexadecane was added, and the mixture was further stirred at room temperature for 4 hours. This solution was poured into an excess methanol / hexane mixed solvent, and the precipitated polymer was filtered and dried. 0.59 g was obtained. When the 1 H-NMR spectrum of the obtained polymer was measured, a polyamide (hereinafter referred to as PA-47) in which 19 mol% of the N-position of the amide group in the structure represented by PA-1 was substituted with a hexadecyl group. It was called). The number average molecular weight and the weight average molecular weight of PA-47 determined by gel permeation chromatography are 1.59 × 10 4 and 3.
It was 36 × 10 4 .

実施例48

Figure 0004610596
Example 48
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジカルボキシジフェニルエーテル1.37g(5.31mmol)、1−オクタドデシルオキシ−2,4−ジアミノベンゼン0.40(1.06mmol)及び4−メチル−m−フェニレンジアミン0.52g(4.25mmol)をNMP6.00mlに溶解し、この溶液にPy1.30ml及びTPP4.20mlを加え、100℃に加熱した後17時間攪拌した。得られた反応溶液をNMP10mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−48で表されるポリアミド2.04gを得た。PA−48の1H−NMRスペクトルを測定したところ、x/y共重合比は8
1.5/18.5であった。また、ゲルパーミエーションクロマトグラフィーで求めたPA−48の数平均分子量及び重量平均分子量はそれぞれ9.30×103及び2.02×
104であった。
Under an argon gas atmosphere, 1.37 g (5.31 mmol) of 4,4′-dicarboxydiphenyl ether, 0.40 (1.06 mmol) of 1-octadodecyloxy-2,4-diaminobenzene and 4-methyl-m-phenylene 0.52 g (4.25 mmol) of diamine was dissolved in 6.00 ml of NMP, and 1.30 ml of Py and 4.20 ml of TPP were added to this solution, heated to 100 ° C. and stirred for 17 hours. The obtained reaction solution was diluted with 10 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.04 g of polyamide represented by the structural formula PA-48 was obtained. When the 1 H-NMR spectrum of PA-48 was measured, the x / y copolymerization ratio was 8.
It was 1.5 / 18.5. The number average molecular weight and weight average molecular weight of PA-48 determined by gel permeation chromatography were 9.30 × 10 3 and 2.02 ×, respectively.
10 4 .

実施例49

Figure 0004610596
Example 49
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジカルボキシジフェニルエーテル1.36g(5.26mmol)、4−(4−トランス−n−ヘプチルシクロヘキシルフェノキシ)−1,3−ジアミノベンゼン0.40(1.05mmol)及び4−メチル−m−フェニレンジアミン0.51g(4.20mmol)をNMP6.00mlに溶解し、この溶液にPy1.30ml及びTPP4.20mlを加え、100℃に加熱した後17時間攪拌した。得られた反応溶液をNMP10mlで希釈した後、過剰のメタノールにあけ、析出した高
分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−49で表されるポリアミド2.05gを得た。PA−49の1H−NMRスペクトルを
測定したところ、x/y共重合比は79.9/20.1であった。また、ゲルパーミエーションクロマトグラフィーで求めたPA−49の数平均分子量及び重量平均分子量はそれぞれ7.19×103及び1.47×104であった。
Under an argon gas atmosphere, 1.36 g (5.26 mmol) of 4,4′-dicarboxydiphenyl ether, 4- (4-trans-n-heptylcyclohexylphenoxy) -1,3-diaminobenzene 0.40 (1.05 mmol) In addition, 0.51 g (4.20 mmol) of 4-methyl-m-phenylenediamine was dissolved in 6.00 ml of NMP, and 1.30 ml of Py and 4.20 ml of TPP were added to the solution, followed by heating to 100 ° C. and stirring for 17 hours. The obtained reaction solution was diluted with 10 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.05 g of polyamide represented by the structural formula PA-49 was obtained. When the 1 H-NMR spectrum of PA-49 was measured, the x / y copolymerization ratio was 79.9 / 20.1. The number average molecular weight and weight average molecular weight of PA-49 determined by gel permeation chromatography were 7.19 × 10 3 and 1.47 × 10 4 , respectively.

実施例50

Figure 0004610596
Example 50
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジカルボキシジフェニルエーテル0.30g(1.16mmol)、4−メチル−m−フェニレンジアミン0.14g(1.14mmol)、及び上記ジアミン化合物(**)0.012g(0.02mmol)をNMP1.20mlに溶解し、この溶液にPy0.30ml及びTPP0.90mlを加え、100℃に加熱した後6時間攪拌した。得られた反応溶液をNMP3mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PA−50で表されるポリアミド0.38gを得た。PA−50の1H−NMRスペクトルを測定したところ、x/y共重合比は98.4/1.6であった
。また、ゲルパーミエーションクロマトグラフィーで求めたPA−50の数平均分子量及び重量平均分子量はそれぞれ8.49×103及び1.58×104であった。
Under an argon gas atmosphere, 0.34 g (1.16 mmol) of 4,4′-dicarboxydiphenyl ether, 0.14 g (1.14 mmol) of 4-methyl-m-phenylenediamine, and 0.012 g of the diamine compound (**). (0.02 mmol) was dissolved in 1.20 ml of NMP, 0.30 ml of Py and 0.90 ml of TPP were added to this solution, heated to 100 ° C. and stirred for 6 hours. The obtained reaction solution was diluted with 3 ml of NMP, poured into excess methanol, and the precipitated polymer was filtered and dried. The above operation was repeated and purified, and 0.38 g of polyamide represented by the structural formula PA-50 was obtained. When the 1 H-NMR spectrum of PA-50 was measured, the x / y copolymerization ratio was 98.4 / 1.6. The number average molecular weight and the weight average molecular weight of PA-50 determined by gel permeation chromatography were 8.49 × 10 3 and 1.58 × 10 4 , respectively.

例51

Figure 0004610596
Example 51
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3.0mmol)と1,2,3,4−ブタンテトラカルボン酸二無水物0.59g(3.0mmol)をNMP9.13ml中で、室温で3時間反応させて上記構造式で表されるポリアミド酸PAA−1を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−1の数平均分子量及び重量平均分子量はそれぞれ3.35×103及び5.21×103であ
った。
In a nitrogen stream, 1.04 g (3.0 mmol) of 1,3-di [4-aminobenzamide] benzene and 0.59 g (3.0 mmol) of 1,2,3,4-butanetetracarboxylic dianhydride were added to NMP9. The polyamic acid PAA-1 represented by the above structural formula was prepared by reacting in 13 ml at room temperature for 3 hours. The number average molecular weight and weight average molecular weight of PAA-1 determined by gel permeation chromatography were 3.35 × 10 3 and 5.21 × 10 3 , respectively.

例52

Figure 0004610596
Example 52
Figure 0004610596

窒素気流中、1,4−ジ[(4−アミノフェニル)カルバモイル]ベンゼン3.46g(10mmol)と1,2,3,4−シクロブタンテトラカルボン酸二無水物(以下CBDAと略す)1.92g(9.8mmol)をNMP30.62ml中で、室温で6時間反応させて上記構造式で表されるポリアミド酸PAA−2を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−2の数平均分子量及び重量平均分子量はそれぞれ7.12×103及び1.65×104であった。 In a nitrogen stream, 3.46 g (10 mmol) of 1,4-di [(4-aminophenyl) carbamoyl] benzene and 1.92 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter abbreviated as CBDA) (9.8 mmol) was reacted in 30.62 ml of NMP at room temperature for 6 hours to prepare polyamic acid PAA-2 represented by the above structural formula. The number average molecular weight and weight average molecular weight of PAA-2 determined by gel permeation chromatography were 7.12 × 10 3 and 1.65 × 10 4 , respectively.

例53

Figure 0004610596
Example 53
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3mmol)とCBDA0.58g(2.94mmol)をNMP9.16ml中で、室温で6時間反応させて上記構造式で表されるポリアミド酸PAA−3を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−3の数平均分子量及び重量平均分子量はそれぞれ3.13×104及び5.45×104であった。 In a nitrogen stream, 1.04 g (3 mmol) of 1,3-di [4-aminobenzamido] benzene and 0.58 g (2.94 mmol) of CBDA were reacted in NMP 9.16 ml at room temperature for 6 hours and represented by the above structural formula. The prepared polyamic acid PAA-3 was prepared. The number average molecular weight and weight average molecular weight of PAA-3 determined by gel permeation chromatography were 3.13 × 10 4 and 5.45 × 10 4 , respectively.

例54

Figure 0004610596
Example 54
Figure 0004610596

窒素気流中、参考例3で得られた化合物(II)で表される4,4′−ジ(4−アミノベンズアミド)ジフェニルエーテル1.01g(2.3mmol)とCBDA0.44g(2.25mmol)をNMP8.00ml中で、室温で6時間反応させて上記構造式で表されるポリアミド酸PAA−4を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−4の数平均分子量及び重量平均分子量はそれぞれ1.50×104及び
3.04×104であった。
In a nitrogen stream, 1.01 g (2.3 mmol) of 4,4′-di (4-aminobenzamido) diphenyl ether represented by the compound (II) obtained in Reference Example 3 and 0.44 g (2.25 mmol) of CBDA were added. The polyamic acid PAA-4 represented by the above structural formula was prepared by reacting in NMP 8.00 ml at room temperature for 6 hours. The number average molecular weight and weight average molecular weight of PAA-4 determined by gel permeation chromatography were 1.50 × 10 4 and 3.04 × 10 4 , respectively.

例55

Figure 0004610596
Example 55
Figure 0004610596

窒素気流中、参考例2で得られた化合物(I)で表される4,4′−ジ[N−(2−メチル−5−アミノフェニル)カルボニルアミノ]ジフェニルエーテル0.98g(2.1mmol)とCBDA0.40g(2.06mmol)をNMP7.84ml中、室温で6時間反応させて上記構造式で表されるポリアミド酸PAA−5を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−5の数平均分子量及び重量平均分子量はそれぞれ6.64×104及び1.08×105であった。 In a nitrogen stream, 0.98 g (2.1 mmol) of 4,4′-di [N- (2-methyl-5-aminophenyl) carbonylamino] diphenyl ether represented by the compound (I) obtained in Reference Example 2 And CBDA (0.40 g, 2.06 mmol) were reacted in NMP (7.84 ml) at room temperature for 6 hours to prepare polyamic acid PAA-5 represented by the above structural formula. The number average molecular weight and weight average molecular weight of PAA-5 determined by gel permeation chromatography were 6.64 × 10 4 and 1.08 × 10 5 , respectively.

参考例7

Figure 0004610596
Reference Example 7
Figure 0004610596

アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)1.64g(40mmol)をDMSO100mL中に分散させ、70℃で1時間撹拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に参考例3で得られたジニトロ化合物4、7.00g(14.0mmol)を加え室温にて4時間撹拌した。次に、ヨードメタン6.08g(40mmol)を加え室温にて更に18時間撹拌し、この溶液を200mLの水にあけ、析出した沈殿を濾過し乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル)で精製したところ、上記構造式12で表される4,4′−ジ(N−メチル−4−ニトロベンズアミド)ジフェニルエーテル3.56gを淡黄色粉末として得た(収率:48.3%)。   Under an argon gas atmosphere, 1.64 g (40 mmol) of sodium hydride (oil-based, 60%) was dispersed in 100 mL of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 7.00 g (14.0 mmol) of the dinitro compound 4 obtained in Reference Example 3 was added to this solution, and the mixture was stirred at room temperature for 4 hours. Next, 6.08 g (40 mmol) of iodomethane was added, and the mixture was further stirred at room temperature for 18 hours. This solution was poured into 200 mL of water, and the deposited precipitate was filtered and dried. When purified by silica gel column chromatography (developing solvent: chloroform / ethyl acetate), 3.56 g of 4,4′-di (N-methyl-4-nitrobenzamide) diphenyl ether represented by the above structural formula 12 was obtained as a pale yellow powder. (Yield: 48.3%).

1H−NMR δ(250MHz,CDCl3,ppm):3.52(6H,s),6.8
2(4H,d),7.00(4H,d),7.48(4H,d),8.08(4H,d).
1 H-NMR δ (250 MHz, CDCl 3 , ppm): 3.52 (6H, s), 6.8
2 (4H, d), 7.00 (4H, d), 7.48 (4H, d), 8.08 (4H, d).

上記の反応で得られた4,4′−ジ(N−メチル−4−ニトロベンズアミド)ジフェニルエーテル2.10g(3.99mmol)をエタノール50mLおよびTHF25mLの混合溶媒に溶解し、そこへ二塩化錫・二水和物10.0g(44.4mmol)を加えた。混合物を65℃に加熱した後、水素化ホウ素ナトリウム378mg(10mmol)のエタノール50mL溶液を滴下し4時間撹拌した。次に、反応液を300mLの水にあけ10%水酸化ナトリウム水溶液を加えて中性にした後、得られた沈殿を濾取した。この沈殿にTHFを加え一晩還流させることにより可溶分を抽出し、THFを留去した後エタノールで洗浄したところ、上記構造式(VI)で表される4,4′−ジ(N−メチル−4−アミノベンズアミド)ジフェニルエーテル1.15gを白色粉末として得た(収率:62.0%)。   2.4 g (3.99 mmol) of 4,4′-di (N-methyl-4-nitrobenzamido) diphenyl ether obtained in the above reaction was dissolved in a mixed solvent of 50 mL of ethanol and 25 mL of THF, and tin dichloride, Dihydrate 10.0 g (44.4 mmol) was added. After the mixture was heated to 65 ° C., a solution of sodium borohydride (378 mg, 10 mmol) in ethanol (50 mL) was added dropwise and stirred for 4 hours. Next, the reaction solution was poured into 300 mL of water, neutralized with a 10% aqueous sodium hydroxide solution, and the resulting precipitate was collected by filtration. THF was added to the precipitate and refluxed overnight to extract a soluble component. After the THF was distilled off and washed with ethanol, 4,4′-di (N—) represented by the above structural formula (VI) was obtained. 1.15 g of methyl-4-aminobenzamido) diphenyl ether was obtained as a white powder (yield: 62.0%).

IR(KBr,cm-1):3452,3333,3120,2937,1363,1620,1600.
1H−NMR δ(250MHz,DMSO−d6,ppm):3.26(6H,s),5
.40(4H,bs),6.30(4H,d),6.80(4H,d),6.94(4H,d),7.10(4H,d).
元素分析結果:(分子式:C282643、分子量:466.53)
計算値(%);C:72.08,H:5.62,N:12.00.
実測値(%);C:71.60,H:5.65,N:11.76.
IR (KBr, cm −1 ): 3452, 3333, 3120, 2937, 1363, 1620, 1600.
1 H-NMR δ (250 MHz, DMSO-d 6 , ppm): 3.26 (6H, s), 5
. 40 (4H, bs), 6.30 (4H, d), 6.80 (4H, d), 6.94 (4H, d), 7.10 (4H, d).
Elemental analysis result: (molecular formula: C 28 H 26 N 4 O 3 , molecular weight: 466.53)
Calculated value (%); C: 72.08, H: 5.62, N: 12.00.
Actual value (%); C: 71.60, H: 5.65, N: 11.76.

例56

Figure 0004610596
Example 56
Figure 0004610596

窒素気流中、参考例7で得られた化合物(VI)で表される化合物4,4′−ジ(N−メチル−4−アミノベンズアミド)ジフェニルエーテル0.66g(1.5mmol)とCBDA0.29g(1.47mmol)をNMP5.38ml中で、室温で6時間反応させて上記構造式で表されるポリアミド酸PAA−6を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−6の数平均分子量及び重量平均分子量はそれぞれ2.31×104及び3.60×105であった。 In a nitrogen stream, 0.66 g (1.5 mmol) of the compound 4,4′-di (N-methyl-4-aminobenzamide) diphenyl ether represented by the compound (VI) obtained in Reference Example 7 and 0.29 g of CBDA ( 1.45 mmol) was reacted in 5.38 ml of NMP at room temperature for 6 hours to prepare polyamic acid PAA-6 represented by the above structural formula. The number average molecular weight and weight average molecular weight of PAA-6 determined by gel permeation chromatography were 2.31 × 10 4 and 3.60 × 10 5 , respectively.

例57

Figure 0004610596
Example 57
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3.0mmol)と3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物0.96g(2.97mmol)をNMP11.31ml中で、室温で3時間反応させて上記構造式で表されるポリアミド酸PAA−7を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−7の数平均分子量及び重量平均分子量はそれぞれ1.60×104及び3
.08×104であった。
In a nitrogen stream, 1.04 g (3.0 mmol) of 1,3-di [4-aminobenzamido] benzene and 0.96 g (2.97 mmol) of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Was reacted in 11.31 ml of NMP at room temperature for 3 hours to prepare polyamic acid PAA-7 represented by the above structural formula. The number average molecular weight and weight average molecular weight of PAA-7 determined by gel permeation chromatography are 1.60 × 10 4 and 3 respectively.
. It was 08 × 10 4 .

例58

Figure 0004610596
Example 58
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3.0mmol)とビス(3,4−ジカルボキシフェニル)エーテル二無水物0.93g(3.0mmol)をNMP11.16ml中で、室温で3時間反応させて上記構造式で表されるポリアミド酸PAA−8を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−8の数平均分子量及び重量平均分子量はそれぞれ1.82×104及び3.33×
104であった。
In a nitrogen stream, 1.04 g (3.0 mmol) of 1,3-di [4-aminobenzamide] benzene and 0.93 g (3.0 mmol) of bis (3,4-dicarboxyphenyl) ether dianhydride were added to NMP11. The polyamic acid PAA-8 represented by the above structural formula was prepared by reacting in 16 ml at room temperature for 3 hours. The number average molecular weight and weight average molecular weight of PAA-8 determined by gel permeation chromatography are 1.82 × 10 4 and 3.33 ×, respectively.
10 4 .

例59

Figure 0004610596
Example 59
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3.0mmol)と1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物1.33g(3.0mmol)をNMP13.44ml中で、室温で3時間反応させて上記構造式で表されるポリアミド酸PAA−9を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−9の数平均分子量及び重量平均分子量はそれぞれ2.37×104及び4.22×104であった。 In a nitrogen stream, 1.04 g (3.0 mmol) of 1,3-di [4-aminobenzamide] benzene and 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4- The polyamic acid PAA-9 represented by the above structural formula was prepared by reacting 1.33 g (3.0 mmol) of dicarboxyphenyl) propane dianhydride in 13.44 ml of NMP at room temperature for 3 hours. The number average molecular weight and weight average molecular weight of PAA-9 determined by gel permeation chromatography were 2.37 × 10 4 and 4.22 × 10 4 , respectively.

例60

Figure 0004610596
Example 60
Figure 0004610596

窒素気流中、1,3−ジ[4−アミノベンズアミド]ベンゼン1.04g(3.0mmol)とビス(3,4−ジカルボキシフェニル)スルホン二無水物1.07g(3.0mmol)をNMP11.98ml中で、室温で3時間反応させて上記構造式で表されるポリアミド酸PAA−10を調製した。ゲルパーミエーションクロマトグラフィーで求めたPAA−10の数平均分子量及び重量平均分子量はそれぞれ1.81×104及び3.4
0×104であった。
In a nitrogen stream, 1.04 g (3.0 mmol) of 1,3-di [4-aminobenzamide] benzene and 1.07 g (3.0 mmol) of bis (3,4-dicarboxyphenyl) sulfone dianhydride were added to NMP11. The polyamic acid PAA-10 represented by the above structural formula was prepared by reacting in 98 ml at room temperature for 3 hours. The number average molecular weight and weight average molecular weight of PAA-10 determined by gel permeation chromatography are 1.81 × 10 4 and 3.4, respectively.
It was 0 × 10 4 .

例61

Figure 0004610596
Example 61
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジアミノ−3,3′−ジメチルジフェニルメタン2.26g(10mmol)とトリメリット酸一無水物酸クロライド2.10g(10mmol)をNMP24.71mlに溶解し、100℃に加熱した後6時間攪拌した。得られた反応溶液をNMP45.6mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PAA−11で表されるポリイミド3.88gを得た。ゲルパーミエーションクロマトグラフィーで求めたPAA−11の数平均分子量及び重量平均分子量はそれぞれ6.81×103
及び1.15×104であった。
Under an argon gas atmosphere, 2.26 g (10 mmol) of 4,4′-diamino-3,3′-dimethyldiphenylmethane and 2.10 g (10 mmol) of trimellitic monoanhydride chloride were dissolved in 24.71 ml of NMP, and 100 ° C. And then stirred for 6 hours. The obtained reaction solution was diluted with 45.6 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.88 g of polyimide represented by the structural formula PAA-11 was obtained. The number average molecular weight and weight average molecular weight of PAA-11 determined by gel permeation chromatography were 6.81 × 10 3, respectively.
And 1.15 × 10 4 .

例62

Figure 0004610596
Example 62
Figure 0004610596

アルゴンガス雰囲気下、4,4′−ジアミノジフェニルメタン1.98g(10mmol)とトリメリット酸一無水物酸クロライド2.10g(10mmol)をNMP溶液22.53ml中で、室温で6時間反応させて、記構造式で表されるポリアミド酸PAA−12を調製した。次いで、この反応溶液にNMP73mlを加えて希釈し、これに無水酢酸9.50ml及びPy4.90mlを加え、40℃に加熱した後3時間攪拌した。得られた反応溶液をメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PI−12で表されるポリイミド3.26gを得た。ゲルパーミエーションクロマトグラフィーで求めたPI−12の数平均分子量及び重量平均分子量はそれぞれ5.89×103及び1.06×104であった。 Under an argon gas atmosphere, 1.98 g (10 mmol) of 4,4′-diaminodiphenylmethane and 2.10 g (10 mmol) of trimellitic monoanhydride chloride were reacted in 22.53 ml of NMP solution at room temperature for 6 hours, Polyamic acid PAA-12 represented by the structural formula was prepared. Subsequently, NMP73ml was added and diluted to this reaction solution, and acetic anhydride 9.50ml and Py4.90ml were added to this, and it heated at 40 degreeC, Then, it stirred for 3 hours. The obtained reaction solution was poured into methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.26 g of polyimide represented by the structural formula PI-12 was obtained. The number average molecular weight and the weight average molecular weight of PI-12 determined by gel permeation chromatography were 5.89 × 10 3 and 1.06 × 10 4 , respectively.

例63

Figure 0004610596
Example 63
Figure 0004610596

アルゴンガス雰囲気下、ビスフェノールAビス(クロロフォルメート)1.77g(5.0mmol)と4−メチル−m−フェニレンジアミン0.61g(5.0mmol)をNMP13.14mlに溶解し、これを室温で14時間攪拌した。得られた反応溶液をNMP18mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−1で表されるポリウレタン1.14gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−1の数平均分子量及び重量平均分子量はそれぞれ4.26×103及び5.64×103であった。 Under an argon gas atmosphere, 1.77 g (5.0 mmol) of bisphenol A bis (chloroformate) and 0.61 g (5.0 mmol) of 4-methyl-m-phenylenediamine were dissolved in 13.14 ml of NMP. Stir for 14 hours. The resulting reaction solution was diluted with 18 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 1.14 g of polyurethane represented by the structural formula PU-1 was obtained. The number average molecular weight and weight average molecular weight of PU-1 determined by gel permeation chromatography were 4.26 × 10 3 and 5.64 × 10 3 , respectively.

例64

Figure 0004610596
Example 64
Figure 0004610596

アルゴンガス雰囲気下、ビスフェノールAビス(クロロフォルメート)1.77g(5.0mmol)と4,4′−ジアミノジフェニルエーテル1.00g(5.0mmol)をNMP15.30mlに溶解し、これを−78℃〜室温にかけて2時間攪拌した。得られた反応溶液をNMP21mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−2で表されるポリウレタン1.83gを得た。ゲルパーミエーションクロマトグラフィーで
求めたPU−2の数平均分子量及び重量平均分子量はそれぞれ5.63×103及び8.
70×103であった。
Under an argon gas atmosphere, 1.77 g (5.0 mmol) of bisphenol A bis (chloroformate) and 1.00 g (5.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in 15.30 ml of NMP. Stir to room temperature for 2 hours. The resulting reaction solution was diluted with 21 ml of NMP, then poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 1.83 g of polyurethane represented by the structural formula PU-2 was obtained. The number average molecular weight and weight average molecular weight of PU-2 determined by gel permeation chromatography are 5.63 × 10 3 and 8.
It was 70 × 10 3 .

例65

Figure 0004610596
Example 65
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート1.74g(10.0mmol)と4,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をDMSO23.60mlに溶解し、60℃に加熱後15分攪拌した。得られた反応溶液をDMSO26mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−3で表されるポリウレア2.77gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−3の数平均分子量及び重量平均分子量はそれぞれ1.83×104及び5.40
×104であった。
Under an argon gas atmosphere, 1.74 g (10.0 mmol) of 4-methyl-1,3-phenylene diisocyanate and 2.00 g (10.0 mmol) of 4,4′-diaminodiphenyl ether were dissolved in 23.60 ml of DMSO and heated to 60 ° C. Stir for 15 minutes after heating. The obtained reaction solution was diluted with 26 ml of DMSO, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.77 g of polyurea represented by the structural formula PU-3 was obtained. The number average molecular weight and the weight average molecular weight of PU-3 determined by gel permeation chromatography are 1.83 × 10 4 and 5.40, respectively.
× 10 4

例66
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)85.5mg(2.14mmol)をDMSO20ml中に分散させ、70℃で1時間攪拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に例65で得られたポリウレアPU−3、1.0g(2.67mmol)を加えて溶解させ、更に室温にて4時間攪拌した。次に、ヨードメタン0.91g(6.41mmol)を加え室温にて、更に2時間攪拌し、この溶液を過剰のメタノールにあけ析出した高分子をろ過し乾燥したところ、ポリマー0.93gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PU−3で表される構造
中のウレア基のN位のうち19モル%がメチル基に置換されたポリウレア(以下、PU−4と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPU−4の数平均分子量及び重量平均分子量はそれぞれ9.79×103及び2.04×104であった。
Example 66
Under an argon gas atmosphere, 85.5 mg (2.14 mmol) of sodium hydride (oily, 60%) was dispersed in 20 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 1.0 g (2.67 mmol) of polyurea PU-3 obtained in Example 65 was added and dissolved in this solution, and the mixture was further stirred at room temperature for 4 hours. Next, 0.91 g (6.41 mmol) of iodomethane was added and the mixture was further stirred at room temperature for 2 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 0.93 g of polymer. . When the 1 H-NMR spectrum of the obtained polymer was measured, polyurea (hereinafter referred to as PU-4) in which 19 mol% of the N-position of the urea group in the structure represented by PU-3 was substituted with a methyl group. It was called). The number average molecular weight and the weight average molecular weight of PU-4 determined by gel permeation chromatography were 9.79 × 10 3 and 2.04 × 10 4 , respectively.

例67

Figure 0004610596
Example 67
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート3.05g
(17.5mmol)と1,3−ジアミノシクロヘキサン2.00g(17.5mmol)をDMSO17mlに溶解し、60℃に加熱後15分攪拌した。得られた反応溶液をDMSO17mlで希釈して、上記構造式PU−5で表されるポリウレア5.05gを含むDMSO溶液約35mlを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−5の数平均分子量及び重量平均分子量はそれぞれ8.91×103及び1.73×104であった。
Under an argon gas atmosphere, 3.05 g of 4-methyl-1,3-phenylene diisocyanate
(17.5 mmol) and 2.00 g (17.5 mmol) of 1,3-diaminocyclohexane were dissolved in 17 ml of DMSO, heated to 60 ° C. and stirred for 15 minutes. The obtained reaction solution was diluted with 17 ml of DMSO to obtain about 35 ml of DMSO solution containing 5.05 g of polyurea represented by the above structural formula PU-5. The number average molecular weight and weight average molecular weight of PU-5 determined by gel permeation chromatography were 8.91 × 10 3 and 1.73 × 10 4 , respectively.

例68

Figure 0004610596
Example 68
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート1.74g(10.0mmol)とイソフタル酸ジアジド1.64g(10.0mmol)をDMSO15mlに溶解し、この溶液に触媒としてトリエチルアミン8.36mlを加え、120℃に加熱した後14時間攪拌した。得られた反応溶液をDMSO24mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−6で表されるポリマー2.67gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−6の数平均分子量及び重量平均分子量はそれぞれ2.41×103及び3.40×103であった。 Under an argon gas atmosphere, 1.74 g (10.0 mmol) of 4-methyl-1,3-phenylene diisocyanate and 1.64 g (10.0 mmol) of isophthalic acid diazide were dissolved in 15 ml of DMSO, and 8.36 ml of triethylamine was used as a catalyst in this solution. The mixture was heated to 120 ° C. and stirred for 14 hours. The obtained reaction solution was diluted with 24 ml of DMSO, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.67 g of the polymer represented by the structural formula PU-6 was obtained. The number average molecular weight and the weight average molecular weight of PU-6 determined by gel permeation chromatography were 2.41 × 10 3 and 3.40 × 10 3 , respectively.

例69

Figure 0004610596
Example 69
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート1.74g(10.0mmol)とテレフタル酸ジアジド1.64g(10.0mmol)をDMSO15mlに溶解し、この溶液に触媒としてトリエチルアミン8.36mlを加え、120℃に加熱した後14時間攪拌した。得られた反応溶液をDMSO24mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−7で表されるポリマー2.54gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−7の数平均分子量及び重量平均分子量はそれぞれ2.39×103及び3.11×103であった。 Under an argon gas atmosphere, 1.74 g (10.0 mmol) of 4-methyl-1,3-phenylene diisocyanate and 1.64 g (10.0 mmol) of terephthalic acid diazide were dissolved in 15 ml of DMSO, and 8.36 ml of triethylamine was used as a catalyst in this solution. The mixture was heated to 120 ° C. and stirred for 14 hours. The obtained reaction solution was diluted with 24 ml of DMSO, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 2.54 g of the polymer represented by the structural formula PU-7 was obtained. The number average molecular weight and the weight average molecular weight of PU-7 determined by gel permeation chromatography were 2.39 × 10 3 and 3.11 × 10 3 , respectively.

例70

Figure 0004610596
Example 70
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート1.74g(10.0mmol)とイソフタル酸ジヒドラジド1.94g(10.0mmol)をDMSO22.30mlに溶解し、120℃に加熱した後30分攪拌した。得られた反応溶液をDMSO26mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−8で表されるポリマー3.50gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−8の数平均分子量及び重量平均分子量はそれぞれ4.54×103及び7.96×103であった。 Under an argon gas atmosphere, 1.74 g (10.0 mmol) of 4-methyl-1,3-phenylene diisocyanate and 1.94 g (10.0 mmol) of isophthalic acid dihydrazide were dissolved in 22.30 ml of DMSO and heated to 120 ° C. Stir for minutes. The obtained reaction solution was diluted with 26 ml of DMSO, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.50 g of the polymer represented by the structural formula PU-8 was obtained. The number average molecular weight and the weight average molecular weight of PU-8 determined by gel permeation chromatography were 4.54 × 10 3 and 7.96 × 10 3 , respectively.

例71

Figure 0004610596
Example 71
Figure 0004610596

アルゴンガス雰囲気下、4−メチル−1,3−フェニレンジイソシアネート1.74g(10.0mmol)とテレフタル酸ジヒドラジド1.94g(10.0mmol)をDMSO22.30mlに溶解し、120℃に加熱した後20分攪拌した。得られた反応溶液をDMSO26mlで希釈した後、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−9で表されるポリマー3.46gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−9の数平均分子量及び重量平均分子量はそれぞれ3.55×103及び6.03×103であった。 Under an argon gas atmosphere, 1.74 g (10.0 mmol) of 4-methyl-1,3-phenylene diisocyanate and 1.94 g (10.0 mmol) of terephthalic acid dihydrazide were dissolved in 22.30 ml of DMSO and heated to 120 ° C. Stir for minutes. The obtained reaction solution was diluted with 26 ml of DMSO, poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 3.46 g of the polymer represented by the structural formula PU-9 was obtained. The number average molecular weight and weight average molecular weight of PU-9 determined by gel permeation chromatography were 3.55 × 10 3 and 6.03 × 10 3 , respectively.

例72

Figure 0004610596
Example 72
Figure 0004610596

アルゴンガス雰囲気下、イソフタル酸ジクロライド0.523g(2.57mmol)とテレフタル酸ジヒドラジド0.500g(2.57mmol)をNMP5.0mlに溶解し、これを−78℃〜室温にかけて4時間攪拌した。次いで、過剰のメタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行ったところ、上記構造式PU−10で表されるポリマー0.58gを得た。ゲルパーミエーションクロマトグラフィーで求めたPU−10の数平均分子量及び重量平均分子量はそれぞれ5.07×103及び8.15×103であった。 Under an argon gas atmosphere, 0.523 g (2.57 mmol) of isophthalic acid dichloride and 0.500 g (2.57 mmol) of terephthalic acid dihydrazide were dissolved in 5.0 ml of NMP, and this was stirred at −78 ° C. to room temperature for 4 hours. Next, the mixture was poured into excess methanol, and the precipitated polymer was filtered and dried. When the above operation was repeated and purified, 0.58 g of the polymer represented by the structural formula PU-10 was obtained. The number average molecular weight and the weight average molecular weight of PU-10 determined by gel permeation chromatography were 5.07 × 10 3 and 8.15 × 10 3 , respectively.

例73
アルゴンガス雰囲気下、水素化ナトリウム(油性、60%)168mg(7.01mmol)をDMSO20ml中に分散させ、70℃で1時間攪拌し淡黄色の均一溶液を得た。室温に冷却した後、この溶液に例67で得られたポリウレアPU−5のDMSO溶液17mlを加えて、更に室温にて4時間攪拌した。その後ヨードメタン2.98g(21.0mmol)を加え室温にて、更に2時間攪拌し、この溶液を過剰のメタノールにあけ析出した高分子をろ過し乾燥したところ、ポリマー1.93gを得た。得られたポリマーの1H−NMRスペクトルを測定したところ、PU−5で表される構造中のウレア基のN位
のうち16モル%がメチル基に置換されたポリウレア(以下、PU−11と称する)であった。ゲルパーミエーションクロマトグラフィーで求めたPU−11の数平均分子量及び重量平均分子量はそれぞれ1.33×104及び2.82×104であった。
Example 73
Under an argon gas atmosphere, 168 mg (7.01 mmol) of sodium hydride (oily, 60%) was dispersed in 20 ml of DMSO and stirred at 70 ° C. for 1 hour to obtain a pale yellow homogeneous solution. After cooling to room temperature, 17 ml of a DMSO solution of polyurea PU-5 obtained in Example 67 was added to this solution, and the mixture was further stirred at room temperature for 4 hours. Thereafter, 2.98 g (21.0 mmol) of iodomethane was added, and the mixture was further stirred at room temperature for 2 hours. The solution was poured into excess methanol, and the precipitated polymer was filtered and dried to obtain 1.93 g of a polymer. When the 1 H-NMR spectrum of the obtained polymer was measured, polyurea (hereinafter referred to as PU-11) in which 16 mol% of the N-position of the urea group in the structure represented by PU-5 was substituted with a methyl group. It was called). The number average molecular weight and the weight average molecular weight of PU-11 determined by gel permeation chromatography were 1.33 × 10 4 and 2.82 × 10 4 , respectively.

実施例74〜123
実施例1から実施例50で得られたポリアミドPA−1〜PA−50を所定の混合比(重量比)のNMPとブチルセロソルブ(以下BCと略す)の混合溶媒に溶解させ、それぞれ所定の固形分濃度になるように溶液を調製した。この溶液をガラス基板上に所定の回転数でスピンコートし、80℃で5分乾燥させた後、180℃で1時間加熱処理を行ったところ、いずれのポリアミド溶液でも膜厚1000Åの均一なポリアミド樹脂膜を得ることができた。このようにして得た各ポリアミド樹脂膜にバンドパスフィルター及び偏光板を介して、出力700Wの超高圧水銀灯から波長240nm〜280nmまたは300nm〜330nmの偏光紫外線を所定の時間照射した。偏光紫外線を同一の条件で照射した2枚1組の基板をポリアミド面が内側を向き、照射した偏光紫外線の方向が互いに平行になるように、6μmのポリマー微粒子を挟んで張り合わせ、液晶セルを作製した。これらのセルをホットプレート上で液晶のアンソトロピック温度以上に保ち、液晶(メルク社製ZLI−2293)を注入した。これらの液晶セルを室温まで冷却後偏光顕微鏡のクロスニコル下で回転させたところ、いずれのポリアミド樹脂膜を用いた場合でも明瞭な明暗を生じ、且つ欠陥も全く観測されず、液晶が均一に配向していることが確認された。表3にPA−1〜PA−50の各ポリアミド溶液のNMPとBCの混合比、総固形分及びスピンコート回転数を示し、表4には各ポリアミド樹脂膜を用いた液晶セル作製時の偏光紫外線の照射時間を示す。
Examples 74-123
Polyamide PA-1 to PA-50 obtained in Example 1 to Example 50 were dissolved in a mixed solvent of NMP and butyl cellosolve (hereinafter abbreviated as BC) at a predetermined mixing ratio (weight ratio), and each had a predetermined solid content. A solution was prepared to a concentration. This solution was spin-coated on a glass substrate at a predetermined number of rotations, dried at 80 ° C. for 5 minutes, and then heat-treated at 180 ° C. for 1 hour. A resin film could be obtained. Each polyamide resin film thus obtained was irradiated with polarized ultraviolet rays having a wavelength of 240 nm to 280 nm or 300 nm to 330 nm for a predetermined time from an ultrahigh pressure mercury lamp with an output of 700 W through a band pass filter and a polarizing plate. A pair of substrates irradiated with polarized UV light under the same conditions is bonded to each other with 6 μm polymer fine particles so that the polyamide surface faces inward and the directions of the irradiated polarized UV light are parallel to each other. did. These cells were kept above the anthotropic temperature of the liquid crystal on a hot plate, and liquid crystal (ZLI-2293 manufactured by Merck) was injected. When these liquid crystal cells were cooled to room temperature and rotated under the crossed Nicols of a polarizing microscope, even if any polyamide resin film was used, a clear light and darkness was observed and no defects were observed, and the liquid crystal was uniformly aligned. It was confirmed that Table 3 shows the mixing ratio of NMP and BC, the total solid content, and the spin coat rotation number of each polyamide solution of PA-1 to PA-50, and Table 4 shows the polarization at the time of producing a liquid crystal cell using each polyamide resin film. Indicates the irradiation time of ultraviolet rays.

更に上記ポリアミドPA−1〜PA−50の各条件で作製した液晶セルを120℃のオ
ーブン中で1時間熱処理を行った後、室温まで冷却した。これらの液晶セルを偏光顕微鏡のクロスニコル下で回転させたところ、いずれのセルに於いても、明瞭な明暗を生じ、且つ欠陥は観測されず、加熱処理前の均一な液晶の配向が保たれていることが確認された。
Further, the liquid crystal cell produced under each condition of the polyamide PA-1 to PA-50 was heat-treated in an oven at 120 ° C. for 1 hour, and then cooled to room temperature. When these liquid crystal cells were rotated under the crossed Nicols of a polarizing microscope, clear light and darkness were observed in all cells, no defects were observed, and uniform liquid crystal alignment before heat treatment was maintained. It was confirmed that

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

例124〜135
例51から例61で得られたポリアミド酸PAA−1〜PAA−11をNMPとBCの混合溶媒(重量比80:20)に溶解させ、それぞれ所定の固形分濃度になるように溶液を調製した。この溶液をガラス基板上に所定の回転数でスピンコートし、80℃で5分乾燥させた後、250℃で1時間加熱処理を行いポリイミドPI−1〜PI−11に転化させ、膜厚1000Åの均一なポリイミド樹脂膜を得ることができた。一方、例62で得られたポリイミドPI−12についても180℃で1時間加熱処理をした以外は全て同様な手法により膜厚1000Åの均一なポリイミド樹脂膜を形成することができた。このようにして得た各ポリイミド樹脂膜に対し実施例74〜123と全く同様にして波長240nm〜280nmまたは300nm〜330nmの偏光紫外線を所定の時間照射し、液晶セルを作製した。これらの液晶セルをクロスニコル下で回転させたところ、いずれのポリイミド樹脂膜を用いた場合でも明瞭な明暗を生じ、且つ欠陥も全く観測されず、液晶が均一に配向していることが確認された。表5にPAA−1〜PAA−11、PI−12の各ポ
リアミド酸またはポリイミド溶液の総固形分及びスピンコート回転数を示し、表6には各ポリイミド樹脂膜を用いた液晶セル作製時の偏光紫外線の照射時間を示す。
Examples 124-135
The polyamic acids PAA-1 to PAA-11 obtained in Example 51 to Example 61 were dissolved in a mixed solvent of NMP and BC (weight ratio 80:20), and solutions were prepared so as to have predetermined solid content concentrations, respectively. . This solution was spin-coated on a glass substrate at a predetermined number of revolutions, dried at 80 ° C. for 5 minutes, and then heat-treated at 250 ° C. for 1 hour to convert it into polyimides PI-1 to PI-11. A uniform polyimide resin film could be obtained. On the other hand, with respect to the polyimide PI-12 obtained in Example 62, a uniform polyimide resin film having a thickness of 1000 mm could be formed by the same method except that the heat treatment was performed at 180 ° C. for 1 hour. Each polyimide resin film thus obtained was irradiated with polarized ultraviolet light having a wavelength of 240 nm to 280 nm or 300 nm to 330 nm for a predetermined time in the same manner as in Examples 74 to 123, to prepare a liquid crystal cell. When these liquid crystal cells were rotated under crossed nicols, it was confirmed that even if any polyimide resin film was used, clear brightness and darkness were observed, no defects were observed, and the liquid crystals were uniformly aligned. It was. Table 5 shows the total solid content and spin coat rotational speed of each polyamic acid or polyimide solution of PAA-1 to PAA-11, PI-12, and Table 6 shows the polarization at the time of preparing a liquid crystal cell using each polyimide resin film. Indicates the irradiation time of ultraviolet rays.

更に上記ポリイミドPI−1〜PI−12の各条件で作製した液晶セルを120℃のオーブン中で1時間熱処理を行った後、室温まで冷却した。これらの液晶セルを偏光顕微鏡のクロスニコル下で回転させたところ、いずれのセルに於いても、明瞭な明暗を生じ、且つ欠陥は観測されず、加熱処理前の均一な液晶の配向が保たれていることが確認された。   Further, the liquid crystal cell produced under the conditions of polyimide PI-1 to PI-12 was heat-treated in an oven at 120 ° C. for 1 hour, and then cooled to room temperature. When these liquid crystal cells were rotated under the crossed Nicols of a polarizing microscope, clear light and darkness were observed in all cells, no defects were observed, and uniform liquid crystal alignment before heat treatment was maintained. It was confirmed that

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

例136〜146
例63から例73で得られたポリウレタンやポリウレア等のアミド類似基を含有するポリマーPU−1〜PU−11をNMPとBCの混合溶媒(重量比80:20)に溶解させ、それぞれ所定の固形分濃度になるように溶液を調製した。この溶液をガラス基板上に所定の回転数でスピンコートし、80℃で5分乾燥させた後、180℃で1時間加熱処理を行うことにより膜厚1000Åの均一なポリマー樹脂膜を得ることができた。このようにして得た各ポリマー樹脂膜に対し実施例74〜123、例124〜135と全く同様にして波長240nm〜280nmの偏光紫外線を所定の時間照射し、液晶セルを作製した。これらの液晶セルをクロスニコル下で回転させたところ、いずれのポリマー樹脂膜を用いた場合でも明瞭な明暗を生じ、且つ欠陥も全く観測されず、液晶が均一に配向していることが確認された。表7にPU−1〜PU−11の総固形分及びスピンコート回転数を示し、表8には各ポリマーを用いた液晶セル作製時の偏光紫外線の照射時間を示す。
Examples 136-146
Polymers PU-1 to PU-11 containing amide-like groups such as polyurethane and polyurea obtained in Example 63 to Example 73 were dissolved in a mixed solvent of NMP and BC (weight ratio 80:20), and each was given a predetermined solid. The solution was prepared to a partial concentration. This solution is spin-coated on a glass substrate at a predetermined number of revolutions, dried at 80 ° C. for 5 minutes, and then heated at 180 ° C. for 1 hour to obtain a uniform polymer resin film having a thickness of 1000 mm. did it. Each polymer resin film thus obtained was irradiated with polarized ultraviolet rays having a wavelength of 240 nm to 280 nm for a predetermined time in exactly the same manner as in Examples 74 to 123 and Examples 124 to 135, to prepare a liquid crystal cell. When these liquid crystal cells were rotated under crossed Nicols, it was confirmed that even when any polymer resin film was used, clear light and darkness were observed, no defects were observed, and the liquid crystals were uniformly aligned. It was. Table 7 shows the total solid content of PU-1 to PU-11 and the spin coat rotation speed, and Table 8 shows the irradiation time of polarized ultraviolet rays at the time of preparing a liquid crystal cell using each polymer.

更に上記ポリマーPU−1〜PU−11の各条件で作製した液晶セルを120℃のオーブン中で1時間熱処理を行った後、室温まで冷却した。これらの液晶セルを偏光顕微鏡のクロスニコル下で回転させたところ、いずれのセルに於いても、明瞭な明暗を生じ、且つ欠陥は観測されず、加熱処理前の均一な液晶の配向が保たれていることが確認された。   Further, the liquid crystal cell produced under the conditions of the polymers PU-1 to PU-11 was heat-treated in an oven at 120 ° C. for 1 hour, and then cooled to room temperature. When these liquid crystal cells were rotated under the crossed Nicols of a polarizing microscope, clear light and darkness were observed in all cells, no defects were observed, and uniform liquid crystal alignment before heat treatment was maintained. It was confirmed that

Figure 0004610596
Figure 0004610596

Figure 0004610596
Figure 0004610596

比較例1
6・6ナイロン(分子量約20000、ガラス転移温度約45℃)をm−クレゾール中に溶解させ、総固形分4%の溶液を調製した。この溶液をガラス基板上に5000rpmでスピンコートし、ついで120℃で5分乾燥した後、180℃で1時間熱処理を行うことにより、厚さ1000Åのポリアミド樹脂膜を作製した。この6・6ナイロンの膜に実施例と同様に、偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、明暗を生じず、液晶は全く配向しなかった。
Comparative Example 1
6.6 nylon (molecular weight about 20000, glass transition temperature about 45 ° C.) was dissolved in m-cresol to prepare a solution with a total solid content of 4%. This solution was spin-coated on a glass substrate at 5000 rpm, then dried at 120 ° C. for 5 minutes, and then heat-treated at 180 ° C. for 1 hour, thereby producing a polyamide resin film having a thickness of 1000 mm. The 6.6 nylon film was irradiated with polarized ultraviolet light of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under crossed Nicols of a polarizing microscope, no light and darkness were produced, and the liquid crystal was not aligned at all.

比較例2
窒素気流下、アジピン酸クロライド1.83g(10.0mmol)とm−フェニレンジアミン1.08g(10.0mmol)をNMP20.29mlに溶解し、この溶液にPy1.94mlを加え、これを−78℃〜室温にかけて3時間攪拌した。得られた反応溶液をNMP15mlで希釈した後、メタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行い、ポリアミド2.18gを得た。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量はそれぞれ1.09×104及び2.62×104であった。
Comparative Example 2
Under a nitrogen stream, 1.83 g (10.0 mmol) of adipic acid chloride and 1.08 g (10.0 mmol) of m-phenylenediamine were dissolved in 20.29 ml of NMP, and 1.94 ml of Py was added to this solution. Stir to room temperature for 3 hours. The obtained reaction solution was diluted with 15 ml of NMP, poured into methanol, and the precipitated polymer was filtered and dried. The above operation was repeated again for purification to obtain 2.18 g of polyamide. The number average molecular weight and weight average molecular weight determined by gel permeation chromatography were 1.09 × 10 4 and 2.62 × 10 4 , respectively.

このポリアミドをNMP及びBCの混合溶媒(重要比9:1)により総固形分5%の溶液に調製した。この溶液をガラス基板上に3000rpmでスピンコートし、ついで80℃で5分乾燥した後、180℃で1時間熱処理を行うことにより、厚さ1000Åのポリ
アミド樹脂膜を作製した。実施例と同様に、ポリアミド樹脂膜に偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、明暗を生じず、液晶は全く配向しなかった。
This polyamide was prepared in a 5% total solids solution with a mixed solvent of NMP and BC (important ratio 9: 1). This solution was spin-coated on a glass substrate at 3000 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 180 ° C. for 1 hour, thereby producing a polyamide resin film having a thickness of 1000 mm. In the same manner as in the examples, the polyamide resin film was irradiated with polarized ultraviolet light having a wavelength of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under crossed Nicols of a polarizing microscope, no light and darkness were produced, and the liquid crystal was not aligned at all.

比較例3
窒素気流下、イソフタル酸クロライド2.03g(10.0mmol)と1,4−ジアミノブタン0.88g(10.0mmol)をNMP20.29mlに溶解し、この溶液にPy1.94mlを加え、これを−78℃〜室温にかけて3時間攪拌した。得られた反応溶液をNMP15mlで希釈した後、メタノールにあけ、析出した高分子をろ過し乾燥した。上記操作を再度繰り返し、精製を行い、ポリアミド2.07gを得た。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量はそれぞれ6.53×103及び1.30×103であった。
Comparative Example 3
Under a nitrogen stream, 2.03 g (10.0 mmol) of isophthalic acid chloride and 0.88 g (10.0 mmol) of 1,4-diaminobutane were dissolved in 20.29 ml of NMP, and 1.94 ml of Py was added to this solution. The mixture was stirred at 78 ° C. to room temperature for 3 hours. The obtained reaction solution was diluted with 15 ml of NMP, poured into methanol, and the precipitated polymer was filtered and dried. The above operation was repeated again for purification to obtain 2.07 g of polyamide. The number average molecular weight and weight average molecular weight determined by gel permeation chromatography were 6.53 × 10 3 and 1.30 × 10 3 , respectively.

このポリアミドをm−クレゾールにより総固形分4%の溶液に調製した。この溶液をガラス基板上に5000rpmでスピンコートし、ついで120℃で5分乾燥した後、180℃で1時間熱処理を行うことにより、厚さ1000Åのポリアミド樹脂膜を作製した。実施例と同様に、ポリアミド樹脂膜に偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、明暗を生じず、液晶は全く配向しなかった。   This polyamide was prepared in a 4% total solids solution with m-cresol. This solution was spin-coated on a glass substrate at 5000 rpm, then dried at 120 ° C. for 5 minutes, and then heat-treated at 180 ° C. for 1 hour, thereby producing a polyamide resin film having a thickness of 1000 mm. In the same manner as in the examples, the polyamide resin film was irradiated with polarized ultraviolet light having a wavelength of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under crossed Nicols of a polarizing microscope, no light and darkness were produced, and the liquid crystal was not aligned at all.

比較例4
窒素気流下、ピロメリット酸二無水物2.14g(9.8mmol)と4,4′−ジアミノジフェニルエーテル2.00g(10.0mmol)をNMP27.60ml中、室温で2時間反応させポリイミド前駆体溶液を調製した。重合反応は容易且つ均一に進行した。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量がそれぞれ3.45×104および5.73×104のポリイミド前駆体を得ることができた。
Comparative Example 4
Under a nitrogen stream, 2.14 g (9.8 mmol) of pyromellitic dianhydride and 2.00 g (10.0 mmol) of 4,4′-diaminodiphenyl ether were reacted in 27.60 ml of NMP at room temperature for 2 hours to obtain a polyimide precursor solution. Was prepared. The polymerization reaction proceeded easily and uniformly. Polyimide precursors having number average molecular weights and weight average molecular weights determined by gel permeation chromatography of 3.45 × 10 4 and 5.73 × 10 4 could be obtained, respectively.

このポリイミド前駆体をNMP及びBCの混合溶媒(重量比4:1)により総固形分4%の溶液に調製した。この溶液をガラス基板上に4000rpmでスピンコートし、ついで80℃で5分乾燥した後、250℃で1時間熱処理を行うことにより、厚さ1000Åのポリイミド樹脂膜を作製した。実施例と同様に、ポリイミド樹脂膜に偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、若干の明暗を生じるものの、多数の欠陥が観測され、液晶は均一に配向しなかった。   This polyimide precursor was prepared into a solution having a total solid content of 4% with a mixed solvent of NMP and BC (weight ratio 4: 1). This solution was spin-coated on a glass substrate at 4000 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 250 ° C. for 1 hour, to prepare a polyimide resin film having a thickness of 1000 mm. In the same manner as in the Examples, the polyimide resin film was irradiated with polarized ultraviolet rays of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under the crossed Nicols of a polarizing microscope, although some light and dark were produced, many defects were observed and the liquid crystal was not uniformly aligned.

比較例5
ポリビニルシンナメート(分子量約20000)をモノクロロベンゼンとジクロロメタンの混合溶媒に溶解させ、総固形分2重量%の溶液を調製した。この溶液をガラス基板上に2000rpmでスピンコートし、ついで80℃で5分乾燥した後、100℃で1時間加熱処理を行うことにより、厚さ1000Åの塗膜を作製した。このポリビニルシンナメート膜に、実施例と同様に波長300nm〜330nmの偏光紫外線を60秒間照射し、液晶セルを作製した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じ、且つ欠陥も観測されず、均一な液晶の配向が得られるものの、液晶セルを120℃のオーブン中で加熱処理を1時間行い、室温まで冷却した後偏光顕微鏡のクロスニコル下で液晶セルを観測したところ、多数の欠陥が観測され、加熱処理前の液晶の配向は保持されず、配向が乱れていることが確認された。
Comparative Example 5
Polyvinyl cinnamate (molecular weight about 20000) was dissolved in a mixed solvent of monochlorobenzene and dichloromethane to prepare a solution having a total solid content of 2% by weight. This solution was spin-coated on a glass substrate at 2000 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 100 ° C. for 1 hour, thereby producing a coating film having a thickness of 1000 mm. The polyvinyl cinnamate film was irradiated with polarized ultraviolet rays having a wavelength of 300 nm to 330 nm for 60 seconds in the same manner as in the Example to prepare a liquid crystal cell. When this cell was rotated under the crossed Nicols of a polarizing microscope, clear light and darkness was observed and no defects were observed, and uniform liquid crystal alignment was obtained. However, the liquid crystal cell was heated in an oven at 120 ° C. When the liquid crystal cell was observed for 1 hour and cooled to room temperature under crossed Nicols with a polarizing microscope, many defects were observed, and the alignment of the liquid crystal before the heat treatment was not maintained, confirming that the alignment was disordered. It was done.

比較例6
窒素気流下、CBDA1.92g(9.8mmol)と2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン4.10g(10.0mmol)を、NMP40.13ml中、室温で3時間反応させポリイミド前駆体溶液を調製した。重合反応は容易且つ均一に進行した。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量がそれぞれ2.74×104及び4.19×104のポリイミド前駆体を得ることができた。
Comparative Example 6
Under a nitrogen stream, 1.92 g (9.8 mmol) of CBDA and 4.10 g (10.0 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane were reacted in 40.13 ml of NMP at room temperature for 3 hours. A polyimide precursor solution was prepared. The polymerization reaction proceeded easily and uniformly. Polyimide precursors having number average molecular weights and weight average molecular weights determined by gel permeation chromatography of 2.74 × 10 4 and 4.19 × 10 4 , respectively, could be obtained.

このポリイミド前駆体をNMP及びBCの混合溶媒(重要比4:1)により総固形分4%の溶液を調製した。この溶液をガラス基板上に4300rpmでスピンコートし、ついで80℃で5分乾燥した後、250℃で1時間熱処理を行うことにより、厚さ1000Åのポリイミド樹脂膜を作製した。実施例と同様に、ポリイミド樹脂膜に波長240nm〜280nmの偏光紫外線を12分間照射した後、液晶セルを作製した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じ、且つ欠陥も観測されず、均一な液晶の配向が得られるものの、液晶セルを120℃のオーブン中で加熱処理を1時間行い、室温まで冷却した後偏光顕微鏡のクロスニコル下で液晶セルを観測したところ、多数の欠陥が観測され、加熱処理前の液晶の配向は保持されず、配向が乱れていることが確認された。   A solution having a total solid content of 4% was prepared from this polyimide precursor using a mixed solvent of NMP and BC (important ratio 4: 1). This solution was spin-coated on a glass substrate at 4300 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 250 ° C. for 1 hour to produce a polyimide resin film having a thickness of 1000 mm. Similarly to the example, the polyimide resin film was irradiated with polarized ultraviolet rays having a wavelength of 240 nm to 280 nm for 12 minutes, and then a liquid crystal cell was produced. When this cell was rotated under the crossed Nicols of a polarizing microscope, clear light and darkness was observed and no defects were observed, and uniform liquid crystal alignment was obtained. However, the liquid crystal cell was heated in an oven at 120 ° C. When the liquid crystal cell was observed for 1 hour and cooled to room temperature under crossed Nicols with a polarizing microscope, many defects were observed, and the alignment of the liquid crystal before the heat treatment was not maintained, confirming that the alignment was disordered. It was done.

比較例7
窒素気流下、CBDA1.92g(9.8mmol)と実施例34に表記したジアミン化合物(III)2.40g(10.0mmol)を、NMP23.86ml中、室温で6時間反応させポリイミド前駆体溶液を調製した。重合反応は容易且つ均一に進行した。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量がそれぞれ6.64×104及び1.08×105のポリイミド前駆体を得ることができた。
Comparative Example 7
Under a nitrogen stream, 1.92 g (9.8 mmol) of CBDA and 2.40 g (10.0 mmol) of the diamine compound (III) described in Example 34 were reacted at room temperature in 23.86 ml of NMP for 6 hours to obtain a polyimide precursor solution. Prepared. The polymerization reaction proceeded easily and uniformly. Polyimide precursors having number average molecular weights and weight average molecular weights obtained by gel permeation chromatography of 6.64 × 10 4 and 1.08 × 10 5 could be obtained, respectively.

このポリイミド前駆体をNMP及びBCの混合溶媒(重要比4:1)により総固形分4%の溶液を調製した。この溶液をガラス基板上に4300rpmでスピンコートし、ついで80℃で5分乾燥した後、250℃で1時間熱処理を行うことにより、厚さ1000Åのポリイミド樹脂膜を作製した。実施例と同様に、ポリイミド樹脂膜に偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、若干の明暗を生じるものの、多数の欠陥が観測され、液晶は均一に配向しなかった。   A solution having a total solid content of 4% was prepared from this polyimide precursor using a mixed solvent of NMP and BC (important ratio 4: 1). This solution was spin-coated on a glass substrate at 4300 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 250 ° C. for 1 hour to produce a polyimide resin film having a thickness of 1000 mm. In the same manner as in the Examples, the polyimide resin film was irradiated with polarized ultraviolet rays of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under the crossed Nicols of a polarizing microscope, although some light and dark were produced, many defects were observed and the liquid crystal was not uniformly aligned.

比較例8
窒素気流下、CBDA1.92g(9.8mmol)と実施例38に表記したジアミン化合物(IV)3.60g(10.0mmol)を、NMP24.96ml中、室温で6時間反応させポリイミド前駆体溶液を調製した。重合反応は容易且つ均一に進行した。ゲルパーミエーションクロマトグラフィーで求めた数平均分子量及び重量平均分子量がそれぞれ6.73×103及び1.17×104のポリイミド前駆体を得ることができた。
Comparative Example 8
Under a nitrogen stream, 1.92 g (9.8 mmol) of CBDA and 3.60 g (10.0 mmol) of the diamine compound (IV) described in Example 38 were reacted in 24.96 ml of NMP at room temperature for 6 hours to obtain a polyimide precursor solution. Prepared. The polymerization reaction proceeded easily and uniformly. Polyimide precursors having number average molecular weights and weight average molecular weights determined by gel permeation chromatography of 6.73 × 10 3 and 1.17 × 10 4 could be obtained, respectively.

このポリイミド前駆体をNMP及びBCの混合溶媒(重要比4:1)により総固形分6%の溶液に調製した。この溶液をガラス基板上に2400rpmでスピンコートし、ついで80℃で5分乾燥した後、250℃で1時間熱処理を行うことにより、厚さ1000Åのポリイミド樹脂膜を作製した。実施例と同様に、ポリイミド樹脂膜に偏光紫外線波長240nm〜280nmを1時間または300nm〜330nmを15分間照射した後、液晶セルを作製した。これらのセルを偏光顕微鏡のクロスニコル下で回転させたところ、若干の明暗を生じるものの、多数の欠陥が観測され、液晶は均一に配向しなかった。   This polyimide precursor was prepared into a solution having a total solid content of 6% using a mixed solvent of NMP and BC (important ratio 4: 1). This solution was spin-coated on a glass substrate at 2400 rpm, then dried at 80 ° C. for 5 minutes, and then heat-treated at 250 ° C. for 1 hour, thereby producing a polyimide resin film having a thickness of 1000 mm. In the same manner as in the Examples, the polyimide resin film was irradiated with polarized ultraviolet rays of 240 nm to 280 nm for 1 hour or 300 nm to 330 nm for 15 minutes, and then a liquid crystal cell was produced. When these cells were rotated under the crossed Nicols of a polarizing microscope, although some light and dark were produced, many defects were observed and the liquid crystal was not uniformly aligned.

本発明の液晶配向処理剤を用いて基板上に形成された高分子薄膜は、光または電子線を照射することにより、従来の液晶配向処理方法であるラビング処理を行うことなしに、液晶分子を均一且つ安定に配向させることができる。更に、その配向は熱的安定性及び耐光性を有するものである。従って、本発明の液晶配向処理剤により、液晶素子の工業的生産性の向上が計れる。   The polymer thin film formed on the substrate using the liquid crystal alignment treatment agent of the present invention is irradiated with light or an electron beam, so that the liquid crystal molecules can be formed without performing the rubbing treatment which is a conventional liquid crystal alignment treatment method. Uniform and stable orientation can be achieved. Further, the orientation has thermal stability and light resistance. Therefore, the industrial productivity of the liquid crystal element can be improved by the liquid crystal aligning agent of the present invention.

Claims (4)

液晶配向処理剤を用いて基板上に形成された高分子薄膜に光または電子線を基板面に対して照射し,次いで該基板上にラビング処理なしに液晶を配向させる方法において用いられるところの液晶配向処理剤であって、高分子主鎖中に下記一般式(1)〜(7)
Figure 0004610596
(R1、R2及びR3はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基
またはプロパルギル基を表す。)
で表されるいずれかの結合を有し、上記結合の両端に2価または3価の芳香族基が直接結合するか、または上記結合の片端に2価または3価の芳香族基が直接結合しかつもう一方の片端に2価または3価の脂環式炭化水素基が直接結合する数平均分子量が1000〜300000であり、かつ下記一般式(18)または、一般式(19a)及び(19b)で表される繰り返し単位を含むポリアミドからなる、液晶配向処理剤であって、
光または電子線の照射により二量化反応または異性化反応が誘起される置換基として、下記一般式(8)〜(17)で表される官能基を高分子主鎖または側鎖中に持たない、液晶配向処理剤。
Figure 0004610596
(R 4 、R 5 、R 6 、R 7 、R 8 及びR 9 はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、置換アルキル基、置換アルコキシ基、カルボキシル基、アルコキシカルボニル基またはシアノ基を表す。)
Figure 0004610596
(R10、R11、R12及びR13は一般式(20)〜(23)で表される2価の有機基を示し、Ra1、Ra2、Ra3及びRa4はそれぞれ独立に水素原子、アルキル基、置換アルキル基、アリル基またはプロパルギル基を表す。)
Figure 0004610596
(X1、X2、X3、X4、X5及びX6はそれぞれ独立に単結合、O、CO2、OCO、CH2
O、NHCOまたはCONHを表し、R14、R15、R16、R17、R18及びR19はそれぞれ独立に水素原子、ハロゲン原子、C1〜C24のアルキル基、C1〜C24の含フッ素アルキル基、アリル基、プロパルギル基、フェニル基または置換フェニル基を表す。ただし、R14、R15、R16、R17、R18及びR19が水素原子またはハロゲン原子を表す場合には、X1
、X2、X3、X4、X5及びX6は単結合を表す。Y1はO、S、CO、CO2、SO2、CH2、NH、NHCO、Y2−Ar1−Y3、Y4−(CH2n 1−Y5、またはY6−Ar2−R20−Ar3−Y7を表し、Y2、Y3、Y4、Y5、Y6及びY7はそれぞれ独立にO、S、CO
、CO2、SO2、CH2、NHまたはNHCOを表し、n1は1〜10の整数を表し、R20はC1〜C5の直鎖状もしくは分岐状の低級アルキレン基、フルオロアルキレン基もしくはアルキレンジオキシ基を表し、更に、Ar1、Ar2及びAr3はそれぞれ独立に下記一般
式(24)、(25)または(26)で表される基を示す。)
Figure 0004610596
(X7、X8、X9、X10及びX11はそれぞれ独立に単結合、O、CO2、OCO、CH2
、NHCOまたはCONHを表し、R21、R22、R23、R24及びR25はそれぞれ独立に水素原子、ハロゲン原子、C1〜C24のアルキル基、C1〜C24の含フッ素アルキル基、アリル基、プロパルギル基、フェニル基または置換フェニル基を表し、m1は1〜4の整数を
表し、m2は1〜3の整数を表す。ただし、R21、R22、R23、R24及びR25が水素原子
またはハロゲン原子を表す場合には、X7、X8、X9、X10及びX11は単結合を表す。)
Liquid crystal used in a method in which a polymer thin film formed on a substrate using a liquid crystal alignment treatment agent is irradiated with light or an electron beam on the substrate surface, and then the liquid crystal is aligned on the substrate without rubbing treatment. An alignment treatment agent having the following general formulas (1) to (7) in the polymer main chain:
Figure 0004610596
(R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group.)
And a divalent or trivalent aromatic group is directly bonded to both ends of the bond, or a divalent or trivalent aromatic group is directly bonded to one end of the bond. And the number average molecular weight of the divalent or trivalent alicyclic hydrocarbon group directly bonded to the other end is 1000 to 300,000, and the following general formula (18) or general formula (19a) and (19b A liquid crystal aligning agent comprising a polyamide containing a repeating unit represented by :
As a substituent that induces a dimerization reaction or an isomerization reaction by irradiation with light or an electron beam, the polymer main chain or side chain does not have a functional group represented by the following general formulas (8) to (17). Liquid crystal alignment treatment agent.
Figure 0004610596
(R 4 , R 5 , R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, a substituted alkoxy group, a carboxyl group, an alkoxycarbonyl group or a cyano group. .)
Figure 0004610596
(R 10 , R 11 , R 12 and R 13 represent divalent organic groups represented by general formulas (20) to (23), and R a1 , R a2 , R a3 and R a4 are each independently hydrogen. Represents an atom, an alkyl group, a substituted alkyl group, an allyl group or a propargyl group.)
Figure 0004610596
(X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a single bond, O, CO 2 , OCO, CH 2
O, NHCO or CONH, and R 14 , R 15 , R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, a halogen atom, a C 1 -C 24 alkyl group, or a C 1 -C 24 A fluorine-containing alkyl group, an allyl group, a propargyl group, a phenyl group or a substituted phenyl group is represented. However, when R 14 , R 15 , R 16 , R 17 , R 18 and R 19 represent a hydrogen atom or a halogen atom, X 1
, X 2 , X 3 , X 4 , X 5 and X 6 represent a single bond. Y 1 is O, S, CO, CO 2 , SO 2, CH 2, NH, NHCO, Y 2 -Ar 1 -Y 3, Y 4 - (CH 2) n 1 -Y 5 or Y 6 -Ar 2, represents -R 20 -Ar 3 -Y 7, Y 2, Y 3, Y 4, Y 5, Y 6 and Y 7 are each independently represent O, S, CO
, CO 2 , SO 2 , CH 2 , NH or NHCO, n 1 represents an integer of 1 to 10, R 20 represents a C 1 to C 5 linear or branched lower alkylene group, fluoroalkylene group Alternatively, it represents an alkylenedioxy group, and Ar 1 , Ar 2 and Ar 3 each independently represent a group represented by the following general formula (24), (25) or (26). )
Figure 0004610596
(X 7 , X 8 , X 9 , X 10 and X 11 are each independently a single bond, O, CO 2 , OCO, CH 2 O
Represents NHCO or CONH, and R 21 , R 22 , R 23 , R 24 and R 25 each independently represent a hydrogen atom, a halogen atom, a C 1 -C 24 alkyl group, or a C 1 -C 24 fluorine-containing alkyl group. , An allyl group, a propargyl group, a phenyl group or a substituted phenyl group, m 1 represents an integer of 1 to 4, and m 2 represents an integer of 1 to 3. However, when R 21 , R 22 , R 23 , R 24 and R 25 represent a hydrogen atom or a halogen atom, X 7 , X 8 , X 9 , X 10 and X 11 represent a single bond. )
上記一般式(18)に於けるR10及びR11、または一般式(19a)及び(19b)に於けるR12及びR13がそれぞれ独立に下記式(27)〜(41)で表される基から選ばれるものである、請求項1に記載の液晶配向処理剤。
Figure 0004610596
Figure 0004610596
R 10 and R 11 in the general formula (18) or R 12 and R 13 in the general formulas (19a) and (19b) are each independently represented by the following formulas (27) to (41). The liquid-crystal aligning agent of Claim 1 which is chosen from group.
Figure 0004610596
Figure 0004610596
請求項1又は請求項2に記載の液晶配向処理剤を用いてなる液晶素子。 The liquid crystal element which uses the liquid-crystal aligning agent of Claim 1 or Claim 2 . 液晶配向処理剤を用いて基板上に形成された高分子薄膜に光または電子線を基板面に対して照射し、次いで該基板上にラビング処理なしに液晶を配向させる方法に於いて、請求項1又は請求項2に記載の液晶配向処理剤を用いることを特徴とする液晶の配向方法。 A method of irradiating a polymer thin film formed on a substrate with a liquid crystal alignment treatment agent with light or an electron beam on the substrate surface and then aligning the liquid crystal without rubbing on the substrate. A liquid crystal alignment method using the liquid crystal alignment treatment agent according to claim 1 .
JP2007267836A 1998-08-26 2007-10-15 Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method Expired - Lifetime JP4610596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267836A JP4610596B2 (en) 1998-08-26 2007-10-15 Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24049198 1998-08-26
JP2007267836A JP4610596B2 (en) 1998-08-26 2007-10-15 Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000567985A Division JP4078508B2 (en) 1998-08-26 1999-08-25 Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method

Publications (2)

Publication Number Publication Date
JP2008070893A JP2008070893A (en) 2008-03-27
JP4610596B2 true JP4610596B2 (en) 2011-01-12

Family

ID=39292454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267836A Expired - Lifetime JP4610596B2 (en) 1998-08-26 2007-10-15 Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method

Country Status (1)

Country Link
JP (1) JP4610596B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022299A1 (en) * 2015-07-31 2017-02-09 昭和電工株式会社 Curable (meth)acrylate polymer, curable composition, color filter, and image display device
KR102358367B1 (en) * 2016-03-31 2022-02-03 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP7268588B2 (en) * 2019-12-10 2023-05-08 トヨタ紡織株式会社 Polyamide compound and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116557A (en) * 1990-09-07 1992-04-17 Sumitomo Bakelite Co Ltd Pattern forming method of photosensitive resin composition
JPH04288365A (en) * 1991-03-18 1992-10-13 Shin Etsu Chem Co Ltd Photopolymer material
WO1996037807A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Liquid-crystal alignment film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116557A (en) * 1990-09-07 1992-04-17 Sumitomo Bakelite Co Ltd Pattern forming method of photosensitive resin composition
JPH04288365A (en) * 1991-03-18 1992-10-13 Shin Etsu Chem Co Ltd Photopolymer material
WO1996037807A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Liquid-crystal alignment film

Also Published As

Publication number Publication date
JP2008070893A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4078508B2 (en) Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method
TWI391758B (en) A liquid crystal alignment agent and a liquid crystal display device using the same
JP4085206B2 (en) Diaminobenzene derivative, polyimide and liquid crystal alignment film using the same
EP0540829B1 (en) Novel liquid crystal alignment treating agent
JP3117103B2 (en) New vertical alignment agent
JPH08208835A (en) Production of polyimide-based copolymer, thin film-forming agent, liquid crystal oriented film and its production
KR100940471B1 (en) Aligning agent for liquid crystal and liquid-crystal display element
WO1997030107A1 (en) Diaminobenzene derivatives, polyimides prepared therefrom, and alignment film for liquid crystals
US6274695B1 (en) Aligning agent for liquid crystal
JP3169062B2 (en) Liquid crystal cell alignment agent
KR20020019930A (en) Diaminobenzene derivative, polyimide obtained therefrom, and liquid-crystal alignment film
WO1999028783A1 (en) Liquid crystal aligning agent
JP4094027B2 (en) Diamine compound containing triazine group, polyamic acid produced thereby, and liquid crystal alignment film
JPH02287324A (en) Orientation treating agent for liquid crystal cell
CN106458847B (en) Novel diamine synthesis and liquid crystal aligning agent using the same
JP4610596B2 (en) Liquid crystal aligning agent, liquid crystal element using the same, and liquid crystal aligning method
JP2001072770A (en) Diaminobenzene derivative, and polyimide and liquid crystal alignment film prepared by using same
JPH08220542A (en) Liquid crystal orientation film and liquid crystal display element
JP2004037962A (en) Liquid crystal aligning agent and liquid crystal alignment film using the same
JPH07270803A (en) Liquid crystal orienting agent and its production
WO2022107541A1 (en) Liquid crystal aligning agent, method for producing polymer, liquid crystal alignment film and liquid crystal display element
JPH1087822A (en) Liquid crystal aligning agent
JPH06273768A (en) Liquid crystal oriented film and its production and liquid crystal display element
JPH07159793A (en) Liquid crystal orienting agent and liquid crystal display element using the same
JPH0792471A (en) Liquid crystal orienting agent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term