JP4610021B2 - Processing device operating method and processing device abnormality detection method - Google Patents

Processing device operating method and processing device abnormality detection method Download PDF

Info

Publication number
JP4610021B2
JP4610021B2 JP2000201731A JP2000201731A JP4610021B2 JP 4610021 B2 JP4610021 B2 JP 4610021B2 JP 2000201731 A JP2000201731 A JP 2000201731A JP 2000201731 A JP2000201731 A JP 2000201731A JP 4610021 B2 JP4610021 B2 JP 4610021B2
Authority
JP
Japan
Prior art keywords
processing apparatus
principal component
component analysis
frequency power
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000201731A
Other languages
Japanese (ja)
Other versions
JP2002018274A (en
Inventor
剛士 仙洞田
真治 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000201731A priority Critical patent/JP4610021B2/en
Priority to US10/332,011 priority patent/US7054786B2/en
Priority to PCT/JP2001/005758 priority patent/WO2002003441A1/en
Priority to CNB018122485A priority patent/CN1197130C/en
Priority to AU2001267913A priority patent/AU2001267913A1/en
Priority to TW090116292A priority patent/TW499702B/en
Publication of JP2002018274A publication Critical patent/JP2002018274A/en
Application granted granted Critical
Publication of JP4610021B2 publication Critical patent/JP4610021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、処理装置の運転方法及び処理装置の異常検出方法に関し、更に詳しくは、例えば処理装置の高周波電源の印加状態が処理室の状態に応じて確実に安定状態に達した状態で運転できる処理装置の運転方法及び処理装置の異常検出方法に関する。
【0002】
【従来の技術】
処理装置(以下、単に「処理装置」と称す。)はエッチング処理や成膜処理等に用いられる。この種の処理装置は、例えば、処理室内の電極に高周波電力を印加すると共に処理室内にプロセスガスを導入し、処理室内でプロセスガスのプラズマを発生させ、半導体ウエハ等の被処理体に所定のプラズマ処理を施すようにしている。処理装置には高周波電源が用いられているが、被処理体の処理は高周波電源が処理室内の状態に応じて安定した後行う。ところが、処理装置の始動直後には高周波電源が処理室の状態に馴染むまでは不安定で長時間に渡って安定しない。
【0003】
例えば図8(a)はマッチング回路の高周波に関連するパラメータ(電圧)の変動を示した図であり、同図の(b)はマッチング回路の整合状態を特徴づけるコンデンサのパラメータ(電気容量)の変動を示した図であるが、いずれも変動しており安定状態を判断し難い。図8の(a)に示すパラメータではロット初期のピークが観られるが、安定化したか否かの判断が難しい。また、処理室内も高周波電力を印加した環境に馴染むには相当の時間を必要とし、なかなか安定しない。そのため、従来はオペレータの経験と勘によって高周波電源や処理室内が安定したか否かを判断し、安定域に達したと判断した時にウエハ等の被処理体を処理室内へ投入し、所定の処理を施していた。尚、図8の運転条件は、保守点検後、処理室内を4日間真空引きした後デポジションの少ない条件を示している。デポジションの少ない条件について後述する。
【0004】
また、処理装置を保守点検する時には消耗品を交換したり、クリーニングを行うが、処理装置は精密機械であるため、その組立には細心の注意を要する。例えば、高周波電源や処理室内の各部品のネジ止めに少しでも緩みがあったり、部品の取付ミスがあったりするとプラズマが不安定になる。そのためこのようなミスは到底許されるものではない。
【0005】
【発明が解決しようとする課題】
しかしながら、従来は処理装置の高周波電源や処理室内が安定したか否かを客観的に判断する手法がなく、オペレータの経験と勘に頼らざるを得ないため、その客観的手法の確立が待望されている。また、処理装置を安定状態に導くための処理条件を評価することができないため、その評価は試行錯誤に頼らざるを得なかった。
【0006】
また、従来は万一、部品の取付ミスに気付かずに処理装置を稼働すれば、処理装置を開けることなく取付ミスを検出する手法がなかったため、その原因究明に多大な時間と労力を必要としていた。
【0007】
本発明は、上記課題を解決するためになされたもので、始動後の処理装置の安定状態を客観的に判断することができ、処理条件を最適化して運転できる処理装置の運転方法を提供することを目的としている。また、処理装置を開けることなく部品の取付ミスによる異常を確実に検出することができ、しかも取付ミスを分類することができる処理装置の異常検出方法を併せて提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の請求項1に記載の処理装置の運転方法は、高周波電源から処理室内の電極に高周波電力を印加してプラズマを発生させて半導体ウエハを処理する際に、上記処理室内の状態に応じて変化する上記高周波電源の複数の電気的データを測定する測定器で測定された複数の測定データを用いて主成分分析を行って上記高周波電源の印加状態を検出して処理装置を運転する方法であって、処理装置の処理室内の状態に応じて上記高周波電源の印加状態が安定化した時の上記測定データを用いて予め基準用の主成分分析を行う工程と、始動直後から任意の処理装置の複数の電気的データを測定する工程と、複数の測定データを用いて比較用の主成分分析を行う工程と、比較主成分分析結果と基準主成分分析結果を比較して両者の差から上記任意の処理装置の上記高周波電源が上記処理室内の状態に応じて安定状態に達したことを検出する工程とを有することを特徴とする
【0010】
また、本発明の請求項2に記載の処理装置の運転方法は、請求項1に記載の発明において、上記電気的データとして基本波及び高調波それぞれの電圧値、電流値、インピーダンス及び位相角を用いることを特徴とするものである。
【0011】
また、本発明の請求項3に記載の処理装置の運転方法は、請求項1または請求項2に記載の発明において、上記主成分分析で残差得点を求めた後、残差得点を比較することを特徴とするものである。
【0012】
また、本発明の請求項4に記載の処理装置の運転方法は、請求項3記載の発明において、上記残差得点の比較結果に基づいて処理条件及び/または稼働条件を判断することを特徴とするものである。
【0014】
また、本発明の請求項5に記載の処理装置の異常検出方法は、高周波電源から処理室内の電極に高周波電力を印加してプラズマを発生させて半導体ウエハを処理する際に、上記処理室内の状態に応じて変化する上記高周波電源の複数の電気的データを測定する測定器で測定された複数の測定データを用いて主成分分析を行って上記高周波電源の印加状態を検出して処理装置の異常を検出する方法であって、正常な処理装置の処理室内の状態に応じて上記高周波電源の印加状態が安定化した時の上記測定データを用いて予め基準用の主成分分析を行う工程と、任意の処理装置の複数の電気的データを測定する工程と、複数の測定データを用いて比較用の主成分分析を行う工程と、比較主成分分析結果と基準主成分分析結果を比較して両者の差から上記任意の処理装置の異常を検出する工程とを有することを特徴とするものである。
【0015】
また、本発明の請求項6に記載の処理装置の異常検出方法は、請求項5に記載の発明において、上記電気的データとして基本波及び高調波それぞれの電圧値、電流値、インピーダンス及び位相角を用いることを特徴とするものである。
【0016】
また、本発明の請求項7に記載の処理装置の異常検出方法は、請求項5または請求項6に記載の発明において、上記主成分分析で残差得点を求めた後、上記残差得点を比較することを特徴とすることを特徴とするものである。
【0017】
また、本発明の請求項8に記載の処理装置の異常検出方法は、請求項5請求項7のいずれか1項に記載の発明において、上記主成分分析で得られる残差行列の成分に即して異常箇所を分類することを特徴とするものである。
【0018】
【発明の実施の形態】
以下、図1〜図8に示す実施形態の基づいて本発明を説明する。
まず、本発明の処理装置の運転方法及び処理装置の異常検出方法が適用された処理装置の一例について図1を参照しながら説明する。本実施形態に用いられる処理装置10は、例えば図1に示すように、アルミニウム等の導電性材料からなる接地された処理室11と、この処理室11内の底面に配設され且つ被処理体としてのウエハWを載置する載置台を兼ねた電極12と、回転磁場を付与する磁場形成手段13とを備え、制御装置14の制御下で処理室11の上下両電極間で発生する電界に磁場形成手段13による回転磁界Bが作用し、高密度プラズマでウエハWに対して均一なプラズマ処理を行う。処理室11にはガス供給管15が接続され、ガス供給管15を介してガス供給源(図示せず)から処理室11内へプロセスガスを供給する。処理室11の側面には図示しない真空排気装置に連結されたガス排出管16が接続され、真空排気装置及びガス排出管16を介して処理室11内を減圧して所定の真空度に保持する。電極12には高調波測定器17、マッチング回路18を介して高周波電源19が接続され、高周波電源19から電極12へ高周波電力を印加し処理室11内でプロセスガスのプラズマを発生させ、電極12上の半導体ウエハW表面に例えば所定のエッチング処理を施す。また、電極12の周縁部にはフォーカスリング20が配置され、フォーカスリング20を介してプラズマをウエハW上へ収束する。
【0019】
ところで、本実施形態では13.56MHzの高周波電力を電極12に印加しているが、電極12には13.56MHzの高周波電力の他に、これを基本波とする高調波(例えば27.12MHz、40.68MHz)が印加される。ところが、電圧、電流、位相及びインピーダンス等の電気的データは処理装置10の始動直後には不安定でなかなか安定しない。しかも、処理室11内の状態を客観的に知る術がない。そこで、本実施形態ではこれらの電圧、電流、位相及びインピーダンス等の電気的データを測定し、各測定値を利用して処理装置10の安定状態、具体的には処理室11内での所定のプラズマ処理に必要な安定状態を検出するようにしている。
【0020】
即ち、電極12とマッチング回路18の間に介在する高調波測定器17を用いて高周波電源19の基本波及びその高調波の電圧、電流、位相及びインピーダンスを処理装置の始動時から高周波電源19が安定するまで間欠的に測定し、これらの測定値をそれぞれ制御装置14内に逐次取り込む。この制御装置14には多変量解析プログラムとして例えば主成分分析用のプログラムが格納され、このプログラムを介して測定値の主成分分析を行って処理装置の安定状態を検出する。
【0021】
例えば本実施形態で主成分分析を行う場合には、高周波電源19からの処理室11内の電極12への印加状態が安定化した処理装置(以下、「基準処理装置」と称す。)を使って、高周波電源19の基本波及びその高調波の電圧、電流、位相及びインピーダンスそれぞれ電気的データとして間欠的に測定して各周波数の測定値V(f)、I(f)、P(f)、Z(f)を得る。そして、これら各種の測定値の相対値を求め、各種の測定値をそれぞれ無次元化する。この際、各種の測定値と無次元化した相対値との対応関係は例えば測定データの配列順に合わせて明確にしておく。次いで、無次元化した各種の測定値(以下、単に「相対測定値」と称す。)の測定個数がn個で、安定するまでm回の測定を行うと、基準処理装置の全の相対測定データが入った行列は数1で表される。次いで、制御装置14において全ての相対測定値に基づいて平均値、最大値、最小値、分散値を求めた後、これらの計算値に基づいた分散共分散行列を用いて複数の無次元測定データの主成分分析を行って固有値及びその固有ベクトルを求める。固有値は無次元測定データの分散の大きさを表し、固有値の大きさ順に、第1主成分、第2主成分、・・・第n主成分として定義されている。また、各固有値にはそれぞれに属する固有ベクトルがある。通常、主成分の次数が高いほどデータの評価に対する寄与率が低くなり、その利用価値が薄れる。
【数1】

Figure 0004610021
【0022】
例えばm回の測定でそれぞれn個の相対測定値を採り、i番目の測定のj番目の固有値に対応する第j主成分は数2で表される。そして、この第j主成分tijに具体的なi番目の相対測定値(xi1、xi2、・・・、xin)を代入して得られた値がi番目の測定における第j主成分の得点になる。従って、第j主成分の得点tは数3で定義され、第j主成分の固有ベクトルPは数4で定義される。tは測定間の関係を表す得点である。また、Pは測定値間の重みを表す固有ベクトルである。そして、第j主成分の得点tを行列Xと固有ベクトルPを用いると数5で表される。また、行列Xを各主成分の得点とそれぞれの固有ベクトルを用いると数6で表される。
【数2】
Figure 0004610021
【数3】
Figure 0004610021
【数4】
Figure 0004610021
【数5】
Figure 0004610021
【数6】
Figure 0004610021
【0023】
従って、主成分分析では多種類の測定データがあっても例えば第1主成分及び第2主成分、多くても第3主成分までの少数の統計データとして纏め、少数の統計データを調べるだけで運転状態を評価し、把握することができる。例えば一般的に第1、第2主成分の固有値の累積寄与率が90%を超えれば、第1、第2主成分に基づいた評価は信頼性の高いものになる。第1主成分は上述のように測定データが最も大きく分散する方向を示し、処理装置の運転状態の総合的な評価を行う指標となり、処理装置の運転状態の経時的変化の判断、評価に適している。第2主成分は第1主成分とは直交する方向に分散し、正常な運転状態からの瞬間的なずれの指標となり、運転状態の突発的変化の判断、評価に適している。
【0024】
しかしながら、第1主成分は一般的に固有ベクトルや第1主成分得点等を観てデータを如何なる傾向にあるかなど総合的に評価することはできるが、第1、第2主成分ではそれぞれの固有ベクトルが一義的に決まるため、個々の測定データが測定毎に如何なる状態にあり如何なる変化をしているかまで多面的に把握することができない。そこで、本実施形態では処理室11内に応じて高周波電源19の印加状態が安定状態に達したことを検出する手法として、寄与率の低い第(k+1)以上の高次の主成分を一つに纏めた数7で定義する残差行列E(各行の成分は高周波の基本波及びその高調波の各相対測定値に対応し、各列の成分は測定回数に対応する)を作る。そして、この残差行列Eを数6に当て填めると数6は数8で表される。更に、基準処理装置の残差行列Eの残差得点を基準残差得点Qとして求め、この残差得点Qを基準にして任意の処理装置(以下、「比較処理装置」と称す。)が始動した後安定状態に達するまでを検出するようにしている。一般に、残差得点Qは行ベクトルeとその転置行列ベクトルe の積として表され、各残差成分の2乗の和となり、プラス成分及びマイナス成分を相殺することなく確実に残差として求められるようにしてある。従って、測定毎の基準処理装置の残差得点Qと比較処理装置の残差得点Qを比較することで比較処理装置が安定状態に達しているか否かを判断することができる。そして、比較処理装置のある時点での残差得点Qが同一時点での基準処理装置の残差得点Qから外れた場合には残差行列Eの数10で表される各行の行ベクトルeの成分を観れば、その時点でいずれの測定値に大きなズレがあったかが判り、異常の原因を特定することができる。
【数7】
Figure 0004610021
【数8】
Figure 0004610021
【数9】
Figure 0004610021
【数10】
Figure 0004610021
【0025】
即ち、比較処理装置の安定状態を検出するには、基準処理装置について残差行列Eの残差得点Qを予め求める。そして、基準処理装置で得られた残差得点Q及び固有ベクトル等の定数を任意の処理装置の主成分分析プログラムに設定し、この設定条件の下で任意の処理装置の電気的データから残差得点Qを求める。次いで、比較処理装置の残差得点Qの基準処理装置の残差得点Qからの差(ずれ量)を求め、この残差得点の差(Q−Q)に基づいて比較処理装置での高周波電源19の印加状態が安定状態に達しているか否かを判断する。即ち、残差得点の差(Q−Q)が大きければ、その任意の処理装置は基準処理装置からのずれが大きく不安定であることを示し、差(Q−Q)が小さければ基準処理装置とのずれが小さく安定状態に近いことを示す。基準処理装置の残差得点Q=0にすれば、残差得点Qがそのまま基準レベルからのずれ量になる。尚、変数の値は平均値が0になるように計算されているものとする。
【0026】
本実施形態の処理装置の運転方法を下記の状態A、B及び処理条件A、Bを(1)〜(4)のように適宜組み合わせてウエハを処理し、処理している間の基本及びその高調波の測定値V(f)、I(f)、P(f)、Z(f)の相対測定値及び残差得点Qを図2〜図5に示した。尚、任意の処理装置の主成分プログラムには基準処理装置で得られた主成分分析結果が予め設定されている。各図におけるプロットはウエハ1枚当たりの平均値を示している。また、下記の処理条件でデポジションの値は、デポジション量の少ない条件を1とし、デポジション量の多い条件をデポジション量の少ない条件に対する相対値で示してある。
Figure 0004610021
【0027】
まず、図2、図3を参照しながら保守点検後の処理条件の違いによる安定化の差について説明する。
(1)処理室11内を状態Aに導いた後、処理装置をデポジションの少ない処理条件Aに設定した。この状態でウエハを処理室11内に搬入してウエハを処理した。ウエハ搬入直後(始動直後)から高調波測定器17を用いて高周波電源19の基本波及び高調波の電圧、電流、位相及びインピーダンスを約0.2秒毎に測定し、それぞれの測定値V(f)、I(f)、P(f)、Z(f)のウエハ毎の平均値を求め、基準処理装置のそれぞれの値との比を採り、それぞれの測定値の変動の様子を図2の(a)に示した。図2の(a)に示す結果によれば、処理開始直後から各測定値は緩慢に基準値(=1)に収束し、○印当たりから概ね基準値レベルに達し安定化状態になったと判断されるが、○印以降でも上下の振れが認められる。図2の(a)でも図8に示す従来の手法と比較すれば安定状態を判断し易い。これに対し、本実施形態の方法により上記測定値から残差得点Qを求めた結果、図3の(a)に示すようになった。図3の(a)では複数の測定値が残差得点Qとして一つに纏まり、図2の(a)と比較しても基準値からのずれが判断し易く、安定状態はウエハの処理枚数で100〜120枚の範囲にあると判断できる。それ以降でも残差得点Qが周期的に若干増加する傾向が認められる。
【0028】
(2)(1)と同様に処理室11内を上記の状態Aに導いた後、(1)とは違ってデポジションの多い処理条件Bに設定した。そして、ウエハを処理室11内に搬入してウエハを処理し、処理装置の始動直後から高周波電源19の印加状態が安定するまでの測定値を得た後、各測定値について(1)の場合と同様に基準値との比を採り、その結果を図2の(b)に示した。図2の(b)に示す結果によれば、各測定値は(1)の場合と比較して早く安定状態に向かうが、振れ幅の小さい安定状態に達するのは○印当たりからで(1)の場合と余り変わらない。これに対し、本実施形態の方法で検討すると、図3の(b)に示す結果からも明らかなように残差得点Qが(1)の場合よりも早く基準値に収束して安定状態に達し、安定状態の時点を判断し易いことが判る。基準処理装置を用いて安定状態を判断する残差得点を予め定めておけば比較処理装置の安定状態を確実に判断することができる。
【0029】
次に、図4、図5を参照しながら保守点検後の処理室内の状態の違いによる安定化の差について説明する。
(3)処理室11内を状態Aに導いた後、処理装置をデポジションの少ない処理条件Aに設定した。そして、ウエハを処理室11内に搬入してウエハを処理し、処理装置の始動直後から高周波電源19の印加状態が安定するまでの測定値を得た後、各測定値について(1)の場合と同様に基準値との比を採り、その結果を図4の(a)に示した。図4の(a)に示す結果によれば、各測定値が緩慢に基準値に収束し、安定状態に達するのが遅いことが判る。ウエハ120枚前後の○印当たりで安定状態になったと判断されるが、それ以降でも上下に振れる測定値があり、安定化の判断が難しいことが判る。これに対し、本実施形態の方法で検討すると、図5の状態Aに示す結果からも明らかなように高調波測定器17の測定値の結果とは異なり、残差得点Qが基準値に収束するまでに予想外の時間が掛かり、○印当たりで初めて安定状態になることが判る。
【0030】
(4)処理室11内を状態Bに導いた後、(3)の場合と同様に処理装置をデポジションの少ない処理条件Aに設定した。そして、ウエハを処理室11内に搬入してウエハを処理し、処理装置の始動直後から高周波電源19の印加状態が安定するまでの測定値を得た後、各測定値について(1)の場合と同様に基準値との比を採り、その結果を図4の(b)に示した。図4の(b)に示す結果によれば、各測定値が(3)の場合よりも早く基準値に収束し、早く安定状態に達していることが判る。また、本実施形態の方法で検討すると、図5の状態Bに示すように残差得点Qは基準値に到達するのが早いが、ウエハ100以内では変動があり完全に安定するのは100枚以上であることが明瞭に判る。
【0031】
以上説明したように本実施形態によれば、電極12とマッチング回路18の間に高調波測定器17を設け、この高調波測定器17を用い、安定化した処理装置10の基本波及び高調波それぞれの電圧値、電流値、位相及びインピーダンス等の電気的データの測定値V(f)、I(f)、P(f)、Z(f)を用いて予め基準となる主成分分析を行って基準となる残差得点Qを求めた後、保守点検後の処理装置10の始動直後から高調波測定器17で電気的データを測定し、この測定値V(f)、I(f)、P(f)、Z(f)を用いて比較用の主成分分析を行って比較用の残差得点Qを求め、比較残差得点Qと基準残差得点Qを比較して両者Q、Qの差から保守点検後の処理装置10の高周波電源の安定状態を検出するようにしたため、膨大な測定値があってもこれらのデータを一つの纏めた残差得点Qを基準値を比較するだけで保守点検後の処理装置10、具体的には処理室11内の安定状態を客観的且つ確実に評価し、判断することができる。また、本実施形態によれば、単に安定状態に達した時点を評価、判断できるばかりでなく、安定状態に導くには処理室11内の真空引き時間等の処理条件を如何に設定すれば良いかを評価、判断することができる。
【0032】
次に、本発明の処理装置の異常検出方法の一実施形態について説明する。
本実施形態の処理装置の異常検出方法も主成分分析における残差得点Qを使用する点では上記実施形態の処理装置の運転方法と共通している。但し、本実施形態では正常な処理装置、即ち、処理室11内及び高周波電源19における部品等の取付ミスがなく、仕様に則って正確に組み立てられている処理装置を基準処理装置として使用する。本実施形態では処理装置の始動後の高周波電源19の印加状態が不安定な状態を脱し安定状態に達した段階で基本波及びその高調波の電気的データを測定することは云うまでもない。
【0033】
そこで、本実施形態においても上記実施形態と同様に、基準処理装置に関する基本波及びその高調波の電圧、電流、位相及びインピーダンスそれぞれ電気的データとして間欠的に測定して各周波数の測定値V(f)、I(f)、P(f)、Z(f)を得る。そして、基準処理装置に関し、数9で定義される残差得点Qを予め求める。基準処理装置で得られた固有ベクトル等の定数を任意の処理装置の主成分分析プログラムに設定し、この設定条件の下で任意の処理装置の電気的データから残差得点Qを求める。次いで、基準処理装置の残差得点Qと任意の処理装置の残差得点Qとの差(ずれ量)を求め、この残差得点の差(Q−Q)に基づいて任意の処理装置が安定状態になっているか否かを判断する。即ち、残差得点の差(Q−Q)が大きければ、その任意の処理装置には処理室及び/または高周波電源19の部品の取付ミス等があることを示す。差(Q−Q)が許容値以下であればその処理装置は正常と判断される。また、残差得点Qが他の残差得点と異なる値を表した時には、残差行列Eの異なる値を示した行、例えばi番目の測定結果の残差得点が基準残差得点Qとは異なる値である場合には、i番目の行のeの残差成分eijを観ることにより、どの変数(測定値)が残差得点Qのズレに寄与しているかを判断することができる。このことから、異常の原因と残差の大きい変数(基本波、高調波の電圧、電流等)を関連づけることにより、異常の原因を分類することができる。
【0034】
図6は残差得点Qと部品取付ミスとの関係を示すグラフである。図6においてN1及びN2は正常な処理装置の残差得点、状態Aはネジがない時の残差得点、状態Cはカバーがない時の残差得点、状態Dは状態Aとは別の部分のネジがない時の残差得点、状態Eは状態Cとは別の部位のカバーがない時の残差得点、状態Fはネジが緩んでいる時の残差得点、状態Gは部品がない時の残差得点を示している。例えば、状態Aの残差得点を示した行の残差成分を観ると図7の(a)のようになっている。この状態Aにおけるネジがないと、基本波の電圧及びインピーダンスがマイナス側に特に大きく振れ、3倍波の電流及び基本波の位相がプラス側に特に大きく振れていることが判る。状態Cにおけるカバーがないと、同図に(b)のように基本波の電圧及びインピーダンスがマイナス側に特に大きく振れ、位相がプラス側に比較的大きく振れていることが判る。状態Gにおける部品がないと、基本波の電流及び位相がマイナス側に特に大きく振れ、基本波のインピーダンスがプラス側に特に大きく振れていることが判る。従って、部品の種類、取付部位等と残差得点の大きい成分との関係を分類することが可能である。この関係を予め把握しておくことで、残差得点への寄与率の高い成分を知ることにより如何なる異常があるか判断することができる。
【0035】
以上説明したように本実施形態によれば、正常な処理装置の高周波電源19の測定データを用いて予め主成分分析を行って基準用の残差得点を求めた後、任意の処理装置の複数の電気的データを測定して得られた複数の測定データを用いて主成分分析を行って比較用の残差得点を求め、次いで、比較残差得点Qと基準残差得点Qを比較して両者Q、Qの差から任意の処理装置の異常を検出するようにしたため、処理装置を開けることなく部品の取付ミスによる異常を確実に検出することができ、しかも取付ミスを残差行列Eの成分から分類することができる。
【0036】
尚、上記実施形態では、主成分分析を用いた処理装置の運転方法及び異常検出方法について説明したが、上記実施形態に何ら制限されるものではなく、本発明の各構成要素を適宜設計変更することができる。
【0037】
【発明の効果】
本発明の請求項1〜請求項4に記載の発明によれば、始動後の処理装置の安定状態を客観的に判断することができ、処理条件を最適化して運転できる処理装置の運転方法を提供することができる。
【0038】
また、本発明の請求項5〜請求項8に記載の発明によれば、処理装置を開けることなく部品の取付ミスによる異常を確実に検出することができ、しかも取付ミスを分類することができる処理装置の異常検出方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の処理装置の運転方法及び異常検出方法を適用する処理装置の一例を示す構成図である。
【図2】 (a)、(b)はそれぞれ高調波測定器を用いて処理装置の電気的データが安定化するまでの推移を示すグラフである。
【図3】 (a)、(b)はそれぞれ図2の(a)、(b)に対応する電気的データの残差得点が安定化するまでの推移を示すグラフである。
【図4】 (a)、(b)はそれぞれ高調波測定器を用いて処理装置の電気的データが安定化するまでの推移を示すグラフである。
【図5】 (a)、(b)はそれぞれ図2の(a)、(b)に対応する電気的データの残差得点が安定化するまでの推移を示すグラフである。
【図6】 正常な処理装置及び異常な処理装置の電気的データに基づく残差得点を示すグラフである。
【図7】 (a)〜(c)はそれぞれ異常な処理装置の電気的データの残差成分を示すグラフである。
【図8】 従来使用されていた処理装置の始動直後の電気的データの変動を示すグラフである。
【符号の説明】
10 処理装置
11 処理室
12 電極
19 高周波電源
W ウエハ(被処理体)[0001]
[Industrial application fields]
The present invention relates to a processing apparatus operation method and a processing apparatus abnormality detection method, and more specifically, for example, can be operated in a state where the application state of a high-frequency power source of the processing apparatus has reliably reached a stable state according to the state of the processing chamber. The present invention relates to an operation method of a processing apparatus and an abnormality detection method of the processing apparatus.
[0002]
[Prior art]
A processing apparatus (hereinafter simply referred to as a “processing apparatus”) is used for an etching process, a film forming process, and the like. In this type of processing apparatus, for example, high-frequency power is applied to an electrode in a processing chamber and a process gas is introduced into the processing chamber to generate plasma of the processing gas in the processing chamber. Plasma treatment is performed. A high-frequency power source is used in the processing apparatus, but the processing of the object to be processed is performed after the high-frequency power source is stabilized according to the state of the processing chamber. However, immediately after the processing apparatus is started, the high-frequency power source is unstable and unstable for a long time until the high-frequency power source is adjusted to the state of the processing chamber.
[0003]
For example, FIG. 8A is a diagram showing the fluctuation of the parameter (voltage) related to the high frequency of the matching circuit, and FIG. 8B is the parameter (electric capacity) of the capacitor that characterizes the matching state of the matching circuit. Although it is a figure which showed the fluctuation | variation, all are fluctuating and it is difficult to judge a stable state. In the parameters shown in FIG. 8A, a peak at the initial stage of the lot is observed, but it is difficult to determine whether or not it has been stabilized. Also, it takes a considerable amount of time to adapt to the environment in which high-frequency power is applied in the processing chamber, and it is not very stable. Therefore, conventionally, it is determined whether the high-frequency power supply and the processing chamber are stable based on the experience and intuition of the operator, and when it is determined that the stable range has been reached, a processing object such as a wafer is put into the processing chamber to perform predetermined processing. Had been given. Note that the operating conditions in FIG. 8 show conditions in which the number of depositions is small after evacuating the processing chamber for 4 days after maintenance and inspection. The conditions with less deposition will be described later.
[0004]
In addition, consumables are replaced or cleaned when the processing apparatus is maintained and inspected, but since the processing apparatus is a precision machine, its assembly requires great care. For example, if the screwing of each component in the high-frequency power supply or the processing chamber is slightly loosened, or if there is a component mounting error, the plasma becomes unstable. Therefore, such a mistake cannot be allowed at all.
[0005]
[Problems to be solved by the invention]
However, there is no conventional method for objectively judging whether the high-frequency power supply of the processing apparatus or the processing chamber is stable, and it is necessary to rely on the experience and intuition of the operator. ing. Moreover, since the processing conditions for leading the processing apparatus to a stable state cannot be evaluated, the evaluation has to rely on trial and error.
[0006]
In addition, in the past, if a processing device was operated without noticing a component mounting error, there was no way to detect the mounting error without opening the processing device, so investigating the cause required a great deal of time and effort. It was.
[0007]
  The present invention was made to solve the above problems, and can objectively determine the stable state of the processing apparatus after starting,processingIt aims at providing the operating method of the processing apparatus which can be operated by optimizing conditions. Another object of the present invention is to provide an abnormality detection method for a processing apparatus that can reliably detect an abnormality due to a component mounting error without opening the processing apparatus and that can classify the mounting error.
[0008]
[Means for Solving the Problems]
  According to a first aspect of the present invention, there is provided a method of operating a processing apparatus in which plasma is generated by applying high-frequency power from a high-frequency power source to an electrode in a processing chamber.Semiconductor waferUsing a plurality of measurement data measured by a measuring instrument that measures a plurality of electrical data of the high-frequency power source that changes depending on the state in the processing chamber.Principal component analysisTo detect the application state of the high-frequency power supply and operate the processing apparatus, using the measurement data when the application state of the high-frequency power supply is stabilized in accordance with the state in the processing chamber of the processing apparatus. For referencePrincipal component analysisA process for measuring a plurality of electrical data of an arbitrary processing apparatus immediately after starting, and a plurality of measurement data for comparison.Principal component analysisCompared with the processPrincipal component analysisResults and criteriaPrincipal component analysisCompare the results and the difference between the twothe aboveAnd a step of detecting that the high-frequency power source has reached a stable state in accordance with the state in the processing chamber.
[0010]
  In addition, the present inventionClaim 2An operation method of the processing apparatus according to claim 1,1In the described invention, the electrical data isBaseThe voltage value, current value, impedance, and phase angle of the main wave and the harmonic wave are used.
[0011]
  In addition, the present inventionClaim 3The operation method of the processing apparatus described inClaim 1OrClaim 2In the invention described inthe aboveObtain residuals by principal component analysisDotAfter finding, get the residualDotIt is characterized by comparing.
[0012]
  In addition, the present inventionClaim 4The operation method of the processing apparatus described inClaim 3In the described invention,the aboveThe processing condition and / or the operation condition is determined based on the comparison result of the residual score.
[0014]
  In addition, the present inventionClaim 5The method for detecting an abnormality of a processing apparatus described in claim 1 generates plasma by applying high frequency power from a high frequency power source to an electrode in a processing chamber.Semiconductor waferWhen performing a principal component analysis using a plurality of measurement data measured by a measuring instrument that measures a plurality of electrical data of the high-frequency power source that changes according to the state in the processing chamber, the high-frequency power source And detecting an abnormality of the processing apparatus by using the measurement data obtained when the application state of the high-frequency power supply is stabilized in accordance with the state of the processing chamber of the normal processing apparatus. A step of performing principal component analysis for reference, a step of measuring a plurality of electrical data of an arbitrary processing device, a step of performing a principal component analysis for comparison using a plurality of measurement data, and a result of comparison principal component analysis And comparing the result of the reference principal component analysis and detecting an abnormality of the arbitrary processing device from the difference between the two.
[0015]
  In addition, the present inventionClaim 6An abnormality detection method for a processing apparatus according to claimTo 5In the described invention, the electrical data isBaseThe voltage value, current value, impedance, and phase angle of the main wave and the harmonic wave are used.
[0016]
  In addition, the present inventionClaim 7The processing apparatus abnormality detection method described inClaim 5OrClaim 6In the invention described inthe aboveObtain residuals by principal component analysisDotAfter askingthe aboveResidual gainDotIt is characterized by comparing.
[0017]
  In addition, the present inventionClaim 8The processing apparatus abnormality detection method described inClaim 5~Claim 7In the invention described in any one of the above,Obtained by the above principal component analysisAn abnormal part is classified according to the components of the residual matrix.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
First, an example of a processing apparatus to which a processing apparatus operating method and a processing apparatus abnormality detection method of the present invention are applied will be described with reference to FIG. As shown in FIG. 1, for example, the processing apparatus 10 used in the present embodiment includes a grounded processing chamber 11 made of a conductive material such as aluminum, and a processing object disposed on the bottom surface of the processing chamber 11 and to be processed. As an electrode 12 serving also as a mounting table on which a wafer W is mounted, and magnetic field forming means 13 for applying a rotating magnetic field, and an electric field generated between the upper and lower electrodes of the processing chamber 11 under the control of the control device 14. The rotating magnetic field B by the magnetic field forming unit 13 acts, and uniform plasma processing is performed on the wafer W with high-density plasma. A gas supply pipe 15 is connected to the processing chamber 11, and a process gas is supplied into the processing chamber 11 from a gas supply source (not shown) via the gas supply pipe 15. A gas exhaust pipe 16 connected to a vacuum exhaust device (not shown) is connected to the side surface of the processing chamber 11, and the inside of the processing chamber 11 is depressurized through the vacuum exhaust device and the gas exhaust pipe 16 to maintain a predetermined vacuum level. . A high-frequency power source 19 is connected to the electrode 12 via a harmonic measuring device 17 and a matching circuit 18, and high-frequency power is applied from the high-frequency power source 19 to the electrode 12 to generate plasma of process gas in the processing chamber 11. For example, a predetermined etching process is performed on the surface of the upper semiconductor wafer W. A focus ring 20 is disposed on the peripheral edge of the electrode 12, and plasma is converged on the wafer W via the focus ring 20.
[0019]
By the way, although high frequency power of 13.56 MHz is applied to the electrode 12 in this embodiment, in addition to the high frequency power of 13.56 MHz, the electrode 12 has harmonics (for example, 27.12 MHz, 40.68 MHz) is applied. However, electrical data such as voltage, current, phase and impedance are unstable and not stable immediately after the processing apparatus 10 is started. Moreover, there is no way to objectively know the state in the processing chamber 11. Therefore, in the present embodiment, electrical data such as voltage, current, phase, and impedance are measured, and each measurement value is used to determine a stable state of the processing apparatus 10, specifically, a predetermined value in the processing chamber 11. A stable state necessary for plasma processing is detected.
[0020]
That is, the high frequency power supply 19 uses the harmonic measuring instrument 17 interposed between the electrode 12 and the matching circuit 18 to determine the fundamental wave of the high frequency power supply 19 and the voltage, current, phase and impedance of the harmonic from the start of the processing apparatus. Measurements are taken intermittently until stable, and these measured values are sequentially taken into the control device 14 respectively. For example, a program for principal component analysis is stored in the control device 14 as a multivariate analysis program, and the stable state of the processing device is detected by performing principal component analysis of measured values via this program.
[0021]
  For example, when principal component analysis is performed in this embodiment, a processing apparatus (hereinafter referred to as “reference processing apparatus”) in which the application state from the high-frequency power source 19 to the electrode 12 in the processing chamber 11 is stabilized is used. The voltage, current, phase and impedance of the fundamental wave of the high frequency power supply 19 and its harmonics, respectivelyTheThe measured value V (f of each frequency is measured intermittently as electrical data.n), I (fn), P (fn), Z (fn) And the relative value of these various measured values is calculated | required and each measured value is each made dimensionless. At this time, the correspondence between the various measurement values and the non-dimensional relative values is clarified in accordance with, for example, the arrangement order of the measurement data. Next, when the number of measurement values (hereinafter referred to simply as “relative measurement values”) made dimensionless is n, and m measurements are taken until it becomes stable, all the relative measurements of the reference processing device are performed. The matrix that contains the data is represented by Equation 1. Next, after obtaining an average value, a maximum value, a minimum value, and a variance value based on all the relative measurement values in the control device 14, a plurality of dimensionless measurement data is obtained using a variance-covariance matrix based on these calculated values. The eigenvalue and its eigenvector are obtained by performing principal component analysis. The eigenvalue represents the size of the variance of the dimensionless measurement data, and is defined as the first principal component, the second principal component,. Each eigenvalue has an eigenvector belonging to it. In general, the higher the order of the principal component, the lower the contribution rate to the data evaluation, and the less the utility value.
[Expression 1]
Figure 0004610021
[0022]
For example, n relative measurement values are taken in m measurements, and the j-th principal component corresponding to the j-th eigenvalue of the i-th measurement is expressed by Equation 2. Then, the i-th relative measurement value (xi1, Xi2, ..., xin) Is the score of the j-th principal component in the i-th measurement. Therefore, the score t of the j-th principal componentjIs defined by Equation 3, and the eigenvector P of the j-th principal componentjIs defined by Equation 4. tjIs a score representing the relationship between measurements. PjIs an eigenvector representing the weight between measured values. And the score t of the j-th principal componentjTo matrix X and eigenvector PjWhen is used, it is expressed by Formula 5. Further, the matrix X is expressed by Equation 6 when the score of each principal component and each eigenvector are used.
[Expression 2]
Figure 0004610021
[Equation 3]
Figure 0004610021
[Expression 4]
Figure 0004610021
[Equation 5]
Figure 0004610021
[Formula 6]
Figure 0004610021
[0023]
Therefore, in the principal component analysis, even if there are many kinds of measurement data, for example, only a small number of statistical data up to the first principal component and the second principal component, and at most the third principal component are collected and only a small number of statistical data is examined. It is possible to evaluate and grasp the driving state. For example, generally, if the cumulative contribution ratio of the eigenvalues of the first and second principal components exceeds 90%, the evaluation based on the first and second principal components becomes highly reliable. The first principal component indicates the direction in which the measurement data is dispersed most greatly as described above, and serves as an index for comprehensive evaluation of the operating state of the processing apparatus. ing. The second principal component is dispersed in a direction orthogonal to the first principal component, serves as an indicator of an instantaneous deviation from the normal driving state, and is suitable for judgment and evaluation of sudden changes in the driving state.
[0024]
  However, although the first principal component can generally evaluate the data such as the eigenvector, the first principal component score, and the like, it can be comprehensively evaluated. However, the first and second principal components have their respective eigenvectors. Therefore, it is impossible to grasp in a multifaceted manner how each individual measurement data is in each state and how it changes. Therefore, in the present embodiment, a high frequency power supply is provided in accordance with the inside of the processing chamber 11.19As a method for detecting that the applied state of the signal reaches a stable state, a residual matrix E (components in each row) defined by Equation 7 in which high-order principal components of low (k + 1) th and lower contribution rates are combined into one Corresponds to the relative measured values of the high-frequency fundamental and its harmonics, and the components in each row correspond to the number of measurements). When this residual matrix E is applied to Equation 6, Equation 6 is expressed by Equation 8. Further, the residual score of the residual matrix E of the reference processing device is changed to the reference residual score Q.0This residual score Q0Is used to detect until a stable state is reached after an arbitrary processing device (hereinafter referred to as “comparison processing device”) is started. In general, residual score QiIs the row vector eiAnd its transposed matrix vector ei TAnd is the sum of the squares of each residual component, so that the residual can be reliably obtained without canceling out the positive and negative components. Therefore, the residual score Q of the reference processing device for each measurement0And the residual score Q of the comparison processoriIt is possible to determine whether or not the comparison processing device has reached a stable state. And the residual score Q at a certain point of time in the comparison processing deviceiIs the residual score Q of the reference processor at the same time0If it is out of the range, the row vector e of each row represented by the number 10 of the residual matrix EiIf one of these components is observed, it can be determined which measurement value has a large deviation at that time, and the cause of the abnormality can be specified.
[Expression 7]
Figure 0004610021
[Equation 8]
Figure 0004610021
[Equation 9]
Figure 0004610021
[Expression 10]
Figure 0004610021
[0025]
  That is, to detect the stable state of the comparison processing device, the residual score Q of the residual matrix E for the reference processing device.0Is obtained in advance. And the residual score Q obtained by the reference processing device0And constants such as eigenvectors are set in the principal component analysis program of an arbitrary processing device, and a residual score Q is obtained from the electrical data of the arbitrary processing device under this setting condition. Next, the residual score Q of the reference processing device of the residual score Q of the comparison processing device0The difference from the difference (deviation amount) is obtained, and the difference of the residual score (Q−Q0) High-frequency power supply in comparison processing equipment based on19It is determined whether or not the application state has reached a stable state. That is, the difference of residual scores (Q-Q0) Is large, it indicates that the arbitrary processing device has a large deviation from the reference processing device and is unstable, and the difference (Q−Q)0) Is small, it indicates that the deviation from the reference processing apparatus is small and that it is close to a stable state. Residual score Q of the standard processor0If = 0, the residual score Q becomes the deviation amount from the reference level as it is. Note that the values of the variables are calculated so that the average value becomes zero.
[0026]
The processing apparatus operating method according to the present embodiment is combined with the following states A and B and processing conditions A and B as shown in (1) to (4) as appropriate. Harmonic measurement value V (fn), I (fn), P (fn), Z (fn) Relative measurement values and residual score Q are shown in FIGS. Note that the principal component analysis result obtained by the reference processor is preset in the principal component program of an arbitrary processor. The plots in each figure show the average value per wafer. In the following processing conditions, the value of deposition is shown as a relative value with respect to the condition with a small amount of deposition, with the condition with a small amount of deposition being set to 1 when the condition is small.
Figure 0004610021
[0027]
First, the difference in stabilization due to the difference in processing conditions after maintenance inspection will be described with reference to FIGS.
(1) After guiding the inside of the processing chamber 11 to the state A, the processing apparatus was set to the processing condition A with less deposition. In this state, the wafer was carried into the processing chamber 11 and processed. Immediately after loading the wafer (immediately after starting), the harmonic wave measuring instrument 17 is used to measure the fundamental wave and harmonic voltage, current, phase, and impedance of the high frequency power supply 19 about every 0.2 seconds. fn), I (fn), P (fn), Z (fnThe average value for each wafer was obtained, and the ratio with each value of the reference processing apparatus was taken. The variation of each measured value is shown in FIG. According to the result shown in FIG. 2A, each measured value slowly converges to the reference value (= 1) immediately after the start of processing, and it is determined that the reference value level has been reached from around the circle mark and has reached a stable state. However, up and down movements are also observed after the circle. FIG. 2 (a) also makes it easier to determine the stable state as compared with the conventional method shown in FIG. On the other hand, as a result of obtaining the residual score Q from the measured value by the method of the present embodiment, the result is as shown in FIG. In FIG. 3 (a), a plurality of measured values are grouped together as a residual score Q, and even when compared with FIG. 2 (a), it is easy to determine a deviation from the reference value, and the stable state is the number of processed wafers. Thus, it can be determined that it is in the range of 100 to 120 sheets. Even after that, the residual score Q tends to slightly increase periodically.
[0028]
(2) As in (1), after the inside of the processing chamber 11 was led to the above state A, the processing condition B with a lot of deposition was set unlike (1). Then, the wafer is carried into the processing chamber 11 to process the wafer, and after obtaining the measurement values from immediately after the processing apparatus is started until the application state of the high frequency power source 19 is stabilized, each measurement value is the case (1). Similarly, the ratio with the reference value was taken, and the result is shown in FIG. According to the result shown in FIG. 2 (b), each measured value goes to the stable state earlier than in the case of (1), but the steady state with a small fluctuation width is reached from around the circle (1). ) Is not much different. On the other hand, when the method according to the present embodiment is studied, the residual score Q converges to the reference value earlier than in the case of (1) and becomes stable as is apparent from the result shown in FIG. It can be seen that it is easy to judge the time of the stable state. If the residual score for determining the stable state is determined in advance using the reference processing device, the stable state of the comparison processing device can be reliably determined.
[0029]
Next, the difference in stabilization due to the difference in the state of the processing chamber after the maintenance inspection will be described with reference to FIGS.
(3) After guiding the inside of the processing chamber 11 to the state A, the processing apparatus was set to the processing condition A with less deposition. Then, the wafer is carried into the processing chamber 11 to process the wafer, and after obtaining the measurement values from immediately after the processing apparatus is started until the application state of the high frequency power source 19 is stabilized, each measurement value is the case of (1). Similarly to the above, the ratio with the reference value was taken, and the result is shown in FIG. According to the result shown in FIG. 4A, it can be seen that each measured value slowly converges to the reference value, and it is slow to reach a stable state. Although it is determined that the wafer is in a stable state around the circles of around 120 wafers, there are measured values that swing up and down even after that, and it can be understood that the determination of stabilization is difficult. On the other hand, when the method of the present embodiment is studied, the residual score Q converges to the reference value, unlike the measurement value result of the harmonic measuring device 17, as is clear from the result shown in the state A of FIG. It takes an unexpected amount of time to complete, and it is understood that the stable state is reached only by the circle.
[0030]
(4) After guiding the inside of the processing chamber 11 to the state B, the processing apparatus was set to the processing condition A with less deposition as in the case of (3). Then, the wafer is carried into the processing chamber 11 to process the wafer, and after obtaining the measurement values from immediately after the processing apparatus is started until the application state of the high frequency power source 19 is stabilized, each measurement value is the case of (1). Similarly, the ratio with the reference value was taken, and the result is shown in FIG. According to the result shown in FIG. 4B, it can be seen that each measured value converges to the reference value earlier than in the case of (3) and reaches the stable state earlier. Further, when the method according to the present embodiment is examined, the residual score Q quickly reaches the reference value as shown in the state B of FIG. 5, but there is a variation within the wafer 100 and 100 sheets are completely stabilized. It is clear that this is the case.
[0031]
As described above, according to the present embodiment, the harmonic measuring device 17 is provided between the electrode 12 and the matching circuit 18, and the fundamental wave and the harmonics of the processing apparatus 10 stabilized by using the harmonic measuring device 17. Measured value V (f of electrical data such as voltage value, current value, phase and impedance for each.n), I (fn), P (fn), Z (fn) Is used to perform a principal component analysis as a reference in advance, and a residual score Q as a reference0Is obtained, the electrical data is measured by the harmonic measuring instrument 17 immediately after the start of the processing apparatus 10 after the maintenance inspection, and the measured value V (fn), I (fn), P (fn), Z (fn) To obtain a residual score Q for comparison by performing a principal component analysis for comparison, and a comparative residual score Q and a reference residual score Q0Comparing both Q and Q0Since the stable state of the high-frequency power supply of the processing apparatus 10 after the maintenance inspection is detected from the difference between the two, even if there are enormous measurement values, the residual score Q that combines these data is only compared with the reference value. Thus, it is possible to objectively and reliably evaluate and judge the processing apparatus 10 after maintenance inspection, specifically, the stable state in the processing chamber 11. Further, according to the present embodiment, not only can the time point when the stable state is reached be evaluated and judged, but also how to set the processing conditions such as the evacuation time in the processing chamber 11 in order to lead to the stable state. Can be evaluated and judged.
[0032]
Next, an embodiment of the abnormality detection method for the processing apparatus of the present invention will be described.
The abnormality detection method of the processing apparatus of this embodiment is also in common with the operation method of the processing apparatus of the above embodiment in that the residual score Q in the principal component analysis is used. However, in this embodiment, a normal processing apparatus, that is, a processing apparatus that is assembled correctly in accordance with the specifications without using a mounting error of components in the processing chamber 11 and the high-frequency power source 19 is used as the reference processing apparatus. In this embodiment, it goes without saying that the fundamental wave and its harmonic electrical data are measured when the application state of the high-frequency power supply 19 after the start of the processing apparatus is removed from the unstable state and reaches a stable state.
[0033]
Therefore, in the present embodiment as well, in the same manner as in the above embodiment, the fundamental wave and its harmonic voltage, current, phase and impedance of the reference processing device are intermittently measured as electrical data, and the measured values V ( fn), I (fn), P (fn), Z (fn) Then, with respect to the reference processing device, the residual score Q defined by Equation 90Is obtained in advance. Constants such as eigenvectors obtained by the reference processing device are set in a principal component analysis program of an arbitrary processing device, and a residual score Q is obtained from electrical data of the arbitrary processing device under this setting condition. Next, the residual score Q of the reference processing device0And the residual score Q of any processor (difference amount) is obtained, and the difference between the residual scores (Q−Q0) To determine whether an arbitrary processing apparatus is in a stable state. That is, the difference of residual scores (Q-Q0) Indicates that there is a mounting error in the processing chamber and / or the components of the high frequency power supply 19 in the arbitrary processing apparatus. Difference (Q-Q0) Is less than the allowable value, the processing apparatus is determined to be normal. Also, when the residual score Q represents a value different from other residual scores, the row indicating the different value of the residual matrix E, for example, the residual score of the i-th measurement result is the reference residual score Q. If the values are different, e in the i-th rowiResidual component e ofijIt is possible to determine which variable (measured value) contributes to the deviation of the residual score Q. Thus, the cause of the abnormality can be classified by associating the cause of the abnormality with a variable having a large residual (basic wave, harmonic voltage, current, etc.).
[0034]
FIG. 6 is a graph showing the relationship between the residual score Q and the component mounting error. In FIG. 6, N1 and N2 are residual scores of a normal processing apparatus, state A is a residual score when there is no screw, state C is a residual score when there is no cover, and state D is a part different from state A. The residual score when there is no screw, state E is the residual score when there is no cover other than the state C, state F is the residual score when the screw is loose, and state G is no part The residual score for the hour is shown. For example, looking at the residual component in the row showing the residual score in state A, it is as shown in FIG. If there is no screw in this state A, it can be seen that the fundamental voltage and impedance greatly swing to the minus side, and the current of the third harmonic and the phase of the fundamental wave swing to the plus side. If there is no cover in the state C, it can be seen that the voltage and impedance of the fundamental wave greatly swing to the minus side and the phase swings relatively large to the plus side as shown in FIG. If there are no components in the state G, it can be seen that the current and phase of the fundamental wave greatly swing to the minus side, and the impedance of the fundamental wave swings to the plus side. Therefore, it is possible to classify the relationship between the component type, the attachment site, etc., and the component having a large residual score. By grasping this relationship in advance, it is possible to determine what abnormality is present by knowing the component having a high contribution rate to the residual score.
[0035]
As described above, according to the present embodiment, a principal component analysis is performed in advance using measurement data of the high-frequency power supply 19 of a normal processing device to obtain a residual score for reference, and then a plurality of arbitrary processing devices are used. Principal component analysis is performed using a plurality of measurement data obtained by measuring the electrical data, and a residual score for comparison is obtained, and then a comparative residual score Q and a reference residual score Q0Comparing both Q and Q0Since an abnormality of an arbitrary processing device is detected from the difference between the two, it is possible to reliably detect an abnormality due to a component mounting error without opening the processing device, and classify the mounting error from the components of the residual matrix E. be able to.
[0036]
  In the above embodiment, the operation method and the abnormality detection method of the processing apparatus using the principal component analysis have been described.The present invention is not limited to the above embodiment, and the design of each component of the present invention can be changed as appropriate.
[0037]
【The invention's effect】
  Claims 1 to 1 of the present inventionClaim 4According to the invention described in the above, it is possible to objectively determine the stable state of the processing apparatus after starting,processingIt is possible to provide a method of operating a processing apparatus that can be operated with optimized conditions.
[0038]
Further, claims 5 to 5 of the present invention.Claim 8According to the invention described in the above, it is possible to provide a processing apparatus abnormality detection method capable of reliably detecting an abnormality due to a component mounting error without opening the processing apparatus and classifying the mounting error. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a processing apparatus to which a processing apparatus operating method and an abnormality detection method of the present invention are applied.
FIGS. 2A and 2B are graphs showing transitions until electrical data of a processing apparatus is stabilized using a harmonic measuring device, respectively.
FIGS. 3A and 3B are graphs showing transitions until the residual score of electrical data corresponding to FIGS. 2A and 2B is stabilized, respectively.
FIGS. 4A and 4B are graphs showing transitions until electrical data of a processing apparatus is stabilized using a harmonic measuring device, respectively.
FIGS. 5A and 5B are graphs showing transitions until the residual score of electrical data corresponding to FIGS. 2A and 2B is stabilized, respectively.
FIG. 6 is a graph showing a residual score based on electrical data of a normal processing apparatus and an abnormal processing apparatus.
FIGS. 7A to 7C are graphs showing residual components of electrical data of an abnormal processing apparatus, respectively.
FIG. 8 is a graph showing fluctuations in electrical data immediately after starting a processing apparatus used conventionally.
[Explanation of symbols]
10 Processing device
11 Processing chamber
12 electrodes
19 High frequency power supply
W wafer (object to be processed)

Claims (8)

高周波電源から処理室内の電極に高周波電力を印加してプラズマを発生させて半導体ウエハを処理する際に、上記処理室内の状態に応じて変化する上記高周波電源の複数の電気的データを測定する測定器で測定された複数の測定データを用いて主成分分析を行って上記高周波電源の印加状態を検出して処理装置を運転する方法であって、処理装置の処理室内の状態に応じて上記高周波電源の印加状態が安定化した時の上記測定データを用いて予め基準用の主成分分析を行う工程と、始動直後から任意の処理装置の複数の電気的データを測定する工程と、複数の測定データを用いて比較用の主成分分析を行う工程と、比較主成分分析結果と基準主成分分析結果を比較して両者の差から上記任意の処理装置の高周波電源が上記処理室内の状態に応じて安定状態に達したことを検出する工程とを有することを特徴とする処理装置の運転方法。Measurement that measures a plurality of electrical data of the high-frequency power source that changes depending on the state in the processing chamber when a semiconductor wafer is processed by applying high-frequency power from the high-frequency power source to an electrode in the processing chamber to generate plasma. A method of operating a processing apparatus by performing principal component analysis using a plurality of measurement data measured by a vessel and detecting an application state of the high-frequency power source, wherein the high-frequency wave is operated according to a state in a processing chamber of the processing apparatus. A step of performing principal component analysis for reference in advance using the above measurement data when the application state of power is stabilized, a step of measuring a plurality of electrical data of an arbitrary processing apparatus immediately after startup, and a plurality of measurements Compare the results of the comparison principal component analysis using the data, the comparison principal component analysis result and the reference principal component analysis result, and based on the difference between them, the high-frequency power supply of the arbitrary processing device responds to the condition in the processing chamber. How the operation of the processing device characterized by a step of detecting that has reached a steady state Te. 上記電気的データとして基本波及び高調波それぞれの電圧値、電流値、インピーダンス及び位相角を用いることを特徴とする請求項1に記載の処理装置の運転方法。The electrical data and to basic and harmonics respective voltage value, current value, operating method of the processing apparatus according to claim 1 which comprises using the impedance and phase angle. 上記主成分分析で残差得点を求めた後、残差得点を比較することを特徴とする請求項1または請求項2に記載の処理装置の運転方法。After determining the residual obtained point above principal component analysis, the method operation of processing apparatus according to claim 1 or claim 2, characterized in that to compare the residuals obtained point. 上記残差得点の比較結果に基づいて処理条件及び/または稼働条件を判断することを特徴とする請求項3に記載の処理装置の運転方法。How the operation of the processing apparatus according to claim 3, characterized in that to determine the processing conditions and / or operating conditions based on the comparison result of the residual score. 高周波電源から処理室内の電極に高周波電力を印加してプラズマを発生させて半導体ウエハを処理する際に、上記処理室内の状態に応じて変化する上記高周波電源の複数の電気的データを測定する測定器で測定された複数の測定データを用いて主成分分析を行って上記高周波電源の印加状態を検出して処理装置の異常を検出する方法であって、正常な処理装置の処理室内の状態に応じて上記高周波電源の印加状態が安定化した時の上記測定データを用いて予め基準用の主成分分析を行う工程と、任意の処理装置の複数の電気的データを測定する工程と、複数の測定データを用いて比較用の主成分分析を行う工程と、比較主成分分析結果と基準主成分分析結果を比較して両者の差から上記任意の処理装置の異常を検出する工程とを有することを特徴とする処理装置の異常検出方法。Measurement that measures a plurality of electrical data of the high-frequency power source that changes depending on the state in the processing chamber when a semiconductor wafer is processed by applying high-frequency power from the high-frequency power source to an electrode in the processing chamber to generate plasma. A method of detecting an abnormality of a processing apparatus by performing principal component analysis using a plurality of measurement data measured by a vessel and detecting an application state of the high-frequency power supply, and in a processing chamber state of a normal processing apparatus Accordingly, a step of performing principal component analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized, a step of measuring a plurality of electrical data of an arbitrary processing device, a plurality of steps Comparing the principal component analysis for comparison using the measurement data, and comparing the comparison principal component analysis result with the reference principal component analysis result and detecting an abnormality in the above-mentioned arbitrary processing device from the difference between the two. The Abnormality detecting method of apparatus for treating symptoms. 上記電気的データとして基本波及び高調波それぞれの電圧値、電流値、インピーダンス及び位相角を用いることを特徴とする請求項5に記載の処理装置の異常検出方法。The electrical data and to basic and harmonics respective voltage value, current value, the abnormality detecting method of processing apparatus according to claim 5, characterized by using the impedance and phase angle. 上記主成分分析で残差得点を求めた後、上記残差得点を比較することを特徴とすることを特徴とする請求項5または請求項6に記載の処理装置の異常検出方法。After determining the residual obtained point above principal component analysis, the abnormality detection method of the processing apparatus according to claim 5 or claim 6, characterized in that and comparing the residuals obtained point. 上記主成分分析で得られる残差行列の成分に即して異常箇所を分類することを特徴とする請求項5請求項7のいずれか1項に記載の処理装置の異常検出方法。 The abnormality detection method for a processing apparatus according to any one of claims 5 to 7 , wherein abnormal portions are classified according to the components of the residual matrix obtained by the principal component analysis .
JP2000201731A 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method Expired - Lifetime JP4610021B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000201731A JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method
US10/332,011 US7054786B2 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
PCT/JP2001/005758 WO2002003441A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
CNB018122485A CN1197130C (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
AU2001267913A AU2001267913A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
TW090116292A TW499702B (en) 2000-07-04 2001-07-03 Method for monitoring operation of processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201731A JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method

Publications (2)

Publication Number Publication Date
JP2002018274A JP2002018274A (en) 2002-01-22
JP4610021B2 true JP4610021B2 (en) 2011-01-12

Family

ID=18699371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201731A Expired - Lifetime JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method

Country Status (1)

Country Link
JP (1) JP4610021B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600144B2 (en) * 2000-09-22 2004-12-08 アルプス電気株式会社 Performance evaluation method, maintenance method, and performance management system for plasma processing apparatus, and plasma processing apparatus and performance confirmation system for plasma processing apparatus
TW558789B (en) 2002-05-02 2003-10-21 Hitachi High Tech Corp Semiconductor processing device and diagnostic method of semiconductor processing device
TWI264043B (en) * 2002-10-01 2006-10-11 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
US7147747B2 (en) 2003-03-04 2006-12-12 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP4363863B2 (en) * 2003-02-06 2009-11-11 株式会社日立ハイテクノロジーズ Process control method in semiconductor processing apparatus
TWI350046B (en) * 2003-08-18 2011-10-01 Mks Instr Inc System and method for controlling the operation of a power supply
US7231321B2 (en) 2004-11-10 2007-06-12 Tokyo Electron Limited Method of resetting substrate processing apparatus, storage medium storing program for implementing the method, and substrate processing apparatus
CN100594577C (en) * 2005-06-10 2010-03-17 伯德技术集团股份有限公司 System and method for analyzing power flow in semiconductor plasma generation systems
US9666417B2 (en) 2013-08-28 2017-05-30 Sakai Display Products Corporation Plasma processing apparatus and method for monitoring plasma processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH10125660A (en) * 1996-08-29 1998-05-15 Fujitsu Ltd Plasma processor, process monitoring method and fabrication of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212414A (en) * 1990-08-16 1992-08-04 Fuji Electric Co Ltd Plasma process equipment
JPH09266199A (en) * 1996-03-29 1997-10-07 Hitachi Ltd Method and apparatus for evaluating plasma
JP3576335B2 (en) * 1996-10-31 2004-10-13 松下電器産業株式会社 Method and apparatus for extracting abnormalities in process processing steps
US5910011A (en) * 1997-05-12 1999-06-08 Applied Materials, Inc. Method and apparatus for monitoring processes using multiple parameters of a semiconductor wafer processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH10125660A (en) * 1996-08-29 1998-05-15 Fujitsu Ltd Plasma processor, process monitoring method and fabrication of semiconductor device

Also Published As

Publication number Publication date
JP2002018274A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US7054786B2 (en) Operation monitoring method for treatment apparatus
KR100560886B1 (en) System and method for monitoring and controlling gas plasma processes
JP3630931B2 (en) Plasma processing apparatus, process monitoring method, and semiconductor device manufacturing method
JP4464276B2 (en) Plasma processing method and plasma processing apparatus
US6332961B1 (en) Device and method for detecting and preventing arcing in RF plasma systems
US5458732A (en) Method and system for identifying process conditions
JP4317701B2 (en) Processing result prediction method and prediction apparatus
US20060226786A1 (en) Inductively-coupled plasma etch apparatus and feedback control method thereof
JP2018117116A (en) Characteristic constraint method from time sequence of spectrum for controlling end point in processing
JP4610021B2 (en) Processing device operating method and processing device abnormality detection method
JP2000114130A (en) Control method and control system for semiconductor manufacturing equipment
KR20120037420A (en) Methods and arrangements for in-situ process monitoring and control for plasma processing tools
JP2003536268A (en) Defect identification method in plasma process
TW201826058A (en) Anomaly detection method and semiconductor manufacturing apparatus
JP2003197609A (en) Method for monitoring plasma treatment device, and plasma treatment device
JP2004349419A (en) Method and device for judging cause of abnormality in plasma processor
US20220208520A1 (en) Performing radio frequency matching control using a model-based digital twin
JP4570736B2 (en) How to monitor operating conditions
JP2008287999A (en) Plasma treatment device and its control method
WO2022010686A1 (en) Systems and methods for extracting process control information from radiofrequency supply system of plasma processing system
JP4220378B2 (en) Processing result prediction method and processing apparatus
JP4675266B2 (en) Prediction method and prediction apparatus for processing result of substrate processing apparatus
JP2001144071A (en) Method and device for plasma treatment
TW559974B (en) Monitoring and controlling method of semiconductor manufacturing apparatus
JP3959318B2 (en) Plasma leak monitoring method, plasma processing apparatus, plasma processing method, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4610021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term