JP4608220B2 - Discharge surface treatment electrode and discharge surface treatment method - Google Patents

Discharge surface treatment electrode and discharge surface treatment method Download PDF

Info

Publication number
JP4608220B2
JP4608220B2 JP2004020624A JP2004020624A JP4608220B2 JP 4608220 B2 JP4608220 B2 JP 4608220B2 JP 2004020624 A JP2004020624 A JP 2004020624A JP 2004020624 A JP2004020624 A JP 2004020624A JP 4608220 B2 JP4608220 B2 JP 4608220B2
Authority
JP
Japan
Prior art keywords
electrode
powder
less
surface treatment
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004020624A
Other languages
Japanese (ja)
Other versions
JP2005213555A (en
Inventor
昭弘 後藤
雅夫 秋吉
宏行 落合
光敏 渡辺
崇 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Electric Corp
Original Assignee
IHI Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Electric Corp filed Critical IHI Corp
Priority to JP2004020624A priority Critical patent/JP4608220B2/en
Publication of JP2005213555A publication Critical patent/JP2005213555A/en
Application granted granted Critical
Publication of JP4608220B2 publication Critical patent/JP4608220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、金属粉末あるいは金属の化合物の粉末、あるいは、セラミックスの粉末を圧縮成形した圧粉体を電極として、電極とワークとの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   The present invention uses a metal powder, a powder of a metal compound, or a green compact obtained by compression molding a ceramic powder as an electrode to generate a pulsed discharge between the electrode and the workpiece, Further, the present invention relates to a discharge surface treatment for forming a film made of an electrode material or a material in which the electrode material reacts with discharge energy.

航空機用ガスタービンエンジンのタービンブレードなどの表面には、高温環境下での強度と潤滑性を持った材料をコーティングあるいは肉盛りする必要がある。高温環境下でCr(クロム)やMo(モリブデン)が酸化されて酸化物となることで潤滑性を発揮することがわかってきていることから、Co(コバルト)をベースとし、CrやMoを含んだ材料を溶接・溶射などの方法で被膜を厚く盛り上げている。
ここで、溶接とは、ワークと溶接棒との間の放電により溶接棒の材料をワークに溶融付着させる方法であり、溶射とは、金属材料を溶かした状態にし、スプレー状にワークに吹き付け皮膜を形成させる方法である。
しかしながら、この溶接・溶射の何れの方法も人手による作業であり、熟練を要するため、作業をライン化することが困難であり、コストが高くなるという問題がある。
また、特に溶接は、熱が集中してワークに入る方法であるため、厚みの薄い材料を処理する場合や、単結晶合金・一方向凝固合金など方向制御合金のように割れやすい材料では、溶接割れが発生しやすく歩留まりが低いという問題もある。
It is necessary to coat or build up a material having strength and lubricity in a high temperature environment on the surface of an aircraft gas turbine engine such as a turbine blade. Since it has been known that Cr (chromium) and Mo (molybdenum) are oxidized to form an oxide in a high-temperature environment, it exhibits lubricity. Therefore, it is based on Co (cobalt) and contains Cr and Mo. The coating is thickened by welding or spraying the material.
Here, welding is a method in which the material of the welding rod is melted and adhered to the workpiece by electric discharge between the workpiece and the welding rod. Thermal spraying is a state in which a metal material is melted and sprayed onto the workpiece in a spray form. Is a method of forming
However, both the welding and thermal spraying methods are manual operations and require skill, so that there is a problem that it is difficult to line the operations and the cost is increased.
In particular, welding is a method in which heat concentrates and enters the workpiece. Therefore, when processing thin materials or materials that are easily broken such as directional control alloys such as single crystal alloys and unidirectionally solidified alloys, There is also a problem that cracking is likely to occur and the yield is low.

一方、高温環境下での強度と潤滑性を有する溶接・溶射等の表面処理方法とは異なるが、その他の表面処理技術としては、例えば国際公開WO99/58744に示されるように放電加工による表面処理も確立している。   On the other hand, although different from surface treatment methods such as welding and thermal spraying having strength and lubricity in a high temperature environment, other surface treatment techniques include surface treatment by electric discharge machining as shown in, for example, International Publication WO99 / 58744. Has also been established.

国際公開WO99/58744号公報(第7―8頁)International Publication No. WO99 / 58744 (pages 7-8)

放電表面処理による厚膜の形成では、電極側からの材料の供給とその供給された材料のワーク表面での溶融およびワーク材料との結合の仕方が被膜性能に最も影響を与える。
この電極材料の供給に影響を与えるのが電極の強度すなわち硬さである。
国際公開WO99/58744号公報に示された電極製造方法では、電極にはある程度の硬さを持たせつつ放電による電極材料の供給を押さえ、供給された材料を十分溶融させることによりワーク表面に硬質セラミックス被膜を形成している。この方法では、形成される被膜は10μm程度までの薄膜に限定される。
しかしながら、高温環境下での強度と潤滑性を必要とされるような用途など、緻密で比較的厚い被膜(100μmのオーダー以上の厚膜)の形成が求められている。
In the formation of a thick film by the discharge surface treatment, the method of supplying the material from the electrode side, melting the supplied material on the workpiece surface, and bonding with the workpiece material has the greatest influence on the coating performance.
It is the strength or hardness of the electrode that affects the supply of the electrode material.
In the electrode manufacturing method disclosed in International Publication No. WO99 / 58744, the electrode surface is hardened on the work surface by suppressing the supply of the electrode material by discharge while sufficiently melting the supplied material while the electrode has a certain degree of hardness. A ceramic film is formed. In this method, the film to be formed is limited to a thin film of up to about 10 μm.
However, there is a demand for the formation of a dense and relatively thick film (thick film of the order of 100 μm or more) for applications that require strength and lubricity in a high temperature environment.

本発明は、高温環境下での強度と潤滑性を必要とされる、緻密で比較的厚膜の表面処理方法を確立することを目的とする。   It is an object of the present invention to establish a dense and relatively thick surface treatment method that requires strength and lubricity in a high temperature environment.

第1の発明に係わる放電表面処理用電極は、金属粉末または金属の化合物の粉末、或いはセラミックスの粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、電極材料として、1.0〜4.5重量%の硼素、或いは1.5〜5.0重量%の珪素を含むものである。   The discharge surface treatment electrode according to the first aspect of the invention is a metal powder, a metal compound powder, or a green compact obtained by compression-molding a ceramic powder, and is interposed between the electrode and the workpiece in the working fluid or in the air. In the discharge surface treatment in which a pulsed discharge is generated and a film made of the electrode material or a material obtained by reacting the electrode material with the discharge energy is formed on the work surface by the energy, 1.0 to 4.5 wt. % Boron, or 1.5 to 5.0% silicon by weight.

本発明によれば、放電表面処理により空孔のない緻密な被膜を形成することができる。   According to the present invention, a dense film without pores can be formed by discharge surface treatment.

従来の放電表面処理に用いられる電極成分は、炭化物を形成しやすい材料の割合が多く含まれており、例えばTi等の材料が油中での放電により化学反応し、工作物表面の材質が、鋼材(鋼材に処理する場合)からセラミックスであるTiC(炭化チタン)という硬質の炭化物に変わり、熱伝導・融点などの特性が変化する放電表面処理が行われてきた。
そして、発明者らの実験により、電極材質の成分に炭化し難い(炭化物を生成しにくい)材料を電極に加えることで、金属のまま被膜に残る材料が増え、放電表面処理により得られる被膜を厚くできることが見出され、厚膜形成のために電極の材料的条件が重要であることがわかってきた。
以下、本発明の実施の形態について図を用いて説明する。
The electrode component used in the conventional discharge surface treatment contains a large proportion of materials that are likely to form carbides. For example, a material such as Ti chemically reacts by discharge in oil, and the material of the workpiece surface is Discharge surface treatment has been performed in which characteristics such as heat conduction and melting point change from steel material (when processed to steel material) to hard carbide called TiC (titanium carbide) which is ceramic.
According to experiments by the inventors, by adding a material that is not easily carbonized (hard to form carbides) to the electrode material, the material remaining in the film as a metal increases, and a film obtained by discharge surface treatment is added. It has been found that it can be thickened, and it has been found that the material conditions of the electrode are important for thick film formation.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1
本発明は、放電表面処理により緻密な厚膜を形成することが目的であり、まず、放電表面処理により厚膜を形成することについて説明する。
Embodiment 1
The object of the present invention is to form a dense thick film by discharge surface treatment. First, the formation of a thick film by discharge surface treatment will be described.

従来の放電表面処理では、電極に炭化物を形成しやすい材料の割合が多く含まれており、例えば、Tiなどの材料を電極に含むと、油中での放電により化学反応を起こし、被膜としてはTiC(炭化チタン)という硬質の炭化物になる。
表面処理が進むにつれて、ワーク表面の材質が鋼材(鋼材に処理する場合)からセラミックスであるTiCに変わり、それに伴い、熱伝導・融点などの特性が変化する。
ところが、炭化しないあるいは炭化しにくい材料を電極に加えることで被膜は炭化物にならず、金属のまま被膜に残る材料が増えるという現象が生じた。
そして、この電極材料の選定が、被膜を厚く盛り上げるのに大きな意味を持つことが判明した。
In the conventional discharge surface treatment, the electrode contains a large proportion of materials that easily form carbides. For example, when a material such as Ti is included in the electrode, a chemical reaction occurs due to discharge in oil, It becomes a hard carbide called TiC (titanium carbide).
As the surface treatment progresses, the material of the workpiece surface changes from steel (when processed into steel) to TiC which is ceramic, and characteristics such as heat conduction and melting point change accordingly.
However, when a material that is not carbonized or hardly carbonized is added to the electrode, the film does not become a carbide, and a phenomenon occurs in which the material that remains in the film as a metal increases.
And, it has been found that the selection of the electrode material has a great significance for thickening the coating.

図1に示すように、炭化物であるCr(炭化クロム)と炭化物を形成しにくい材料であるCo(コバルト)とを混合した粉末を圧縮成形し、その後に電極強度を増すため加熱して電極を製作した場合、炭化物を形成しにくいCoの量を変化させることで厚膜の形成しやすさが変わっていく。
図2は、この様子を示したものである。
As shown in FIG. 1, a powder obtained by mixing Cr 3 C 2 (chromium carbide), which is a carbide, and Co (cobalt), which is a material that is difficult to form carbide, is compression-molded, and then heated to increase the electrode strength. When an electrode is manufactured, the ease of forming a thick film changes by changing the amount of Co that is difficult to form carbides.
FIG. 2 shows this state.

電極を作製する際の粉末を圧縮成プレス圧は約100MPaであり、加熱温度は400℃から800℃の範囲形するで変化させた。
Cr(炭化クロム)が多いほど加熱温度は高くし、Co(コバルト)が多いほど温度を低くした。
これは、Cr(炭化クロム)が多い場合には製作した電極が脆くなりやすく低い温度で加熱してもすぐに崩れてしまうのに対し、Co(コバルト)が多い場合には加熱温度が低くても電極の強度が強くなりやすかったためである。
プレスの際には成形性をよくするためにプレスする粉末に少量(重量で2%から3%)のワックスを混合した。なお、ワックスは加熱の際に除去される。
The powder used to produce the electrode was compressed so that the compression pressing pressure was about 100 MPa, and the heating temperature was in the range of 400 ° C to 800 ° C.
The heating temperature was increased as the amount of Cr 3 C 2 (chromium carbide) was increased, and the temperature was decreased as the amount of Co (cobalt) was increased.
This is because when the amount of Cr 3 C 2 (chromium carbide) is large, the manufactured electrode tends to become brittle and immediately collapses even when heated at a low temperature, whereas when the amount of Co (cobalt) is large, the heating temperature This is because the strength of the electrode was likely to increase even when the thickness was low.
At the time of pressing, a small amount (2% to 3% by weight) of wax was mixed with the powder to be pressed in order to improve the moldability. The wax is removed during the heating.

Cr(炭化クロム)は粒径3μm〜6μm程度の粉末を使用し、Coは粒径4μm〜6μm程度の粉末を使用した。なお、ベースとなる材質はCr(炭化クロム)である。
使用した放電のパルスは図3に示すような波形であり、パルス条件は、ピーク電流値ie=10A、放電持続時間(放電パルス幅)te=64μs、休止時間to=128μs、15mm×15mmの面積の電極において、処理時間15分で被膜を形成した。
極性は、電極がマイナス、ワークがプラスの極性を使用した。
図3では、電極がマイナス、ワークがプラスの極性の場合に、縦軸上側になるように表示している。
Cr 3 C 2 (chromium carbide) used powder with a particle size of about 3 μm to 6 μm, and Co used powder with a particle size of about 4 μm to 6 μm. The base material is Cr 3 C 2 (chromium carbide).
The discharge pulse used has a waveform as shown in FIG. 3, and the pulse conditions are: peak current value ie = 10 A, discharge duration (discharge pulse width) te = 64 μs, rest time to = 128 μs, area of 15 mm × 15 mm A film was formed on the electrode of No. 5 in a treatment time of 15 minutes.
The polarity was negative for the electrode and positive for the workpiece.
In FIG. 3, when the electrode has a negative polarity and the workpiece has a positive polarity, the vertical axis is displayed on the upper side.

このようなパルス条件に基づいて被膜を形成した場合、製作した電極内にあって、Coが含有する体積%によってワーク上に形成される被膜の厚さが異なり、図2によれば、Co含有量が低い場合には10μm程の膜厚であったものがCo含有量30体積%程度から次第に厚くなり、Co含有量50体積%を過ぎたころから10000μm近くにまで厚くなることを示している。   When a film is formed based on such a pulse condition, the thickness of the film formed on the workpiece varies depending on the volume% of Co in the manufactured electrode. According to FIG. When the amount is low, the film thickness of about 10 μm gradually increases from the Co content of about 30% by volume, and increases from around the Co content of 50% by volume to about 10,000 μm. .

このことを更に詳細に述べる。
上記のような条件に基づいてワーク上に被膜を形成した場合、電極内のCoが0%の場合、すなわち、Cr(炭化クロム)が100重量%の場合には、形成できる被膜の厚さは10μm程度が限界であり、それ以上厚みを増すことはできない。
また、炭化物を形成しにくい材料が電極内にない場合の処理時間に対する被膜の厚さの様子は図4のようになる。
図4によれば、処理の初期は、被膜が時間とともに成長して厚くなり、あるところ(約5分/cm)で飽和する。
その後しばらく膜厚は成長しないが、ある時間(20分/cm程度)以上処理を続けると今度は被膜の厚みが減少しはじめ、最後には被膜高さはマイナス、すなわち掘り込みに変わってしまう。
ただし、掘り込んだ状態でも被膜は存在しており、その厚み自体は10μm程度であり、適切な時間で処理した状態とほとんど変わらない。したがって5分から20分の間での処理時間が適切と考えられる。
This will be described in more detail.
When a film is formed on the workpiece based on the above conditions, when Co in the electrode is 0%, that is, when Cr 3 C 2 (chromium carbide) is 100% by weight, The limit is about 10 μm, and the thickness cannot be increased further.
Moreover, the state of the thickness of the coating film with respect to the processing time when there is no material that hardly forms carbide in the electrode is as shown in FIG.
According to FIG. 4, at the beginning of the treatment, the film grows and thickens with time and saturates at some point (about 5 minutes / cm 2 ).
After that, the film thickness does not grow for a while, but if the treatment is continued for a certain time (about 20 minutes / cm 2 ) or more, the thickness of the film starts to decrease and finally the film height becomes minus, that is, changes to digging. .
However, the film is present even in the dug state, and the thickness itself is about 10 μm, which is almost the same as the state processed in an appropriate time. Therefore, the processing time between 5 minutes and 20 minutes is considered appropriate.

図2に戻り、電極内に炭化しにくい材料であるCo量を増やすにしたがい厚くできるようになり、電極中におけるCo量が30体積%を超えると形成される被膜の厚さが厚くなり始め、40体積%を超えると安定して厚膜が形成しやすくなることが判明した。
図2のグラフには、Co量30体積%程度から滑らかに膜厚が上昇するように記載しているが、これは、複数回の試験を行なった平均値であり、実際には、Co量が30体積%程度の場合には、厚く被膜が盛り上がらない場合があったり、厚く盛りあがった場合でも、被膜の強度が弱い、すなわち、金属片などで強く擦ると除去されてしまう場合などがあり、安定しない。
より好ましくはCo量が50体積%を超えるとよい。
このように被膜中に金属として残る材料を多くすることにより、炭化物になっていない金属成分を含む被膜を形成することができ、安定して厚膜が形成しやすくなる。
ここでいう体積%は混合するそれぞれ粉末の重量をそれぞれの材料の密度で割った値の比率のことであり、粉末全体の材料の体積中においてその材料が占める体積の割合である。
Returning to FIG. 2, it becomes possible to increase the thickness as the amount of Co, which is a material that is not easily carbonized in the electrode, and when the amount of Co in the electrode exceeds 30% by volume, the thickness of the formed film starts to increase, It has been found that when it exceeds 40% by volume, a thick film can be easily formed stably.
The graph of FIG. 2 shows that the film thickness increases smoothly from about 30% by volume of Co, but this is an average value obtained by performing a plurality of tests. Is about 30% by volume, there are cases where the film does not swell thickly, or even when it swells thickly, the film strength is weak, that is, it may be removed by rubbing strongly with a metal piece, etc. Not stable.
More preferably, the Co content exceeds 50% by volume.
By increasing the amount of the material remaining as a metal in the coating in this way, a coating containing a metal component that is not carbide can be formed, and a thick film can be easily formed stably.
The volume% here is a ratio of a value obtained by dividing the weight of each powder to be mixed by the density of each material, and is a ratio of the volume occupied by the material in the volume of the material of the whole powder.

図5に電極中におけるCoの含有量が70体積%の場合に形成した被膜の写真を示す。
この写真は、厚膜の形成を例示するものである。
図5に示す写真においては2mm程度の厚膜が形成されている。
この被膜は15分の処理時間で形成されたものであるが、処理時間を増せばさらに厚い被膜にすることができる。
FIG. 5 shows a photograph of the coating formed when the Co content in the electrode is 70% by volume.
This photograph illustrates the formation of a thick film.
In the photograph shown in FIG. 5, a thick film of about 2 mm is formed.
This film is formed in a processing time of 15 minutes, but if the processing time is increased, a thicker film can be formed.

このようにして、電極内にCo等の炭化しにくい材料あるいは炭化しない材料を40体積%以上含有する電極を用いることによって、放電表面処理によりワーク表面に安定して厚い被膜を形成することができる。
上記においては、炭化物を形成しにくい材料としてCo(コバルト)を用いた場合について説明したが、Ni(ニッケル)、Fe(鉄)なども同様の結果を得られる材料であり、本発明に用いて好適である。
In this way, by using an electrode containing 40% by volume or more of a material that is difficult to carbonize or not carbonized, such as Co, in the electrode, a thick film can be stably formed on the workpiece surface by discharge surface treatment. .
In the above description, the case where Co (cobalt) is used as a material that hardly forms carbides has been described. However, Ni (nickel), Fe (iron), and the like are materials that can obtain similar results, and are used in the present invention. Is preferred.

上記のように、炭化物を形成しにくい材料を電極に所定量加えることで厚膜ができるようになったが、被膜には、気孔が多いという問題がある。
そこで、この気孔を少なくするための方法について以下に説明する。
なお、以下では、上記のような厚膜形成のテスト用の電極材料ではなく、実際に潤滑性などを発揮する厚膜として使用する材料であるCo合金を使用した。
As described above, a thick film can be formed by adding a predetermined amount of a material that does not easily form carbides to the electrode. However, the film has a problem that there are many pores.
A method for reducing the pores will be described below.
In the following, a Co alloy, which is a material used as a thick film that actually exhibits lubricity and the like, was used instead of the electrode material for the test for forming a thick film as described above.

図6は実施の形態1の放電表面処理方法に使用する電極製造のためのプロセスである。
図において、1は粒径1〜2μm程度のCo合金粉末、2は粒径1〜2μm程度のB(硼素)粉末、3は粒径1〜2μm程度のSi(珪素)粉末、4は金型の上パンチ、5は金型の下パンチ、6は金型のダイである。
なお、Co合金粉末1、B粉末2、Si粉末3の混合割合は、電極材料におおよそB(硼素)が1.0〜4.5重量%、あるいは、Siが1.5〜5.0重量%程度、あるいはその両方とする。
FIG. 6 shows a process for manufacturing an electrode used in the discharge surface treatment method of the first embodiment.
In the figure, 1 is a Co alloy powder having a particle size of about 1 to 2 μm, 2 is a B (boron) powder having a particle size of about 1 to 2 μm, 3 is a Si (silicon) powder having a particle size of about 1 to 2 μm, and 4 is a mold. The upper punch, 5 is the lower punch of the mold, and 6 is the die of the mold.
The mixing ratio of the Co alloy powder 1, the B powder 2 and the Si powder 3 is about 1.0 to 4.5% by weight of B (boron) in the electrode material, or 1.5 to 5.0% by weight of Si. % Or both.

Co合金粉末は、ここでは、「Cr(クロム)20重量%、Ni(ニッケル)10重量%、W(タングステン)15重量%、Co(コバルト)残」を使用したが、「Cr(クロム)25重量%、Ni(ニッケル)10重量%、W(タングステン)7重量%、Co(コバルト)残」、「Cr(クロム)20重量%、Ni(ニッケル)10重量%、W(タングステン)15重量%、Co(コバルト)残」、「Cr(クロム)15重量%、Fe(鉄)8重量%、Ni(ニッケル)残」、「Cr(クロム)21重量%、Mo(モリブデン)9重量%、Ta(タンタル)4重量%、Ni(ニッケル)残」、「Cr(クロム)19重量%、Ni(ニッケル)53重量%、Mo(モリブデン)3重量%、(Cb+Ta)5重量%、Ti(チタン)0.8重量%、Al(アルミ)0.6重量%、Fe(鉄)残」などの材料でもよい。
本実施の形態は、ワークに対して被膜を形成するためのCo合金粉末1に対し、高温(1000℃程度)でフラックスとして作用する材料であるB粉末2、同じく高温(1000℃程度)でフラックスとして作用する材料Si粉末3を混合することにより、被膜形成時に酸素原子を奪い、被膜中に酸化物が少なく、気孔の少ない金属の被膜を形成するための機能を持った電極を製造するための手法について説明する。
Here, the Co alloy powder used was “Cr (chromium) 20 wt%, Ni (nickel) 10 wt%, W (tungsten) 15 wt%, Co (cobalt) residue”. Wt%, Ni (nickel) 10 wt%, W (tungsten) 7 wt%, Co (cobalt) residue "," Cr (chromium) 20 wt%, Ni (nickel) 10 wt%, W (tungsten) 15 wt% , Co (cobalt) remaining ”,“ Cr (chromium) 15 wt%, Fe (iron) 8 wt%, Ni (nickel) remaining ”,“ Cr (chromium) 21 wt%, Mo (molybdenum) 9 wt%, Ta (Tantalum) 4 wt%, Ni (nickel) residue "," Cr (chromium) 19 wt%, Ni (nickel) 53 wt%, Mo (molybdenum) 3 wt%, (Cb + Ta) 5 wt%, Ti (titanium) 0.8 weight , Al (aluminum) 0.6 weight%, may be of a material such as Fe (iron) remaining. "
In the present embodiment, the B powder 2 which is a material acting as a flux at a high temperature (about 1000 ° C.) with respect to the Co alloy powder 1 for forming a film on the workpiece, the flux at the same high temperature (about 1000 ° C.). By mixing the material Si powder 3 that acts as an electrode, it takes oxygen atoms at the time of film formation, and produces an electrode having a function for forming a metal film with less oxide and less porosity in the film. The method will be described.

次に、具体的な電極の製造過程について説明する。
Co合金粉末1とB粉末2とSi粉末3とを十分に混合した粉末を金型に入れて圧縮成形し、所定の形状を形作る。
この際、粉末にワックスを混入した後圧縮成形すれば圧粉体の成形性が向上するためより望ましい。
しかし、ワックスは絶縁性物質であるため、電極中に大量に残ると、電極の電気抵抗が大きくなるため放電性が悪化するため、ワックスを除去することが必要になる。
このワックスは圧粉体電極を真空炉に入れて300℃程度で加熱することで除去できる。
また、加熱することで、電極の電気抵抗を下げたり、強度を増すこともできる。
そのため、ワックスを混入しない場合でも加熱することは意味がある。
Next, a specific electrode manufacturing process will be described.
A powder in which Co alloy powder 1, B powder 2 and Si powder 3 are sufficiently mixed is put into a mold and compression molded to form a predetermined shape.
At this time, it is more desirable to compress the powder after mixing the wax with the powder because the moldability of the green compact is improved.
However, since wax is an insulating material, if it remains in a large amount in the electrode, the electrical resistance of the electrode increases and the discharge performance deteriorates, so it is necessary to remove the wax.
This wax can be removed by placing the green compact electrode in a vacuum furnace and heating at about 300 ° C.
Moreover, the electrical resistance of an electrode can be lowered | hung or intensity | strength can be increased by heating.
Therefore, heating is meaningful even when no wax is mixed.

さて、以上のような工程で製作されたCo合金粉末1とB粉末2とSi粉末3とからなる電極を用いて放電表面処理を行なう様子を図2に示す。
図において、11はCo合金粉末1とB粉末2とSi粉末3とからなる電極、12はワーク、13は加工液、14はパルス状の放電を発生させる放電表面処理用電源、15は放電のアーク柱である。
Now, FIG. 2 shows a state in which the discharge surface treatment is performed using the electrode made of the Co alloy powder 1, the B powder 2 and the Si powder 3 manufactured by the process as described above.
In the figure, 11 is an electrode made of Co alloy powder 1, B powder 2 and Si powder 3, 12 is a workpiece, 13 is a working fluid, 14 is a power supply for discharge surface treatment that generates a pulsed discharge, and 15 is a discharge power source. It is an arc pillar.

図7に示す放電表面処理を実現することにより、ワーク12表面にCo合金の被膜ができる。
電極中11にB粉末2あるいはSi粉末3が混入されていない場合には、形成された被膜中に空孔ができ、緻密な被膜の形成が困難だったが、本実施例のようにB粉末2あるいはSi粉末3、あるいは両者を電極に加えることで空孔の少ない緻密な被膜が形成できた。
これは、電極11からワーク12側へ供給される材料中にB(硼素)やSi(珪素)があると、電極を構成している粉末の酸化被膜中の酸素原子を、B(硼素)やSi(珪素)が放電の際に高温になった際に奪い、B、SiOとなり、被膜表面に溶解浮上させるため、被膜中の不要な酸素原子がなくなり、粉末材料同士の密着がよくなるためと考えている。
By realizing the discharge surface treatment shown in FIG. 7, a Co alloy film can be formed on the surface of the workpiece 12.
When B powder 2 or Si powder 3 was not mixed in the electrode 11, pores were formed in the formed film, and it was difficult to form a dense film. By adding 2 or Si powder 3 or both to the electrode, a dense film with few pores could be formed.
This is because, if B (boron) or Si (silicon) is present in the material supplied from the electrode 11 to the work 12 side, oxygen atoms in the oxide film of the powder constituting the electrode are changed to B (boron) or When Si (silicon) becomes hot during discharge, it becomes B 2 O 3 , SiO 2 and dissolves and floats on the surface of the film, so that unnecessary oxygen atoms in the film disappear and adhesion between the powder materials is eliminated. I think it ’s better.

B(硼素)やSi(珪素)を電極中に入れない場合には、被膜中に酸素の量が高くなる。
これは、電極を構成する粉末中の酸素(酸化被膜に主に存在している)が被膜中にそのまま移行するということを示している。
電極材料が被膜になる際に酸素の量が多いと、粉末同士が互いに密着するのを妨げ、気孔を増やし、ひいては被膜強度を低下させることになる。
B(硼素)やSi(珪素)を電極中に入れると、このような現象を防ぐことができ、緻密で強固な被膜を形成することができる。
When B (boron) or Si (silicon) is not contained in the electrode, the amount of oxygen in the coating becomes high.
This indicates that oxygen in the powder constituting the electrode (mainly present in the oxide film) migrates directly into the film.
When the amount of oxygen is large when the electrode material becomes a film, the powders are prevented from adhering to each other, increasing the pores and thus decreasing the film strength.
When B (boron) or Si (silicon) is put in the electrode, such a phenomenon can be prevented, and a dense and strong film can be formed.

なお、本実施の形態では、電極材料におおよそB(硼素)が1.0〜4.5重量%、あるいは、Siが1.5〜5.0重量%程度として説明した。
これより少ないと材料中の酸素原子を除去する効果が低下し、多過ぎると材料中にB(硼素)やSi(珪素)が残り被膜強度を低下させるなどの問題が生じることが実験的にわかった。
また、B(硼素)やSi(珪素)を電極成分として加えることで、電極材料の融点を下げることができ、材料の溶融を促進する効果もある。
In the present embodiment, the electrode material is described as being about 1.0 to 4.5% by weight of B (boron) or about 1.5 to 5.0% by weight of Si.
If it is less than this, the effect of removing oxygen atoms in the material will be reduced, and if it is too much, B (boron) and Si (silicon) will remain in the material, causing problems such as reducing the film strength. It was.
Further, by adding B (boron) or Si (silicon) as an electrode component, the melting point of the electrode material can be lowered, and there is an effect of promoting the melting of the material.

本実施例では、B(硼素)やSi(珪素)を粉末として電極材料に添加する方法について述べたが、B(硼素)やSi(珪素)を粉末材料の中に合金として混入しても良い。
その場合には、B(硼素)やSi(珪素)も均一に混ざることができ、より望ましい。
In this embodiment, the method of adding B (boron) or Si (silicon) as a powder to the electrode material has been described. However, B (boron) or Si (silicon) may be mixed into the powder material as an alloy. .
In that case, B (boron) and Si (silicon) can be mixed uniformly, which is more desirable.

本実施例では、Co合金を電極として使用したが、Ni合金、Fe合金なども同じような結果が得られる材料である。
また、Co合金を用いたが、これは合金でなくとも、それぞれの成分元素の粉末を混合したものでもよい。
ただし、それぞれの粉末を混合する場合には、粉末の混合を十分に行わないと被膜の成分のばらつきの原因になるので注意が必要である。
また、本実施例では、金属のみの電極について説明したが、被膜の硬さを高めるために電極にセラミックス粉末を混合してもよい。
この場合セラミックスが多くなりすぎると、厚膜形成のところで説明したように厚膜の形成が困難になるので、所定量以下にする必要があるが、厚膜ができる条件の場合には、B(硼素)やSi(珪素)の添加により金属の緻密さを上げることで被膜の緻密さを上げることができる。
なお、上述したように、電極内に炭化しにくい材料であるCo量を増やすにしたがい厚くできるようになり、電極中におけるCo量が30体積%を超えると形成される被膜の厚さが厚くなり始め、40体積%を超えると安定して厚膜が形成しやすくなる。
In this embodiment, a Co alloy is used as an electrode, but Ni alloy, Fe alloy, and the like are materials that can obtain similar results.
Further, although a Co alloy is used, this may be a mixture of powders of the respective component elements, not an alloy.
However, when mixing the respective powders, care must be taken because it may cause variations in the components of the coating unless the powders are sufficiently mixed.
In this embodiment, the metal-only electrode has been described, but ceramic powder may be mixed with the electrode in order to increase the hardness of the coating.
In this case, if the amount of ceramics becomes too large, it becomes difficult to form a thick film as described in the thick film formation. Therefore, it is necessary to set the amount to a predetermined amount or less. By increasing the metal density by adding boron) or Si (silicon), the film density can be increased.
As described above, the thickness of the coating can be increased as the amount of Co, which is a material that is difficult to carbonize in the electrode, is increased. If the amount of Co in the electrode exceeds 30% by volume, the thickness of the coating film increases. First, if it exceeds 40% by volume, a thick film can be easily formed stably.

電極材料にSiを加える発明として、特開昭56−51543号公報があるが、これは、通常の放電加工の電極に関する発明であり、加工速度を上げることを目的としており、金属被膜を形成し、その被膜が酸化されないようにSiで脱酸素を行う本発明とは異なる分野の発明である。   Japanese Patent Application Laid-Open No. 56-51543 discloses an invention for adding Si to an electrode material. This is an invention related to an electrode for ordinary electric discharge machining, and is intended to increase the machining speed, and forms a metal film. This is an invention in a field different from the present invention in which deoxidation is performed with Si so that the film is not oxidized.

本実施の形態によれば、炭化物を作りにくい材料を40体積%以上含んだ電極に、Si、Bを加えたことで、Si、Bが放電表面処理の被膜形成時に酸素原子と結びつき被膜中の酸素を少なくすることができるので、気孔が少ない緻密で強固な金属の被膜を形成することができる。   According to the present embodiment, by adding Si and B to an electrode containing 40% by volume or more of a material that is difficult to form carbide, Si and B are combined with oxygen atoms at the time of forming the coating for the discharge surface treatment. Since oxygen can be reduced, a dense and strong metal film with few pores can be formed.

CrとCoとを混合した粉末を圧縮成形するプロセス図である。The powder mixed and cr 3 C 2 and Co is a process diagram of compression molding. 電極柱におけるCoの量と被膜厚さの関係を示す図である。It is a figure which shows the quantity of Co in an electrode pillar, and the relationship of a film thickness. 放電現象を示す図である。It is a figure which shows a discharge phenomenon. 処理時間と被膜厚さの関係を示す図である。It is a figure which shows the relationship between processing time and a film thickness. 被膜の状態を示す図である。It is a figure which shows the state of a film. 第1の発明の一実施例を示す図である。It is a figure which shows one Example of 1st invention. 第1の発明の一実施例を示す図である。It is a figure which shows one Example of 1st invention.

符号の説明Explanation of symbols

1 Co合金粉末、2 B(硼素)粉末、3 Si(珪素)粉末、4 金型の上パンチ、5 金型の下パンチ、6 金型のダイ、11 放電表面処理用電極、12 ワーク、13 加工液、14 放電表面処理用電源、15 放電のアーク柱。   1 Co alloy powder, 2 B (boron) powder, 3 Si (silicon) powder, 4 upper die punch, 5 lower die punch, 6 die die, 11 discharge surface treatment electrode, 12 workpiece, 13 Machining fluid, 14 power source for surface treatment of discharge, 15 arc column of discharge.

Claims (6)

金属粉末または金属の化合物の粉末、或いはセラミックスの粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
硼素粉末或いは珪素粉末を電極材料に添加することで、電極として、1.0〜4.5重量%の硼素、或いは1.5〜5.0重量%の珪素を含み、被膜形成に寄与する粉末粒径を3μm以下としたことを特徴とする放電表面処理用電極。
A metal powder, a metal compound powder, or a green compact obtained by compression molding a ceramic powder is used as an electrode to generate a pulsed discharge between the electrode and the workpiece in the machining fluid or in the air. In the discharge surface treatment to form a film made of a material in which the electrode material or the electrode material reacts with the discharge energy on the surface,
By adding boron powder or silicon powder to the electrode material, the electrode contains 1.0-4.5% by weight boron or 1.5-5.0% by weight silicon, and the powder particle size contributing to film formation is 3 μm or less. An electrode for discharge surface treatment.
金属合金の粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
合金成分として、1.0〜4.5重量%の硼素、或いは1.5〜5.0重量%の珪素を含み、被膜形成に寄与する粉末粒径を3μm以下としたことを特徴とする放電表面処理用電極。
Using a green compact obtained by compression molding metal alloy powder as an electrode, a pulsed discharge is generated between the electrode and the workpiece in the machining fluid or in the air, and the electrode material or electrode material is discharged on the workpiece surface by that energy. In the discharge surface treatment to form a film made of a material that reacts with energy,
An electrode for discharge surface treatment, comprising 1.0 to 4.5% by weight of boron or 1.5 to 5.0% by weight of silicon as an alloy component, and having a powder particle size contributing to film formation of 3 μm or less.
合金金属の粉末として、「Cr0〜10重量%、B1.0〜2.5重量%、Si1.5〜3.5重量%、C0.25重量%以下、Fe4重量%以下、Co1重量%以下、Cu4重量%以下、Ni残」、「Cr9〜11重量%、B1.0〜2.5重量%、Si2.0〜3.5重量%、C0.5重量%以下、Fe4重量%以下、Co1重量%以下、Ni残」、「Cr10〜15重量%、B2.0〜3.0重量%、Si3.0〜4.5重量%、C0.4〜0.7重量%、Fe5重量%以下、Co1重量%以下、Ni残」、「Cr12〜17重量%、B2.5〜4.0重量%、Si3.5〜5.0重量%、C0.4〜0.9重量%、Fe5重量%以下、Co1重量%以下、Mo4重量%以下、Cu4重量%以下、Ni残」、「Cr15〜20重量%、B3.0〜4.5重量%、Si2.0〜5.0重量%、C0.5〜1.1重量%、Fe5重量%以下、Co1重量%以下、Ni残」、「Ni10〜30重量%、Cr16〜21重量%、B1.5〜4.0重量%、Si2.0〜4.5重量%、C1.5重量%以下、Fe5重量%以下、Mo7重量%以下、W10重量%以下、Co残」、「Ni0〜15重量%、Cr19〜24重量%、B2.0〜3.0重量%、Si1.5〜3.0重量%、C1.5重量%以下、Fe5重量%以下、W4〜15重量%、Co残」、からなる合金であることを特徴とする請求項2に記載の放電表面処理用電極。 As alloy metal powder, “Cr 0 to 10 wt%, B 1.0 to 2.5 wt%, Si 1.5 to 3.5 wt%, C 0.25 wt% or less, Fe 4 wt% or less, Co 1 wt% or less, Cu 4 wt% or less , Ni residue ”,“ Cr 9 to 11 wt%, B 1.0 to 2.5 wt%, Si 2.0 to 3.5 wt%, C 0.5 wt% or less, Fe 4 wt% or less, Co 1 wt% or less, Ni residue ”,“ Cr 10 to 15% by weight, B 2.0 to 3.0% by weight, Si 3.0 to 4.5% by weight, C 0.4 to 0.7% by weight, Fe 5% by weight or less, Co 1% by weight or less, Ni remaining ”,“ Cr 12 to 17% by weight B2.5-4.0 wt%, Si3.5-5.0 wt%, C0.4-0.9 wt%, Fe5 wt% or less, Co1 wt% or less, Mo4 wt% or less, Cu4 wt% or less, Ni residue "," Cr 15-20 wt%, B 3.0-4.5 wt%, Si 2.0-5.0 wt%, C 0.5-1.1 wt%, Fe 5 wt% or less, Co 1 wt% or less, Ni remaining ”,“ Ni 10-30 wt% , Cr16-21% by weight, B1.5-4.0 wt%, Si2.0-4.5 wt%, C1.5 wt% or less, Fe5 wt% or less, Mo7 wt% or less, W10 wt% or less, Co residue "," Ni0-15 wt%, Cr19 24 wt%, B 2.0-3.0 wt%, Si 1.5-3.0 wt%, C 1.5 wt% or less, Fe 5 wt% or less, W 4-15 wt%, Co residue ”. The electrode for discharge surface treatment according to claim 2, wherein the electrode is for surface treatment. 電極材料或いは合金成分としてCo、Ni、Feの何れかを30体積%含有させたことを特徴とする請求項1〜3に記載の放電表面処理用電極。 The discharge surface treatment electrode according to claim 1, wherein 30% by volume of Co, Ni, or Fe is contained as an electrode material or an alloy component. 金属粉末または金属の化合物の粉末、或いはセラミックスの粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
硼素粉末或いは珪素粉末を電極材料に添加することで、電極として、1.0〜4.5重量%の硼素、或いは1.5〜5.0重量%の珪素を含み、被膜形成に寄与する粉末粒径を3μm以下とした圧紛体電極を用いて被膜形成を行うことを特徴とする放電表面処理方法。
A metal powder, a metal compound powder, or a green compact obtained by compression molding a ceramic powder is used as an electrode to generate a pulsed discharge between the electrode and the workpiece in the machining fluid or in the air. In the discharge surface treatment to form a film made of a material in which the electrode material or the electrode material reacts with the discharge energy on the surface,
By adding boron powder or silicon powder to the electrode material, the electrode contains 1.0 to 4.5% by weight boron or 1.5 to 5.0% by weight silicon, and the powder particle size contributing to film formation is 3 μm or less. A discharge surface treatment method characterized in that a film is formed using a powder electrode.
金属粉末または金属の化合物の粉末、或いはセラミックスの粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギにより、ワーク表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理において、
1.0〜4.5重量%の硼素、或いは1.5〜5.0重量%の珪素を含み、被膜形成に寄与する粉末粒径を3μm以下とした合金粉末を圧縮形成した圧紛体電極を用いて被膜形成を行うことを特徴とする放電表面処理方法。
A metal powder, a metal compound powder, or a green compact obtained by compression molding a ceramic powder is used as an electrode to generate a pulsed discharge between the electrode and the workpiece in the machining fluid or in the air. In the discharge surface treatment to form a film made of a material in which the electrode material or the electrode material reacts with the discharge energy on the surface,
The film formation is carried out using a powder electrode formed by compression-forming an alloy powder containing 1.0 to 4.5% by weight of boron or 1.5 to 5.0% by weight of silicon and having a powder particle size of 3 μm or less that contributes to film formation. A discharge surface treatment method.
JP2004020624A 2004-01-29 2004-01-29 Discharge surface treatment electrode and discharge surface treatment method Expired - Fee Related JP4608220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020624A JP4608220B2 (en) 2004-01-29 2004-01-29 Discharge surface treatment electrode and discharge surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020624A JP4608220B2 (en) 2004-01-29 2004-01-29 Discharge surface treatment electrode and discharge surface treatment method

Publications (2)

Publication Number Publication Date
JP2005213555A JP2005213555A (en) 2005-08-11
JP4608220B2 true JP4608220B2 (en) 2011-01-12

Family

ID=34904488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020624A Expired - Fee Related JP4608220B2 (en) 2004-01-29 2004-01-29 Discharge surface treatment electrode and discharge surface treatment method

Country Status (1)

Country Link
JP (1) JP4608220B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797051B2 (en) * 2008-09-29 2011-10-19 株式会社ツガミ Collet chuck
JP2010082702A (en) * 2008-09-29 2010-04-15 Tsugami Corp Guide bush
JP5177121B2 (en) * 2009-11-11 2013-04-03 三菱電機株式会社 Repair method of machine parts
JP5240168B2 (en) * 2009-11-11 2013-07-17 三菱電機株式会社 Steam turbine, steam turbine surface layer forming method, and steam turbine surface layer repairing method
DE112010005590B4 (en) 2010-05-26 2022-10-27 Mitsubishi Electric Corp. Electrode for electrical discharge surface treatment and electrical discharge surface treatment coating
WO2013076761A1 (en) * 2011-11-22 2013-05-30 三菱電機株式会社 Electrode for discharge surface treatment and method for producing electrode for discharge surface treatment

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243736A (en) * 1975-10-03 1977-04-06 Nippon Kokan Kk Metallization coating method and metallization coating alloy
JPS5378910A (en) * 1976-12-24 1978-07-12 Inoue Japax Res Inc Electrode for spark covering
JPS62243779A (en) * 1986-04-15 1987-10-24 Inoue Japax Res Inc Electrode material for coating
JPS6357789A (en) * 1986-08-26 1988-03-12 Nippon Steel Corp Sink roll for salt bath
JPH01230759A (en) * 1987-12-29 1989-09-14 Showa Denko Kk Composite powder for thermal spraying
JPH04325668A (en) * 1991-04-25 1992-11-16 Tocalo Co Ltd Formation of self-fluxing alloy sprayed deposit
JPH0633261A (en) * 1992-07-15 1994-02-08 Toyo Kohan Co Ltd Electro-discharge coated composite body
JPH07197275A (en) * 1993-12-31 1995-08-01 Res Dev Corp Of Japan Surface treating method of metallic material by submerged discharge
JPH09108834A (en) * 1995-10-16 1997-04-28 Techno Kooto Kk Coating or cladding by welding method to metallic member
JPH09192937A (en) * 1996-01-17 1997-07-29 Res Dev Corp Of Japan Surface treating method by submerged electric discharge
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
WO2000029159A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
JP2001279465A (en) * 2000-03-29 2001-10-10 Mitsubishi Electric Corp Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243736A (en) * 1975-10-03 1977-04-06 Nippon Kokan Kk Metallization coating method and metallization coating alloy
JPS5378910A (en) * 1976-12-24 1978-07-12 Inoue Japax Res Inc Electrode for spark covering
JPS62243779A (en) * 1986-04-15 1987-10-24 Inoue Japax Res Inc Electrode material for coating
JPS6357789A (en) * 1986-08-26 1988-03-12 Nippon Steel Corp Sink roll for salt bath
JPH01230759A (en) * 1987-12-29 1989-09-14 Showa Denko Kk Composite powder for thermal spraying
JPH04325668A (en) * 1991-04-25 1992-11-16 Tocalo Co Ltd Formation of self-fluxing alloy sprayed deposit
JPH0633261A (en) * 1992-07-15 1994-02-08 Toyo Kohan Co Ltd Electro-discharge coated composite body
JPH07197275A (en) * 1993-12-31 1995-08-01 Res Dev Corp Of Japan Surface treating method of metallic material by submerged discharge
JPH09108834A (en) * 1995-10-16 1997-04-28 Techno Kooto Kk Coating or cladding by welding method to metallic member
JPH09192937A (en) * 1996-01-17 1997-07-29 Res Dev Corp Of Japan Surface treating method by submerged electric discharge
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
WO2000029159A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
JP2001279465A (en) * 2000-03-29 2001-10-10 Mitsubishi Electric Corp Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film

Also Published As

Publication number Publication date
JP2005213555A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US8658005B2 (en) Electrical-discharge surface-treatment method
US7834291B2 (en) Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
JP4608220B2 (en) Discharge surface treatment electrode and discharge surface treatment method
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
JP4450812B2 (en) Discharge surface treatment method
JP4895477B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
JPWO2007060729A1 (en) Discharge surface treatment method and discharge surface treatment apparatus
JP4504691B2 (en) Turbine parts and gas turbines
JP4332637B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees