JP4601838B2 - 燃焼度評価方法および装置 - Google Patents

燃焼度評価方法および装置 Download PDF

Info

Publication number
JP4601838B2
JP4601838B2 JP2001031753A JP2001031753A JP4601838B2 JP 4601838 B2 JP4601838 B2 JP 4601838B2 JP 2001031753 A JP2001031753 A JP 2001031753A JP 2001031753 A JP2001031753 A JP 2001031753A JP 4601838 B2 JP4601838 B2 JP 4601838B2
Authority
JP
Japan
Prior art keywords
neutron
detector
count rate
fuel assembly
gamma ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031753A
Other languages
English (en)
Other versions
JP2002236194A (ja
Inventor
研一 吉岡
精 植田
偉司 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001031753A priority Critical patent/JP4601838B2/ja
Publication of JP2002236194A publication Critical patent/JP2002236194A/ja
Application granted granted Critical
Publication of JP4601838B2 publication Critical patent/JP4601838B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所等の原子炉から発生する使用済み燃料の燃焼度測定方法および装置に関し、特に、大型の装置を設置することが困難な、発電所等の燃料プール内において、簡易かつ非破壊的に燃焼度を測定する方法および装置に関する。
【0002】
【従来の技術】
原子力炉で照射された使用済み燃料集合体は、燃料プール水中で一定の期間保管し、半減期の比較的短い放射能を減衰させた後に、再処理施設や長期貯蔵施設へ輸送される。
【0003】
貯蔵や輸送に先立って、使用済み燃料集合体の臨界安全性を確保するために、燃焼度や蓄積している核***性物質濃度などのいわゆる燃焼パラメータを評価する必要がある。そのために、燃料再処理施設には燃焼度測定装置が設置されている。この燃焼度測定装置は施設の設計段階から取り入れているため、大がかりなものとなっている。
【0004】
【発明が解決しようとする課題】
燃焼度測定方法としては、使用済み燃料の中に蓄積している核***生成物、特にセシウム(Cs137やCs134)から放出されるガンマ線を選択的に測定するガンマ線スペクトル測定法と、使用済み燃料の中に蓄積している超ウラン元素のキュリウム等から放出されている中性子を測定する中性子測定法が測定原理の大きな柱となっている。
【0005】
ところで、近年では原子力発電所から使用済み燃料を送り出す際に、測定精度は多少劣ってもよいから、既存発電所のプールに簡単に設置して使用できる小型の燃焼度計測装置の開発が期待されている。小型の燃焼度計測装置としては、中性子検出器としては原子炉、再処理施設等の強ガンマ線場での使用実績の高い、小型の核***計数管またはB(ボロン)10検出器が挙げられ、またガンマ線検出器としてカドミテルル(CdTe)半導体検出器、冷却装置分離型高純度ゲルマニウム(Hp-Ge)検出器、シンチレータ検出器等を採用することが提案されている(たとえば特開平10−332873号公報参照)。
【0006】
小型検出器による燃焼度測定装置は、簡易であるが、装置自体が発電所プール中という位置決め的に不安定な場所に設置されることもあり、検出器と燃料集合体間の位置を精度良く決めることは困難である。従来、再処理施設に設置されている燃焼度測定装置では燃料集合体の両側から測定を行うことにより、測定体系の位置ずれによる計数率の誤差がキャンセルされるようになっている。発電所プール用の燃焼度測定装置では、両側からの測定は装置の大型化に繋がるため好ましくない。このため、燃料集合体の片側からのみの測定を行う場合、何らかの方法で、測定体系の位置ずれを補正する必要がある。
【0007】
ガンマ線検出器によるスペクトル測定の場合、セシウム137から発生するガンマ線とセシウム134から発生するガンマ線は、燃焼度の良い指標となる。それぞれのガンマ線は1cm程度の位置ずれで10%程度の計数率変化が生じるが、セシウム137とセシウム134のガンマ線計数率比は1cm程度の位置ずれで約2%程度しか変化しないため、ガンマ線計数率比による燃焼度算出は測定体系の位置ずれの影響を低減するのに有効である。
【0008】
ところが、高分解能のHp-Ge検出器を使用すれば、Cs134とCs137を分離することができるが、Hp-Ge検出器は装置が大型であり、小型化を図るために提案されているCd-Te検出器を用いた場合、バックグラウンドガンマ線の状況によりCs134とCs137が十分分離できない可能性がある。また、計数率比をとる場合、燃焼度算出の誤差の中に、Cs137とCs134の両方の誤差を含むことになるためどちらか一方の誤差が大きい場合、燃焼度の誤差が大きくなる。
【0009】
中性子測定の場合、熱中性子束がピークとなり、中性子束の変化が緩やかな、燃料集合体から2〜3cm程度の場所に中性子検出器を配置することにより、位置決め誤差を低減することができるが、1cm程度のずれで3〜5%程度の計数率変化が生じ、燃焼度算出の際の誤差になる可能性がある。
燃料集合体−検出器間の距離の測定を機械的に行う方法が考えられるが、作業の煩雑さから、実際的ではない。
【0010】
本発明は、上述した事情を考慮してなされたもので、その目的は、測定時の位置ずれを補正し、燃料集合体の片側からのみの測定でも、精度よく燃焼度データを得ることができる使用済み燃料集合体の燃焼度評価方法および評価装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するものであるが、まずその原理を説明する。
燃料集合体から発生する中性子のエネルギーは燃焼度によらず一定である。また、水中の中性子の減速曲線も水密度が変化しなければ、一定である。したがって、二つの検出器の計数率比は燃料集合体−検出器間の距離のみに依存する。熱中性子の減速曲線は、通常、燃料集合体から2〜3cmの位置でピークとなり、以降は指数関数的に減少する。
【0012】
ピーク位置と指数関数的に減少している位置にそれぞれ中性子検出器を配置すると、ピーク位置の計数率は距離による変化が小さく、指数関数的に減少している位置の計数率は距離による変化が大きい。したがって各中性子検出器の計数率比は距離により大きく変化し、この計数率比と距離の関係を予め求めておくことにより、上記計数率比から距離を算出することが可能である。燃料集合体−中性子検出器間の距離から検出効率を算出すれば、検出器位置ずれによる中性子計数率の変化を補正できる。
【0013】
二つの中性子検出器を燃料集合体と異なる距離に配置し、それぞれの計数率の比から、距離を算出することが可能である。前述のように、たとえば燃料集合体から2〜3cmの位置では熱中性子束の変化は緩やかで、1cmで3〜5%程度の変化である。これに対し、燃料集合体からたとえば10cm程度の位置では、熱中性子束の変化は著しく1cmで15%程度変化する。
【0014】
ここで二つの検出器が相互に機械的に固定されて一つの検出器群をなしている場合、二つの検出器の相互距離は変化せず、燃料集合体と中性子検出器群の位置ずれのみが誤差の原因となる。上記のように燃料集合体と中性子検出器の距離がたとえば2〜3cm程度の位置と、10cm程度の位置に置いた二つの検出器の計数率比は位置に敏感で、1cm程度のずれで、10%以上の変化をする。通常、中性子検出時の測定精度は3%以下と考えられるので、3mm以内の精度で位置ずれを補正できることになる。
【0015】
上記計数率比は燃料集合体の中性子強度に依存せず、燃料集合体と検出器間の水の密度のみに依存する。燃料プールの水温はほぼ一定に保たれているため、燃料集合体−検出器群間距離と計数率比の関係を予め計算または実験により求めておけば、上記中性子計数率比より中性子検出器群と燃料集合体間の距離を算出することができ、算出された距離を基に位置ずれを補正することができる。
【0016】
また、従来の燃焼度測定装置においては、燃焼度既知の校正用使用済み燃料を用いて、検出器の校正を行っているが、発電所プールで燃焼度測定装置を使用する場合、常に校正用使用済み燃料を燃料プール中に置いておくのは困難である。中性子検出器と燃料集合体間の距離と中性子検出効率の関係を予め求めておけば、校正用使用済み燃料なしでも使用済み燃料の中性子放出率の絶対値を得ることができる。
【0017】
請求項1の発明は、上記原理によって上記発明の目的を達成するものであって、原子炉で照射された後に水中に置かれた燃料集合体から放射される中性子を検出して、その中性子計数率に基づいて、前記燃料集合体の燃焼度を評価する方法において、前記燃料集合体からの距離の差が一定になるように相互に固定された第1および第2の中性子検出器を有する中性子検出器群を前記燃料集合体近傍の水中に配置して、前記第1と第2の中性子検出器から得られるそれぞれの中性子計数率を測定する中性子測定ステップと、前記中性子測定ステップで得られた中性子計数率の比を求める比計算ステップと、前記燃料集合体と同等の放射能物体について前記第1および第2の中性子検出器の計数率比と前記第1の中性子検出器の検出効率との関係を表す第1の関数を設定する第1の関数設定ステップと、前記第1の関数に基づいて、前記比計算ステップで求めた中性子計数率の比を前記第1の中性子検出器の検出効率に換算する第1の換算ステップと、前記中性子測定ステップで得られた前記第1の中性子検出器の計数率と前記第1の換算ステップで得られた前記第1の中性子検出器の検出効率とに基づいて、前記第1の中性子検出器の計数率の位置ずれ補正を行う中性子計数率補正ステップと、前記中性子計数率補正ステップで補正された前記第1の中性子検出器の計数率に基づいて、前記燃料集合体の燃焼度を評価するステップと、を有すること、を特徴とする燃焼度評価方法である。
【0018】
このように、請求項1の発明によれば、燃料集合体と中性子検出器の位置ずれを補正することができ、中性子検出器より得られる計数率から算出される推定燃焼度の精度を向上させることができる。
【0019】
次に請求項2の発明は、前記中性子検出器群との相対位置関係が固定されたガンマ線検出器を前記燃料集合体近傍の水中に配置してガンマ線計数率を測定するガンマ線測定ステップと、前記燃料集合体と同等の放射能物体について前記第1および第2の中性子検出器の計数率比と前記ガンマ線検出器の検出効率との関係を表す第2の関数を設定する第2の関数設定ステップと、前記第2の関数に基づいて、前記比計算ステップで求めた中性子計数率の比を前記ガンマ線検出器の検出効率に換算する第2の換算ステップと、前記ガンマ線測定ステップで得られたガンマ線検出器の計数率と前記第2の換算ステップで得られた前記ガンマ線検出器の検出効率とに基づいて、前記ガンマ線検出器の計数率の位置ずれ補正を行うガンマ線計数率補正ステップと、をさらに有すること、を特徴とする請求項1の燃焼度評価方法である。
【0020】
この請求項2の発明によれば、中性子測定と同時にガンマ線測定を行うことにより、より信頼性の高い燃焼度データを得ることができ、ガンマ線計数率に対しても中性子検出器の計数率比より得られる位置ずれ補正を行うことにより、燃焼度の精度向上を図ることができる。
【0021】
次に請求項3の発明は、前記燃料集合体と同等の放射能物体は計算上のものであって、前記関数をモンテカルロ計算により求めること、を特徴とする請求項1または2の燃焼度評価方法である。
【0022】
この請求項3の発明によれば、検出器−燃料集合体間の距離と計数率比の関係を、モンテカルロ計算によって予め計算することができる。モンテカルロ計算は、複雑な体系の中性子ガンマ線輸送計算を精度良く計算することができる。たとえば、距離をパラメータにして数ケースのガンマ線輸送計算を行い、各ケースの検出効率を内挿することにより、距離−検出効率曲線を得ることが可能である。
【0023】
次に請求項4の発明は、前記燃料集合体と同等の放射能物体は模擬燃料集合体であって、前記関数を実験により求めることを特徴とする請求項1または2の燃焼度評価方法である。
【0024】
この請求項4の発明によれば、検出効率を実験的に求めることができる。たとえば、水中に標準線源を使った模擬燃料を配置し、線源−検出器間の距離を変えながら、計数率の変化を測定する。たとえば、各測定点で得られた検出効率を内挿することにより、距離−検出効率曲線を得ることが可能である。
【0025】
次に請求項5の発明は、前記中性子測定ステップならびに前記関数設定ステップは、前記第1および第2の中性子検出器の内の一方の中性子検出器を、前記比計算ステップで得た中性子計数率の比に基づいて決定される熱中性子束極大位置の付近に置き、もう一方の中性子検出器を前記一方の中性子検出器よりも前記燃料集合体から遠い位置に置いた状態で行うこと、を特徴とする請求項1ないし4のいずれかの燃焼度評価方法である。
【0026】
この請求項5の発明によれば、中性子検出器−燃料集合体間の距離と計数率比の関係から、予め模擬集合体を用いた実験あるいはモンテカルロ計算等により、熱中性子束がピークとなるときの計数率比を求めておけば、計数率比より熱中性子束ピーク位置を決定できる。
【0027】
次に請求項6の発明は、原子炉で照射された後に水中に置かれた燃料集合体から放射される中性子を検出して、その中性子計数率に基づいて、前記燃料集合体の燃焼度を評価する装置において、前記燃料集合体からの距離の差が一定になるように相互に固定された第1および第2の中性子検出器を有する中性子検出器群と、その中性子検出器群を前記燃料集合体近傍の水中に配置する手段と、前記第1と第2の中性子検出器から得られる中性子計数率の比を求める手段と、前記燃料集合体と同等の放射能物体について前記第1と第2の中性子検出器の計数率比と前記第1の中性子検出器の検出効率の関係を表す関数を記憶する手段と、前記記憶された関数に基づいて、前記求めた中性子計数率の比を前記第1の中性子検出器の検出効率に換算する手段と、前記第1の中性子検出器の計数率と前記第1の中性子検出器の検出効率とに基づいて、前記第1の中性子検出器の計数率の位置ずれ補正を行う手段と、前記位置ずれ補正後の前記第1の中性子検出器の計数率に基づいて、前記燃料集合体の燃焼度を評価する手段と、を有することを特徴とする燃焼度評価装置である。
【0028】
この請求項6の発明によれば、燃料集合体と中性子検出器の位置ずれを補正することができ、中性子検出器より得られる計数率から算出される推定燃焼度の精度を向上させることができる。
【0029】
次に請求項7の発明は、前記中性子検出器群にはガンマ線検出器が固定され、このガンマ線検出器から得られる計数率と前記中性子計数率の比とに基づいて前記ガンマ線検出器の計数率の位置ずれ補正を行う手段をさらに有すること、を特徴とする請求項6の燃焼度評価装置である。
【0030】
この請求項7の発明によれば、中性子測定と同時にガンマ線測定を行うことにより、より信頼性の高い燃焼度データを得ることができる。ガンマ線計数率に対しても、中性子検出器の計数率比より得られる位置ずれ補正を行うことにより、燃焼度の精度向上を図ることができる。
【0031】
次に請求項8の発明は、前記ガンマ線検出器はCdTe半導体検出器であって、このCdTe半導体検出器の周囲にはシンチレータ検出器が配置され、これらのCdTe半導体検出器とシンチレータ検出器の信号を非同時計数することによりコンプトン散乱によるバックグラウンドガンマ線を低減する手段を有すること、を特徴とする請求項7の燃焼度評価装置である。
【0032】
この請求項8の発明によれば、CdTe検出器は素子を小さくできるため、たとえば600〜800keV程度の高エネルギーのガンマ線においてはコンプトン散乱を起こしたガンマ線が素子から抜け出る確率が高くなり、バックグラウンドガンマ線が増加する。たとえば、CdTe検出器にのみガンマ線が入射するようにコリメートし、コンプトン散乱を起こして検出器外に抜け出たガンマ線のみをシンチレータ検出器で検出する。シンチレータ検出器の信号とCdTe検出器の信号をアンチコインシデンス(非同時測定)することにより、コンプトン散乱によるバックグラウンドガンマ線を抑制できる。
【0033】
次に請求項9の発明は、前記中性子検出器群を前記燃料集合体近傍の水中に配置する手段は、前記第1および第2の内の一方の中性子検出器を、熱中性子束が極大となる位置の付近に置き、もう一方の中性子検出器を前記一方の中性子検出器よりも前記燃料集合体から遠い位置に置く手段を含むこと、を特徴とする請求項6ないし8のいずれかの燃焼度評価装置である。
【0034】
この請求項9の発明によれば、中性子検出器−燃料集合体間の距離と計数率比の関係から、予め模擬集合体を用いた実験あるいはモンテカルロ計算等により、熱中性子束がピークとなるときの計数率比を求めておけば、計数率比より熱中性子束ピーク位置を決定できる。
【0035】
【発明の実施の形態】
本発明に関わる燃焼度測定方法および装置の一実施の形態について、添付図面を参照して説明する。
図1は本発明の一実施形態としての基本的構成例を示した図である。図1に示すように、燃料プール壁1に仮置された燃料集合体2に対し、簡易燃焼度測定装置(中性子検出器群)5を配置する。簡易燃焼度測定装置5は第1の中性子検出器3と第2の中性子検出器4を内蔵しており、支持具7で燃料プール上から吊り下げられている。第1の中性子検出器3は燃料集合体2からの熱中性子束が最も高くなる位置、すなわち燃料集合体から約2〜3cmの位置に設定され、第2の中性子検出器4は第1の中性子検出器3よりさらに数cm〜十数cmの距離をとって設置される。
【0036】
第1の中性子検出器3と第2の中性子検出器4は、燃料集合体2の側面に対して垂直に並ぶように配置されており、また、燃料集合体2および簡易燃焼度測定装置5は燃料プールの水中に配置されている。
【0037】
中性子検出器3、4からの信号は信号ケーブル6を通して、地上の測定回路8へ伝送される。中性子検出器3、4としてはバックグラウンドガンマ線に対する感度が小さい、核***計数管またはボロン‐10検出器が適している。
【0038】
燃料集合体2の周辺は強ガンマ線バックグラウンド場であり、He-3中性子検出器、BF3中性子検出器ではガンマ線によるノイズが大きく、また、検出器中のガスが放射線分解を起こし感度が劣化する。核***計数管またはボロン‐10検出器はガンマ線に対する感度が低く、バックグラウンドガンマ線の影響を低減させた燃料集合体2からの中性子検出に適している。特にガンマ線の影響を強く受ける燃料集合体2に近い検出器には、よりガンマ線に対する感度の低い核***計数管が適している。
【0039】
図2は、燃料集合体2の表面からの距離と中性子計数率の一般的関係を示したものである。中性子計数率は、表面からの距離の増大に伴い、最初増加傾向を示し、最大値に達した後に、減少する。最大値付近は比較的平坦であって、表面からの距離による中性子計数率の変化が小さい。この付近に第1の中性子検出器3を配置する。これに対し、平坦部を過ぎた減少部分はほぼ指数関数的に中性子計数率が減少する。この位置に第2の中性子検出器4を配置する。
【0040】
図3(a)は、第2の中性子検出器4による中性子計数率bと、第1の中性子検出器3による中性子計数率aとの比を、燃料集合体−簡易燃焼度測定装置間の距離の関数として表したものである。ただし、図3は、第1の中性子検出器3を上記平坦部に配置することを前提としており、図3の横軸は図2の横軸よりも引き伸ばされている。図2で示したように、第1の中性子検出器3による中性子計数率aは距離による中性子計数率の変化が小さいのに対し、中性子計数率4による中性子計数率bは距離による中性子計数率の変化が大きい。したがって、中性子計数率b/中性子計数率aの比は燃料集合体−簡易燃焼度測定装置間の距離に大きく依存する。
【0041】
図3(b)に示すように、燃料集合体−簡易燃焼度測定装置間の距離が大きくなると中性子検出効率は減少する。図3(a)の関係を利用し、二つの中性子計数率の比から燃料集合体−簡易燃焼度測定装置間の距離を算出し、次に、図3(b)の関係から中性子検出効率を求めることにより、検出器設定時の位置ずれによる中性子検出効率の変化を補正することができ、燃焼度を精度よく求めることができる。
【0042】
一例として、計数率比Aが求められた場合、図3(a)より距離Bが求められ、図3(b)より距離Bから中性子検出効率Cが求められる。
図3(a)、(b)の曲線を求めるのは、たとえば模擬燃料集合体を用いた実験やモンテカルロ中性子輸送計算等による。
【0043】
また、燃料集合体から所定の距離に検出器を配置したい場合、すなわち、熱中性子束ピーク位置に第1の中性子検出器3を配置させるには、図3(a)の関係から、熱中性子束ピーク位置に相当する計数率比になるように、中性子検出器群5を配置すれば良い。
【0044】
なお、以上の説明では、図3(a)、(b)の2本の曲線(二つの関数)によって、計数率比Aから燃料集合体−簡易燃焼度測定装置間の距離Bを求めた上で中性子検出効率Cを求める方法を示した。しかし、予め計数率比と中性子検出効率の関係を表す一つの関数(曲線)を用意しておくことによって、計数率比Aから中性子検出効率Cを求めることも可能である(図示せず)。
【0045】
図4は、中性子計数率bと中性子計数率aの比から位置ずれによる中性子検出効率の変化を補正するフローチャートを示している。これについて以下に説明する。
【0046】
まず、第1の中性子検出器3によって中性子計数率aを得る(ステップS1)と同時に、第2の中性子検出器4によって中性子計数率bを得る(ステップS2)。次に、計数率比=中性子計数率b/中性子計数率aを求める(ステップS3)。
【0047】
上記ステップS1〜S3とは別に、模擬実験を行って、計数率比と中性子検出効率との関係を表す関数を求めておく(ステップS4)。次に、ステップS4で得た関数に基づいて、ステップS3で求めた計数率比を、第1の中性子検出器3の中性子検出効率に換算する(ステップS5)。
【0048】
次に、ステップS1で得られた第1の中性子検出器3の中性子計数率aとステップS5で得られた第1の中性子検出器3の中性子検出効率とに基づいて、第1の中性子検出器3の計数率の位置ずれ補正を行う(ステップS6) 。
【0049】
このフローチャートでは、上述のように、計数率比−中性子検出効率曲線は予め実施された模擬実験により決定する(ステップS4)。
【0050】
図5に示したフローチャートは、図4とほぼ同様であるが、計数率比−中性子検出効率曲線を求めるに当たり、模擬実験の代わりに、モンテカルロ法による中性子輸送計算を行う(ステップS7)。モンテカルロ計算は3次元形状および中性子、ガンマ線の散乱を厳密に取り扱うことができ、複雑な測定体系でも精度良い計算結果を得ることができる。
【0051】
図6は、中性子検出器群5とガンマ線検出器9を併用した簡易燃焼度測定装置を示している。測定原理の異なる二つの方法で燃焼度測定を行うことにより、燃焼度推定値の信頼性を向上させることができる。ガンマ線検出器9としては小型で燃焼度推定に十分なエネルギー分解能を持つカドミウムテルライド(CdTe)検出器が適している。ガンマ線検出器9により検出された信号は前置増幅器10で増幅され、中性子検出器と同様に信号ケーブル6を通して測定回路8へ伝送される。
【0052】
CdTe検出器は、Ge検出器よりエネルギー分解能は劣るが、冷却の必要がなく、装置の小型化を図ることができる。測定精度は低下するが、Ge検出器の設置の不可能な場所にも設置が可能である。
【0053】
図7は、CdTe検出器9のコンプトン散乱成分を低減する装置を示している。図7に示した検出器容器11は容器の縦断面を示している。検出器容器11内の中央に配置されたCdTe検出器9の周囲に円筒状のシンチレータ検出器14を配置し、シンチレータ検出器14の周囲にはガンマ線遮蔽材15を配置している。
【0054】
燃焼度を測定する場合、Cs137による662keVのガンマ線強度を測定することが重要である。CdTe結晶の大きさは高々数cmであるので、入射したガンマ線の内、光電吸収により結晶中に全エネルギーを付与したものはガンマ線ピークとして検出することができるが、コンプトン散乱を起こしたものは、エネルギーの一部を散乱ガンマ線に与え、結晶外へ逃げてしまい、ガンマ線ピークとして検出することはできない。特に高エネルギーのガンマ線はコンプトン散乱を起こす確率が高く、662keVより高いガンマ線がコンプトン散乱を起こした場合、662keVガンマ線ピークに対して深刻なバックグラウンド要因となり、Cs137ガンマ線強度の測定精度を劣化させる。
【0055】
CdTe検出器9に入射したガンマ線12がガンマ線検出器9でコンプトン散乱を起こした場合、散乱線13は周囲に逃げる。この散乱線をシンチレータ検出器14で検出する。シンチレータ検出器14はCdTe検出器9に比べエネルギー分解能は劣るが、検出効率は高い。シンチレータ検出器14の周囲には検出器容器11の外側からのガンマ線を遮蔽するためにガンマ線遮蔽材15を配置する。ガンマ線遮蔽材としては鉛、タングステンが代表的である。
【0056】
シンチレータ検出器14による信号は光ケーブル16により光電子増倍管17を通して信号ケーブル20に伝送される。一方、CdTe検出器9による信号は前置増幅器10、信号ケーブル8を通して伝送される。
【0057】
CdTe検出器9の信号とシンチレータ検出器14による信号は非同時計数回路18に入力する。ここで、非同時計数回路18に入力される双方の信号がほぼ同時に起こったのであれば、コンプトン散乱であるため、この信号は除外することができ、Cs137ガンマ線ピークの測定精度を向上させることができる。非同時計数回路18からの信号について、マルチチャンネルアナライザ19でガンマ線スペクトル解析をすることにより、Cs137ガンマ線計数率を決定する。
【0058】
図8は、中性子検出器3、4とガンマ線検出器9を併用した場合のフローチャートを示す。図8は、図4のフローチャートと比べて、中性子計数率aおよびbに基づいて位置ずれ補正後の中性子計数率を求める部分(ステップS1〜S6)は同じである。ただし、ここでは、図1に示す中性子検出器群5の代わりに、図6に示す中性子検出器群5とガンマ線検出器9とを検出器容器11に入れて一体に組み合わせた検出器を用いる。
【0059】
図8で、ガンマ線検出器9によってガンマ線計数率を測定する(ステップS20)。また、これとは別に、ステップ4と同様に、模擬実験を行って、計数率比とガンマ線検出効率との関係を表す関数を求めておく(ステップS21)。このステップS21で、計数率比は、ステップ3の場合と同様にb/aで定義される。次に、ステップS21で得た関数に基づいて、ステップS3で求めた計数率比をガンマ線検出効率に換算する(ステップS22)。
【0060】
次に、ステップS20で得られたガンマ線計数率とステップS22で得られたガンマ線検出効率とに基づいて、ガンマ線計数率の位置ずれ補正を行う(ステップS23)。
【0061】
図9は、図8と同様に中性子検出器とガンマ線検出器を併用した場合のフローチャートを示しているが、計数率比−ガンマ線検出効率曲線は、模擬実験によることなく、モンテカルロガンマ線輸送計算により求める(ステップS26)。
【0062】
上述のように、中性子とガンマ線は応答が異なるため、中性子輸送モンテカルロ計算とガンマ線輸送モンテカルロ計算をそれぞれ行い、図3(b)に対応する燃料集合体−簡易燃焼度測定装置間の距離とガンマ線計数効率の関係を求める。
【0063】
なお、図8の実施の形態では二つの模擬実験を採用しており、図9の実施の形態では二つのモンテカルロ輸送計算を採用している。これらの折衷案、すなわち、一方を模擬実験として他方をモンテカルロ輸送計算とすることも可能である(図示せず)。
【0064】
図10は、装置を水中に固定する場合に重心を安定させる方法を示している。測定装置の前方にコリメータの設置やアブソーバの追加を行う場合、重心位置がずれ、測定装置が前方に傾く、この重心位置のずれを補正するために、後部に重り21を設置する。この重り21は支持具7からの距離を変化させる距離調整装置22に接合されており、測定装置が前方に傾いた場合、重り21を支持具7から遠ざけることにより、測定位置を水平に保つことができる。
【0065】
一般に検出器容器を燃料プールの上部から吊り下げる場合、遮蔽体や検出器を交換すると重心位置がずれ、容器を水平に保てなくなり、測定対象位置のガンマ線を測定することが困難となることが考えられる。この実施の形態によれば、重心位置のずれを補正し、検出器容器の水平を容易に保つことが可能となる。
【0066】
【発明の効果】
以上説明したように、本発明によれば、燃料集合体に対し異なる距離に配置した、2個の中性子検出器から得られる計数率比から燃料集合体と中性子検出器の位置ずれを補正することができ、中性子検出器より得られる計数率から算出される推定燃焼度の精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る燃焼度測定装置の一実施形態の模式的構成図。
【図2】燃料集合体表面から中性子検出器までの距離と中性子計数率の関係を模式的に示すグラフ。
【図3】図3(a)は、中性子計数率bと中性子計数率aの比を燃料集合体−簡易燃焼度測定装置間の距離の関数として表したグラフ。
図3(b)は、中性子検出効率を燃料集合体−簡易燃焼度測定装置間の距離の関数として表したグラフ。
【図4】本発明に係る燃焼度測定方法の一実施形態を示すフローチャート(模擬実験を用いる場合)。
【図5】本発明に係る燃焼度測定方法の一実施形態を示すフローチャート(モンテカルロ計算を用いる場合)。
【図6】中性子検出器とガンマ線検出器を併用した場合の本発明に係る燃焼度測定装置の一実施形態の模式的構成図。
【図7】本発明に係るCdTe検出器のコンプトン散乱成分を低減する装置の一実施形態の概念的構成図。
【図8】中性子検出器とガンマ線検出器を併用した場合の本発明に係る燃焼度測定方法の一実施形態を示すフローチャート(模擬実験を用いる場合)。
【図9】中性子検出器とガンマ線検出器を併用した場合の本発明に係る燃焼度測定方法の一実施形態を示すフローチャート(モンテカルロ計算を用いる場合)。
【図10】本発明に係る燃焼度測定方法および装置の一実施形態において用いられる重心を安定させる装置を示した概念的構成図。
【符号の説明】
1…燃料プール壁、2…燃料集合体、3…第1の中性子検出器、4…第2の中性子検出器、5…簡易燃焼度測定装置(中性子検出器群)、6…信号ケーブル、7…支持具、8…測定回路、9…ガンマ線検出器(CdTe検出器)、10…前置増幅器、11…検出器容器、12…入射したガンマ線、13…散乱したガンマ線、14…シンチレータ検出器、15…ガンマ線遮蔽材、16…光ケーブル、17…光電子増倍管、18…非同時計数回路、19…マルチチャンネルアナライザ、20…信号ケーブル。

Claims (9)

  1. 原子炉で照射された後に水中に置かれた燃料集合体から放射される中性子を検出して、その中性子計数率に基づいて、前記燃料集合体の燃焼度を評価する方法において、
    前記燃料集合体からの距離の差が一定になるように相互に固定された第1および第2の中性子検出器を有する中性子検出器群を前記燃料集合体近傍の水中に配置して、前記第1と第2の中性子検出器から得られるそれぞれの中性子計数率を測定する中性子測定ステップと、
    前記中性子測定ステップで得られた中性子計数率の比を求める比計算ステップと、
    前記燃料集合体と同等の放射能物体について前記第1および第2の中性子検出器の計数率比と前記第1の中性子検出器の検出効率との関係を表す第1の関数を設定する第1の関数設定ステップと、
    前記第1の関数に基づいて、前記比計算ステップで求めた中性子計数率の比を前記第1の中性子検出器の検出効率に換算する第1の換算ステップと、
    前記中性子測定ステップで得られた前記第1の中性子検出器の計数率と前記第1の換算ステップで得られた前記第1の中性子検出器の検出効率とに基づいて、前記第1の中性子検出器の計数率の位置ずれ補正を行う中性子計数率補正ステップと、
    前記中性子計数率補正ステップで補正された前記第1の中性子検出器の計数率に基づいて、前記燃料集合体の燃焼度を評価するステップと、
    を有すること、を特徴とする燃焼度評価方法。
  2. 前記中性子検出器群との相対位置関係が固定されたガンマ線検出器を前記燃料集合体近傍の水中に配置してガンマ線計数率を測定するガンマ線測定ステップと、
    前記燃料集合体と同等の放射能物体について前記第1および第2の中性子検出器の計数率比と前記ガンマ線検出器の検出効率との関係を表す第2の関数を設定する第2の関数設定ステップと、
    前記第2の関数に基づいて、前記比計算ステップで求めた中性子計数率の比を前記ガンマ線検出器の検出効率に換算する第2の換算ステップと、
    前記ガンマ線測定ステップで得られたガンマ線検出器の計数率と前記第2の換算ステップで得られた前記ガンマ線検出器の検出効率とに基づいて、前記ガンマ線検出器の計数率の位置ずれ補正を行うガンマ線計数率補正ステップと、
    をさらに有すること、を特徴とする請求項1の燃焼度評価方法。
  3. 前記燃料集合体と同等の放射能物体は計算上のものであって、前記関数をモンテカルロ計算により求めること、を特徴とする請求項1または2の燃焼度評価方法。
  4. 前記燃料集合体と同等の放射能物体は模擬燃料集合体であって、前記関数を実験により求めることを特徴とする請求項1または2の燃焼度評価方法。
  5. 前記中性子測定ステップならびに前記関数設定ステップは、前記第1および第2の中性子検出器の内の一方の中性子検出器を、前記比計算ステップで得た中性子計数率の比に基づいて決定される熱中性子束極大位置の付近に置き、もう一方の中性子検出器を前記一方の中性子検出器よりも前記燃料集合体から遠い位置に置いた状態で行うこと、を特徴とする請求項1ないし4のいずれかの燃焼度評価方法。
  6. 原子炉で照射された後に水中に置かれた燃料集合体から放射される中性子を検出して、その中性子計数率に基づいて、前記燃料集合体の燃焼度を評価する装置において、
    前記燃料集合体からの距離の差が一定になるように相互に固定された第1および第2の中性子検出器を有する中性子検出器群と、
    その中性子検出器群を前記燃料集合体近傍の水中に配置する手段と、
    前記第1と第2の中性子検出器から得られる中性子計数率の比を求める手段と、
    前記燃料集合体と同等の放射能物体について前記第1と第2の中性子検出器の計数率比と前記第1の中性子検出器の検出効率の関係を表す関数を記憶する手段と、
    前記記憶された関数に基づいて、前記求めた中性子計数率の比を前記第1の中性子検出器の検出効率に換算する手段と、
    前記第1の中性子検出器の計数率と前記第1の中性子検出器の検出効率とに基づいて、前記第1の中性子検出器の計数率の位置ずれ補正を行う手段と、
    前記位置ずれ補正後の前記第1の中性子検出器の計数率に基づいて、前記燃料集合体の燃焼度を評価する手段と、
    を有することを特徴とする燃焼度評価装置。
  7. 前記中性子検出器群にはガンマ線検出器が固定され、このガンマ線検出器から得られる計数率と前記中性子計数率の比とに基づいて前記ガンマ線検出器の計数率の位置ずれ補正を行う手段をさらに有すること、を特徴とする請求項6の燃焼度評価装置。
  8. 前記ガンマ線検出器はCdTe半導体検出器であって、このCdTe半導体検出器の周囲にはシンチレータ検出器が配置され、これらのCdTe半導体検出器とシンチレータ検出器の信号を非同時計数することによりコンプトン散乱によるバックグラウンドガンマ線を低減する手段を有すること、を特徴とする請求項7の燃焼度評価装置。
  9. 前記中性子検出器群を前記燃料集合体近傍の水中に配置する手段は、前記第1および第2の内の一方の中性子検出器を、熱中性子束が極大となる位置の付近に置き、もう一方の中性子検出器を前記一方の中性子検出器よりも前記燃料集合体から遠い位置に置く手段を含むこと、を特徴とする請求項6ないし8のいずれかの燃焼度評価装置。
JP2001031753A 2001-02-08 2001-02-08 燃焼度評価方法および装置 Expired - Fee Related JP4601838B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031753A JP4601838B2 (ja) 2001-02-08 2001-02-08 燃焼度評価方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031753A JP4601838B2 (ja) 2001-02-08 2001-02-08 燃焼度評価方法および装置

Publications (2)

Publication Number Publication Date
JP2002236194A JP2002236194A (ja) 2002-08-23
JP4601838B2 true JP4601838B2 (ja) 2010-12-22

Family

ID=18895789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031753A Expired - Fee Related JP4601838B2 (ja) 2001-02-08 2001-02-08 燃焼度評価方法および装置

Country Status (1)

Country Link
JP (1) JP4601838B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11194060B2 (en) * 2018-04-09 2021-12-07 University Public Corporation Osaka Electromagnetic radiation detector and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509831B2 (ja) * 2005-03-11 2010-07-21 株式会社東芝 出力分布監視装置及びその監視方法
JP4592536B2 (ja) * 2005-08-11 2010-12-01 株式会社東芝 原子燃料の核定数作成方法およびこの核定数作成方法を用いた炉心設計方法ならびに原子燃料の核定数作成装置およびこの核定数作成装置を用いた炉心設計装置
JP5038652B2 (ja) * 2006-05-25 2012-10-03 一般財団法人電力中央研究所 中性子放出体の中性子放出率測定方法および核燃料の中性子特性確証方法
JP5752467B2 (ja) * 2011-04-07 2015-07-22 株式会社東芝 原子炉燃料非破壊燃焼度評価方法およびその装置
JP2014062739A (ja) * 2012-09-19 2014-04-10 Japan Atomic Energy Agency 情報処理装置、情報処理方法、及び、プログラム
CN104459753A (zh) * 2013-09-17 2015-03-25 天津市技术物理研究所 一种基于蒙特卡罗方法进行海洋放射性传感器的效率标定方法
JP6448221B2 (ja) * 2014-05-30 2019-01-09 株式会社東芝 燃料デブリの燃焼度計測装置及びその燃焼度計測方法
CN105929441A (zh) * 2016-06-22 2016-09-07 章先鸣 微通道板式快中子位置气体探测器及其探测方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275998A (ja) * 1987-05-08 1988-11-14 Nippon Atom Ind Group Co Ltd 燃料集合体の実効増倍率測定方法および測定装置
JPH02222884A (ja) * 1989-01-27 1990-09-05 Toshiba Corp 照射燃料の相対燃焼度分布測定方法
JPH03238399A (ja) * 1990-02-15 1991-10-24 Toshiba Corp 原子燃料の燃焼度測定方法
JPH03273192A (ja) * 1990-03-23 1991-12-04 Toshiba Corp 原子炉照射燃料集合体の移動監視装置
JPH0469597A (ja) * 1990-07-10 1992-03-04 Toshiba Corp 自発中性子増倍率測定法
JPH04249797A (ja) * 1991-01-08 1992-09-04 Toshiba Corp 照射燃料集合体の燃焼度測定方法
JPH0587977A (ja) * 1991-09-27 1993-04-09 Toshiba Corp 中性子検出器配置方法
JPH07225294A (ja) * 1994-02-15 1995-08-22 Toshiba Corp 燃焼度測定装置
JPH07248395A (ja) * 1994-03-14 1995-09-26 Toshiba Corp 燃焼度測定装置
JPH0882693A (ja) * 1994-09-13 1996-03-26 Toshiba Corp 燃焼度計測装置
JPH0980191A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 使用済燃料集合体の収納体系収納時の未臨界度評価方法
JPH09251092A (ja) * 1996-03-14 1997-09-22 Toshiba Corp 燃焼度計測装置
JPH1010279A (ja) * 1996-06-20 1998-01-16 Toshiba Corp 原子炉燃料の非破壊燃焼度評価法
JPH1039085A (ja) * 1996-07-18 1998-02-13 Toshiba Corp 燃料の燃焼度モニタ方法および簡易型燃焼度モニタ
JPH10332873A (ja) * 1997-05-30 1998-12-18 Toshiba Corp 使用済燃料集合体の放射線測定方法および測定装置
JP2000221293A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 原子炉燃料の燃焼度測定装置および測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504485B2 (ja) * 1987-09-30 1996-06-05 株式会社東芝 燃料集合体の実効増倍率測定方法および測定装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275998A (ja) * 1987-05-08 1988-11-14 Nippon Atom Ind Group Co Ltd 燃料集合体の実効増倍率測定方法および測定装置
JPH02222884A (ja) * 1989-01-27 1990-09-05 Toshiba Corp 照射燃料の相対燃焼度分布測定方法
JPH03238399A (ja) * 1990-02-15 1991-10-24 Toshiba Corp 原子燃料の燃焼度測定方法
JPH03273192A (ja) * 1990-03-23 1991-12-04 Toshiba Corp 原子炉照射燃料集合体の移動監視装置
JPH0469597A (ja) * 1990-07-10 1992-03-04 Toshiba Corp 自発中性子増倍率測定法
JPH04249797A (ja) * 1991-01-08 1992-09-04 Toshiba Corp 照射燃料集合体の燃焼度測定方法
JPH0587977A (ja) * 1991-09-27 1993-04-09 Toshiba Corp 中性子検出器配置方法
JPH07225294A (ja) * 1994-02-15 1995-08-22 Toshiba Corp 燃焼度測定装置
JPH07248395A (ja) * 1994-03-14 1995-09-26 Toshiba Corp 燃焼度測定装置
JPH0882693A (ja) * 1994-09-13 1996-03-26 Toshiba Corp 燃焼度計測装置
JPH0980191A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 使用済燃料集合体の収納体系収納時の未臨界度評価方法
JPH09251092A (ja) * 1996-03-14 1997-09-22 Toshiba Corp 燃焼度計測装置
JPH1010279A (ja) * 1996-06-20 1998-01-16 Toshiba Corp 原子炉燃料の非破壊燃焼度評価法
JPH1039085A (ja) * 1996-07-18 1998-02-13 Toshiba Corp 燃料の燃焼度モニタ方法および簡易型燃焼度モニタ
JPH10332873A (ja) * 1997-05-30 1998-12-18 Toshiba Corp 使用済燃料集合体の放射線測定方法および測定装置
JP2000221293A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 原子炉燃料の燃焼度測定装置および測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11194060B2 (en) * 2018-04-09 2021-12-07 University Public Corporation Osaka Electromagnetic radiation detector and method

Also Published As

Publication number Publication date
JP2002236194A (ja) 2002-08-23

Similar Documents

Publication Publication Date Title
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
JP5546174B2 (ja) 放射性廃棄物の放射能濃度評価方法及び評価プログラム、並びに放射能濃度評価装置
JP4761829B2 (ja) 軸方向ボイド率分布測定方法および収納装置収納前の燃料集合体中性子増倍率評価方法
JP2008139094A (ja) 放射能測定方法および装置
JP4601838B2 (ja) 燃焼度評価方法および装置
JP2017161259A (ja) 放射能濃度測定装置及び放射能濃度測定方法
JP6038575B2 (ja) 核燃料燃焼度評価装置、方法およびプログラム
JP2015121510A (ja) 放射線計測装置およびそれを用いた燃料デブリ有無の推定方法
JP3349180B2 (ja) 使用済燃料の測定方法
US8878140B2 (en) Methods for radiation detection and characterization using a multiple detector probe
KR102564895B1 (ko) 듀얼 타입 감지모듈이 구비된 이동형 방사선 검출기
JP2526392B2 (ja) 原子炉用燃料棒の非破壊検査装置
Stafford Spent nuclear fuel self-induced XRF to predict Pu to U content
JP3103361B2 (ja) 原子燃料の燃焼度測定方法
JP2000221293A (ja) 原子炉燃料の燃焼度測定装置および測定方法
Kobayashi et al. Characteristic X-ray detector: In-situ imaging of radioactive contaminant distributions
CN107449789A (zh) 样品浓度检测装置及***
JPH05333155A (ja) コンクリート中の人工放射性核種の放射能濃度測定法
JP2018205070A (ja) 放射線計測装置
JP3544065B2 (ja) 簡易型燃焼度モニタ
JP3806378B2 (ja) 使用済み燃料の燃焼度測定装置
JP6137635B2 (ja) 破損・溶融燃料含有物質中の核物質量の計測装置及び計測方法
Seo et al. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications
Pe´ rot et al. Experimental qualification with a scale one mock-up of the “measurement and sorting unit” for bituminized waste drums
EP3848943B1 (en) Apparatus and method for real time precision measurement of the thermal power of a fission nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4601838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees