JP4601496B2 - Bubble mixed lightweight soil and embankment using the same - Google Patents

Bubble mixed lightweight soil and embankment using the same Download PDF

Info

Publication number
JP4601496B2
JP4601496B2 JP2005186049A JP2005186049A JP4601496B2 JP 4601496 B2 JP4601496 B2 JP 4601496B2 JP 2005186049 A JP2005186049 A JP 2005186049A JP 2005186049 A JP2005186049 A JP 2005186049A JP 4601496 B2 JP4601496 B2 JP 4601496B2
Authority
JP
Japan
Prior art keywords
bubble
lightweight soil
mixed lightweight
soil
embankment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005186049A
Other languages
Japanese (ja)
Other versions
JP2006046060A (en
Inventor
賀久 本田
治憲 今井
和紀 柳下
一充 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2005186049A priority Critical patent/JP4601496B2/en
Publication of JP2006046060A publication Critical patent/JP2006046060A/en
Application granted granted Critical
Publication of JP4601496B2 publication Critical patent/JP4601496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、道路の拡幅、新設等の工事の際に盛土等の土木材料として用いられる気泡混合軽量土に関し、特に、補強用の金網を用いなくても、施工後の荷重等によるクラックの発生を効果的に抑制することのできる気泡混合軽量土に関する。   The present invention relates to a bubble-mixed lightweight soil used as a civil engineering material such as embankment in the construction of road widening, new construction, etc., and in particular, the occurrence of cracks due to post-construction load etc. without using a reinforcing wire mesh. The present invention relates to a bubble-mixed lightweight soil that can effectively suppress turbulence.

道路の拡幅、新設等の工事の際に、アスファルト舗装等の路面構造の下方の土台として、盛土を形成することがある。
この盛土の材料として、気泡混合軽量土を用いることが知られている。
気泡混合軽量土は、セメント、水、気泡、及び必要に応じて原料土(例えば、建設現場で発生する砂質土等)を混合して得られる軽量土木材料である。気泡混合軽量土は、(a)軽量であるため、打設後の周囲の構造物(例えば、擁壁等)への土圧が小さくなり、擁壁等が崩壊し難くなる、(b)流動性に優れるため、ポンプによる長距離(例えば、500m程度)の圧送や、狭小な空間への充填が可能であり、また、打設後の締固めも不要である、(c)打設後に硬化して自立する性質を有するため、大きな厚み(高さ)を有する盛土を形成することができる、(d)各材料の配合割合を変えることによって、重量や強度を容易に調整することができる、等の利点を有する。
In the case of road widening, new construction, etc., embankment may be formed as the foundation below the road surface structure such as asphalt pavement.
As a material for this embankment, it is known to use a bubble-mixed lightweight soil.
The bubble-mixed lightweight soil is a lightweight civil engineering material obtained by mixing cement, water, bubbles, and, if necessary, raw soil (for example, sandy soil generated at a construction site). Since the bubble-mixed lightweight soil is (a) lightweight, the earth pressure on the surrounding structure (for example, retaining wall) after placement is reduced, and the retaining wall is less likely to collapse. (B) Flow Because of its excellent properties, it can be pumped over a long distance (for example, about 500 m) with a pump and filled into a narrow space, and compaction after casting is not necessary. (C) Curing after casting Since it has a self-supporting property, it is possible to form a bank with a large thickness (height), (d) by changing the blending ratio of each material, the weight and strength can be easily adjusted, And so on.

しかし、気泡混合軽量土を用いて盛土を形成する場合、盛土の上面に、自動車の通過等による荷重が加わると、上面から下方に長く延びる多数のクラックが発生することがある。
そのため、気泡混合軽量土からなる盛土の上面から所定の深さの地点に、補強用の金網を水平に延びるように埋設して、クラックの発生を抑制することが行なわれている(非特許文献1、非特許文献2)。
しかし、この方法は、(a)補強用の金網を敷設する工程が加わるため、盛土の作業の効率が低下する、(b)盛土全体が均一に補強されるわけではなく、強度上の不均一が生じる、(c)盛土の上面における自動車の走行等によって、埋設した補強用の金網が振動し、補強用の金網の周囲にクラックが生じるおそれがある、等の問題がある。
一方、コンクリート中に合成繊維を混合することによって、曲げ強度等の機械的特性を向上させる技術が知られている(例えば、特許文献1参照)。
特開平11−180757号公報 「気泡混合軽量土を用いた軽量盛土工法の設計・施工指針」(第41〜42頁、監修:日本道路公団、発行:財団法人道路厚生会、平成8年9月発行) 「FCB工法技術資料」(第29〜31頁、編集発行:FCB研究会、平成12年12月14日発行)
However, when the embankment is formed using the bubble-mixed lightweight soil, a large number of cracks extending downward from the upper surface may occur when a load due to passing of an automobile or the like is applied to the upper surface of the embankment.
For this reason, a reinforcing wire mesh is embedded so as to extend horizontally at a predetermined depth from the upper surface of the embankment made of bubble-mixed lightweight soil to suppress the occurrence of cracks (non-patent document). 1, Non-Patent Document 2).
However, in this method, (a) a step of laying a reinforcing wire mesh is added, so that the efficiency of the work of banking is reduced. (B) The whole banking is not uniformly reinforced, and the strength is not uniform. There is a problem that (c) the embedded reinforcing wire mesh vibrates due to the traveling of the automobile on the upper surface of the embankment, and cracks may occur around the reinforcing wire mesh.
On the other hand, a technique for improving mechanical properties such as bending strength by mixing synthetic fibers in concrete is known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-180757 “Design and construction guidelines for lightweight embankment method using bubble-mixed lightweight soil” (pages 41-42, supervised by: Japan Highway Public Corporation, published by the Road Welfare Society, published in September 1996) "FCB Method Technical Data" (pp. 29-31, edited and published by FCB Study Group, issued on December 14, 2000)

本発明は、盛土等の土木材料として用いられる気泡混合軽量土であって、土木構造物に荷重等の負荷が加わったときに、クラックの発生を効果的に抑制することのできる気泡混合軽量土を提供することを目的とする。   The present invention is a bubble-mixed lightweight soil used as a civil engineering material such as embankment, and the bubble-mixed lightweight soil can effectively suppress the occurrence of cracks when a load such as a load is applied to a civil engineering structure. The purpose is to provide.

本発明者は、上記の課題を解決するために鋭意検討した結果、気泡混合軽量土の中に補強用繊維を配合することによって、機械的強度(曲げ強度等)が向上して、盛土等の土木構造物におけるクラックの発生を効果的に抑制することができることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[]を提供するものである。
[1] セメントと補強用繊維と起泡剤と水とを含む気泡混合軽量土であって、前記補強用繊維は、長さが5〜50mm、円形換算直径が0.01〜1.0mm、及びアスペクト比が40〜170の繊維であり、前記気泡混合軽量土中の前記補強用繊維の体積割合が0.1〜0.7%であり、前記補強用繊維は、前記気泡混合軽量土中に均一に分散していることを特徴とする気泡混合軽量土。
] 前記補強用繊維は、親水性の表面を有する合成樹脂繊維である前記[]の気泡混合軽量土。
] 砂または砂質土を含む前記[1]又は[2]の気泡混合軽量土。
] 前記[1]〜[]のいずれかの気泡混合軽量土からなることを特徴とする盛土。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has improved mechanical strength (such as bending strength) by blending reinforcing fibers in the air-mixed lightweight soil, such as embankment. It discovered that generation | occurrence | production of the crack in a civil engineering structure could be suppressed effectively, and completed this invention.
That is, the present invention provides the following [1] to [ 4 ].
[1] A bubble-mixed lightweight soil containing cement, a reinforcing fiber, a foaming agent, and water , wherein the reinforcing fiber has a length of 5 to 50 mm, a circular equivalent diameter of 0.01 to 1.0 mm, And the aspect ratio is 40 to 170, the volume ratio of the reinforcing fiber in the bubble-mixed lightweight soil is 0.1 to 0.7%, and the reinforcing fiber is in the bubble-mixed lightweight soil. A lightweight soil mixed with air bubbles, characterized in that it is uniformly dispersed .
[ 2 ] The cell-mixed lightweight soil according to [ 1 ], wherein the reinforcing fiber is a synthetic resin fiber having a hydrophilic surface.
[ 3 ] The bubble-mixed lightweight soil according to [1] or [2] , including sand or sandy soil.
[ 4 ] An embankment comprising the air-mixed lightweight soil of any one of [1] to [ 3 ].

本発明の気泡混合軽量土は、従来の気泡混合軽量土が有する優れた物性(軽量性、流動性、自立性等)を保持すると共に、盛土等の土木材料として用いた場合に、盛土等の土木構造物における荷重等の負荷によるクラックの発生を、該土木構造物全体で均一かつ効果的に抑制することができる。   The cell-mixed lightweight soil of the present invention retains the excellent physical properties (lightness, fluidity, self-supporting property, etc.) of conventional cell-mixed lightweight soil, and when used as a civil engineering material such as embankment, Generation of cracks due to loads such as loads in the civil engineering structure can be suppressed uniformly and effectively over the entire civil engineering structure.

以下、本発明の気泡混合軽量土について詳しく説明する。
本発明の気泡混合軽量土は、セメントと、補強用繊維と、起泡剤と、水と、必要に応じて配合される砂、砂質土等を含むものである。
ここで、セメントとしては、特に種類が限定されることはなく、例えば、普通ポルトランドセメント、高炉セメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等が挙げられる。中でも、普通ポルトランドセメント及び高炉セメントは、好ましく用いられる。
補強用繊維としては、例えば、ビニロン繊維、ポリオレフィン繊維(ポリプロピレン繊維、ポリエチレン繊維等)、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリアミド繊維、ポリアクリロニトリル繊維等の合成繊維や、鋼繊維、ステンレス繊維等の金属繊維や、炭素繊維、ガラス繊維等の無機繊維等が挙げられる。なお、補強用繊維は、1種を単独で用いてもよいし、2種以上を併用してもよい。
補強用繊維は、繊維素材が親水性でない場合(例えば、ポリオレフィン繊維)には、表面が親水性となるように表面処理したものを用いることが好ましい。
ビニロン繊維は、繊維の化学構造中に水酸基を有することから親水性であり、セメントマトリックスに対する付着性に優れているため、本発明において好ましく用いられる。
Hereinafter, the bubble mixed lightweight soil of the present invention will be described in detail.
The bubble-mixed lightweight soil of the present invention includes cement, reinforcing fibers, a foaming agent, water, sand, sandy soil and the like blended as necessary.
Here, the type of cement is not particularly limited, and examples thereof include ordinary Portland cement, blast furnace cement, early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement. Of these, ordinary Portland cement and blast furnace cement are preferably used.
Examples of reinforcing fibers include synthetic fibers such as vinylon fibers, polyolefin fibers (polypropylene fibers, polyethylene fibers, etc.), polyethylene terephthalate fibers, polyester fibers, polyamide fibers, polyacrylonitrile fibers, and metal fibers such as steel fibers and stainless fibers. And inorganic fibers such as carbon fibers and glass fibers. In addition, the reinforcing fiber may be used alone or in combination of two or more.
When the fiber material is not hydrophilic (for example, polyolefin fiber), it is preferable to use the reinforcing fiber that has been surface-treated so that the surface becomes hydrophilic.
The vinylon fiber is preferably used in the present invention because it has a hydroxyl group in the chemical structure of the fiber and is hydrophilic and has excellent adhesion to the cement matrix.

補強用繊維の長さは5〜50mm好ましくは8〜40mm、特に好ましくは10〜35mmである。該長さが5mm未満では、機械的強度の向上の効果が不十分となることがある。該長さが50mmを超えると、セメント、水等との混練時にファイバーボールが生じ易くなり、混練物中における分散性が悪化するなどの不都合がある。
補強用繊維の円形換算直径は0.01〜1.0mm好ましくは0.05〜0.7mm、特に好ましくは0.08〜0.5mmである。該円形換算直径が0.01mm未満では、機械的強度の向上の効果が不十分となることがある。該円形換算直径が1.0mmを超えると、混練物中でセメントマトリックスに対する付着力が低下し、機械的強度が低下することがある。
ここで、円形換算直径とは、補強用繊維の断面積と同じ面積を有する円形の直径を意味する。
The length of the reinforcing fiber is 5 to 50 mm , preferably 8 to 40 mm, and particularly preferably 10 to 35 mm. If the length is less than 5 mm, the effect of improving the mechanical strength may be insufficient. When the length exceeds 50 mm, fiber balls are likely to be formed during kneading with cement, water, etc., and there is a disadvantage that the dispersibility in the kneaded product is deteriorated.
Circular equivalent diameter of the reinforcing fibers, 0.01 to 1.0 mm, preferably 0.05 - 0.7 mm, particularly preferably 0.08 to 0.5 mm. If the circular equivalent diameter is less than 0.01 mm, the effect of improving the mechanical strength may be insufficient. When the circular equivalent diameter exceeds 1.0 mm, the adhesion to the cement matrix in the kneaded product may be reduced, and the mechanical strength may be reduced.
Here, the circular equivalent diameter means a circular diameter having the same area as the cross-sectional area of the reinforcing fiber.

補強用繊維のアスペクト比(長さ/円形換算直径の比)は40〜170、特に好ましくは60〜140である。該比が20未満では、補強用繊維の単位量当たりの機械的強度の向上の効果が低下することがある。該比が200を超えると、セメント、水等との混練時にファイバーボールが生じ易くなり、混練物中における分散性が悪化するなどの不都合がある。
補強用繊維の断面の形状は、特に限定されず、例えば、扁平な形状(矩形または楕円形に近似する扁平なもの)、円形、略正方形等が挙げられる。
気泡混合軽量土中の補強用繊維の体積割合は0.1〜0.7%好ましくは0.2〜0.6%、特に好ましくは0.2〜0.5%である。該体積割合が0.1%未満では、機械的強度の向上の効果が不十分となる。該体積割合が0.7%を超えると、セメント、水等との混練が困難になることがある。
The aspect ratio of the reinforcing fibers (ratio of length / circle equivalent diameter) is 40 to 170, particularly preferably 60 to 140. When the ratio is less than 20, the effect of improving the mechanical strength per unit amount of the reinforcing fiber may be lowered. When the ratio exceeds 200, fiber balls are likely to be produced during kneading with cement, water, etc., and there is a disadvantage that the dispersibility in the kneaded product is deteriorated.
The shape of the cross section of the reinforcing fiber is not particularly limited, and examples thereof include a flat shape (a flat shape that approximates a rectangle or an ellipse), a circle, a substantially square, and the like.
The volume ratio of the reinforcing fibers of the bubble-mixed lightweight soil is 0.1 to 0.7%, preferably 0.2 to 0.6 percent, particularly preferably from 0.2 to 0.5%. When the volume ratio is less than 0.1%, the effect of improving the mechanical strength is insufficient. When the volume ratio exceeds 0.7%, kneading with cement, water, or the like may be difficult.

起泡剤としては、例えば、合成界面活性剤系の起泡剤や、蛋白質系の起泡剤等が挙げられる。
起泡剤の配合量(希釈前)は、気泡混合軽量土の単位体積当たりの質量、および必要とされる一軸圧縮強さを考慮して、気泡混合軽量土中の気泡の量(体積割合)を定めた後、この気泡の量に応じて定められる。
具体的には、起泡剤の配合量(希釈前)は、「気泡の量/(起泡剤の希釈倍率×発泡倍率)」の計算式から求められる。なお、起泡剤の希釈倍率および発泡倍率は、起泡剤の種類、製造元等によって標準的な値が定められている。
気泡の量(空気の量)は、気泡混合軽量土1m当たり、好ましくは0.25〜0.70m、より好ましくは0.35〜0.70m、特に好ましくは0.45〜0.70mである。該量が0.25m未満では、軽量性が得難くなる。該割合が0.70mを超えると、一軸圧縮強さが小さくなり、自立性が得難くなる。
水の量は、フレッシュ状態の気泡混合軽量土の流動性に応じて定められる。
気泡混合軽量土のフロー値(流動性)は、平滑板上に載置した円筒形シリンダー(φ80mm×高さ80mm)に気泡混合軽量土を充填し、次いで、この円筒形シリンダーを引き上げた後に、流動して変形した気泡混合軽量土の最大直径(A)およびそれに直交する直径(B)を測定し、これら2つの測定値の平均値((A+B)/2)を算出することによって得られる。
気泡混合軽量土のフロー値は、好ましくは140〜300mm、より好ましくは160〜220mm、特に好ましくは160〜200mmである。フロー値が140mm未満では、流動性が低下し、ポンプによる圧送が困難になるとともに、施工性が悪くなる。フロー値が300mmを超えると、材料分離が起こり易く、気泡の保持が困難となる。
Examples of the foaming agent include synthetic surfactant-based foaming agents and protein-based foaming agents.
The amount of foaming agent (before dilution) is determined based on the mass per unit volume of the bubble-mixed lightweight soil and the amount of bubbles in the bubble-mixed lightweight soil (volume ratio) in consideration of the required uniaxial compressive strength. Is determined according to the amount of the bubbles.
Specifically, the blending amount (before dilution) of the foaming agent is obtained from a calculation formula of “amount of bubbles / (dilution ratio of foaming agent × foaming ratio)”. In addition, the standard value is determined by the kind of foaming agent, a manufacturer, etc. about the dilution rate and foaming rate of a foaming agent.
The amount of bubbles (amount of air) is cell-mixed lightweight soil 1 m 3 per preferably 0.25~0.70M 3, more preferably 0.35~0.70M 3, particularly preferably 0.45 to 0. 70 m 3 . If the amount is less than 0.25 m 3 , it is difficult to obtain light weight. When the ratio exceeds 0.70 m 3 , the uniaxial compressive strength becomes small and it becomes difficult to obtain self-supporting properties.
The amount of water is determined according to the fluidity of the fresh bubble-mixed lightweight soil.
The flow value (fluidity) of the bubble-mixed lightweight soil is determined by filling the bubble-mixed lightweight soil into a cylindrical cylinder (φ80 mm × height 80 mm) placed on a smooth plate, and then pulling up the cylindrical cylinder. It is obtained by measuring the maximum diameter (A) and the diameter (B) perpendicular to the bubble-mixed lightweight soil that has flowed and deformed, and calculating the average value of these two measured values ((A + B) / 2).
The flow value of the bubble-mixed lightweight soil is preferably 140 to 300 mm, more preferably 160 to 220 mm, and particularly preferably 160 to 200 mm. If the flow value is less than 140 mm, the fluidity is lowered, the pumping is difficult, and the workability is deteriorated. When the flow value exceeds 300 mm, material separation is likely to occur, and it is difficult to hold bubbles.

本発明の気泡混合軽量土には、必要に応じて砂、砂質土等を配合することができる。
砂としては、山砂、川砂、海砂、砕砂、これらの2種以上からなる混合砂等が挙げられる。
砂の配合量は、セメント100質量部当たり、好ましくは30〜600質量部、より好ましくは70〜400質量部である。
砂質土としては、建設現場等で発生する建設残土や、購入土等が挙げられる。
砂質土の配合量は、該砂質土に含まれる砂分の量が、前記の砂の好ましい配合量の数値範囲(セメント100質量部当たり、30〜600質量部、より好ましくは70〜400質量部)内となるように定めることが好ましい。
本発明においては、砂と砂質土を併用してもよい。この場合、砂及び砂質土の合計量中の砂分の量は、セメント100質量部当たり、好ましくは30〜600質量部、より好ましくは70〜400質量部である。
本発明においては、上述の各材料に加えて、他の材料を配合してもよい。他の材料としては、例えば、フライアッシュ、石灰石粉末、砕石残渣、汚泥焼却灰等の混和材が挙げられる。他の材料(混和材)の配合量は、セメント100質量部当たり、好ましくは50〜1,000質量部、より好ましくは100〜300質量部である。
If necessary, sand, sandy soil or the like can be blended with the air-mixed lightweight soil of the present invention.
Examples of the sand include mountain sand, river sand, sea sand, crushed sand, mixed sand composed of two or more of these.
The amount of sand is preferably 30 to 600 parts by mass, more preferably 70 to 400 parts by mass per 100 parts by mass of cement.
Examples of sandy soil include construction residual soil generated at construction sites and purchased soil.
The amount of sandy soil is such that the amount of sand contained in the sandy soil is within the numerical range of the preferred amount of sand described above (30 to 600 parts by mass, more preferably 70 to 400 per 100 parts by mass of cement). It is preferable that the amount is determined so as to be within the (mass part).
In the present invention, sand and sandy soil may be used in combination. In this case, the amount of sand in the total amount of sand and sandy soil is preferably 30 to 600 parts by mass, more preferably 70 to 400 parts by mass per 100 parts by mass of cement.
In the present invention, in addition to the above materials, other materials may be blended. Examples of other materials include admixtures such as fly ash, limestone powder, crushed stone residue, and sludge incineration ash. The amount of the other material (admixture) is preferably 50 to 1,000 parts by mass, more preferably 100 to 300 parts by mass per 100 parts by mass of cement.

本発明の気泡混合軽量土の硬化後の物性は、次のとおりである。
一軸圧縮強さ(q)は、好ましくは300kN/m以上、より好ましくは500kN/m以上である。
曲げ強さ(σ)は、好ましくは150kN/m以上、より好ましくは175kN/m以上、特に好ましくは300kN/m以上である。
強さ比(σ/q)は、好ましくは0.30以上、より好ましくは0.35以上、特に好ましくは0.40以上である。
The physical properties after curing of the air-mixed lightweight soil of the present invention are as follows.
Uniaxial compressive strength (q u) is preferably 300 kN / m 2 or more, more preferably 500 kN / m 2 or more.
Bending strength (sigma b) is preferably 150 kN / m 2 or more, more preferably 175kN / m 2 or more, and particularly preferably 300 kN / m 2 or more.
The strength ratio (σ b / q u ) is preferably 0.30 or more, more preferably 0.35 or more, and particularly preferably 0.40 or more.

次に、本発明の気泡混合軽量土の製造方法について説明する。図1は、本発明の気泡混合軽量土の製造方法の一例を示すフロー図である。
まず、セメント、混練水、及び必要に応じて配合される砂または砂質土(原料土)等をミキサー内で混練して、セメントミルク(砂及び砂質土を含まない場合)、またはセメントモルタル(砂または砂質土を含む場合)を得る。得られたセメントミルクまたはセメントモルタルに補強用繊維を加えて更に混練し、繊維含有セメントミルクまたは繊維含有セメントモルタルを得る。
一方、起泡剤と希釈水を混合してなる希釈液と、圧縮空気とを発泡機に供給して、この発泡機の発泡ノズルから気泡を吐出させる。この気泡と、上述の繊維含有セメントミルクまたは繊維含有セメントモルタルを混合して撹拌すると、本発明の気泡混合軽量土が得られる。気泡混合軽量土は、ポンプによってホース内を圧送され、盛土等の工事現場で打設される。
本発明の気泡混合軽量土を用いた盛土の施工例を、図2に示す。図2中、軟弱地盤1の上に造成された既設の盛土2の上面の舗装道路3は、拡幅工事によって拡幅部Aの部分だけ拡幅されている。拡幅部Aは、軟弱地盤1の上に立設した擁壁(壁材)4と、既設の盛土2の間に、本発明の気泡混合軽量土を用いて新たな盛土5を形成した後、盛土5の上面を舗装することによって形成されている。なお、図中、盛土5の側方には家屋6がある。
盛土5は、軽量で機械的強度に優れ、擁壁4と一体化しているため、土圧が発生しない。また、盛土の上面の縁辺部分に過大な荷重が加わっても、クラックの発生が抑止され、分離転倒が生じ難い。
Next, the manufacturing method of the bubble mixed lightweight soil of this invention is demonstrated. FIG. 1 is a flowchart showing an example of a method for producing a bubble-mixed lightweight soil according to the present invention.
First, cement, kneaded water, and sand or sandy soil (raw soil) blended as necessary are kneaded in a mixer, and cement milk (when sand and sandy soil are not included) or cement mortar (If containing sand or sandy soil). A reinforcing fiber is added to the obtained cement milk or cement mortar and further kneaded to obtain a fiber-containing cement milk or fiber-containing cement mortar.
On the other hand, a dilute solution obtained by mixing a foaming agent and dilution water and compressed air are supplied to a foaming machine, and bubbles are discharged from the foaming nozzle of the foaming machine. When this bubble and the above-mentioned fiber-containing cement milk or fiber-containing cement mortar are mixed and stirred, the bubble-mixed lightweight soil of the present invention is obtained. The bubble-mixed lightweight soil is pumped through the hose by a pump and placed at a construction site such as embankment.
An example of embankment construction using the bubble-mixed lightweight soil of the present invention is shown in FIG. In FIG. 2, the paved road 3 on the upper surface of the existing embankment 2 formed on the soft ground 1 is widened only by the widened portion A by the widening work. The widened portion A is formed between the retaining wall (wall material) 4 erected on the soft ground 1 and the existing embankment 2, after forming a new embankment 5 using the bubble mixed lightweight soil of the present invention, It is formed by paving the upper surface of the embankment 5. In the figure, there is a house 6 on the side of the embankment 5.
Since the embankment 5 is lightweight and excellent in mechanical strength and integrated with the retaining wall 4, earth pressure is not generated. Moreover, even if an excessive load is applied to the edge portion of the upper surface of the embankment, the generation of cracks is suppressed and separation overturning hardly occurs.

以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明はこれらの実施例によって限定されるものではなく、特許請求の範囲に記載の範囲内において種々実施形態の変更が可能である。
[使用材料]
次の材料を用いた。
(a)セメント:高炉セメントB種(太平洋セメント社製)
(b)起泡剤:合成界面活性剤系の起泡剤(商品名:OFA−2;小野田ケミコ社製)
(c)補強用繊維:ビニロン繊維(商品名:クラテック;品番:RFS100、RFS400、RFS1500;クラレ社製)
(d)水:水道水
(e)砂:千葉県市原市万田野産山砂(密度:2.58g/cm
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples, and various modifications can be made within the scope of the claims.
[Materials used]
The following materials were used.
(A) Cement: Blast furnace cement type B (manufactured by Taiheiyo Cement)
(B) Foaming agent: Foaming agent of synthetic surfactant type (trade name: OFA-2; manufactured by Onoda Chemico)
(C) Reinforcing fiber: Vinylon fiber (trade name: Kratec; product number: RFS100, RFS400, RFS1500; manufactured by Kuraray Co., Ltd.)
(D) Water: Tap water (e) Sand: Mountain sand from Mandano, Ichihara City, Chiba Prefecture (Density: 2.58 g / cm 3 )

[補強用繊維]
使用した補強用繊維を表1に示す。

Figure 0004601496
[Reinforcing fiber]
The reinforcing fibers used are shown in Table 1.
Figure 0004601496

[実施例1〜9、比較例1]
砂を使用しない実験例を示す。
[1.調製方法]
まず、表2に示す量のセメント及び混練水を混練し、セメントスラリーを得た。このセメントスラリーに対して、表3に示す補強用繊維(表1参照)を表3に示す配合量で加えた後、補強用繊維が均一に分散した状態になるまで混練し、繊維含有セメントスラリーを得た。
一方、表2に示す量の起泡剤及び希釈水を用いて、希釈液(希釈率:100倍)を得た。この希釈液と圧縮空気を同時に発泡機内に供給し、この発泡機の発泡ノズルの吐出口から、希釈液の25倍の体積に膨張した気泡を吐出させた。そして、この気泡と上述の繊維含有セメントスラリーを混合して、気泡混合軽量土を得た。
得られた気泡混合軽量土のフロー値は、180±20mmの範囲内であった。
[Examples 1 to 9, Comparative Example 1]
An experimental example in which no sand is used is shown.
[1. Preparation method]
First, cement and kneading water in amounts shown in Table 2 were kneaded to obtain a cement slurry. To this cement slurry, the reinforcing fibers shown in Table 3 (see Table 1) were added in the blending amounts shown in Table 3, and then kneaded until the reinforcing fibers were uniformly dispersed, and the fiber-containing cement slurry Got.
On the other hand, using the foaming agent and dilution water of the quantity shown in Table 2, the dilution liquid (dilution rate: 100 times) was obtained. The diluting liquid and compressed air were simultaneously supplied into the foaming machine, and bubbles expanded to a volume 25 times that of the diluting liquid were discharged from the discharge port of the foaming nozzle of the foaming machine. And this bubble and the above-mentioned fiber containing cement slurry were mixed, and the bubble mixed lightweight soil was obtained.
The flow value of the obtained bubble-mixed lightweight soil was in the range of 180 ± 20 mm.

[2.評価方法]
得られた気泡混合軽量土(実施例1〜9、比較例1)について、次のように一軸圧縮強さ及び曲げ強さを測定した。
(a)一軸圧縮強さ
気泡混合軽量土を型枠内に打設した後、20℃で28日間、湿空養生し、成形体(φ10cm×20cm)を得た。得られた成形体(3本)について、JIS A 1216に準拠して一軸圧縮強さを測定した。成形体(3本)の測定値の平均値を一軸圧縮強さとした。結果を表3に示す。
(b)曲げ強さ
気泡混合軽量土を型枠内に打設した後、20℃で28日間、湿空養生し、成形体(4cm×4cm×16cm)を得た。得られた成形体(3本)について、支点間の距離が12cmで中央荷重となるようにして、曲げ強さを測定した。結果を表3に示す。
[2. Evaluation methods]
About the obtained bubble mixed lightweight soil (Examples 1-9, Comparative Example 1), the uniaxial compressive strength and the bending strength were measured as follows.
(A) Uniaxial compressive strength After the foam-mixed lightweight soil was placed in the mold, it was cured at 20 ° C. for 28 days to obtain a molded body (φ10 cm × 20 cm). About the obtained molded object (three pieces), the uniaxial compressive strength was measured based on JISA1216. The average value of the measured values of the molded bodies (3 pieces) was defined as the uniaxial compressive strength. The results are shown in Table 3.
(B) Bending strength After the foam-mixed lightweight soil was cast into the mold, it was cured at 20 ° C. for 28 days to obtain a molded body (4 cm × 4 cm × 16 cm). About the obtained molded object (three pieces), the distance between fulcrum was 12 cm, and it was set as the center load, and the bending strength was measured. The results are shown in Table 3.

Figure 0004601496
Figure 0004601496

Figure 0004601496
Figure 0004601496

表3から、補強用繊維を配合した気泡混合軽量土(実施例1〜9)は、1450kN/m以上の一軸圧縮強さと、520kN/m以上の曲げ強さと、0.35以上の強さ比(曲げ強さ/一軸圧縮強さ)を有し、盛土等の土木材料として用いた場合にクラックの発生を効果的に抑制し得ることがわかる。
一方、補強用繊維を配合しない気泡混合軽量土(比較例1)は、曲げ強さ及び強さ比が小さく、クラックが発生する可能性があることがわかる。
From Table 3, the reinforcing fibers cell-mixed lightweight soil blended with (Examples 1-9) has a 1450kN / m 2 or more uniaxial compressive strength, and 520kN / m 2 or more flexural strength, 0.35 or more strong It has a thickness ratio (bending strength / uniaxial compressive strength), and it can be seen that the occurrence of cracks can be effectively suppressed when used as a civil engineering material such as embankment.
On the other hand, it can be seen that the cell-mixed lightweight soil (Comparative Example 1) containing no reinforcing fiber has a small bending strength and strength ratio and may cause cracks.

[実施例10〜18、比較例2]
砂/セメントの質量比が3となる量で、砂を使用した実験例を示す。
[1.調製方法]
まず、表4に示す量のセメント、混練水、及び砂を混練し、セメントモルタルを得た。このセメントモルタルに対して、表5に示す補強用繊維(表1参照)を表5に示す配合量で加えた後、補強用繊維が均一に分散した状態になるまで混練し、繊維含有セメントモルタルを得た。
一方、表4に示す量の起泡剤及び希釈水を用いて、希釈液(希釈率:100倍)を得た。この希釈液と圧縮空気を同時に発泡機内に供給し、この発泡機の発泡ノズルの吐出口から、希釈液の25倍の体積に膨張した気泡を吐出させた。そして、この気泡と上述の繊維含有セメントモルタルを混合して、気泡混合軽量土を得た。
得られた気泡混合軽量土のフロー値は、180±20mmの範囲内であった。
[2.評価方法]
得られた気泡混合軽量土(実施例10〜18、比較例2)について、実施例1と同様にして一軸圧縮強さ及び曲げ強さを測定した。結果を表5に示す。
[Examples 10 to 18, Comparative Example 2]
An experimental example using sand in an amount such that the mass ratio of sand / cement is 3 is shown.
[1. Preparation method]
First, the cement, the kneading water, and the sand shown in Table 4 were kneaded to obtain cement mortar. To this cement mortar, the reinforcing fibers shown in Table 5 (see Table 1) were added in the blending amounts shown in Table 5, and then kneaded until the reinforcing fibers were uniformly dispersed to obtain a fiber-containing cement mortar. Got.
On the other hand, a dilute solution (dilution rate: 100 times) was obtained using the foaming agent and dilution water in the amounts shown in Table 4. The diluting liquid and compressed air were simultaneously supplied into the foaming machine, and bubbles expanded to a volume 25 times that of the diluting liquid were discharged from the discharge port of the foaming nozzle of the foaming machine. And this bubble and the above-mentioned fiber containing cement mortar were mixed, and the bubble mixing lightweight soil was obtained.
The flow value of the obtained bubble-mixed lightweight soil was in the range of 180 ± 20 mm.
[2. Evaluation methods]
About the obtained bubble mixed lightweight soil (Examples 10-18, comparative example 2), it carried out similarly to Example 1, and measured uniaxial compressive strength and bending strength. The results are shown in Table 5.

Figure 0004601496
Figure 0004601496

Figure 0004601496
Figure 0004601496

表5から、補強用繊維を配合した気泡混合軽量土(実施例10〜18)は、1570kN/m以上の一軸圧縮強さと、560kN/m以上の曲げ強さと、0.36以上の強さ比(曲げ強さ/一軸圧縮強さ)を有し、盛土等の土木材料として用いた場合にクラックの発生を効果的に抑制し得ることがわかる。
一方、補強用繊維を配合しない気泡混合軽量土(比較例2)は、曲げ強さ及び強さ比が小さく、クラックが発生する可能性があることがわかる。
Table 5, the reinforcing fibers cell-mixed lightweight soil blended with (Example 10 to 18) includes a 1570kN / m 2 or more uniaxial compressive strength, and 560kN / m 2 or more flexural strength, 0.36 or more strong It has a thickness ratio (bending strength / uniaxial compressive strength), and it can be seen that the occurrence of cracks can be effectively suppressed when used as a civil engineering material such as embankment.
On the other hand, it can be seen that the cell-mixed lightweight soil (Comparative Example 2) containing no reinforcing fiber has a small bending strength and strength ratio and may cause cracks.

[実施例19〜27、比較例3]
砂/セメントの質量比が1となる量で、砂を使用した実験例を示す。
[1.調製方法]
まず、表6に示す量のセメント、混練水、及び砂を混練し、セメントモルタルを得た。このセメントモルタルに対して、表7に示す補強用繊維(表1参照)を表7に示す配合量で加えた後、補強用繊維が均一に分散した状態になるまで混練し、繊維含有セメントモルタルを得た。
一方、表6に示す量の起泡剤及び希釈水を用いて、希釈液(希釈率:100倍)を得た。この希釈液と圧縮空気を同時に発泡機内に供給し、この発泡機の発泡ノズルの吐出口から、希釈液の25倍の体積に膨張した気泡を吐出させた。そして、この気泡と上述の繊維含有セメントモルタルを混合して、気泡混合軽量土を得た。
得られた気泡混合軽量土のフロー値は、180±20mmの範囲内であった。
[2.評価方法]
得られた気泡混合軽量土(実施例19〜27、比較例3)について、実施例1と同様にして一軸圧縮強さ及び曲げ強さを測定した。結果を表7に示す。
[Examples 19 to 27, Comparative Example 3]
An experimental example using sand in such an amount that the mass ratio of sand / cement is 1 is shown.
[1. Preparation method]
First, the cement, kneading water, and sand in the amounts shown in Table 6 were kneaded to obtain cement mortar. To this cement mortar, the reinforcing fibers shown in Table 7 (see Table 1) were added in the blending amounts shown in Table 7, and then kneaded until the reinforcing fibers were uniformly dispersed. Got.
On the other hand, using the foaming agent and dilution water of the quantity shown in Table 6, the dilution liquid (dilution rate: 100 times) was obtained. The diluting liquid and compressed air were simultaneously supplied into the foaming machine, and bubbles expanded to a volume 25 times that of the diluting liquid were discharged from the discharge port of the foaming nozzle of the foaming machine. And this bubble and the above-mentioned fiber containing cement mortar were mixed, and the bubble mixing lightweight soil was obtained.
The flow value of the obtained bubble-mixed lightweight soil was in the range of 180 ± 20 mm.
[2. Evaluation methods]
About the obtained bubble mixed lightweight soil (Examples 19-27, Comparative example 3), it carried out similarly to Example 1, and measured the uniaxial compressive strength and bending strength. The results are shown in Table 7.

Figure 0004601496
Figure 0004601496

Figure 0004601496
Figure 0004601496

表7から、補強用繊維を配合した気泡混合軽量土(実施例19〜27)は、1800kN/m以上の一軸圧縮強さと、630kN/m以上の曲げ強さと、0.35以上の強さ比(曲げ強さ/一軸圧縮強さ)を有し、盛土等の土木材料として用いた場合にクラックの発生を効果的に抑制し得ることがわかる。
一方、補強用繊維を配合しない気泡混合軽量土(比較例3)は、曲げ強さ及び強さ比が小さく、クラックが発生する可能性があることがわかる。
このように、本発明の気泡混合軽量土(実施例1〜27)によれば、従来のように補強用の金網を用いなくても、荷重等の負荷による盛土のクラックの発生を効果的に抑制し得ることが確認された。
From Table 7, reinforcing fiber bubbles mixed lightweight soil blended with (Example 19 to 27) includes a 1800kN / m 2 or more uniaxial compressive strength, and 630kN / m 2 or more flexural strength, 0.35 or more strong It has a thickness ratio (bending strength / uniaxial compressive strength), and it can be seen that the occurrence of cracks can be effectively suppressed when used as a civil engineering material such as embankment.
On the other hand, it can be seen that the cell-mixed lightweight soil (Comparative Example 3) containing no reinforcing fiber has a small bending strength and strength ratio and may cause cracks.
As described above, according to the bubble-mixed lightweight soil of the present invention (Examples 1 to 27), the occurrence of cracks in the embankment due to a load such as a load can be effectively achieved without using a reinforcing wire mesh as in the prior art. It was confirmed that it can be suppressed.

本発明の気泡混合軽量土の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the bubble mixing lightweight soil of this invention. 本発明の気泡混合軽量土を用いた盛土の施工例を示す断面図である。It is sectional drawing which shows the construction example of the banking using the bubble mixing lightweight soil of this invention.

符号の説明Explanation of symbols

1 軟弱地盤
2 既設の盛土
3 舗装道路
4 擁壁
5 本発明の気泡混合軽量土からなる盛土
6 家屋
A 拡幅部
DESCRIPTION OF SYMBOLS 1 Soft ground 2 Existing embankment 3 Paved road 4 Retaining wall 5 Embankment which consists of light-mixed lightweight soil of this invention 6 House A Widening part

Claims (4)

セメントと補強用繊維と起泡剤と水とを含む気泡混合軽量土であって、
前記補強用繊維は、長さが5〜50mm、円形換算直径が0.01〜1.0mm、及びアスペクト比が40〜170の繊維であり、
前記気泡混合軽量土中の前記補強用繊維の体積割合が0.1〜0.7%であり、
前記補強用繊維は、前記気泡混合軽量土中に均一に分散していることを特徴とする気泡混合軽量土。
A bubble-mixed lightweight soil containing cement, reinforcing fibers, foaming agent and water ,
The reinforcing fiber is a fiber having a length of 5 to 50 mm, a circular equivalent diameter of 0.01 to 1.0 mm, and an aspect ratio of 40 to 170,
The volume ratio of the reinforcing fiber in the bubble mixed lightweight soil is 0.1 to 0.7%,
The bubble-mixed lightweight soil, wherein the reinforcing fibers are uniformly dispersed in the bubble-mixed lightweight soil.
前記補強用繊維は、親水性の表面を有する合成樹脂繊維である請求項に記載の気泡混合軽量土。 The air-mixed lightweight soil according to claim 1 , wherein the reinforcing fiber is a synthetic resin fiber having a hydrophilic surface. 砂または砂質土を含む請求項1又は2に記載の気泡混合軽量土。 The bubble-mixed lightweight soil according to claim 1 or 2 , comprising sand or sandy soil. 請求項1〜のいずれか1項に記載の気泡混合軽量土からなることを特徴とする盛土。 The embankment characterized by consisting of the bubble mixed lightweight soil of any one of Claims 1-3 .
JP2005186049A 2004-06-29 2005-06-27 Bubble mixed lightweight soil and embankment using the same Active JP4601496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186049A JP4601496B2 (en) 2004-06-29 2005-06-27 Bubble mixed lightweight soil and embankment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004191854 2004-06-29
JP2005186049A JP4601496B2 (en) 2004-06-29 2005-06-27 Bubble mixed lightweight soil and embankment using the same

Publications (2)

Publication Number Publication Date
JP2006046060A JP2006046060A (en) 2006-02-16
JP4601496B2 true JP4601496B2 (en) 2010-12-22

Family

ID=36024954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186049A Active JP4601496B2 (en) 2004-06-29 2005-06-27 Bubble mixed lightweight soil and embankment using the same

Country Status (1)

Country Link
JP (1) JP4601496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430013B1 (en) 2023-02-07 2024-02-09 麻生フオームクリート株式会社 Precast aerated mixed lightweight soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026378A (en) * 1988-06-25 1990-01-10 Matsushita Electric Works Ltd Production of lightweight cellular concrete
JPH08283717A (en) * 1995-04-12 1996-10-29 Kurita Water Ind Ltd Modifier for soil of excavation
JP2002242189A (en) * 2001-02-19 2002-08-28 Masao Sugiyama Lightweight banking execution method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026378A (en) * 1988-06-25 1990-01-10 Matsushita Electric Works Ltd Production of lightweight cellular concrete
JPH08283717A (en) * 1995-04-12 1996-10-29 Kurita Water Ind Ltd Modifier for soil of excavation
JP2002242189A (en) * 2001-02-19 2002-08-28 Masao Sugiyama Lightweight banking execution method

Also Published As

Publication number Publication date
JP2006046060A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US20220081361A1 (en) Composite structural material and aggregate therefor
WO2005095300A1 (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
CN104499498B (en) A kind of construction method of mass concrete building
CN111268963A (en) Road inspection well and manufacturing process and construction method thereof
JP4348331B2 (en) Reinforcing structure and reinforcing method of concrete structure
JP4601496B2 (en) Bubble mixed lightweight soil and embankment using the same
JP2007022872A (en) Water-permeable concrete member
CN117105546A (en) Metal-rich cement additive and application thereof in improving concrete performance by using reinforcing steel bars
US20220048817A1 (en) Low buoyancy cellular concrete
CN107366302A (en) A kind of construction technology of reinforced concrete retaining wall
JP5573658B2 (en) Fiber-reinforced cement composite material for casting and method for producing the same
JP4926387B2 (en) Cured polymer cement mortar
CN112142399A (en) C15 plastic concrete for small gate dam impervious wall and preparation method thereof
JP2004225453A (en) Construction method of civil engineering structure
KR100813216B1 (en) Manufacturing method of environmentally friend planting block utilizing charcoal powder and recycled aggregates of dolomite
CN110485229B (en) Construction process for bubble mixed light soil
JP4849447B2 (en) Noise barrier block
JP7455680B2 (en) Method of constructing structures made of earth-based materials
Sam et al. Self compacting concrete with recycled coarse aggregates
JP2010047446A (en) Concrete structure
JP4644646B2 (en) Construction method of porous concrete retaining wall
JP7009161B2 (en) Reinforced building and its manufacturing method
JP5806152B2 (en) Cement composition and method for producing cement composition
JP6602228B2 (en) Method for producing concrete for slip foam method and slip foam method
Najjar et al. Underwater concreting by using two-stage (preplaced aggregate) concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250