JP4601196B2 - Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst - Google Patents

Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst Download PDF

Info

Publication number
JP4601196B2
JP4601196B2 JP2001090322A JP2001090322A JP4601196B2 JP 4601196 B2 JP4601196 B2 JP 4601196B2 JP 2001090322 A JP2001090322 A JP 2001090322A JP 2001090322 A JP2001090322 A JP 2001090322A JP 4601196 B2 JP4601196 B2 JP 4601196B2
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
parts
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001090322A
Other languages
Japanese (ja)
Other versions
JP2002282696A (en
Inventor
正英 近藤
誠一 河藤
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001090322A priority Critical patent/JP4601196B2/en
Publication of JP2002282696A publication Critical patent/JP2002282696A/en
Application granted granted Critical
Publication of JP4601196B2 publication Critical patent/JP4601196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、不飽和アルデヒドを分子状酸素を用いて気相接触酸化し、不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む不飽和カルボン酸合成用触媒、不飽和カルボン酸合成用触媒の製造方法、および、不飽和カルボン酸の合成方法に関する。
【0002】
【従来の技術】
従来、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を製造する際に用いられる触媒やその製造方法については数多くの提案がなされている。
【0003】
このような触媒の多くは、少なくともモリブデンおよびバナジウムを含む組成を有しており、工業的にはこのような組成の成形触媒が使用される。これらはその成形方法により押出成形触媒や担持成形触媒等に分類される。通常、押出成形触媒は触媒成分を含む粒子を混練りし、押出成形する工程を経て製造され、担持成形触媒は触媒成分を含む粉体を担体に担持させる工程を経て製造される。
【0004】
押出成形触媒に関しては、例えば、製造の際にグラファイトを添加して物理的強度や選択率を向上させる方法(特開昭60−150834号公報)、成形体の形状および物性を特定したもの(特公平2−33419号公報)等が提案されている。
【0005】
しかしながら、これら公知の方法で得られる触媒は、触媒活性、目的生成物の選択性などの点で工業触媒としては必ずしも十分ではなく、一般に工業的見地からさらなる改良が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、触媒活性と不飽和カルボン酸選択性とに優れた不飽和カルボン酸合成用触媒、その触媒の製造方法、および、その触媒を用いた、高活性、高選択性の不飽和カルボン酸の合成方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的は、以下の本発明により解決できる。
(1)不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒であって、モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカンおよび液体を加えて混練りしたものを押出成形した不飽和カルボン酸合成用触媒。
(2)不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒であって、モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカン、セルロース誘導体および液体を加えて混練りしたものを押出成形した不飽和カルボン酸合成用触媒。
(3)不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒の製造方法であって、モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカンおよび液体を加えて混練りしたものを押出成形することを特徴とする不飽和カルボン酸合成用触媒の製造方法。
(4)不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒の製造方法であって、モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカン、セルロース誘導体および液体を加えて混練りしたものを押出成形することを特徴とする不飽和カルボン酸合成用触媒の製造方法。
(5)前記(1)または(2)の触媒の存在下で、不飽和アルデヒドを分子状酸素により気相接触酸化する不飽和カルボン酸の合成方法。
【0008】
【発明の実施の形態】
本発明の触媒は、不飽和アルデヒドを反応原料とし、この反応原料を分子状酸素により気相接触酸化して不飽和カルボン酸を合成するために用いられるものである。本発明の不飽和カルボン酸合成用触媒は、触媒活性、不飽和カルボン酸選択性に優れており、この触媒を用いることで収率よく不飽和カルボン酸を製造することができる。
【0009】
本発明の触媒は、触媒成分として少なくともモリブデンおよびバナジウムを含む押出成形触媒である。触媒成分としては、他に、鉄、コバルト、クロム、アルミニウム、ストロンチウム、ゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウム、バリウム、マグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズ、ビスマス、ガリウム、セリウム、ランタン、ルビジウム、セシウム、タリウム等を含んでいてもよい。
【0010】
このような少なくともモリブデンおよびバナジウムを含む押出成形触媒は、一般に(1)触媒成分を含む粒子を製造する工程、(2)得られた触媒成分を含む粒子等を混練りする工程、(3)得られた混練り品を押出成形する工程、(4)乾燥および/または熱処理する工程を経て製造される。
【0011】
本発明において、(1)の工程は特に限定されず、従来公知の種々の方法が適用できるが、通常、少なくともモリブデン、バナジウムを含む水性スラリーを乾燥し、必要に応じてさらに粉砕して粒子状にする。
【0012】
少なくともモリブデン、バナジウムを含む水性スラリーを製造する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている沈殿法、酸化物混合法等の種々の方法を用いることができる。
【0013】
水性スラリーに溶解する触媒成分の原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。触媒成分の原料は各元素に対し1種を用いても2種以上を用いてもよい。
【0014】
水性スラリーを乾燥して粒子状にする方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固して塊状の乾燥物を粉砕する方法等が適用できる。乾燥条件は乾燥方法により異なり、公知の方法に従って適宜決めればよい。
【0015】
このようにして得られた乾燥粒子は、必要に応じて、好ましくは200〜500℃で熱処理(焼成)してもよい。焼成条件は、特に限定されないが、通常、酸素、空気または窒素流通下で行ない、焼成時間は目的とする触媒によって適宜選択すればよい。
【0016】
触媒成分を含む粒子の平均粒子直径は、大きくなると成形後の粒子間に大きな空隙、すなわち大きな細孔が形成されて選択率が向上する傾向があり、小さくなると単位体積当たりの粒子同士の接触点が増加するので得られる触媒成形体の機械的強度が向上する傾向がある。これらを考慮すると、平均粒子直径は10μm以上、特に20μm以上が好ましく、150μm以下、特に100μm以下が好ましい。
【0017】
次に(2)の工程では、(1)の工程で得られた粒子、液体および多糖類を混合したものを混練りする。
【0018】
混練りに使用する装置は特に限定されず、例えば、双腕型の攪拌羽根を使用するバッチ式の混練り機、軸回転往復式やセルフクリーニング型等の連続式の混練り機等が使用できるが、混練り品の状態を確認しながら混練りを行うことができる点ではバッチ式が好ましい。また、混練りの終点は、通常目視または手触りによって判断する。
【0019】
(2)の工程で用いる液体としては、水やアルコールが好ましく、このようなアルコールとしては、例えばエタノール、メチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコールが挙げられる。これらの液体は1種を用いても、2種以上を組み合わせて用いてもよい。
【0020】
液体の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた乾燥粒子または焼成粒子100質量部に対して5〜70質量部であり、好ましくは10質量部以上または60質量部以下である。
【0021】
(2)の工程で用いる天然起源の多糖類としては、微生物起源、植物起源および動物起源の多糖類を挙げることができる。これら多糖類は保水性を有しており、成形体により多くの水分を含めることができるので、最終的な触媒中に好ましい細孔が発現し、より選択性の高い触媒を製造することができる。また、これら多糖類の添加により成形性を向上させることができる。
【0022】
上記した天然起源の多糖類の中でも、本発明においては、グルカン、特にβ−1,3−グルコシド結合を主体とするβ−1,3−グルカンが好ましく用いられる。このようなβ−1,3−グルカンとしては、例えば、カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等を挙げることができる。プルランは、α−1,4−およびα−1,6−グルコシド結合を主体とするグルカンであるが、本発明において、好ましく用いることができる。
【0023】
特に、本発明においては、微生物起源のβ−1,3−グルカンが好ましく、したがってカードランやパラミロン等が好ましく用いられ、特にカードランが好ましく用いられる。
【0024】
天然起源の多糖類は1種を用いても2種以上を用いてもよい。
【0025】
(2)の工程においてこれらの多糖類を用いた場合、最終的な触媒中に好ましい細孔が発現し、触媒活性、不飽和カルボン酸の選択性に優れた触媒が得られる。
【0026】
多糖類は、未精製のまま用いてもよく、精製して用いてもよいが、不純物としての金属や強熱残分は、触媒性能を低下させることがあるため、より少ない方が好ましい。
【0027】
多糖類の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた粒子100質量部に対して0.05〜15質量部であり、好ましくは0.1質量部以上または10質量部以下である。多糖類の添加量が多くなるほど成形性が向上する傾向があり、少なくなるほど成形後の熱処理等の後処理が簡単になる傾向がある。
【0028】
(2)の工程においては、上述したような多糖類とともに、成形助剤を用いることができる。本発明においては、前記多糖類とともに、成形助剤としてセルロース誘導体を用いた場合、さらに活性、選択性に優れた触媒が得られる。
【0029】
このようなセルロース誘導体としては、例えば、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等を挙げることができる。中でも、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースが好ましい。セルロース誘導体は1種を用いても2種以上を用いてもよい。
【0030】
これらは、2%水溶液、20℃における粘度が1000〜10000Pam・sの範囲のものが、成形性がよいため、好ましい。
【0031】
セルロース誘導体の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた粒子100質量部に対して0.05〜15質量部であり、好ましくは0.1質量部以上または10質量部以下である。セルロース誘導体の添加量が多くなるほど成形性が向上する傾向があり、少なくなるほど成形後の熱処理等の後処理が簡単になる傾向がある。
【0032】
天然起源の多糖類とセルロース誘導体との合計使用量は、通常、(1)の工程で得られた粒子100質量部に対して0.1質量部以上が好ましく、また、20質量部以下が好ましい。
【0033】
次に(3)の工程では、(2)の工程で得られた混練り品を押出成形する。
【0034】
触媒成分を含む粒子に多糖類、セルロース誘導体および液体を添加して混練後、押出成形する際には、オーガー式押出成形機、ピストン式押出成形機などを用いることができる。
【0035】
押出成形による成形体の形状としては特に限定はなく、リング状、円柱状、星型状などの任意の形状に成形することができる。
【0036】
次に(4)の工程では、(3)の工程で得られた触媒成形体を乾燥、焼成して触媒(製品)を得る。
【0037】
乾燥方法は特に限定されず、一般的に知られている熱風乾燥、湿度乾燥、遠赤外線乾燥またはマイクロ波乾燥などの方法を任意に用いることができる。乾燥条件は、目的とする含水率とすることができれば適宜選択することができる。
【0038】
乾燥成形品は通常焼成するが、(1)の工程で粒子を焼成している場合等は省略することも可能である。焼成条件については特に限定はなく、公知の焼成条件を適用することができる。通常は200〜500℃、好ましくは300〜450℃の温度範囲で行われる。
【0039】
また、乾燥工程を省略し、焼成のみを行なってもよい。
【0040】
本発明の触媒を用いた不飽和アルデヒドの気相接触酸化による不飽和カルボン酸の製造の例としては、アクロレインの酸化によるアクリル酸の製造や、メタクロレインの酸化によるメタクリル酸の製造等が挙げられる。
【0041】
アクロレインの酸化によるアクリル酸の製造に適する触媒としては、下記一般式(I)で表される組成を有するものが好ましく挙げられる。
【0042】
MoabX1cY1dZ1ef (I)
式中、Mo、VおよびOはそれぞれモリブデン、バナジウムおよび酸素を示し、X1は鉄、コバルト、クロム、アルミニウムおよびストロンチウムからなる群より選ばれた少なくとも一種の元素を示し、Y1はゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウムおよびバリウムからなる群より選ばれた少なくとも1種の元素を示し、Z1はマグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズおよびビスマスからなる群より選ばれた少なくとも1種の元素を示す。
【0043】
a、b、c、d、eおよびfは各元素の原子比率を表し、a=12のときb=0.01〜6、c=0〜5、d=0〜10、e=0〜5であり、fは前記各成分の原子価を満足するのに必要な酸素原子比率である。
【0044】
また、メタクロレインの酸化によるメタクリル酸の製造に適する触媒としては、下記一般式(II)で表される組成を有するものが好ましく挙げられる。
【0045】
gMohiCujX2kY2lZ2mn (II)
式中、P、Mo、V、CuおよびOはそれぞれリン、モリブデン、バナジウム、銅および酸素を示し、X2はアンチモン、ビスマス、ヒ素、ゲルマニウム、ジルコニウム、テルル、セレン、ケイ素、タングステン、ホウ素および銀からなる群より選ばれた少なくとも1種の元素を示し、Y2は鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種の元素を示し、Z2はカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示す。
【0046】
g、h、i、j、k、l、mおよびnは各元素の原子比率を表し、h=12のときg=0.5〜3、i=0.01〜3、j=0〜2、k=0〜3、l=0〜3、m=0.01〜3であり、nは前記各成分の原子価を満足するのに必要な酸素原子比率である。
【0047】
また、本発明においては、従来公知のグラファイトやケイソウ土などの無機化合物、ガラス繊維、セラミックファイバーや炭素繊維などの無機ファイバーなどを添加することができる。添加は(2)の工程、混練りする際に行なえばよい。
【0048】
本発明の不飽和カルボン酸の合成方法では、本発明の方法で製造した触媒の存在下、反応原料である不飽和アルデヒドと分子状酸素とを含む原料ガスを気相接触酸化する。反応は、通常、固定床で行なう。また、触媒層は1層でも2層以上でもよい。
【0049】
この際、反応管内において、触媒はシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、チタニア、マグネシア、セラミックボールやステンレス鋼等の不活性担体で希釈されていてもよい。また、(2)の工程、混練りする際にこれらの不活性担体を添加してもよい。
【0050】
原料ガス中の不飽和アルデヒドの濃度は広い範囲で変えることができるが、1〜20容量%、特に3〜10容量%が好ましい。原料の不飽和アルデヒドは、水、低級飽和アルデヒド等の不純物を少量含んでいてもよく、これらの不純物は反応に実質的な影響を与えない。
【0051】
分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いうる。原料ガス中の酸素濃度は、不飽和アルデヒドに対するモル比(容量比)で規定され、この値は0.3〜4、特に0.4〜2.5が好ましい。
【0052】
原料ガスは反応原料と分子状酸素以外に水を含んでいることが好ましく、また窒素、二酸化炭素等の不活性ガスで希釈して用いることが好ましい。原料ガス中の水の濃度は、3〜45容量%が好ましい。
【0053】
反応圧力は常圧から数100kPaまでが好ましい。反応温度は通常200〜430℃の範囲で選ぶことができるが、特に220〜400℃の範囲が好ましい。接触時間は1.5〜15秒が好ましい。
【0054】
【実施例】
以下、実施例および比較例により本発明を具体的に説明する。
【0055】
実施例および比較例中の「部」は質量部であり、混練りにはバッチ式の双腕型の攪拌羽根を備えた混練り機を使用した。また、原料ガスおよび反応ガスの分析はガスクロマトグラフィーにより行った。触媒組成は触媒原料の仕込み量から求めた。
【0056】
実施例および比較例中の原料不飽和アルデヒドの反応率(以下、反応率という)、生成する不飽和カルボン酸の選択率は次式により算出した。
【0057】
反応率(%)=A/B×100
不飽和カルボン酸の選択率(%)=C/A×100
不飽和カルボン酸の収率(%)=C/B×100
ここで、Aは反応した原料不飽和アルデヒドのモル数、Bは供給した原料不飽和アルデヒドのモル数、Cは生成した不飽和カルボン酸のモル数である。
<実施例1>
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム3.3部および硝酸カリウム4.8部を純水400部に溶解した。これを攪拌しながら85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅2.3部を純水10部に溶解した溶液を加えた。次に、硝酸亜鉛2.8部を純水10部に溶解した溶液を加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、つづいて三酸化アンチモン2.1部、二酸化ゲルマニウム1.5部を加えた。この溶液を加熱攪拌しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。
【0058】
このようにして得られた乾燥粉100部に対してカードラン5部を加え、乾式混合した。ここに純水14部を混合し、混練り機で粘土状物質になるまで混合(混練り)した後、オーガー式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmの触媒成形体を得た。
【0059】
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下、380℃で5時間熱処理して最終焼成品を得た。
【0060】
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、
1.5Mo120.6Cu0.2Sb0.3Ge0.3As0.2Zn0.21
であった。
【0061】
この触媒成形体をステンレス製反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%および窒素55%(容量%)の原料ガスを用い、常圧下、接触時間3.6秒、反応温度290℃で反応させた。その反応結果は、メタクロレインの反応率86.4%、メタクリル酸の選択率85.2%、メタクリル酸の収率73.6%であった。
<実施例2>
実施例1において、カードラン5部の代わりに、カードラン1部とメチルセルロース5部とを加えた以外は、実施例1と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率86.4%、メタクリル酸の選択率85.4%、メタクリル酸の収率73.8%であった。
<比較例1>
実施例1において、カードランを加えず、得られた触媒焼成物100部に対して純水14部だけを添加した以外は、実施例1と同様に触媒成形体を製造し、反応を行った。得られた成形体は非常に保形性の低いものであった。その反応結果は、メタクロレインの反応率85.2%、メタクリル酸の選択率84.5%、メタクリル酸の収率72.0%であった。
<比較例2>
実施例1において、カードラン5部の代わりに、メチルセルロース5部を加えた以外は、実施例1と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率85.5%、メタクリル酸の選択率84.7%、メタクリル酸の収率72.4%であった。
<実施例3>
三酸化モリブデン100部、五酸化バナジウム3.2部、ほう酸0.4部、五酸化アンチモン3.8部および85%リン酸10.0部を純水800部と混合した。これを還流下で3時間加熱攪拌した後、酸化銅0.5部、酸化コバルト0.9部および硝酸マンガン1.0部を加え、再び還流下で2時間加熱攪拌した。このスラリーを50℃まで冷却し、重炭酸セシウム11.2部を純水30部に溶解したものを加え、15分間攪拌した。次に、硝酸アンモニウム10部を純水30部に溶解したものを加え、15分間攪拌した。そして、得られた触媒成分を含むスラリーをスプレー乾燥機を用いて平均粒径60μmの乾燥球状粒子とした。
【0062】
このようにして得られた乾燥粉100部に対してカードラン4部を加え、乾式混合した。ここにエチルアルコール14部を混合し、混練り機で粘土状物質になるまで混合(混練り)した後、ピストン式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmの触媒成形体を得た。
【0063】
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下、380℃で5時間熱処理して最終焼成品を得た。
【0064】
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、
1.5Mo120.6Cu0.10.1Sb0.4Co0.2Mn0.06Cs1
であった。
【0065】
この触媒成形体をステンレス製反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%および窒素55%(容量%)の原料ガスを用い、常圧下、接触時間3.6秒、反応温度270℃で反応させた。その反応結果は、メタクロレインの反応率89.8%、メタクリル酸の選択率88.6%、メタクリル酸の収率79.6%であった。
<実施例4>
実施例3において、カードラン4部の代わりに、カードラン1部とメチルセルロース4部とを加えた以外は、実施例3と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率90.1%、メタクリル酸の選択率88.6%、メタクリル酸の収率79.8%であった。
<実施例5>
実施例3において、カードラン4部の代わりに、カードラン1部とヒドロキシプロピルメチルセルロース4部とを加えた以外は、実施例3と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率90.2%、メタクリル酸の選択率88.7%、メタクリル酸の収率80.0%であった。
<比較例3>
実施例3において、カードラン4部の代わりに、メチルセルロース4部を加えた以外は、実施例3と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率89.4%、メタクリル酸の選択率87.7%、メタクリル酸の収率78.4%であった。
<実施例6>
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム18.7部を純水1000部に溶解した。これに硝酸第二鉄15.3部を純水200部に溶解した溶液を加え、さらに硝酸コバルト6.9部を純水200部に溶解した溶液、硝酸銀0.5部を純水50部に溶解した溶液、硝酸バリウム2.5部を純水100部に溶解した溶液を順次加えた。次に、一般式Na2O・2SiO2・2.2H2Oで表される水ガラス4.5部を純水30部に溶解した溶液を加え、さらに20%シリカゾル50.9部を加えた。この溶液を加熱攪拌しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。
【0066】
このようにして得られた乾燥粉100部に対してカードラン4部と平均長さ200μmの無機ファイバー5部とを加え、乾式混合した。ここに純水19部を混合し、混練り機で粘土状物質になるまで混合(混練り)した後、オーガー式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmの触媒成形体を得た。
【0067】
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下、380℃で5時間熱処理して最終焼成品を得た。
【0068】
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、
Mo123.4Fe0.8Si4.5Na0.8Co0.5Ag0.07Ba0.2
であった。
【0069】
この触媒成形体をステンレス製反応管に充填し、アクロレイン5%、酸素10%、水蒸気30%および窒素55%(容量%)の原料ガスを用い、常圧下、接触時間3.6秒、反応温度270℃で反応させた。その反応結果は、アクロレインの反応率99.5%、アクリル酸の選択率93.8%、アクリル酸の収率93.3%であった。
<比較例4>
実施例6において、カードランを加えなかった以外は、実施例6と同様に触媒成形体を製造し、反応を行った。その反応結果は、アクロレインの反応率99.2%、アクリル酸の選択率92.6%、アクリル酸の収率91.9%であった。
<比較例5>
実施例6において、カードラン4部の代わりに、メチルセルロース4部を加えた以外は、実施例6と同様に触媒成形体を製造し、反応を行った。その反応結果は、アクロレインの反応率99.4%、アクリル酸の選択率92.9%、アクリル酸の収率92.3%であった。
【0070】
【発明の効果】
本発明の不飽和カルボン酸合成用触媒は、触媒活性、不飽和カルボン酸選択性に優れており、この触媒を用いることで、収率よく不飽和カルボン酸を製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an unsaturated carboxylic acid synthesis catalyst containing at least molybdenum and vanadium, an unsaturated carboxylic acid, which is used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde using molecular oxygen. The present invention relates to a method for producing a catalyst for synthesis and a method for synthesizing an unsaturated carboxylic acid.
[0002]
[Prior art]
Conventionally, many proposals have been made on a catalyst used for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde and a production method thereof.
[0003]
Many of such catalysts have a composition containing at least molybdenum and vanadium, and a shaped catalyst having such a composition is industrially used. These are classified into extrusion molding catalysts, supported molding catalysts, and the like according to the molding method. Usually, an extrusion-molded catalyst is produced through a process of kneading particles containing a catalyst component and extrusion molding, and a supported molded catalyst is produced through a process of supporting a powder containing a catalyst component on a carrier.
[0004]
Regarding the extrusion molding catalyst, for example, a method for improving the physical strength and selectivity by adding graphite at the time of production (JP-A-60-150834), and specifying the shape and physical properties of the molded body (special No. 2-333419) has been proposed.
[0005]
However, the catalysts obtained by these known methods are not necessarily sufficient as industrial catalysts in terms of catalyst activity, selectivity of desired products, etc., and generally further improvements are desired from an industrial standpoint.
[0006]
[Problems to be solved by the invention]
The present invention relates to an unsaturated carboxylic acid synthesis catalyst excellent in catalytic activity and unsaturated carboxylic acid selectivity, a method for producing the catalyst, and a highly active and highly selective unsaturated carboxylic acid using the catalyst. An object of the present invention is to provide a synthesis method.
[0007]
[Means for Solving the Problems]
The above object can be solved by the present invention described below.
(1) An extrusion catalyst containing at least molybdenum and vanadium, which is used in synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, and particles containing molybdenum and vanadium, An unsaturated carboxylic acid synthesis catalyst obtained by extruding a kneaded mixture of β-1,3-glucan and liquid.
(2) An extrusion catalyst containing at least molybdenum and vanadium, which is used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, and particles containing molybdenum and vanadium, An unsaturated carboxylic acid synthesis catalyst obtained by extruding a kneaded mixture of β-1,3-glucan , a cellulose derivative and a liquid.
(3) A method for producing an extrusion-molded catalyst containing at least molybdenum and vanadium, which is used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, which contains molybdenum and vanadium. A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising extruding particles obtained by adding β-1,3-glucan and a liquid and kneading the particles.
(4) A method for producing an extrusion-molded catalyst containing at least molybdenum and vanadium, which is used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, comprising molybdenum and vanadium. A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising extruding particles obtained by adding β-1,3-glucan , a cellulose derivative and a liquid to a particle and kneading them.
(5) A method for synthesizing an unsaturated carboxylic acid, in which an unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst of (1) or (2).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst of the present invention is used for synthesizing an unsaturated carboxylic acid by using an unsaturated aldehyde as a reaction raw material and subjecting the reaction raw material to gas phase catalytic oxidation with molecular oxygen. The unsaturated carboxylic acid synthesis catalyst of the present invention is excellent in catalytic activity and unsaturated carboxylic acid selectivity, and an unsaturated carboxylic acid can be produced in good yield by using this catalyst.
[0009]
The catalyst of the present invention is an extrusion catalyst containing at least molybdenum and vanadium as catalyst components. Other catalyst components include iron, cobalt, chromium, aluminum, strontium, germanium, boron, arsenic, selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium, barium, magnesium, titanium, manganese, Copper, zinc, zirconium, niobium, tungsten, tantalum, calcium, tin, bismuth, gallium, cerium, lanthanum, rubidium, cesium, thallium and the like may be contained.
[0010]
Such an extrusion catalyst containing at least molybdenum and vanadium generally has (1) a step of producing particles containing a catalyst component, (2) a step of kneading the particles containing the obtained catalyst component, etc. It is manufactured through a process of extruding the kneaded product thus obtained, and a process of (4) drying and / or heat treatment.
[0011]
In the present invention, the step (1) is not particularly limited, and various conventionally known methods can be applied. Usually, an aqueous slurry containing at least molybdenum and vanadium is dried, and further pulverized as necessary to form particles. To.
[0012]
The method for producing an aqueous slurry containing at least molybdenum and vanadium is not particularly limited, and various known methods such as a precipitation method and an oxide mixing method may be used as long as the components are not significantly unevenly distributed. it can.
[0013]
As raw materials for the catalyst component dissolved in the aqueous slurry, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, and the like of each element can be used. For example, examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. The raw material of the catalyst component may be used alone or in combination of two or more for each element.
[0014]
The method of drying the aqueous slurry to form particles is not particularly limited. For example, a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, or evaporation to dryness. Then, a method of pulverizing the lump-like dried product can be applied. The drying conditions vary depending on the drying method, and may be appropriately determined according to a known method.
[0015]
The dry particles thus obtained may be heat-treated (fired) preferably at 200 to 500 ° C., if necessary. Although the calcination conditions are not particularly limited, the calcination conditions are usually performed under a flow of oxygen, air or nitrogen, and the calcination time may be appropriately selected depending on the target catalyst.
[0016]
When the average particle diameter of the particles containing the catalyst component is increased, a large void, that is, a large pore is formed between the molded particles, and the selectivity tends to be improved. When the average particle diameter is decreased, the contact point between particles per unit volume is decreased. Increases, the mechanical strength of the resulting molded catalyst tends to be improved. Considering these, the average particle diameter is preferably 10 μm or more, particularly preferably 20 μm or more, and is preferably 150 μm or less, particularly preferably 100 μm or less.
[0017]
Next, in the step (2), a mixture of the particles, liquid and polysaccharide obtained in the step (1) is kneaded.
[0018]
The apparatus used for kneading is not particularly limited. For example, a batch-type kneading machine using a double-arm type stirring blade, a continuous kneading machine such as a shaft rotation reciprocating type or a self-cleaning type can be used. However, the batch method is preferable in that kneading can be performed while checking the state of the kneaded product. The end point of kneading is usually judged by visual observation or touch.
[0019]
The liquid used in the step (2) is preferably water or alcohol. Examples of such alcohol include lower alcohols such as ethanol, methyl alcohol, propyl alcohol, and butyl alcohol. These liquids may be used alone or in combination of two or more.
[0020]
The amount of the liquid used is appropriately selected depending on the type and size of the particles, the type of the liquid, and the like. Part, preferably 10 parts by mass or more or 60 parts by mass or less.
[0021]
Examples of naturally occurring polysaccharides used in the step (2) include polysaccharides of microbial origin, plant origin and animal origin. Since these polysaccharides have water retention and can contain more water in the molded body, preferable pores are expressed in the final catalyst, and a catalyst with higher selectivity can be produced. . Moreover, moldability can be improved by addition of these polysaccharides.
[0022]
Among the above-mentioned polysaccharides of natural origin, glucan, particularly β-1,3-glucan mainly composed of β-1,3-glucoside bond is preferably used in the present invention. Examples of such β-1,3-glucan include curdlan, laminaran, paramylon, callose, Pakiman, scleroglucan and the like. Pullulan is a glucan mainly composed of α-1,4- and α-1,6-glucoside bonds, and can be preferably used in the present invention.
[0023]
In particular, in the present invention, β-1,3-glucan derived from microorganisms is preferable. Therefore, curdlan and paramylon are preferably used, and curdlan is particularly preferably used.
[0024]
Naturally-occurring polysaccharides may be used alone or in combination of two or more.
[0025]
When these polysaccharides are used in the step (2), preferable pores are developed in the final catalyst, and a catalyst having excellent catalytic activity and selectivity for unsaturated carboxylic acid can be obtained.
[0026]
The polysaccharide may be used unpurified or may be used after purification. However, since the metal and the ignition residue as impurities may reduce the catalyst performance, it is preferable that the polysaccharide is less.
[0027]
The amount of polysaccharide used is appropriately selected according to the type and size of the particles, the type of liquid, and the like, but usually 0.05 to 15 parts by mass with respect to 100 parts by mass of the particles obtained in the step (1). Preferably, it is 0.1 mass part or more or 10 mass parts or less. As the amount of polysaccharide added increases, moldability tends to improve, and as the amount decreases, post-treatment such as heat treatment after molding tends to be simplified.
[0028]
In the step (2), a molding aid can be used together with the polysaccharide as described above. In the present invention, when a cellulose derivative is used as a molding aid together with the polysaccharide, a catalyst having further excellent activity and selectivity can be obtained.
[0029]
Examples of such cellulose derivatives include methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, hydroxypropylcellulose and the like. be able to. Of these, methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose are preferable. A cellulose derivative may use 1 type, or may use 2 or more types.
[0030]
A 2% aqueous solution and a viscosity in the range of 1000 to 10000 Pam · s at 20 ° C. are preferable because of good moldability.
[0031]
The amount of the cellulose derivative used is appropriately selected depending on the type and size of the particles, the type of the liquid, and the like. Preferably, it is 0.1 mass part or more or 10 mass parts or less. As the amount of cellulose derivative added increases, moldability tends to improve, and as the amount decreases, post-treatment such as heat treatment after molding tends to be simplified.
[0032]
The total amount of the polysaccharide of natural origin and the cellulose derivative is usually preferably 0.1 parts by mass or more and preferably 20 parts by mass or less with respect to 100 parts by mass of the particles obtained in the step (1). .
[0033]
Next, in the step (3), the kneaded product obtained in the step (2) is extruded.
[0034]
When the polysaccharide, cellulose derivative and liquid are added to the particles containing the catalyst component and kneaded and then extruded, an auger type extruder, a piston type extruder or the like can be used.
[0035]
The shape of the molded body by extrusion molding is not particularly limited, and it can be molded into an arbitrary shape such as a ring shape, a columnar shape, or a star shape.
[0036]
Next, in the step (4), the catalyst molded body obtained in the step (3) is dried and calcined to obtain a catalyst (product).
[0037]
The drying method is not particularly limited, and generally known methods such as hot air drying, humidity drying, far-infrared drying, or microwave drying can be arbitrarily used. The drying conditions can be appropriately selected as long as the desired moisture content can be achieved.
[0038]
The dried molded article is usually fired, but it can be omitted if the particles are fired in the step (1). There are no particular limitations on the firing conditions, and known firing conditions can be applied. Usually, it is carried out in a temperature range of 200 to 500 ° C, preferably 300 to 450 ° C.
[0039]
Alternatively, the drying step may be omitted and only firing may be performed.
[0040]
Examples of the production of unsaturated carboxylic acids by gas phase catalytic oxidation of unsaturated aldehydes using the catalyst of the present invention include the production of acrylic acid by oxidation of acrolein and the production of methacrylic acid by oxidation of methacrolein. .
[0041]
As a catalyst suitable for the production of acrylic acid by oxidation of acrolein, a catalyst having a composition represented by the following general formula (I) is preferably exemplified.
[0042]
Mo a V b X1 c Y1 d Z1 e O f (I)
In the formula, Mo, V and O represent molybdenum, vanadium and oxygen, respectively, X1 represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, Y1 represents germanium, boron and arsenic Represents at least one element selected from the group consisting of selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium and barium, and Z1 represents magnesium, titanium, manganese, copper, zinc, zirconium, niobium And at least one element selected from the group consisting of tungsten, tantalum, calcium, tin and bismuth.
[0043]
a, b, c, d, e and f represent the atomic ratio of each element, and when a = 12, b = 0.01 to 6, c = 0 to 5, d = 0 to 10, e = 0 to 5 And f is the oxygen atom ratio necessary to satisfy the valence of each component.
[0044]
Moreover, as a catalyst suitable for manufacture of methacrylic acid by oxidation of methacrolein, a catalyst having a composition represented by the following general formula (II) is preferably exemplified.
[0045]
P g Mo h V i Cu j X2 k Y2 l Z2 m O n (II)
Where P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X2 from antimony, bismuth, arsenic, germanium, zirconium, tellurium, selenium, silicon, tungsten, boron and silver Y2 represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum. Z2 represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium.
[0046]
g, h, i, j, k, l, m, and n represent the atomic ratio of each element. When h = 12, g = 0.5-3, i = 0.01-3, j = 0-2 , K = 0-3, l = 0-3, m = 0.01-3, and n is the oxygen atom ratio necessary to satisfy the valence of each component.
[0047]
In the present invention, conventionally known inorganic compounds such as graphite and diatomaceous earth, glass fibers, inorganic fibers such as ceramic fibers and carbon fibers, and the like can be added. The addition may be performed at the time of kneading in the step (2).
[0048]
In the method for synthesizing an unsaturated carboxylic acid of the present invention, a raw material gas containing an unsaturated aldehyde as a reaction raw material and molecular oxygen is subjected to gas phase catalytic oxidation in the presence of the catalyst produced by the method of the present invention. The reaction is usually carried out in a fixed bed. The catalyst layer may be one layer or two or more layers.
[0049]
At this time, in the reaction tube, the catalyst may be diluted with an inert carrier such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls or stainless steel. Moreover, you may add these inert support | carriers at the time of the process of (2) and kneading | mixing.
[0050]
The concentration of the unsaturated aldehyde in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly 3 to 10% by volume. The raw material unsaturated aldehyde may contain a small amount of impurities such as water and lower saturated aldehyde, and these impurities do not substantially affect the reaction.
[0051]
Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can be used if necessary. The oxygen concentration in the raw material gas is defined by a molar ratio (volume ratio) to the unsaturated aldehyde, and this value is preferably 0.3 to 4, particularly 0.4 to 2.5.
[0052]
The raw material gas preferably contains water in addition to the reaction raw material and molecular oxygen, and is preferably diluted with an inert gas such as nitrogen or carbon dioxide. The concentration of water in the source gas is preferably 3 to 45% by volume.
[0053]
The reaction pressure is preferably from normal pressure to several hundred kPa. The reaction temperature can usually be selected in the range of 200 to 430 ° C, but the range of 220 to 400 ° C is particularly preferable. The contact time is preferably 1.5 to 15 seconds.
[0054]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0055]
“Part” in Examples and Comparative Examples is part by mass, and a kneader equipped with a batch type double-arm type stirring blade was used for kneading. The analysis of the raw material gas and the reaction gas was performed by gas chromatography. The catalyst composition was determined from the amount of catalyst raw material charged.
[0056]
In the examples and comparative examples, the reaction rate of the raw material unsaturated aldehyde (hereinafter referred to as the reaction rate) and the selectivity of the unsaturated carboxylic acid produced were calculated by the following equations.
[0057]
Reaction rate (%) = A / B × 100
Selectivity of unsaturated carboxylic acid (%) = C / A × 100
Unsaturated carboxylic acid yield (%) = C / B × 100
Here, A is the number of moles of reacted raw material unsaturated aldehyde, B is the number of moles of supplied raw material unsaturated aldehyde, and C is the number of moles of unsaturated carboxylic acid produced.
<Example 1>
100 parts of ammonium paramolybdate, 3.3 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 2.3 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, after adding a solution prepared by dissolving 2.8 parts of zinc nitrate in 10 parts of pure water, the temperature was raised to 95 ° C. A solution obtained by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water was added thereto, followed by 2.1 parts of antimony trioxide and 1.5 parts of germanium dioxide. The solution was evaporated to dryness while stirring with heating, and the obtained solid was dried at 130 ° C. for 16 hours.
[0058]
5 parts of curdlan was added to 100 parts of the dry powder thus obtained and dry-mixed. 14 parts of pure water was mixed here, mixed (kneaded) until it became a clay-like substance with a kneader, and then extruded using an auger type extrusion molding machine, outer diameter 6 mm, inner diameter 2 mm, length 5 mm. The catalyst molded body was obtained.
[0059]
The obtained catalyst molded body was dried at 130 ° C. for 6 hours and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
[0060]
The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst molded body is
P 1.5 Mo 12 V 0.6 Cu 0.2 Sb 0.3 Ge 0.3 As 0.2 Zn 0.2 K 1
Met.
[0061]
This catalyst compact was filled in a stainless steel reaction tube, and using a raw material gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% (volume%) nitrogen, the reaction time was 3.6 seconds under normal pressure. The reaction was performed at a temperature of 290 ° C. As a result of the reaction, the reaction rate of methacrolein was 86.4%, the selectivity of methacrylic acid was 85.2%, and the yield of methacrylic acid was 73.6%.
<Example 2>
In Example 1, a catalyst molded body was produced and reacted in the same manner as in Example 1 except that 1 part of curdlan and 5 parts of methylcellulose were added instead of 5 parts of curdlan. As a result of the reaction, the reaction rate of methacrolein was 86.4%, the selectivity of methacrylic acid was 85.4%, and the yield of methacrylic acid was 73.8%.
<Comparative Example 1>
In Example 1, a catalyst molded body was produced and reacted in the same manner as in Example 1, except that no curdlan was added and only 14 parts of pure water was added to 100 parts of the obtained catalyst fired product. . The obtained molded body had a very low shape retention. As a result of the reaction, the reaction rate of methacrolein was 85.2%, the selectivity of methacrylic acid was 84.5%, and the yield of methacrylic acid was 72.0%.
<Comparative example 2>
In Example 1, a catalyst molded body was produced and reacted in the same manner as in Example 1 except that 5 parts of methylcellulose was added instead of 5 parts of curdlan. As a result of the reaction, the reaction rate of methacrolein was 85.5%, the selectivity of methacrylic acid was 84.7%, and the yield of methacrylic acid was 72.4%.
<Example 3>
100 parts of molybdenum trioxide, 3.2 parts of vanadium pentoxide, 0.4 parts of boric acid, 3.8 parts of antimony pentoxide and 10.0 parts of 85% phosphoric acid were mixed with 800 parts of pure water. This was heated and stirred under reflux for 3 hours, 0.5 parts of copper oxide, 0.9 parts of cobalt oxide and 1.0 part of manganese nitrate were added, and the mixture was again heated and stirred under reflux for 2 hours. The slurry was cooled to 50 ° C., 11.2 parts of cesium bicarbonate dissolved in 30 parts of pure water was added, and the mixture was stirred for 15 minutes. Next, 10 parts of ammonium nitrate dissolved in 30 parts of pure water was added and stirred for 15 minutes. And the slurry containing the obtained catalyst component was made into the dry spherical particle of an average particle diameter of 60 micrometers using the spray dryer.
[0062]
4 parts of curdlan was added to 100 parts of the dry powder thus obtained and dry-mixed. 14 parts of ethyl alcohol was mixed here, mixed (kneaded) with a kneader until it became a clay-like substance, and then extruded using a piston-type extrusion machine, an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. The catalyst molded body was obtained.
[0063]
The obtained catalyst molded body was dried at 130 ° C. for 6 hours and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
[0064]
The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst molded body is
P 1.5 Mo 12 V 0.6 Cu 0.1 B 0.1 Sb 0.4 Co 0.2 Mn 0.06 Cs 1
Met.
[0065]
This catalyst compact was filled in a stainless steel reaction tube, and using a raw material gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% (volume%) nitrogen, the reaction time was 3.6 seconds under normal pressure. The reaction was performed at a temperature of 270 ° C. As a result of the reaction, the reaction rate of methacrolein was 89.8%, the selectivity of methacrylic acid was 88.6%, and the yield of methacrylic acid was 79.6%.
<Example 4>
In Example 3, a catalyst molded body was produced and reacted in the same manner as in Example 3 except that 1 part of curdlan and 4 parts of methylcellulose were added instead of 4 parts of curdlan. As a result of the reaction, the reaction rate of methacrolein was 90.1%, the selectivity of methacrylic acid was 88.6%, and the yield of methacrylic acid was 79.8%.
<Example 5>
In Example 3, a catalyst molded body was produced and reacted in the same manner as in Example 3 except that 1 part of curdlan and 4 parts of hydroxypropylmethylcellulose were added instead of 4 parts of curdlan. As a result of the reaction, the reaction rate of methacrolein was 90.2%, the selectivity of methacrylic acid was 88.7%, and the yield of methacrylic acid was 80.0%.
<Comparative Example 3>
In Example 3, a catalyst molded body was produced and reacted in the same manner as in Example 3 except that 4 parts of methylcellulose was added instead of 4 parts of curdlan. As a result of the reaction, the reaction rate of methacrolein was 89.4%, the selectivity of methacrylic acid was 87.7%, and the yield of methacrylic acid was 78.4%.
<Example 6>
100 parts of ammonium paramolybdate and 18.7 parts of ammonium metavanadate were dissolved in 1000 parts of pure water. A solution in which 15.3 parts of ferric nitrate was dissolved in 200 parts of pure water was added to this, a solution in which 6.9 parts of cobalt nitrate was dissolved in 200 parts of pure water, and 0.5 part of silver nitrate in 50 parts of pure water. A dissolved solution and a solution obtained by dissolving 2.5 parts of barium nitrate in 100 parts of pure water were sequentially added. Next, the general formula Na 2 O · 2SiO 2 · 2.2H 2 O-water glass 4.5 parts represented a solution prepared by dissolving 30 parts of pure water was further added 20% silica sol 50.9 parts . The solution was evaporated to dryness while stirring with heating, and the obtained solid was dried at 130 ° C. for 16 hours.
[0066]
To 100 parts of the dry powder thus obtained, 4 parts of curdlan and 5 parts of inorganic fibers having an average length of 200 μm were added and dry-mixed. 19 parts of pure water was mixed here, mixed (kneaded) with a kneader until it became a clay-like substance, and then extruded using an auger type extrusion molding machine. The outer diameter was 6 mm, the inner diameter was 2 mm, and the length was 5 mm. The catalyst molded body was obtained.
[0067]
The obtained catalyst molded body was dried at 130 ° C. for 6 hours and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
[0068]
The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst molded body is
Mo 12 V 3.4 Fe 0.8 Si 4.5 Na 0.8 Co 0.5 Ag 0.07 Ba 0.2
Met.
[0069]
This catalyst compact was filled into a stainless steel reaction tube, and a raw material gas of 5% acrolein, 10% oxygen, 30% water vapor and 55% nitrogen (volume%) was used under normal pressure, contact time 3.6 seconds, reaction temperature. The reaction was performed at 270 ° C. As a result, the reaction rate of acrolein was 99.5%, the selectivity of acrylic acid was 93.8%, and the yield of acrylic acid was 93.3%.
<Comparative example 4>
In Example 6, a catalyst molded body was produced and reacted in the same manner as in Example 6 except that no curdlan was added. As a result, the reaction rate of acrolein was 99.2%, the selectivity of acrylic acid was 92.6%, and the yield of acrylic acid was 91.9%.
<Comparative Example 5>
In Example 6, a catalyst molded body was produced and reacted in the same manner as in Example 6 except that 4 parts of methylcellulose was added instead of 4 parts of curdlan. As a result of the reaction, the reaction rate of acrolein was 99.4%, the selectivity of acrylic acid was 92.9%, and the yield of acrylic acid was 92.3%.
[0070]
【The invention's effect】
The unsaturated carboxylic acid synthesis catalyst of the present invention is excellent in catalytic activity and unsaturated carboxylic acid selectivity. By using this catalyst, an unsaturated carboxylic acid can be produced in good yield.

Claims (7)

不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒であって、
モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカンおよび液体を加えて混練りしたものを押出成形した不飽和カルボン酸合成用触媒。
An extrusion catalyst containing at least molybdenum and vanadium, used in the synthesis of an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen,
An unsaturated carboxylic acid synthesis catalyst obtained by extrusion molding particles obtained by adding β-1,3-glucan and a liquid to particles containing molybdenum and vanadium.
不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒であって、
モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカン、セルロース誘導体および液体を加えて混練りしたものを押出成形した不飽和カルボン酸合成用触媒。
An extrusion catalyst containing at least molybdenum and vanadium, used in the synthesis of an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen,
An unsaturated carboxylic acid synthesis catalyst obtained by extruding particles containing molybdenum and vanadium by adding and kneading β-1,3-glucan , a cellulose derivative and a liquid.
前記β−1,3−グルカンがカードランである請求項1または2に記載の不飽和カルボン酸合成用触媒。The catalyst for synthesizing an unsaturated carboxylic acid according to claim 1 or 2, wherein the β-1,3-glucan is a curdlan. 前記セルロース誘導体がメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロースまたはヒドロキシエチルメチルセルロースのいずれか1種以上である請求項2に記載の不飽和カルボン酸合成用触媒。The unsaturated carboxylic acid synthesis catalyst according to claim 2, wherein the cellulose derivative is at least one of methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, and hydroxyethyl methyl cellulose. 不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒の製造方法であって、
モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカンおよび液体を加えて混練りしたものを押出成形することを特徴とする不飽和カルボン酸合成用触媒の製造方法。
A method for producing an extrusion catalyst containing at least molybdenum and vanadium, which is used in the synthesis of an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen,
A method for producing an unsaturated carboxylic acid synthesis catalyst, which comprises extruding particles containing molybdenum and vanadium by adding and kneading β-1,3-glucan and a liquid.
不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともモリブデンおよびバナジウムを含む押出成形触媒の製造方法であって、
モリブデンおよびバナジウムを含む粒子に、β−1,3−グルカン、セルロース誘導体および液体を加えて混練りしたものを押出成形することを特徴とする不飽和カルボン酸合成用触媒の製造方法。
A method for producing an extrusion catalyst containing at least molybdenum and vanadium, which is used in the synthesis of an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen,
A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising extruding particles containing molybdenum and vanadium and adding k -1,3-glucan , a cellulose derivative and a liquid and kneading them.
請求項1から4のいずれか一項に記載の触媒の存在下で、不飽和アルデヒドを分子状酸素により気相接触酸化する不飽和カルボン酸の合成方法。In the presence of a catalyst claimed in any one of 4, synthesis of unsaturated carboxylic acid to gas phase catalytic oxidation with molecular oxygen to unsaturated aldehydes.
JP2001090322A 2001-03-27 2001-03-27 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst Expired - Lifetime JP4601196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090322A JP4601196B2 (en) 2001-03-27 2001-03-27 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090322A JP4601196B2 (en) 2001-03-27 2001-03-27 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2002282696A JP2002282696A (en) 2002-10-02
JP4601196B2 true JP4601196B2 (en) 2010-12-22

Family

ID=18945122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090322A Expired - Lifetime JP4601196B2 (en) 2001-03-27 2001-03-27 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP4601196B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4295521B2 (en) 2003-02-13 2009-07-15 株式会社日本触媒 Catalyst for producing acrylic acid and method for producing acrylic acid
US7649111B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Catalyst for the oxidation of a mixed aldehyde feedstock to methacrylic acid and methods for making and using same
US7649112B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
US7732367B2 (en) * 2005-07-25 2010-06-08 Saudi Basic Industries Corporation Catalyst for methacrolein oxidation and method for making and using same
SG187497A1 (en) * 2008-02-04 2013-02-28 Mitsubishi Rayon Co Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5059702B2 (en) * 2008-06-27 2012-10-31 三菱レイヨン株式会社 Method for producing catalyst for producing unsaturated carboxylic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150834A (en) * 1984-01-17 1985-08-08 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation for synthesizing catalyst of methacrylic acid
JPH0233419B2 (en) * 1982-12-22 1990-07-27 Nippon Shokubai Kagaku Kogyo Kk
JPH09938A (en) * 1994-12-26 1997-01-07 Samsung General Chem Co Ltd Catalyst for preparing methacrylic acid
JPH09173852A (en) * 1995-12-27 1997-07-08 Mitsubishi Rayon Co Ltd Preparation of catalyst for manufacturing methacrylic acid
JPH11226411A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233419B2 (en) * 1982-12-22 1990-07-27 Nippon Shokubai Kagaku Kogyo Kk
JPS60150834A (en) * 1984-01-17 1985-08-08 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation for synthesizing catalyst of methacrylic acid
JPH09938A (en) * 1994-12-26 1997-01-07 Samsung General Chem Co Ltd Catalyst for preparing methacrylic acid
JPH09173852A (en) * 1995-12-27 1997-07-08 Mitsubishi Rayon Co Ltd Preparation of catalyst for manufacturing methacrylic acid
JPH11226411A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid

Also Published As

Publication number Publication date
JP2002282696A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
JP5581693B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5888233B2 (en) Method for producing a catalyst for methacrylic acid production
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP4179780B2 (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP5828260B2 (en) Catalyst production method
JP3936055B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and / or unsaturated carboxylic acid and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5059702B2 (en) Method for producing catalyst for producing unsaturated carboxylic acid
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5059701B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5069151B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2007130519A (en) Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2010207803A (en) Compound oxide catalyst
JPH09122491A (en) Manufacture of catalyst for compounding unsaturated aldehyde or unsaturated carboxylic acid
JP2009090200A (en) Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3313968B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2011115683A (en) Method for manufacturing catalyst for methacrylic acid production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4601196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term