JP4600172B2 - Porous membrane, solid-liquid separator, and solid-liquid separation method using them - Google Patents

Porous membrane, solid-liquid separator, and solid-liquid separation method using them Download PDF

Info

Publication number
JP4600172B2
JP4600172B2 JP2005181586A JP2005181586A JP4600172B2 JP 4600172 B2 JP4600172 B2 JP 4600172B2 JP 2005181586 A JP2005181586 A JP 2005181586A JP 2005181586 A JP2005181586 A JP 2005181586A JP 4600172 B2 JP4600172 B2 JP 4600172B2
Authority
JP
Japan
Prior art keywords
porous membrane
membrane
solid
weight
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005181586A
Other languages
Japanese (ja)
Other versions
JP2007000723A (en
Inventor
浩一 旦
昌弘 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005181586A priority Critical patent/JP4600172B2/en
Publication of JP2007000723A publication Critical patent/JP2007000723A/en
Application granted granted Critical
Publication of JP4600172B2 publication Critical patent/JP4600172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、下水処理、排水処理などの水処理分野に好適に用いられる多孔質膜、固液分離装置、およびそれらを用いた固液分離方法に関する。特に、活性汚泥槽内に浸漬し固液分離を行なう際に好適に用いられる多孔質膜、固液分離装置、およびそれらを用いた固液分離方法に関する。   The present invention relates to a porous membrane, a solid-liquid separation device, and a solid-liquid separation method using them, which are suitably used in the field of water treatment such as sewage treatment and wastewater treatment. In particular, the present invention relates to a porous membrane, a solid-liquid separation device, and a solid-liquid separation method using them, which are preferably used when solid-liquid separation is performed by immersion in an activated sludge tank.

近年、多孔質膜は、飲料水製造、浄水処理、下水処理、排水処理などの水処理分野、食品工業分野等様々な方面で利用されている。下廃水処理分野では活性汚泥と呼ばれる微生物集合体により、フロック化した汚泥と処理水とを分離する活性汚泥処理プロセスが広く用いられている。この中でも、沈殿法により固液分離を行なう場合、活性汚泥を高濃度化して分解処理を進めて処理効率を上げようとすると、後段の沈殿池において汚泥の沈降性不良を生じる場合があり、水質の悪化を防止するための管理作業が繁雑になる。そこで、この汚泥と処理水との固液分離に膜分離技術を利用することで、高濃度活性汚泥処理を行なった場合にも水質の悪化を招かず省スペースになる。   In recent years, porous membranes have been used in various fields such as water treatment fields such as drinking water production, water purification treatment, sewage treatment, wastewater treatment, and food industry. In the field of sewage wastewater treatment, an activated sludge treatment process for separating flocified sludge and treated water by a microbial aggregate called activated sludge is widely used. Among these, when solid-liquid separation is performed by the precipitation method, increasing the activated sludge concentration and proceeding the decomposition process to increase the treatment efficiency may cause poor sedimentation of the sludge in the subsequent sedimentation basin. The management work to prevent the deterioration is complicated. Therefore, by using membrane separation technology for the solid-liquid separation between the sludge and the treated water, even when the high concentration activated sludge treatment is performed, the water quality is not deteriorated and the space is saved.

上述のように多様に用いられる多孔質膜は、水処理分野においては一般的に処理水量が大きいため、透水性能の向上が求められている。透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費を節約でき、膜交換費や設置面積の点からも有利である。また、分離対象物質の堆積、付着、閉塞等による透水性の低下(ファウリング)がおこると運転の安定性に支障をきたし、曝気洗浄の曝気量を多くしたり薬品洗浄頻度を多くしたりする必要があり、高運転コストにつながるため低ファウリング膜が求められている。また、膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄したりするため、多孔質膜には化学的耐久性(耐薬品性)が求められる。さらに、下排水処理水の再利用の観点から、原水中の活性汚泥等の懸濁物質が処理水に混入しないよう十分な分離特性と高い物理的耐久性が要求されている。   As described above, porous membranes that are used in various ways generally require a large amount of treated water in the field of water treatment, and hence improvement in water permeability is required. If the water permeation performance is excellent, the membrane area can be reduced, and the equipment becomes compact, so that the equipment cost can be saved, which is advantageous from the viewpoint of membrane replacement cost and installation area. Also, if water permeability decreases (fouling) due to accumulation, adhesion, blockage, etc. of substances to be separated, the stability of operation is hindered, and the aeration volume of aeration cleaning and the frequency of chemical cleaning are increased. There is a need for low fouling membranes, which leads to high operating costs. In addition, in order to prevent biofouling of the membrane, a bactericidal agent such as sodium hypochlorite is added to the membrane module part, or the membrane itself is washed with acid, alkali, chlorine, surfactant, etc. The porous membrane is required to have chemical durability (chemical resistance). Furthermore, from the viewpoint of reuse of treated sewage water, sufficient separation characteristics and high physical durability are required so that suspended substances such as activated sludge in raw water do not enter the treated water.

このように、多孔質膜には、優れた分離特性、化学的耐久性(耐薬品性)、物理的耐久性、透過性能および低ファウリング性が求められる。   Thus, the porous membrane is required to have excellent separation characteristics, chemical durability (chemical resistance), physical durability, permeation performance, and low fouling properties.

そこで、これらの要求性能のなかで特に化学的耐久性、物理的耐久性を満足するために、ポリフッ化ビニリデン系樹脂を用いた多孔質膜が使用されるようになってきている。しかしながら、ポリフッ化ビニリデン系樹脂はこのままでは低ファウリング性が充分であるとはいえない。膜表面へのファウリング抑制をはかる方法としては、疎水性の大きな微生物ほど疎水性相互作用により吸着能が大きく、疎水性物質は疎水性固体表面に吸着しやすいという報告があり(非特許文献1)、疎水性のポリフッ化ビニリデン膜を親水化することにより吸着を抑制し低ファウリング性を付与することができる。   Therefore, in order to satisfy chemical durability and physical durability among these required performances, porous membranes using polyvinylidene fluoride resins have been used. However, it cannot be said that the polyvinylidene fluoride resin has sufficient low fouling properties as it is. As a method for suppressing fouling on the membrane surface, there is a report that a microorganism having a larger hydrophobicity has a higher adsorption ability due to hydrophobic interaction, and a hydrophobic substance is more likely to be adsorbed on a hydrophobic solid surface (Non-patent Document 1). ), Hydrophilicity of the hydrophobic polyvinylidene fluoride film can suppress adsorption and impart low fouling properties.

ポリフッ化ビニリデン膜の親水化方法としては、特許文献1、2のように膜表面および細孔内表面に親水性ポリマーをコーティングする方法があるが、親水性ポリマーが剥離すると低ファウリング性を維持できないと考えられる。そこで親水性ポリマーをコーティングせずにブレンドすれば膜表面が削れた場合でも親水性ポリマーが膜表面に存在し低ファウリング性を維持できると考えられる。   As a method for hydrophilizing a polyvinylidene fluoride membrane, there is a method of coating a hydrophilic polymer on the membrane surface and the pore inner surface as in Patent Documents 1 and 2, but when the hydrophilic polymer peels off, low fouling properties are maintained. It is considered impossible. Therefore, it is considered that if blending without coating the hydrophilic polymer, the hydrophilic polymer is present on the membrane surface even when the membrane surface is scraped and the low fouling property can be maintained.

しかし、一般的に特許文献3のように親水性ポリマーをポリフッ化ビニリデン系樹脂とブレンドする場合、そのままブレンドし製膜する場合はポリフッ化ビニリデン系樹脂との相溶性が悪いため製膜性が悪くなり、製膜できた場合も水中で使用する間に親水性ポリマーが膜外へ溶出し低ファウリング性を維持できない問題があった。
特開昭61−161103号公報 特表2000−505719号公報 特開昭60−216804号公報 森崎久雄,服部黎子,界面と微生物,学会出版センター,1986,P57−60
However, in general, when a hydrophilic polymer is blended with a polyvinylidene fluoride resin as in Patent Document 3, when forming a film by blending as it is, the film-forming property is poor because the compatibility with the polyvinylidene fluoride resin is poor. Even when the film could be formed, there was a problem that the hydrophilic polymer eluted out of the film during use in water and the low fouling property could not be maintained.
JP-A-61-161103 Special Table 2000-505719 JP 60-216804 A Hisao Morisaki, Atsuko Hattori, Interface and Microorganisms, Society Publishing Center, 1986, P57-60

本発明は、従来の技術の上述した問題点を解決し、活性汚泥に対する低ファウリング性に優れたポリフッ化ビニリデン系樹脂多孔質膜を提供することを目的とするものである。   The object of the present invention is to provide a polyvinylidene fluoride resin porous membrane that solves the above-mentioned problems of the prior art and is excellent in low fouling property against activated sludge.

上記課題を解決するため、本発明は、次の特徴を有するものである。すなわち
(1)ポリフッ化ビニリデン系樹脂と、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体であるグラフト共重合体の混合物を主成分として構成される多孔質膜であって、前記側鎖の重合度が25以下であり、かつ、前記側鎖が前記グラフト共重合体中に55重量%以上含まれていることを特徴とする多孔質膜。
In order to solve the above problems, the present invention has the following features. (1) A graft copolymer in which a polyvinylidene fluoride resin, a main chain is an acrylate polymer and / or a methacrylic ester polymer, and a side chain is an ethylene oxide polymer and / or a propylene oxide polymer A porous film composed mainly of a mixture of polymers, the degree of polymerization of the side chain is 25 or less, and the side chain is contained in the graft copolymer by 55% by weight or more. A porous membrane characterized by comprising:

(2)前記多孔質膜が平膜である、(1)に記載の多孔質膜。   (2) The porous membrane according to (1), wherein the porous membrane is a flat membrane.

(3)前記多孔質膜が中空糸膜である、(1)に記載の多孔質膜。   (3) The porous membrane according to (1), wherein the porous membrane is a hollow fiber membrane.

(4)有機繊維からなる多孔質基材を有してなる、(1)〜(3)のいずれかに記載の多孔質膜。   (4) The porous membrane according to any one of (1) to (3), comprising a porous substrate made of organic fibers.

(5)温度25℃、水頭差1mの条件下で測定した純水透過係数が純水透過係数1×10−9/m・Pa・s以上であり、かつ、クロスフロー条件下での0.10μm以下の微粒子阻止率が90%以上である(1)〜(4)のいずれかに記載の多孔質膜
(6)(1)〜(5)のいずれかに記載の多孔質膜を備えた固液分離装置。
(5) The pure water permeability coefficient measured under the conditions of a temperature of 25 ° C. and a water head difference of 1 m is a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 · Pa · s or more, and under cross-flow conditions. The porous film according to any one of (1) to (4), in which the fine particle blocking ratio of 0.10 μm or less is 90% or more (6) The porous film according to any one of (1) to (5) A solid-liquid separation device.

(7)前記多孔質膜が活性汚泥槽に浸漬配置されてなる、(6)に記載の固液分離装置。   (7) The solid-liquid separator according to (6), wherein the porous membrane is immersed in an activated sludge tank.

(8)前記多孔質膜に対して被処理液を実質的に平行に流す手段を備えている、(6)または(7)に記載の固液分離装置。   (8) The solid-liquid separator according to (6) or (7), comprising means for flowing a liquid to be processed substantially parallel to the porous membrane.

(9)(1)〜(5)のいずれかに記載の多孔質膜、または(6)〜(8)のいずれかに記載の固液分離装置を用いて被処理液中の懸濁物を除去する、固液分離方法。   (9) Using the porous membrane according to any one of (1) to (5) or the solid-liquid separation device according to any one of (6) to (8), A solid-liquid separation method to be removed.

本発明によれば、活性汚泥に対する低ファウリング性に優れ、親水性成分の溶出がなく、化学的耐久性、物理的耐久性に優れたポリフッ化ビニリデン系樹脂多孔質膜が得られるので、特に、当該ポリフッ化ビニリデン系樹脂多孔質膜を活性汚泥槽内に浸漬配置した固液分離装置を用いることにより、低ファウリング性に優れた固液分離の実現が可能となる。   According to the present invention, a polyvinylidene fluoride resin porous membrane excellent in low fouling property against activated sludge, free from elution of hydrophilic components, and excellent in chemical durability and physical durability can be obtained. By using a solid-liquid separation device in which the polyvinylidene fluoride resin porous membrane is immersed in an activated sludge tank, solid-liquid separation with excellent low fouling can be realized.

以下に本発明の多孔質膜の詳細を説明する。   Details of the porous membrane of the present invention will be described below.

本発明における多孔質膜は、ポリフッ化ビニリデン系樹脂と、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体であるグラフト共重合体とのブレンド膜であることを特徴とする。   The porous film in the present invention comprises a polyvinylidene fluoride resin, a main chain of an acrylate ester polymer and / or a methacrylic ester polymer, and a side chain of an ethylene oxide polymer and / or a propylene oxide polymer. It is a blend film | membrane with the graft copolymer which is.

すなわち、ポリフッ化ビニリデン系樹脂を膜素材として用いることで、物理的耐久性、化学的耐久性に優れた膜を得ることができ、親水性側鎖を含むグラフト共重合体を含んでいることにより、膜の親水化を図り、低ファウリング性を付与することができる。   That is, by using a polyvinylidene fluoride resin as a film material, a film excellent in physical durability and chemical durability can be obtained, and by including a graft copolymer containing a hydrophilic side chain The membrane can be made hydrophilic and can be imparted with low fouling properties.

一般に、ポリエチレンオキサイド、ポリプロピレンオキサイドのような親水性ポリマーは、ポリフッ化ビニリデン系樹脂のような疎水性ポリマーとは相溶性が悪く、混合して製膜したとしても水中で使用したときにポリエチレンオキサイドやポリプロピレンオキサイドだけが水中に溶出し、親水性を維持できない。一方、例えばメタクリル酸エステル系重合体はポリフッ化ビニリデン系樹脂に対し分子レベルで相溶することが解っている(S.P.Nunes, K.V.Peinemann, Journal of Membrane Science 1992, 73 P25)。すなわち、親水性ポリマーをポリフッ化ビニリデン系樹脂に相溶するアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体の共重合体としてブレンドすることで、親水性ポリマーを膜中に固定することができると言える。そこで、低ファウリング性に優れた多孔質膜を得るという観点から、本発明で用いる共重合体としては、主鎖にアクリル酸エステル系共重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイドおよび/またはプロピレンオキサイド系重合体であるグラフト共重合体を選択する必要がある。ファウリング物質に対して低付着性の親水性ポリマーが側鎖に存在し、側鎖の運動性が確保されることにより、膜表面へのファウリング物質の付着を抑制することができる。ポリフッ化ビニリデン系樹脂とグラフト共重合体は膜中に共存していればよく、相分離していても相溶していてもどちらであっても差し支えは無い。   Generally, hydrophilic polymers such as polyethylene oxide and polypropylene oxide have poor compatibility with hydrophobic polymers such as polyvinylidene fluoride resins, and even when mixed and formed into a film, polyethylene oxide and Only polypropylene oxide elutes in water and cannot maintain hydrophilicity. On the other hand, it is known that, for example, a methacrylic acid ester polymer is compatible with a polyvinylidene fluoride resin at a molecular level (SP Nunes, KV Peinemann, Journal of Membrane Science 1992, 73 P25). . That is, the hydrophilic polymer is fixed in the film by blending the hydrophilic polymer as a copolymer of an acrylic ester polymer and / or a methacrylic ester polymer compatible with the polyvinylidene fluoride resin. Can be said. Therefore, from the viewpoint of obtaining a porous film excellent in low fouling property, the copolymer used in the present invention includes an acrylate ester copolymer and / or a methacrylic ester polymer, a side chain as a main chain. It is necessary to select a graft copolymer in which is an ethylene oxide and / or propylene oxide polymer. A hydrophilic polymer having low adhesion to the fouling substance is present in the side chain, and the mobility of the side chain is ensured, whereby adhesion of the fouling substance to the film surface can be suppressed. The polyvinylidene fluoride resin and the graft copolymer only have to coexist in the film, and there is no problem whether they are phase-separated or compatible.

ここで、本発明のグラフト共重合体は、側鎖の重合度が25以下であることを必須とする。側鎖にポリエチレンオキサイド等の親水性側鎖を有するポリマーをキャストしたものは、牛血清由来アルブミンなどタンパク質に対して低付着性であると言われている(例えば、特表2001−500542号公報参照)。   Here, the graft copolymer of the present invention must have a side chain polymerization degree of 25 or less. A cast of a polymer having a hydrophilic side chain such as polyethylene oxide in the side chain is said to have low adhesion to proteins such as bovine serum-derived albumin (see, for example, JP-T-2001-500542). ).

しかしながら、活性汚泥は、表面特性、サイズが異なる様々な物質の混合物であるため、本発明者らは、活性汚泥に対する低ファウリング性に与える影響について鋭意検討した結果、グラフト共重合体の側鎖の重合度を25以下とすることにより、より好ましくは5〜25とすることにより、活性汚泥ろ過時に優れた低ファウリング性を示すことを見いだした。すなわち、グラフト共重合体の側鎖の重合度をかかる範囲とすることにより、優れた低ファウリング性を実現できる詳細な理由については明らかではないが、側鎖の重合度をかかる範囲とすることが、活性汚泥の膜面への付着性低減に効果的であることを明らかにしたのである。   However, since activated sludge is a mixture of various substances having different surface characteristics and sizes, the present inventors have intensively studied the influence on the low fouling property against activated sludge. As a result, the side chain of the graft copolymer has been investigated. It was found that by setting the degree of polymerization to 25 or less, and more preferably 5 to 25, excellent low fouling property was exhibited during activated sludge filtration. That is, by setting the degree of polymerization of the side chain of the graft copolymer in such a range, it is not clear about the detailed reason why excellent low fouling can be realized, but the degree of polymerization of the side chain should be in this range. However, it was clarified that it is effective in reducing the adhesion of activated sludge to the film surface.

活性汚泥とは、バクテリア(細菌類)、原生動物、後生動物とその代謝物からなる混合物であり、一般的に様々なサイズのフロックを形成して存在している。親水性側鎖による付着性低減効果は単に親水性の付与によるものだけでなく主として親水性側鎖の活性汚泥に対する動力学的な排除効果に起因している。ここで、グラフト共重合体の側鎖の重合度が26よりも長いと主鎖やポリフッ化ビニリデン系樹脂との絡み合いの増加により、実質的な側鎖の運動性、排除体積が小さくなり、4よりも短いと絡み合いは小さいが、側鎖そのものの運動性、排除体積が小さいと推測される。側鎖の重合度が5〜25以外のものでも側鎖の共重合比、膜中のブレンド比を大きくすることにより、汚泥に対する低ファウリング性を向上させることができるが、側鎖の共重合比、膜中のブレンド比を大きくすると、膜の物理的耐久性、化学的耐久性が低下してしまう可能性がある。   Activated sludge is a mixture of bacteria (bacteria), protozoa, metazoans and their metabolites, and generally exists in the form of flocs of various sizes. The adhesion reduction effect by the hydrophilic side chain is not only due to the imparting of hydrophilicity but mainly due to the dynamic exclusion effect on the activated sludge of the hydrophilic side chain. Here, if the degree of polymerization of the side chain of the graft copolymer is longer than 26, the substantial entanglement with the main chain and the polyvinylidene fluoride resin increases, so that the substantial side chain mobility and excluded volume are reduced. If the length is shorter than that, the entanglement is small, but the mobility of the side chain itself and the excluded volume are presumed to be small. Even if the degree of polymerization of the side chain is other than 5 to 25, by increasing the copolymerization ratio of the side chain and the blend ratio in the film, the low fouling property against sludge can be improved. If the ratio and the blend ratio in the film are increased, the physical durability and chemical durability of the film may be lowered.

かかる観点から、グラフト共重合体の側鎖が前記グラフト共重合体中に55重量%以上含まれていることを必要とする。より好ましくは、60重量%以上80重量%未満である。グラフト共重合体の側鎖の重量比率を55重量%以上とすることにより、ブレンド膜の活性汚泥に対する低ファウリング性を向上することができる。これは、ブレンド膜表面のグラフト共重合体の側鎖の一定割合は、主鎖またはポリフッ化ビニリデン系樹脂と絡みあっているが、側鎖の重量比率が高いことにより主鎖またはポリフッ化ビニリデン系樹脂と絡みあわない運動性を有する側鎖の量が多くなり、活性汚泥に対する低ファウリング性を向上することができるからであると推測される。   From this viewpoint, it is necessary that the graft copolymer contains 55% by weight or more of side chains in the graft copolymer. More preferably, it is 60% by weight or more and less than 80% by weight. By setting the weight ratio of the side chain of the graft copolymer to 55% by weight or more, the low fouling property of the blend membrane with respect to the activated sludge can be improved. This is because a certain proportion of the side chain of the graft copolymer on the surface of the blend film is intertwined with the main chain or polyvinylidene fluoride resin, but the main chain or polyvinylidene fluoride type is due to the high weight ratio of the side chain. This is presumably because the amount of side chains having mobility that does not entangle with the resin increases, and the low fouling property against activated sludge can be improved.

また、ブレンド膜を水系凝固浴で凝固し製膜する場合には、親水性ブレンド成分が膜表面に多く分布した状態で凝固し、膜表面の親水性成分濃度を高くすることが期待できる。この場合も、親水性側鎖の重量比率が大きい場合には、グラフト共重合体の親水性が向上するので、膜断面における表面方向への分布の勾配が大きくなり、よりブレンド膜表面の側鎖の量が大きくなることが期待できる。しかし、グラフト共重合体の側鎖の重合比率が80重量%よりも大きくなると、ポリフッ化ビニリデン系樹脂との親和性が低下し、製膜時または水中での使用時に溶出してしまう可能性がある。   Further, when the blend film is coagulated in an aqueous coagulation bath to form a film, it can be expected that the hydrophilic blend component is coagulated in a state of being distributed in a large amount on the film surface and the hydrophilic component concentration on the film surface is increased. Also in this case, when the weight ratio of the hydrophilic side chain is large, the hydrophilicity of the graft copolymer is improved, so that the gradient of the distribution in the surface direction in the film cross section becomes larger, and the side chain on the surface of the blend film is further increased. Can be expected to increase. However, when the polymerization ratio of the side chain of the graft copolymer is larger than 80% by weight, the affinity with the polyvinylidene fluoride resin is lowered, and there is a possibility that it will be eluted during film formation or use in water. is there.

本発明におけるポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有していても構わない。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンからなる群から選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。   The polyvinylidene fluoride resin in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride chloride. .

本発明の多孔質膜のブレンド成分は、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体のグラフト共重合体である。   The blend component of the porous membrane of the present invention comprises a graft copolymer having a main chain of an acrylate polymer and / or a methacrylic ester polymer and a side chain of an ethylene oxide polymer and / or a propylene oxide polymer. It is a coalescence.

アクリル酸エステル系重合体とは、特に限定しないが、例えばメチルアクリレート、エチルアクリレート、n−ブチルアクリレート、iso−ブチルアクリレート、tert−ブチルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレートなどアクリル酸エステル系モノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニル系モノマーとの共重合体を示す。   The acrylic ester polymer is not particularly limited, but for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, hydroxypropyl A homopolymer of an acrylate monomer such as acrylate, a copolymer thereof, and a copolymer with other copolymerizable vinyl monomers are shown.

メタクリル酸エステル系樹脂とは、特に限定しないが、例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、iso−ブチルメタクリレート、tert−ブチルメタクリレート、2−エチルヘキシルメタクリレート、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレートなどメタクリル酸エステル系モノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニル系モノマーとの共重合体を示す。これらアクリル酸エステル系重合体、メタクリル酸エステル系重合体のなかでポリフッ化ビニリデン系樹脂との相溶性、製膜性、コストの点から主鎖としてはポリメチルメタクリレートがより好ましく用いられる。   Although it does not specifically limit with methacrylic ester resin, For example, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate A homopolymer of a methacrylic acid ester monomer, a copolymer thereof, and a copolymer with another copolymerizable vinyl monomer. Among these acrylic acid ester polymers and methacrylic acid ester polymers, polymethyl methacrylate is more preferably used as the main chain from the viewpoint of compatibility with polyvinylidene fluoride resin, film-forming properties, and cost.

エチレンオキサイド系重合体およびまたはプロピレンオキサイド系重合体とは、エチレンオキサイド、n−プロピレンオキサイド、iso−プロピレンオキサイドの単独重合体、これらの共重合体、さらには他の共重合可能なモノマーとの共重合体を示す。   The ethylene oxide polymer and / or the propylene oxide polymer are ethylene oxide, n-propylene oxide, iso-propylene oxide homopolymers, copolymers thereof, and copolymers with other copolymerizable monomers. A polymer is shown.

またポリフッ化ビニリデン系樹脂、該グラフト共重合体の重量平均分子量は、要求される膜の強度と透水性能によって適宜選択すれば良いが、多孔質膜への加工性を考慮すると、5千〜200万、さらには1万〜100万の範囲内であることが好ましい。重量平均分子量がこの範囲よりも大きくなると、樹脂溶液の粘度が高くなりすぎ、またこの範囲よりも小さくなると、樹脂溶液の粘度が低くなりすぎ、いずれも多孔質膜を成形することが困難になり、また、使用中に溶出するおそれがある。   The weight average molecular weight of the polyvinylidene fluoride resin and the graft copolymer may be appropriately selected depending on the required strength and water permeability of the membrane, but in consideration of processability to a porous membrane, it is 5,000 to 200. It is preferable that it is in the range of 10,000, more preferably 10,000 to 1,000,000. When the weight average molecular weight is larger than this range, the viscosity of the resin solution becomes too high. When the weight average molecular weight is smaller than this range, the viscosity of the resin solution becomes too low, and it becomes difficult to form a porous film. In addition, there is a risk of elution during use.

該グラフト共重合体とポリフッ化ビニリデン系樹脂の膜中のブレンド比は適宜選択すれば良いが、低ファウリング性等を考慮すると、重量比(該グラフト共重合体/ポリフッ化ビニリデン系樹脂)で0.005〜0.4、好ましくは0.05〜0.3の範囲であることが好ましい。この下限値よりも小さくすると、低ファウリング性を付与することができず、上限値よりも大きくすると、膜の物理的耐久性、化学的耐久性が大きく低下する可能性がある。   The blend ratio of the graft copolymer and the polyvinylidene fluoride resin in the film may be selected as appropriate, but considering the low fouling property, the weight ratio (the graft copolymer / polyvinylidene fluoride resin) It is preferable to be in the range of 0.005 to 0.4, preferably 0.05 to 0.3. If it is smaller than this lower limit value, low fouling properties cannot be imparted, and if it is larger than the upper limit value, the physical durability and chemical durability of the film may be greatly lowered.

尚、本発明の多孔質膜は、本目的を逸脱しない範囲において上記以外の樹脂、界面活性剤、無機微粒子等を含有あるいは付着していてもよい。特に限定しないが例えば樹脂としてはポリ酢酸ビニル、ポリメタクリル酸メチル等、無機微粒子としてはシリカ微粒子、酸化チタン微粒子、活性炭微粒子等が挙げられる。界面活性剤としてはポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリアクリル酸、グリセリン、ポリオキシエチレンソルビタン脂肪酸エステル(たとえばモノステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレンヤシ油脂肪酸ソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン等)、ポリオキシエチレン脂肪酸エステル(たとえばモノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコールモノラウリン酸ポリエチレングリコール等)等が挙げられる。   The porous film of the present invention may contain or adhere other resins, surfactants, inorganic fine particles and the like other than those described above without departing from the object of the present invention. Although not particularly limited, examples of the resin include polyvinyl acetate and polymethyl methacrylate, and examples of the inorganic fine particles include silica fine particles, titanium oxide fine particles, and activated carbon fine particles. Surfactants include polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polyacrylic acid, glycerin, polyoxyethylene sorbitan fatty acid ester (for example, polyoxyethylene sorbitan monostearate, polyoxyethylene coconut oil fatty acid sorbitan, monooleic acid Polyoxyethylene sorbitan, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate), polyoxyethylene fatty acid esters (for example, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol monolaurate, etc.) .

本発明の多孔質膜の形状は、中空糸膜でも平膜でも良く、その用途によって選択される。   The shape of the porous membrane of the present invention may be a hollow fiber membrane or a flat membrane, and is selected according to its use.

平膜の場合は、厚みが10μm〜1mm、さらには30μm〜500μmの範囲内であることが好ましい。膜単独でも良いが、多孔質基材との複合膜でもよい。複合膜の場合、多孔質基材表面にポリマー層が被覆されているだけでも良いが、多孔質基材とポリマー層が重なりあう層があっても良い。また、多孔質基材とポリマー層が完全に重なっていてもよい。多孔質基材を用いた場合はこの面状支持材を含む厚みが上述の範囲内にあることが好ましい。   In the case of a flat membrane, the thickness is preferably in the range of 10 μm to 1 mm, more preferably 30 μm to 500 μm. The membrane may be a single membrane or a composite membrane with a porous substrate. In the case of a composite membrane, the surface of the porous substrate may be simply coated with the polymer layer, but there may be a layer in which the porous substrate and the polymer layer overlap. Further, the porous substrate and the polymer layer may completely overlap. When a porous substrate is used, it is preferable that the thickness including the planar support material be within the above-described range.

多孔質基材としてはポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹など有機繊維からなる織物、編物、不織布等の多孔質基材や、ガラス繊維、金属繊維など無機繊維からなる織物、編物等の多孔質基材を用いることができる。この中で伸縮性、コストの点から特に有機繊維からなる多孔質基材が好ましい。また、表面の孔径は、用途によって自由に選択できるが、好ましくは0.005μm(5nm)〜1.0μm、より好ましくは0.008μm(8nm)〜0.5μm、さらに好ましくは0.008μm(8nm)〜0.15μmの範囲にあることである。平膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔のあいた均質構造であっても良い。   Porous substrates include polyester fibers, nylon fibers, polyurethane fibers, acrylic fibers, rayon fibers, woven fabrics made of organic fibers such as cotton and silk, knitted fabrics, non-woven fabrics, and other inorganic fibers such as glass fibers and metal fibers. Porous substrates such as woven fabrics and knitted fabrics made of can be used. Among these, a porous substrate made of organic fibers is particularly preferable from the viewpoint of stretchability and cost. The pore diameter of the surface can be freely selected depending on the application, but is preferably 0.005 μm (5 nm) to 1.0 μm, more preferably 0.008 μm (8 nm) to 0.5 μm, and further preferably 0.008 μm (8 nm). ) To 0.15 μm. The internal structure of the flat film is arbitrary, and so-called macro voids may be present or a homogeneous structure having holes of the same size in the film thickness direction may be used.

中空糸膜の場合、内径が100μm〜10mm、さらには150μm〜8mm、外径が120μm〜15mm、さらには200μm〜12mm、膜厚が20μm〜3mm、さらには50μm〜1mmの範囲になるように設計することが好ましい。また、中空糸膜の内外表面の孔径は、用途によって自由に選択できるが、好ましくは0.005μm(5nm)〜1.0μm、より好ましくは0.008μm(5nm)〜0.5μm、さらに好ましくは0.008μm(8nm)〜0.15μmの範囲になるように設計することである。   In the case of a hollow fiber membrane, the inner diameter is 100 μm to 10 mm, further 150 μm to 8 mm, the outer diameter is 120 μm to 15 mm, further 200 μm to 12 mm, and the film thickness is 20 μm to 3 mm, further 50 μm to 1 mm. It is preferable to do. The pore diameter of the inner and outer surfaces of the hollow fiber membrane can be freely selected depending on the use, but is preferably 0.005 μm (5 nm) to 1.0 μm, more preferably 0.008 μm (5 nm) to 0.5 μm, and still more preferably It is designed to be in the range of 0.008 μm (8 nm) to 0.15 μm.

中空糸膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔を有する均質構造であっても良い。また片側あるいは内外表面側はスキン構造で、もう片側表面および/あるいは内部構造がスポンジ構造や球晶構造などであってもよい。   The internal structure of the hollow fiber membrane is arbitrary, and so-called macrovoids may exist or a homogeneous structure having pores of the same size in the film thickness direction may be used. Further, one side or the inner and outer surface sides may have a skin structure, and the other side surface and / or the inner structure may have a sponge structure or a spherulite structure.

中空糸の場合も膜単独でも良いが、多孔質基材との複合膜でもよい。複合膜の場合支持材表面にポリマー層が被覆されているだけでも良いが、多孔質基材とポリマー層が重なりあう層があっても良い。また、多孔質基材とポリマー層が完全に重なっていてもよい。多孔質基材としては上記有機繊維からなる織物、編物、不織布等の筒状の多孔質基材や、ガラス繊維、金属繊維など無機繊維からなる織物、編物等の筒状の多孔質基材を用いることができる。この中で伸縮性、コストの点から特に有機繊維からなる多孔質基材が好ましい。   In the case of hollow fibers, the membrane may be a single membrane or a composite membrane with a porous substrate. In the case of a composite membrane, the surface of the support material may be simply coated with the polymer layer, but there may be a layer in which the porous substrate and the polymer layer overlap. Further, the porous substrate and the polymer layer may completely overlap. As the porous substrate, a cylindrical porous substrate such as a woven fabric, a knitted fabric or a non-woven fabric made of the above organic fibers, or a cylindrical porous substrate such as a woven fabric or a knitted fabric made of inorganic fibers such as glass fibers or metal fibers. Can be used. Among these, a porous substrate made of organic fibers is particularly preferable from the viewpoint of stretchability and cost.

さらに、本発明の多孔質膜は、純水透過係数1×10−9/m・Pa・s以上、平均粒径0.10μm以下の微粒子の阻止率が90%以上であることが好ましい。 Further, the porous membrane of the present invention has a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 · Pa · s or more and a fine particle blocking ratio of 90% or more with an average particle size of 0.10 μm or less. preferable.

純水透過係数が1×10−9/m・Pa・sに満たない時は、膜の透過性が悪いことから高い圧力で運転する必要があり、運転コストが大きくなる。また阻止率が90%に満たないときは、菌体や汚泥などによる目詰まりが起こったり、濾過差圧の上昇が起こったりし、寿命が短くなる。 When the pure water permeability coefficient is less than 1 × 10 −9 m 3 / m 2 · Pa · s, it is necessary to operate at a high pressure because the permeability of the membrane is poor, and the operating cost increases. When the rejection rate is less than 90%, clogging due to bacterial cells or sludge occurs, or the filtration differential pressure increases, resulting in a shortened life.

ここで、純水透過係数は、飲料水を透析膜(東レ(株)製 フィルトライザー B2−1.5H)でろ過したものを原水とし、温度25℃、水頭差1mの条件下で直径4cmの多孔質膜でろ過し、次式によって求めた。評価に際し、多孔質膜はエタノールに15分浸漬後水中に2時間以上浸漬置換し評価に用いた。なお、純水透過係数は、ポンプ等で加圧や吸引して得た値を換算して求めても良い。水温についても、評価液体の粘性で換算しても良い。   Here, the pure water permeability coefficient is 4 cm in diameter under the conditions of 25 ° C. and 1 m head difference using raw water obtained by filtering drinking water with a dialysis membrane (Filtizer B2-1.5H manufactured by Toray Industries, Inc.). Was obtained by the following equation. In the evaluation, the porous membrane was immersed in ethanol for 15 minutes and then immersed in water for 2 hours or more and used for evaluation. The pure water permeability coefficient may be obtained by converting a value obtained by applying pressure or suction with a pump or the like. The water temperature may also be converted by the viscosity of the evaluation liquid.

Figure 0004600172
Figure 0004600172

微粒子阻止率は、ポリスチレンラテックス微粒子(セラディン(株)製)など粒径が均一になるよう管理された微粒子の平均粒径0.10μm以下のグレードで阻止率が90%以上を満たすものがあればよい。すなわち、本発明の好ましい要件である「平均粒径0.10μm以下の微粒子阻止率が90%以上」とは、少なくとも平均粒径0.10μmのグレードでの微粒子阻止率が90%以上であればよい、ということを意味する。クロスフロー条件とは膜表面に微粒子が堆積しにくいよう、膜の透過方向の流速以上に膜表面に対し平行方向に評価原液の流速がある状態であり、例えば膜表面にスターラー等で流れを与える事等により平行方向に流速を付与する。具体的には攪拌式セル(アドバンテック(株)製VHP−43K)に膜(直径4.3cm)をセットし、評価圧力9.8kPa、攪拌速度600rpmにて、逆浸透膜(東レ(株)製SUL−G10)による濾過水に平均粒径0.10μm以下のポリスチレンラテックス微粒子(セラディン(株)製 公称粒径0.083μm)を25ppmの濃度になるように分散させてなる評価原液をろ過し、評価原液と透過液の微粒子濃度に比例する波長220nmの紫外線の吸光度から、次式によって求めた。吸光度測定は分光光度計(U−3200)(日立製作所製)を用いた。   The fine particle rejection rate is such that polystyrene latex fine particles (manufactured by Celadin Co., Ltd.) such as fine particles controlled to have a uniform particle size have an average particle size of 0.10 μm or less and satisfy a rejection rate of 90% or more. Good. That is, the preferable requirement of the present invention is that “the fine particle rejection rate with an average particle size of 0.10 μm or less is 90% or more” as long as the fine particle rejection rate is at least 90% with a grade with an average particle size of 0.10 μm. Means good. The cross-flow condition is a state in which the flow rate of the evaluation stock solution is parallel to the membrane surface more than the flow rate in the permeation direction of the membrane so that fine particles do not easily accumulate on the membrane surface. The flow velocity is given in the parallel direction by things. Specifically, a membrane (diameter 4.3 cm) is set in a stirring cell (VHP-43K manufactured by Advantech Co., Ltd.), and a reverse osmosis membrane (manufactured by Toray Industries, Inc.) at an evaluation pressure of 9.8 kPa and a stirring speed of 600 rpm. An evaluation stock solution in which polystyrene latex fine particles having an average particle size of 0.10 μm or less (nominal particle size 0.083 μm manufactured by Celadin Co., Ltd.) are dispersed in filtered water by SUL-G10) to a concentration of 25 ppm is filtered, It calculated | required by following Formula from the light absorbency of 220 nm of wavelength which is proportional to the fine particle density | concentration of an evaluation stock solution and a permeate. A spectrophotometer (U-3200) (manufactured by Hitachi, Ltd.) was used for the absorbance measurement.

Figure 0004600172
Figure 0004600172

上述の本発明の多孔質膜は、例えば、製膜溶液中に前記樹脂とグラフト共重合体の混合物(以下、(1)〜(3)においては単に「混合物」と言い、当該混合物を溶媒に溶解させた溶液を「混合溶液」と言う。)を溶解し、次の3つの方法のいずれか1つあるいは2つ以上の組み合わせにより相分離させ製造することができる。   The porous membrane of the present invention described above is, for example, a mixture of the resin and graft copolymer (hereinafter referred to simply as “mixture” in (1) to (3)) in a film-forming solution, and the mixture is used as a solvent. The dissolved solution is referred to as a “mixed solution”.) And is phase-separated by one or a combination of two or more of the following three methods.

(1)混合物を、ポリフッ化ビニリデン系樹脂の良溶媒に溶解させた混合溶液を、ポリフッ化ビニリデン系樹脂の融点よりかなり低い温度で口金から押出したり、支持材上にキャストしたりして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法。   (1) A mixture solution obtained by dissolving a mixture in a good solvent of a polyvinylidene fluoride resin was extruded from a die at a temperature considerably lower than the melting point of the polyvinylidene fluoride resin, or cast on a support material. Then, a wet solution method in which an asymmetric porous structure is formed by contact with a liquid containing a non-solvent of polyvinylidene fluoride resin by non-solvent-induced phase separation.

(2)混合物に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出したりプレス機でプレスしたりして成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法。   (2) The mixture is melt-kneaded with inorganic fine particles and an organic liquid, extruded from a die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin, or pressed with a pressing machine, and then cooled and solidified, and then the organic liquid Extraction method that forms a porous structure by extracting the body and inorganic fine particles.

(3)混合物を、ポリフッ化ビニリデン系樹脂を室温では溶解しにくい溶媒に高温溶解させて混合溶液を製造し、その混合溶液を口金から吐出させた後、冷却して相分離および固化せしめる熱誘起相分離法。   (3) Thermal induction in which the mixture is dissolved at high temperature in a solvent in which polyvinylidene fluoride resin is difficult to dissolve at room temperature to produce a mixed solution, and the mixed solution is discharged from a die and then cooled to cause phase separation and solidification. Phase separation method.

上述のように製造される本発明の多孔質膜は、平膜形状の場合には、たとえばプレートアンドフレーム型の膜モジュールに構成され、また、中空糸形状の場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または方端をポリウレタンやエポキシ樹脂等で固定した膜モジュールに構成され、その膜モジュールを複数枚もしくは複数本配した固液分離装置として使用される。固液分離装置は、活性汚泥槽などの固液混合液が収容されている処理槽中に浸漬配置され、ポンプにより被処理溶液側に加圧手段もしくは透過液側に吸引手段を設け、濾過を行う。もちろん、ポンプを設けず水位差による濾過としてもよい。固液分離装置は、膜表面への汚泥の堆積を抑制するために、膜の下方に曝気装置を配置する、膜表面にてスターラーを回転させる、膜表面に水流ポンプで水流を与える、膜表面を平面方向に回転させる等、膜表面に対して固液混合液を平行に流す手段を備えていてもよい。この多孔質膜は、浄水処理、排水処理、飲料水製造、工業用水製造、などで利用でき、河川水、湖沼水、地下水、海水、下水、排水、活性汚泥、食品プロセス水などを被処理水とし、液体中の懸濁物除去に使用することができる。   The porous membrane of the present invention produced as described above is configured, for example, as a plate-and-frame type membrane module in the case of a flat membrane shape, and a plurality of hollow fiber membranes in the case of a hollow fiber shape. This is bundled and stored in a cylindrical container, and is configured as a membrane module in which both ends or ends are fixed with polyurethane, epoxy resin or the like, and used as a solid-liquid separation device in which a plurality or a plurality of the membrane modules are arranged. The solid-liquid separation device is immersed in a treatment tank containing a solid-liquid mixture such as an activated sludge tank, and is provided with a suction means on the solution to be treated side or a suction means on the permeate side by means of a pump. Do. Of course, it is good also as filtration by a water level difference without providing a pump. The solid-liquid separation device arranges an aeration device below the membrane in order to suppress sludge accumulation on the membrane surface, rotates a stirrer on the membrane surface, gives a water flow to the membrane surface with a water flow pump, membrane surface There may be provided means for flowing the solid-liquid mixed solution in parallel to the film surface, such as rotating the plate in the plane direction. This porous membrane can be used for water purification, wastewater treatment, drinking water production, industrial water production, etc., and can treat river water, lake water, groundwater, seawater, sewage, drainage, activated sludge, food process water, etc. And can be used to remove suspensions in liquids.

実施例における、ポリメタクリル酸メチル−ポリエチレンオキサイドグラフト共重合体(PMMA−g−PEO)は以下のように重合した。   In the Examples, polymethyl methacrylate-polyethylene oxide graft copolymer (PMMA-g-PEO) was polymerized as follows.

<重合方法>
・試薬
ポリ(エチレングリコール)メチルエーテルメタクリレート(POEMn):n=9,23はアルドリッチ製、n=90は新中村製、nはエチレングリコールのユニット数
メチルメタクリレート(MMA):和光純薬製、特級
2,2’アゾビス(イソブチロニトリル)(AIBN):和光純薬製、特級
酢酸エチル:片山化学工業製 特級
メタノール:片山化学工業製 特級
石油エーテル:片山化学工業製 一級
テトラヒドロフラン(THF):片山化学工業製 特級。
<Polymerization method>
Reagents Poly (ethylene glycol) methyl ether methacrylate (POEMn): n = 9, 23 are made by Aldrich, n = 90 is made by Shin-Nakamura, n is the number of ethylene glycol units Methyl methacrylate (MMA): made by Wako Pure Chemicals, special grade 2,2 'azobis (isobutyronitrile) (AIBN): Wako Pure Chemicals, special grade Ethyl acetate: Katayama Chemical Industry special grade Methanol: Katayama Chemical Industry special grade Petroleum ether: Katayama Chemical Industry grade Tetrahydrofuran (THF): Katayama Special grade made by Chemical Industry.

・重合
MMAとPOEMnのラジカル共重合により得た。具体的には3つ口フラスコにMMA、POEMnを所定の仕込み組成で入れ、窒素雰囲気下で攪拌し、重合開始剤であるAIBNを投入した。所定の重合時間後、溶液を石油エーテル/メタノール(重量比9:1)中で再沈し、生成物はさらに水洗、THF溶解、再沈、水洗により精製し、最終的に40℃以下で真空乾燥を行ない生成物を得た。表1に重合条件を示す。
-Polymerization Obtained by radical copolymerization of MMA and POEMn. Specifically, MMA and POEMn were charged in a three-necked flask with a predetermined charge composition, stirred in a nitrogen atmosphere, and AIBN as a polymerization initiator was charged. After a predetermined polymerization time, the solution is reprecipitated in petroleum ether / methanol (weight ratio 9: 1), and the product is further purified by washing with water, dissolving in THF, reprecipitation, washing with water, and finally vacuumed at 40 ° C. or lower. Drying was performed to obtain the product. Table 1 shows the polymerization conditions.

実施例における多孔質膜の純水透過係数と阻止率は、上記の方法にて測定した。   The pure water permeability coefficient and the blocking rate of the porous membrane in the examples were measured by the above methods.

膜の汚泥に対する耐ファウリング性は、以下の汚泥ファウリング加速実験において得た膜間差圧20kPa到達時間により比較した。   The fouling resistance of the membrane against sludge was compared based on the inter-membrane differential pressure of 20 kPa reaching time obtained in the following sludge fouling acceleration experiment.

Figure 0004600172
Figure 0004600172

<汚泥ファウリング加速実験方法>
・実験材料
活性汚泥槽:アクリル性30LMBR槽(実液量 24.1L)
平膜エレメント:ABS製A5サイズミニエレメント(有効膜面積 144cm片面貼り付け)
吸引ポンプ:カセットチューブポンプ(東京理化(株)製SMP−23)
間欠制御タイマー:デジタル24Hタイムスイッチ(アズワン(株)製AJ−1106−020)
差圧計:デジタルマノメーター(SMC(株)製 PSE561−02)
活性汚泥:酢酸系工場排水処理場より採取した活性汚泥を酢酸系培地でBOD容積負荷(1g−BOD/L・d)にて約3ヶ月馴養し、運転に使用した。
<Sludge fouling acceleration experiment method>
・ Experimental material Activated sludge tank: Acrylic 30LMBR tank (Actual liquid volume 24.1L)
Flat membrane element: ABS A5 size mini-element (Effective membrane area 144cm, 2 side sticking)
Suction pump: Cassette tube pump (Tokyo Rika Co., Ltd. SMP-23)
Intermittent control timer: Digital 24H time switch (AJ-1106-020 manufactured by ASONE Corporation)
Differential pressure gauge: Digital manometer (SMC Co., Ltd. PSE561-02)
Activated sludge: Activated sludge collected from an acetic acid factory wastewater treatment plant was acclimatized with an acetic acid medium at a BOD volumetric load (1 g-BOD / L · d) for about 3 months and used for operation.

・運転条件
培地:酢酸系培地
容積負荷:1g−BOD/L・d
曝気量:10L/min
運転流束:1m/m/d
間欠条件:9分吸引1分停止
温度: 20℃。
・ Operating conditions Medium: acetic acid medium Volume load: 1 g-BOD / L · d
Aeration amount: 10 L / min
Operating flux: 1 m 3 / m 2 / d
Intermittent condition: 9 minutes suction, 1 minute stop Temperature: 20 ° C.

・実験方法
汚泥ファウリング加速実験装置を図1に示す。30L活性汚泥槽に平膜エレメント(6枚)を浸漬し定流量ポンプで1m/m/dで透過水を吸引し、差圧計により膜間差圧を読みとった。運転は1サイクル10分間の平均膜間差圧をプロットし、運転開始から薬品洗浄の目安である20kPaに到達するまでの時間を20kPa到達所用時間とした。
・ Experiment Method The sludge fouling acceleration experimental device is shown in Fig. 1. Flat membrane elements (6 sheets) were immersed in a 30 L activated sludge tank, permeated water was sucked at 1 m 3 / m 2 / d with a constant flow pump, and the transmembrane pressure difference was read with a differential pressure gauge. In the operation, the average transmembrane pressure difference for 10 minutes per cycle was plotted, and the time from the start of the operation until reaching 20 kPa, which is a standard for chemical cleaning, was defined as the time required to reach 20 kPa.

実験No.1の全ての膜エレメントが20kPaに到達したのに引き続き、膜エレメントを入れ替え、実験No.2を実施した。尚、各実験時の汚泥性状を表2に示す。MLSSは実験No.1開始時は9.6g/L、実験No.1終了時(実験No.2開始時)は10.1g/L、実験No.2終了時は10.3g/Lであり、粘度計(リオン(株)製VT−3E、ローターNo.3)により測定した汚泥の粘度は実験No.1開始時は23.0mPa・s(20.0℃)、実験No.1終了時(実験No.2開始時)は24.8mPa・s(20.0℃)、実験No.2終了時は26.5mPa・s(20.0℃)であった。   Experiment No. After all the membrane elements of No. 1 reached 20 kPa, the membrane elements were replaced. 2 was carried out. The sludge properties during each experiment are shown in Table 2. MLSS is an experiment no. 9.6 g / L at the start of Experiment 1, Experiment No. At the end of 1 (when experiment No. 2 was started), 10.1 g / L, 2 was 10.3 g / L, and the viscosity of the sludge measured by a viscometer (VT-3E manufactured by Lion Co., Ltd., rotor No. 3) was measured in Experiment No. 2. 1 at the start of 23.0 mPa · s (20.0 ° C.) At the end of Experiment 1 (when Experiment No. 2 was started), 24.8 mPa · s (20.0 ° C.). At the end of 2, it was 26.5 mPa · s (20.0 ° C.).

Figure 0004600172
Figure 0004600172

<分子量測定>
GPC測定装置(東ソー(株)製HLC−8220−GPC)により、分子量の異なるポリスチレンにより得られた検量線から分子量を算出した。
<Molecular weight measurement>
The molecular weight was calculated from a calibration curve obtained with polystyrene having different molecular weights using a GPC measuring device (HLC-8220-GPC manufactured by Tosoh Corporation).

<共重合比測定>
共重合体のH−NMRスペクトルの解析によりモル比を算出した。H−NMRスペクトルは重クロロホルムに共重合体を溶解し、NMR測定装置(日本電子(株)製JNM−EX−270、積算回数32回)により得た。
<Copolymerization ratio measurement>
The molar ratio was calculated by analyzing the 1 H-NMR spectrum of the copolymer. The 1 H-NMR spectrum was obtained by dissolving the copolymer in deuterated chloroform and using an NMR measuring apparatus (JNM-EX-270 manufactured by JEOL Ltd., 32 times of integration).

<実施例1>
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量36万)とポリメタクリル酸メチルとポリエチレンオキサイドのグラフト共重合体(PMMA−g−PEO)(M9−1)、重合平均分子量19万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比58%)、ポリビニルアルコール(PVA500和光純薬(株)製、平均重合度500、ケン化度86〜90%)、ポリエチレングリコール(PEG400、和光純薬(株)製、平均分子量400)、N,N−ジメチルアセトアミド(DMAc、和光純薬(株)製)をそれぞれ用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。表3に重合生成物の物性表、表4に製膜溶液の仕込み組成を示す。
<Example 1>
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 360,000), polymethyl methacrylate and polyethylene oxide graft copolymer (PMMA-g-PEO) (M9-1), polymerization average molecular weight 190,000, ethylene oxide side chain Polymerization degree 9, ethylene oxide side chain weight ratio 58%), polyvinyl alcohol (PVA500 manufactured by Wako Pure Chemical Industries, Ltd., average polymerization degree 500, saponification degree 86-90%), polyethylene glycol (PEG 400, Wako Pure Chemical Industries, Ltd.) ), Average molecular weight 400), N, N-dimethylacetamide (DMAc, manufactured by Wako Pure Chemical Industries, Ltd.), respectively, and these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition. A stock solution was obtained. Table 3 shows the physical properties of the polymerization product, and Table 4 shows the charged composition of the film forming solution.

PVDF:10.8重量%
PMMA−g−PEO(M9−1):1.2重量%
PVA500:3.0重量%
PEG400:2.0重量%
水:3.0重量%
DMAc:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-1): 1.2% by weight
PVA500: 3.0% by weight
PEG400: 2.0% by weight
Water: 3.0% by weight
DMAc: 80.0% by weight.

次に、上記原液を40℃に冷却し、密度が0.48g/cm、厚みが220μmのポリエステル繊維製不織布に塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに95℃の熱水に2分間浸漬し多孔質膜を得た。 Next, the stock solution is cooled to 40 ° C., applied to a polyester fiber nonwoven fabric having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately immersed in a water coagulation bath at 25 ° C. for 5 minutes. Was immersed in hot water for 2 minutes to obtain a porous membrane.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、純水透過係数は43×10−9/m・s・Paであった。 Next, when the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, it was 97%. The pure water permeability coefficient was 43 × 10 −9 m 3 / m 2 · s · Pa.

<実施例2>
PVDF、PMMA−g−PEO(M23−1)(重合平均分子量24万、エチレンオキサイド側鎖重合度23、エチレンオキサイド側鎖重量比63%)、ポリブロピレングリコール(PPG3000、和光純薬(株)製、平均分子量3000、ジオール型)、モノパルミチン酸ポリオキシエチレン(N=20)ソルビタン(Tween40)を用い、ジメチルスルホキシド(DMSO、和光純薬(株)製)これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Example 2>
PVDF, PMMA-g-PEO (M23-1) (polymerization average molecular weight 240,000, ethylene oxide side chain polymerization degree 23, ethylene oxide side chain weight ratio 63%), polypropylene glycol (PPG3000, Wako Pure Chemical Industries, Ltd.) Product, average molecular weight 3000, diol type), polyoxyethylene monopalmitate (N = 20) sorbitan (Tween 40), dimethyl sulfoxide (DMSO, manufactured by Wako Pure Chemical Industries, Ltd.) and the following composition at a temperature of 90 ° C. The mixture was sufficiently stirred and mixed and dissolved to obtain a stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M23−1):1.2重量%
PPG3000:2.0重量%
Tween40:3.0重量%
水: 3.0重量%
DMSO:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M23-1): 1.2% by weight
PPG3000: 2.0% by weight
Tween 40: 3.0% by weight
Water: 3.0% by weight
DMSO: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、純水透過係数は47×10−9/m・s・Paであった。 Next, the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, and found to be 98%. The pure water permeability coefficient was 47 × 10 −9 m 3 / m 2 · s · Pa.

<実施例3>
PVDF、PMMA−g−PEO(M9−2)(重合平均分子量21万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比65%)、ポリメタクリル酸メチル(PMMA、重量平均分子量140万)、モノパルミチン酸ポリオキシエチレン(N=20)ソルビタン(Tween40)、N,N−ジメチルホルムアミド(DMF、和光純薬(株)製) を用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Example 3>
PVDF, PMMA-g-PEO (M9-2) (polymerization average molecular weight 210,000, ethylene oxide side chain polymerization degree 9, ethylene oxide side chain weight ratio 65%), polymethyl methacrylate (PMMA, weight average molecular weight 1.4 million) And polyoxyethylene monopalmitate (N = 20) sorbitan (Tween 40), N, N-dimethylformamide (DMF, manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was stirred and dissolved to obtain a film-forming stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M9−2):1.2重量%
Tween40: 6.0重量%
水:2.0重量%
DMF:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-2): 1.2% by weight
Tween 40: 6.0% by weight
Water: 2.0% by weight
DMF: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は47×10−9/m・s・Paであった。 Next, the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, and found to be 98%. Further, the water permeability was 47 × 10 −9 m 3 / m 2 · s · Pa.

<実施例4>
PVDF、PMMA−g−PEO(M9−3)(重合平均分子量24万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比76%)、ポリエチレングリコール(PEG20000、和光純薬(株)製、平均分子量20000)、PVA500、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Example 4>
PVDF, PMMA-g-PEO (M9-3) (polymerization average molecular weight 240,000, ethylene oxide side chain polymerization degree 9, ethylene oxide side chain weight ratio 76%), polyethylene glycol (PEG 20000, manufactured by Wako Pure Chemical Industries, Ltd.) Using an average molecular weight of 20000), PVA500, and DMAc, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M9−3):1.2重量%
PEG20000:5.0重量%
水:3.0重量%
DMAc:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-3): 1.2% by weight
PEG 20000: 5.0% by weight
Water: 3.0% by weight
DMAc: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は44×10−9/m・s・Paであった。 Next, when the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, it was 97%. Moreover, the water permeability was 44 × 10 −9 m 3 / m 2 · s · Pa.

<比較例1>
PVDF、Tween40、PEG400、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Comparative Example 1>
Using PVDF, Tween 40, PEG 400, and DMF, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:12.0重量%
PEG400:2.0重量%
Tween40:3.0重量%
水:3.0重量%
DMF:80.0重量%
次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は63×10−9/m・s・Paであった。
PVDF: 12.0% by weight
PEG400: 2.0% by weight
Tween 40: 3.0% by weight
Water: 3.0% by weight
DMF: 80.0% by weight
Next, the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured with respect to the porous film, and found to be 98%. Moreover, the water permeability was 63 × 10 −9 m 3 / m 2 · s · Pa.

<比較例2>
PVDF、PMMA−g−PEO(M90−1)(重合平均分子量22万、エチレンオキサイド側鎖重合度90、エチレンオキサイド側鎖重量比76%)、PEG20000、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Comparative example 2>
PVDF, PMMA-g-PEO (M90-1) (polymerization average molecular weight 220,000, ethylene oxide side chain polymerization degree 90, ethylene oxide side chain weight ratio 76%), PEG 20000, DMAc were used, and these were 90 ° C. with the following composition. The mixture was sufficiently stirred and dissolved at a temperature of 1 to obtain a stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M90−1):1.2重量%
PEG20000:5.0重量%
水:3.0重量%
DMAc:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M90-1): 1.2% by weight
PEG 20000: 5.0% by weight
Water: 3.0% by weight
DMAc: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は37×10−9/m・s・Paであった。 Next, the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, and found to be 98%. Further, the water permeability was 37 × 10 −9 m 3 / m 2 · s · Pa.

<比較例3>
PVDF、PMMA−g−PEO(M9−5)(重合平均分子量20万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比30%)、PEG400、Tween40、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Comparative Example 3>
PVDF, PMMA-g-PEO (M9-5) (polymerization average molecular weight 200,000, ethylene oxide side chain polymerization degree 9, ethylene oxide side chain weight ratio 30%), PEG400, Tween40, DMF are used and the following composition The mixture was sufficiently stirred and dissolved at a temperature of 90 ° C. to obtain a stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF: 10.8重量%
PMMA−g−PEO(M9−5):1.2重量%
PEG400:2.0重量%
Tween40:3.0重量%
水:3.0重量%
DMF:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-5): 1.2% by weight
PEG400: 2.0% by weight
Tween 40: 3.0% by weight
Water: 3.0% by weight
DMF: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は37×10−9/m・s・Paであった。 Next, the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, and found to be 98%. Further, the water permeability was 37 × 10 −9 m 3 / m 2 · s · Pa.

<比較例4>
PVDF、PMMA−g−PEO(M9−6)(重合平均分子量22万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比51%)、モノステアリン酸ポリオキシエチレン(N=20)ソルビタン(Tween40)、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Comparative example 4>
PVDF, PMMA-g-PEO (M9-6) (polymerization average molecular weight 220,000, ethylene oxide side chain polymerization degree 9, ethylene oxide side chain weight ratio 51%), monostearate polyoxyethylene (N = 20) sorbitan ( Using Tween 40) and DMAc, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M9−6):1.2重量%
Tween40:5.0重量%
水:3.0重量%
DMAc:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-6): 1.2% by weight
Tween 40: 5.0% by weight
Water: 3.0% by weight
DMAc: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は40×10−9/m・s・Paであった。 Next, when the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, it was 97%. Moreover, the water permeability was 40 × 10 −9 m 3 / m 2 · s · Pa.

<実施例5>
PVDF、PMMA−g−PEO(M9−4)(重合平均分子量26万、エチレンオキサイド側鎖重合度9、エチレンオキサイド側鎖重量比81%)、PPG3000、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、多孔質膜を得た。
<Example 5>
PVDF, PMMA-g-PEO (M9-4) (polymerization average molecular weight 260,000, ethylene oxide side chain polymerization degree 9, ethylene oxide side chain weight ratio 81%), PPG3000, DMF were used, and these were 90 ° C. with the following composition. The mixture was sufficiently stirred and dissolved at a temperature of 1 to obtain a stock solution. This was formed in the same manner as in Example 1 to obtain a porous film.

PVDF:10.8重量%
PMMA−g−PEO(M9−4):1.2重量%
PPG3000:5.0重量%
水:3.0重量%
DMF:80.0重量%。
PVDF: 10.8% by weight
PMMA-g-PEO (M9-4): 1.2% by weight
PPG3000: 5.0% by weight
Water: 3.0% by weight
DMF: 80.0% by weight.

次に、上記多孔質膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は33×10−9/m・s・Paであった。 Next, when the blocking rate of fine particles having an average particle diameter of 0.083 μm was measured for the porous film, it was 97%. Moreover, the water permeability was 33 × 10 −9 m 3 / m 2 · s · Pa.

Figure 0004600172
Figure 0004600172

Figure 0004600172
Figure 0004600172

<汚泥ファウリング加速実験結果>
エチレンオキサイド側鎖の重合度、重量比が異なるPMMA−g−PEOブレンド膜(実施例1、2、比較例2、3)、PVDF膜(比較例1)について、汚泥ファウリング加速実験を行なった(実験No.1)。その結果、側鎖重量比55%以上の膜ではエチレンオキサイド側鎖の重合度が低い膜程、20kPa到達所要時間が大きく低ファウリング性であった。
<Results of accelerated sludge fouling>
A sludge fouling acceleration experiment was conducted on PMMA-g-PEO blend membranes (Examples 1 and 2, Comparative Examples 2 and 3) and PVDF membranes (Comparative Example 1) having different degrees of polymerization and weight ratios of ethylene oxide side chains. (Experiment No. 1). As a result, in the film having a side chain weight ratio of 55% or more, the film having a lower degree of polymerization of the ethylene oxide side chain had a larger time required to reach 20 kPa and a low fouling property.

エチレンオキサイド側鎖の重量比が異なるPMMA−g−PEOブレンド膜(実施例1、3、4、5、比較例4)、PVDF膜(比較例1)について、汚泥ファウリング加速実験を行なった(実験No.2)。その結果、側鎖重量比58%以上のPMMA−g−PEOブレンド膜が20kPa到達所要時間が大きく低ファウリング性であった。表5に実験結果を示す。   A sludge fouling acceleration experiment was conducted on PMMA-g-PEO blend membranes (Examples 1, 3, 4, 5, and Comparative Example 4) and PVDF membranes (Comparative Example 1) having different weight ratios of ethylene oxide side chains ( Experiment No. 2). As a result, the PMMA-g-PEO blend film having a side chain weight ratio of 58% or more had a large time required to reach 20 kPa and low fouling. Table 5 shows the experimental results.

Figure 0004600172
Figure 0004600172

汚泥ファウリング加速実験装置を説明する図である。It is a figure explaining a sludge fouling acceleration experimental apparatus. 膜エレメントを説明する図である。It is a figure explaining a membrane element.

符号の説明Explanation of symbols

イ・・・30L活性汚泥槽
ロ・・・膜エレメント
ハ・・・定流量ポンプ
二・・・タイマー
ホ・・・差圧計
ヘ・・・データロガー
ト・・・エレメントフレーム
チ・・・膜
リ・・・集水パイプ
B ... 30L activated sludge tank B ... Membrane element C ... Constant flow pump Second ... Timer E ... Differential pressure gauge F ... Data log ... Element frame H ... Membrane ... Catchment pipe

Claims (9)

ポリフッ化ビニリデン系樹脂と、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体であるグラフト共重合体の混合物を主成分として構成される多孔質膜であって、前記側鎖の重合度が25以下であり、かつ、前記側鎖が前記グラフト共重合体中に55重量%以上含まれていることを特徴とする多孔質膜。 Mixture of polyvinylidene fluoride resin and graft copolymer whose main chain is an acrylic ester polymer and / or methacrylic ester polymer, and whose side chain is an ethylene oxide polymer and / or a propylene oxide polymer The side chain has a degree of polymerization of 25 or less, and the side chain is contained in the graft copolymer by 55% by weight or more. A porous membrane. 前記多孔質膜が平膜である、請求項1に記載の多孔質膜。 The porous membrane according to claim 1, wherein the porous membrane is a flat membrane. 前記多孔質膜が中空糸膜である、請求項1に記載の多孔質膜。 The porous membrane according to claim 1, wherein the porous membrane is a hollow fiber membrane. 有機繊維からなる多孔質基材を有してなる、請求項1〜3のいずれかに記載の多孔質膜。 The porous membrane in any one of Claims 1-3 which has a porous base material which consists of organic fibers. 温度25℃、水頭差1mの条件下で測定した純水透過係数が1×10−9/m・Pa・s以上であり、かつ、クロスフロー条件下での平均粒径0.10μm以下の微粒子阻止率が90%以上である請求項1〜4のいずれかに記載の多孔質膜 The pure water permeability coefficient measured under conditions of a temperature of 25 ° C. and a water head difference of 1 m is 1 × 10 −9 m 3 / m 2 · Pa · s or more, and an average particle size of 0.10 μm under cross-flow conditions The porous membrane according to claim 1, wherein the following fine particle rejection is 90% or more. 請求項1〜5のいずれかに記載の多孔質膜を備えた固液分離装置。 A solid-liquid separator comprising the porous membrane according to claim 1. 前記多孔質膜が活性汚泥槽に浸漬配置されてなる、請求項6に記載の固液分離装置。 The solid-liquid separator according to claim 6, wherein the porous membrane is immersed in an activated sludge tank. 前記多孔質膜に対して被処理液を実質的に平行に流す手段を備えている、請求項6または7に記載の固液分離装置。 The solid-liquid separation device according to claim 6 or 7, further comprising means for flowing a liquid to be processed substantially parallel to the porous membrane. 請求項1〜5のいずれかに記載の多孔質膜、または請求項6〜8のいずれかに記載の固液分離装置を用いて被処理液中の懸濁物を除去する、固液分離方法。 A solid-liquid separation method for removing a suspension in a liquid to be treated using the porous membrane according to any one of claims 1 to 5 or the solid-liquid separation device according to any one of claims 6 to 8. .
JP2005181586A 2005-06-22 2005-06-22 Porous membrane, solid-liquid separator, and solid-liquid separation method using them Active JP4600172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181586A JP4600172B2 (en) 2005-06-22 2005-06-22 Porous membrane, solid-liquid separator, and solid-liquid separation method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181586A JP4600172B2 (en) 2005-06-22 2005-06-22 Porous membrane, solid-liquid separator, and solid-liquid separation method using them

Publications (2)

Publication Number Publication Date
JP2007000723A JP2007000723A (en) 2007-01-11
JP4600172B2 true JP4600172B2 (en) 2010-12-15

Family

ID=37686806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181586A Active JP4600172B2 (en) 2005-06-22 2005-06-22 Porous membrane, solid-liquid separator, and solid-liquid separation method using them

Country Status (1)

Country Link
JP (1) JP4600172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899439A (en) * 2017-11-22 2018-04-13 江苏江华水处理设备有限公司 A kind of preparation method of MBR films and its application in rural sewage treatment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228474B2 (en) * 2007-02-22 2013-07-03 東レ株式会社 Porous membrane for cell suspension filtration
JP5163152B2 (en) * 2007-02-22 2013-03-13 東レ株式会社 Wastewater treatment method
JP5311171B2 (en) * 2007-06-27 2013-10-09 日本ポリウレタン工業株式会社 Organic polyisocyanate composition, and coating composition and adhesive composition using the same
US9707524B2 (en) * 2008-10-28 2017-07-18 Arkema Inc. Water flux polymer membranes
KR101199427B1 (en) 2010-06-03 2012-11-09 명지대학교 산학협력단 Dredging discussion processing system using the PVDF
WO2015041119A1 (en) * 2013-09-20 2015-03-26 ダイキン工業株式会社 Polymer porous membrane and method for manufacturing polymer porous membrane
HUE056208T2 (en) 2015-05-27 2022-02-28 Mitsubishi Chem Corp Hydrophilized porous fluoropolymer film
JP6864254B2 (en) * 2016-11-25 2021-04-28 三菱ケミカル株式会社 Porous membrane
JP7106937B2 (en) * 2018-03-30 2022-07-27 栗田工業株式会社 PARTICLE REMOVAL MEMBRANE, PARTICLE REMOVAL DEVICE, AND PARTICLE REMOVAL METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114517A (en) * 1989-07-13 1991-05-15 Akzo Nv Flat or capillary membrane based on homogeneous mixture comprising polyvinylidene fluoride and secondary polymer, method of its manufacture and method of fixing biochemically activated compound
JPH0725776A (en) * 1993-07-15 1995-01-27 Asahi Medical Co Ltd Filter material for selectively removing leukocyte
JP2001500542A (en) * 1996-08-26 2001-01-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Polymer film having hydrophilic surface, polymer article, and method for producing the same
JP2002113338A (en) * 2000-10-04 2002-04-16 Mitsubishi Rayon Co Ltd Separation membrane element and module using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415102A (en) * 1987-07-09 1989-01-19 Asahi Chemical Ind Compound body of porous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114517A (en) * 1989-07-13 1991-05-15 Akzo Nv Flat or capillary membrane based on homogeneous mixture comprising polyvinylidene fluoride and secondary polymer, method of its manufacture and method of fixing biochemically activated compound
JPH0725776A (en) * 1993-07-15 1995-01-27 Asahi Medical Co Ltd Filter material for selectively removing leukocyte
JP2001500542A (en) * 1996-08-26 2001-01-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Polymer film having hydrophilic surface, polymer article, and method for producing the same
JP2002113338A (en) * 2000-10-04 2002-04-16 Mitsubishi Rayon Co Ltd Separation membrane element and module using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899439A (en) * 2017-11-22 2018-04-13 江苏江华水处理设备有限公司 A kind of preparation method of MBR films and its application in rural sewage treatment

Also Published As

Publication number Publication date
JP2007000723A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
JP4600172B2 (en) Porous membrane, solid-liquid separator, and solid-liquid separation method using them
Ping Chu et al. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
KR102526940B1 (en) Porous membrane, membrane module, water treatment device, and method for producing porous membrane
JP5858154B2 (en) Resin composition for porous membrane, membrane-forming stock solution, method for producing porous membrane, method for producing porous membrane for hollow fiber membrane, method for producing porous membrane for water treatment device, production of porous membrane for electrolyte support Method and method for producing porous membrane for separator
JP2004230280A (en) Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane
JP5228474B2 (en) Porous membrane for cell suspension filtration
WO2013099966A1 (en) Porous polymer membrane
JP2005524521A (en) Mixed polymer filter media for treating aqueous fluids
CN105120992A (en) Polyvinylidene fluoride hollow fiber membranes and preparation thereof
JP6667217B2 (en) Fouling inhibitor, porous filtration membrane for water treatment, and method for producing the same
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP5163152B2 (en) Wastewater treatment method
JP4380380B2 (en) Method for producing liquid separation membrane
JP2012106235A (en) Porous membrane, resin solution and method for manufacturing porous membrane
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
WO2024070989A1 (en) Separation membrane, method for manufacturing same, filtration method, and membrane filtration device
WO2022249839A1 (en) Separation membrane and method for producing same
JP2004290830A (en) Immersion membrane
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane
Jasem REDUCTION OF COD FROM SIMULATED WASTEWATER BY FABRICATED HYDROPHOBIC MEMBRANE
Sosiati et al. Fabrication and Characterization of PVC-Based Nanofiber Membranes for Water Filtration Application
JP2007283288A (en) Porous membrane and its manufacturing method
JP2018104541A (en) Porous membrane, and production method of porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4600172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3