JP4599805B2 - Microchannel structure and chemical reaction method using the same - Google Patents

Microchannel structure and chemical reaction method using the same Download PDF

Info

Publication number
JP4599805B2
JP4599805B2 JP2003104322A JP2003104322A JP4599805B2 JP 4599805 B2 JP4599805 B2 JP 4599805B2 JP 2003104322 A JP2003104322 A JP 2003104322A JP 2003104322 A JP2003104322 A JP 2003104322A JP 4599805 B2 JP4599805 B2 JP 4599805B2
Authority
JP
Japan
Prior art keywords
fluid
reaction
extraction
channel
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104322A
Other languages
Japanese (ja)
Other versions
JP2004305940A (en
Inventor
朋裕 大川
智之 及川
達 二見
晃治 片山
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003104322A priority Critical patent/JP4599805B2/en
Publication of JP2004305940A publication Critical patent/JP2004305940A/en
Application granted granted Critical
Publication of JP4599805B2 publication Critical patent/JP4599805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化学反応を行なう微小流路を有する微小流路構造体において、微小流路内の化学反応によって生成する生成物の抽出、分離を行なうに好適な方法に関する。
【0002】
【従来の技術】
近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応を行う研究が注目されている。このような微小流路では、微小空間での短い分子間距離および大きな比界面積の効果による分子の速やかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができることや、反応によって生じた目的化合物が反応相から抽出相へすばやく抽出、分離されることによって、引き続いて起こる副反応が抑えられることが示唆されている。(例えば、非特許文献1を参照。)上記の例等では、図1に示すようにY字状の微小流路に原材料を溶かした水相(1)と有機相(2)を導入し、Y字の合流部分で形成される有機相と水相の流体境界(3)で反応を起こしている。一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図1に示すような層流の状態となる。また、拡散時間は微小流路の幅(4)の2乗に比例するので、微小流路の幅(4)を小さくするほど反応液を能動的に混合しなくとも分子の拡散によって混合が進み、反応や抽出が起こりやすくなる。また、図2に示すように、微小流路の流体排出口(6)もY字にしておけば、比較的容易に水相と有機相を分離することができ、これを利用して2種類の液相間で抽出操作、分離操作などが行われている。
【0003】
しかしながら、通常、図1のような場合、反応の進行は主に流体境界(3)で進行するため、分子の拡散効果だけでは反応生成物が流体境界(3)に蓄積されることが示唆されている。(例えば、非特許文献2を参照。)3種類の液相関では、図4に示すように2つの流体境界(3)が形成され、外側の流体同士を直接接触させることはできないため、前述した微小空間での反応の特徴である効率の良い化学反応、すばやい抽出、分離および副反応の抑制といった効果を十分に得ることができなかった。
【0004】
【非特許文献1】
H.Hisamoto(H.ひさもと)ら、「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquid interface formed in a microchannel chip」 Chem. Commun., 2662〜2663頁, 2001年発行
【非特許文献2】
藤井著、「集積型マイクロリアクターチップ」 ながれ, 20巻, 99〜105頁, 2001年発行
【0005】
【発明が解決しようとする課題】
本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、反応に必要な原料を含んだ2以上の流体を微小流路に導入し、微小流路内で流体の進行方向に互いの流体境界で接触させて反応を起こさせ、生成物を反応相から抽出相に抽出し分離する場合、流体境界で蓄積した反応生成物を抽出相内でよりすみやかに均一に分散、抽出させることを可能とする構造を有した微小流路構造体、さらにこのような構造体を用いた化学反応方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するものとして、3以上の流体を同時に接触、あるいは混合することで反応させる反応相としての流路を有する微小流路構造体であって、一方の相が他方の相全てと接するように流路を立体的に配置したことを特徴とする微小流路構造体を用いることで、また、抽出用流体と反応原料を含む2以上の流体とを微小流路へ導入して互いに接触させた後、反応原料が反応して得られる生成物を反応の進行と共に抽出用流体へ移動させ、抽出用流体及び/又は反応原料を含む流体を得ることで、上記の従来技術による課題を解決することができ、遂に本発明を完成するに至った。
【0007】
すなわち本発明は、反応原料を含む流体を導入するための2以上の導入口及びそれに連通する導入流路と、反応生成物の抽出用流体を導入するための導入口及びそれに連通する抽出流路と、流体を排出するための排出流路及びそれに連通する排出口とを有した微小流路構造体であって、前記導入流路と前記抽出流路とは導入される流体が互いに接触できるように立体的に配置されてなる微小流路構造体であり、また、微小流路を有する構造体を用いて化学反応を行う方法であって、抽出用流体と反応原料を含む2以上の流体とを微小流路へ導入して互いに接触させた後、反応原料が反応して得られる生成物を反応の進行と共に抽出用流体へ移動させ、前記抽出用流体及び/又は前記反応原料を含む流体を得る化学反応方法である。
【0008】
以下、本発明を詳細に説明する。
<化学反応方法>
上記したように、本発明の化学反応方法は、微小流路を有する構造体を用いて化学反応を行う方法であって、抽出用流体と反応原料を含む2以上の流体とを微小流路へ導入して互いに接触させた後、反応原料が反応して得られる生成物を反応の進行と共に抽出用流体へ移動させ、前記抽出用流体及び/又は前記反応原料を含む流体を得る方法である。
【0009】
本発明において用いられる抽出用流体とは、微小流路を有する構造体に導入された反応原料が反応して得られる生成物を抽出できる媒体を指し、これは反応生成物やその溶解用の溶媒などの物性に応じて適宜選択できる。例えば、ヨードメタンとエチレンジアミン(共に反応原料がアセトニトリルに溶解)であり、反応生成物がN−メチルエチレンジアミンの場合には、水等の親水性媒体を使えば良く、反応生成物やその溶解用の溶媒の種類等によっては疎水性媒体を使うこともできる。これらは目的に応じて公知の溶媒を適宜選択して使えばよい。
【0010】
本発明において用いられる反応原料を含む2以上の流体とは、目的とする反応生成物を得るために微小流路を有する構造体に導入される原料及びそれを溶解する媒体を指し、これら反応原料を含む流体は別々の微小流路より導入され、その後合流して接触することで反応が進行するのである。
【0011】
反応原料としては、ヨードメタンとエチレンジアミンといった原料間の接触により反応する原料であれば特に限定されない。また、反応原料を含む2以上の流体として、導入される流体が3以上となる場合には、目的に応じて同じ原料を含む流体としてもよい。これらは反応効率や原料の溶解性などで適宜決められる。
【0012】
上記した抽出用流体と反応原料を含む2以上の流体は微小流路へ導入され、反応原料を含む2以上の流体は互いに接触して化学反応を生じて反応生成物が生じる。そして反応の進行と共に、当該微小流路に反応原料を含む2以上の流体と同時に送液されている抽出用流体へ移動する。このように、反応生成物を抽出用流体へ移動させることで、例えば反応生成物がさらに副反応等により目的物以外のものに変わったり、反応生成物の存在により本来の反応が進行しにくくなることを抑制することが可能となり、反応を効率的に進行させることが可能となるのである。
【0013】
また、抽出用流体と反応原料を含む2以上の流体とを微小流路へ導入する際に、これらの流体に層流を形成させ反応させることができれば、前記した効果は一層向上するため好ましい。
【0014】
さらに、反応原料を含む2以上の流体の界面又はその近傍において化学反応を行わせることもその効果を高めることになり好ましく、また、抽出用流体により、反応原料を含む2以上の流体の界面近傍において生成する生成物を抽出することも効果的となる。
【0015】
そして、この後、抽出用流体、反応原料を含む流体、あるいは両者を得ることで、目的の反応生成物が得られることとなる。この際に、微小流路内、あるいは外部にて反応生成物を分離・分取することができる。
【0016】
ここで、本発明の微小流路構造体に備わる導入口とは、化学反応等を行わせるための流体を当該微小流路構造体へ導入させるための開口部であり、導入される流体はこの導入口よりこれに連通する導入流路を通じて送液される。本発明においては化学反応を実施するため、反応原料を含有した流体を2種以上、さらには必要に応じて反応生成物を抽出したりするための流体を導入するために、導入口及び導入流路の数としては、2以上有することが必須となる。
【0017】
導入流路へ送液された上記の流体は、導入流路に連通する微小流路へ送液される。微小流路においては導入された流体が層流をなし、この微小流路内において各流体相の間で化学反応を起こさせる。また、必要に応じて、光照射装置により光を照射したり、加熱装置により加熱したりして、微小流路部分へエネルギーを供給し化学反応を効率的に行わせることもできる。
【0018】
このようにして微小流路において化学反応させた後、送液方向から見て微小流路の後方側では、微小流路から分岐しかつ流体を排出するための2以上の排出流路及びそれらに連通する排出口が備えられている。この排出流路は、微小流路と排出流路との連通部分に分岐部を有しており、分岐部では微小流路内の層流が分離される。
【0019】
また、上記の微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路である。また、導入流路と排出流路の幅と深さは特に制限はないが、微小流路と同様の幅と深さであっても良い。また、導入口と排出口の大きさも特に制限はないが、一般的に直径数0.1〜数mm程度の大きさであれば良い。
<微小流路構造体>
本発明の微小流路構造体は、上記した化学反応方法に用いられるものであって、反応原料を含む流体を導入するための2以上の導入口及びそれに連通する導入流路と、反応生成物の抽出用流体を導入するための導入口及びそれに連通する抽出流路と、流体を排出するための排出流路及びそれに連通する排出口とを有し、導入流路と抽出流路とは導入される流体が互いに接触できるように立体的に配置されてなるものである。このような構成をとることで、本発明の微小流路構造体の流路は、3以上の流体を同時に接触、あるいは混合することで反応させる反応相として機能させることができる。
【0020】
ここで、本発明の微小流路構造体に備わる導入口とは、反応原料を含む流体及び化学反応により生成した反応生成物を抽出するための抽出用流体を微小流路構造体へ導入させるための開口部である。反応原料を含む流体はこの導入口よりこれに連通する導入流路を通じて送液され、これらの導入口及び導入流路は目的とする反応生成物によるが、2以上備えている。また、化学反応により生成した反応生成物を抽出するための抽出用流体はこの導入口よりこれに連通する抽出流路を通じて送液される。
【0021】
本発明の微小流路構造体においては、これらの導入流路と抽出流路とが、互いに送液される流体が接触できるような構造となっており、この構造により、反応により生じた反応生成物を抽出用流体へ移動させることが可能となるのである。
【0022】
さらにより具体的に導入流路と抽出流路について述べれば、導入流路は送液される流体が合流できる構造となって、その合流部分から原料が接触して化学反応が進行する構造となっている。また、抽出流路は、送液される流体が、最初から導入流路を送液される流体と接触できる構造となっていてもよいが、導入口から適当な間は非接触となり、導入流路で反応生成物が徐々に生じてきた部位から接触できる構造となっていてもよい。
【0023】
これらの導入流路と抽出流路の配置については、導入される流体が互いに接触できるように立体的に配置されておればよい。さらに具体的例により述べれば、微小流路構造体が平板状である場合を例とすると、導入流路が下側で抽出流路が上側に、あるいはその逆で、導入流路が上側で前記抽出流路が下側に、配置されておればよい。より具体的には、少なくとも導入流路を備えた微小流路基板と少なくとも抽出流路を備えた微小流路基板とを重ねあわせて形成させることで、このような微小流路構造体を配置を達成させることができる。
【0024】
そして、反応により生成した反応生成物は抽出流路にて抽出され、その後、流体を排出するための排出流路に送液され、排出流路に連通する排出口より排出されることになる。
【0025】
図3に示すように、2以上の流体が隣り合う流体と流体方向に沿って接触し流体境界を保ちながら流れる微小流路を有する微小流路構造体(7)と、1以上の流体が流れる微小流路を有する微小流路構造体兼カバー体(8)とを別々の2枚の基板に形成し、これらを精密に貼り合わせることによって3以上の流体が連続した1つの流体界面を介して同時に接触する手段を微小流路に有している。
【0026】
本発明の微小流路構造体は、流体を導入する微小なポンプなどの流体導入手段を微小流路構造体自体に備えていても良いが、微小流路構造体の構造をより単純にして構成しやすくするためには、流体導入手段は外部に備えた方が好ましく、すなわち、本発明の微小流路構造体は、反応用の流体および抽出用の流体を導入するための3以上の導入口と、導入された前記流体を流す1以上の微小流路と、前記反応用流体および抽出用の流体を排出する1以上の排出口とを有し、前記微小流路が前記導入口及び前記排出口に連通した微小流路構造体であることが好ましい。この場合、微小流路構造体の外部に設置したシリンジポンプなどから流体導入口に流体を容易に導入することができる。
【0027】
上記のような機能を微小流路に持たせることで、反応に必要な原料を含んだ2以上の流体を微小流路に導入し、微小流路内で流体の進行方向に互いの流体境界で接触させて反応を起こさせ、反応生成物を反応相から抽出相に抽出し分離する場合、反応相の流体境界部分に例えば生成物の抽出効率がより高い直接抽出相が接触しているため、反応生成物が流体境界で蓄積されずに抽出相内でよりすみやかに均一に分散し十分な反応および抽出効果を得ることができる。また、各流体が流体境界を保持しているので、生成物が抽出された抽出相を反応相から容易に分離することができ、引続きおこる副反応の抑制等の効果を十分に得ることができる。
【0028】
微小流路を有する微小流路基板は、例えばガラスや石英、セラミック、シリコン、あるいは金属や樹脂等の基板材料を、機械加工やレーザー加工、エッチングなどにより直接加工することによって製作できる。また、基板材料がセラミックや樹脂の場合は、流路形状を有する金属等の鋳型を用いて成形することで製作することもできる。なお一般的に、前記微小流路基板は、流体導入口、流体排出口、および各微小流路の排出口に対応する位置に直径数mm程度の***を設けたカバー体と積層一体化させた微小流路構造体として使用する。カバー体と微小流路基板をの接合方法としては、基板材料がセラミックスや金属の場合は、ハンダ付けや接着剤を用いたり、基板材料がガラスや石英、樹脂の場合は、百度〜千数百度の高温下で荷重をかけて熱接合させたり、基板材料がシリコンの場合は洗浄により表面を活性化させて常温で接合させるなどそれぞれの基板材料に適した接合方法が用いられる。
【0029】
【発明の実施の形態】
以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
【0030】
また、実施例においては1枚の基板上に1本の微小流路を形成したが、工業的に量産する場合は、1枚の基板上に多数の微小流路を形成する、あるいは多数形成した1枚の基板を積層することで可能となる。
【0031】
(実施例)
実施例として、図4に示すようなΨ字状の微小流路構造体を、図5に示される手順にて製作した。すなわち、図5において、反応用微小流路基板(11)上に形成した反応用微小流路(9)の幅は220μm、深さは80μm、長さ40mmであり、また流路の中央付近には高さ3μmの仕切り壁を形成した。流体導入口(5)につながる両側の2本の微小流路は、中心の微小流路と44°の角度でそれぞれ合流させた。また抽出用微小流路(10)の幅は100μm、深さは30μm、長さ60mmであり、反応用微小流路(9)と抽出用微小流路(10)は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し、反応用微小流路基板(11)および、抽出用微小流路基板(12)とした。抽出用微小流路基板(12)には、3つの流体導入口(5)と1つの流体排出口(6)の位置に直径0.6mmの貫通した***(13)を機械的加工手段により設けた。反応用微小流路基板(11)と抽出用微小流路基板(12)を熱融着により接合することで反応用微小流路(9)および抽出用微小流路(10)を密閉した。
【0032】
この反応用微小流路(9)の流体導入口(5)の一方からヨードメタンのアセトニトリル溶液の有機相を送液し、流体導入口(5)のもう一方からエチレンジアミンのアセトニトリル溶液の有機相を送液し、エチレンジアミンのメチル化反応を行なった。中央の抽出用微小流路(10)の流体導入口(5)には、水を抽出溶媒として導入し、2つのアセトニトリルの有機相と水相の送液速度を調整して抽出溶媒である水がエードメタンのアセトニトリル溶液とエチレンジアミンのアセトニトリル溶液の流体境界に立体的に接するように送液した。2つの有機相の送液速度は10μl/min、水相の送液速度は5μl/minであった。流体排出口から排出された水相を試験管で回収し、高速液体クロマトグラフィーを用いて分析したところ、エチレンジアミンとN−メチルエチレンジアミンの量比が約91:9で確認され、この反応におけるN−メチルエチレンジアミンの転換率は約9%程度であった。
【0033】
(比較例)
比較例として、図6に示すようなY字状の微小流路構造体を製作した。形成した微小流路(14)の幅は220μm、深さは80μm、長さ40mmである。また、流路の中央付近には高さ3μmの仕切り壁を形成した。流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し、2つの流体導入口(5)と1つの流体排出口(6)に相当する位置に、直径0.6mmの貫通した***(13)を機械的加工手段により設けた、同サイズのパイレックス(登録商標)基板(16)をカバー体として熱融着により接合することで微小流路(14)を密閉した。この微小流路の流体導入口(5)の一方からヨードメタンのアセトニトリル溶液である有機相を送液し、もう一方の流体導入口(5)からは、エチレンジアミンの水溶液である水相を送液し、送液速度を調整することで層流を形成してエチレンジアミンのメチル化反応を行なった。送液速度は有機相及び水相とも10μl/minであった。なおこの場合、エチレンジアミンの水溶液は生成物であるN−メチルエチレンジアミンの抽出溶媒を兼ねている。
【0034】
流体排出口から排出された水相を試験管で回収し、高速液体クロマトグラフィーを用いて分析したところ、エチレンジアミンとN−メチルエチレンジアミンの量比が約93:7で確認され、この反応におけるN−メチルエチレンジアミンの転換率は約7%程度であった。
【0035】
以上のことから、抽出溶媒を反応相の流体境界に立体的に接触させることで、抽出効率が向上し、反応系に用いる溶媒以外を抽出溶媒として用いることができると共に、その結果として反応を効率的に進行させることができることを確認した。
【0036】
【発明の効果】
本発明の微小流路構造体は、3以上の流体を同時に接触、あるいは混合することで反応させる反応相としての流路を有する微小流路構造体であって、一方の相が他方の相全てと接するように流路を立体的に配置したことを特徴とする微小流路構造体において、3以上の流体が連続した1つの流体界面を介して同時に接触させることができる。
【0037】
本発明の微小流路構造体を用いた化学反応方法は、反応に必要な原料を含んだ2以上の流体を微小流路に導入し、微小流路内で流体の進行方向に互いの流体境界で接触させて反応を起こさせ、反応生成物を反応相から抽出相に抽出し分離する場合、反応相の流体境界部分に例えば生成物の抽出効率がより高い直接抽出相が接触しているため、反応生成物が流体境界で蓄積されずに抽出相内でよりすみやかに均一に分散し十分な反応および抽出効果を得ることができ、また、各流体が流体境界を保持しているので、生成物が抽出された抽出相を反応相から容易に分離することができ、引続きおこる副反応の抑制等の効果を十分に得ることができる。そして、その結果として反応を効率的に進行させることができる。
【図面の簡単な説明】
【図1】従来の液滴生成用微小流路を示す概略図である。
【図2】ダブルY字状微小流路内における層流を示す概念図である。
【図3】Ψ字状微小流路内における層流を示す概念図である。
【図4】3種以上の流体を同時に接触、あるいは混合することで反応させる反応相としての流路を有する微小流路構造体を示す概念図である。
【図5】実施例における溶媒抽出用微小流路を示す概略図である。
【図6】実施例における溶媒抽出用微小流路を示す概略図である。
【符号の説明】
1:水相
2:有機相
3:流体界面
4:微小流路の幅
5:流体導入口
6:流体排出口
7:微小流路構造体
8:微小流路構造体兼カバー体
9:反応用微小流路
10:抽出用微小流路
11:反応用微小流路基板
12:抽出用微小流路基板
13:貫通した***
14:微小流路
15:微小流路基板
16:カバー体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method suitable for extracting and separating a product generated by a chemical reaction in a microchannel in a microchannel structure having a microchannel for performing a chemical reaction.
[0002]
[Prior art]
In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that conducts chemical reactions is attracting attention. In such a microchannel, the rapid diffusion of molecules due to the effect of a short intermolecular distance and a large specific interfacial area in a microspace enables efficient chemical reaction without special stirring operation. It has been suggested that the subsequent side reaction can be suppressed by quickly extracting and separating the target compound produced by the reaction from the reaction phase to the extraction phase. (For example, refer nonpatent literature 1.) In said example etc., as shown in FIG. 1, the water phase (1) and the organic phase (2) which melt | dissolved the raw material were introduced into the Y-shaped microchannel, The reaction occurs at the fluid boundary (3) between the organic phase and the aqueous phase formed at the Y-shaped confluence. In general, there are almost all cases where the Reynolds number is smaller than 1 in a micro-scale flow path, and a laminar flow state as shown in FIG. 1 is obtained unless the flow velocity is significantly increased. In addition, since the diffusion time is proportional to the square of the width (4) of the microchannel, the smaller the microchannel width (4), the more the mixing proceeds due to molecular diffusion without actively mixing the reaction solution. , Reaction and extraction are likely to occur. In addition, as shown in FIG. 2, if the fluid outlet (6) of the microchannel is also Y-shaped, the water phase and the organic phase can be separated relatively easily, and two types can be utilized using this. Extraction and separation operations are performed between the liquid phases.
[0003]
However, in general, in the case of FIG. 1, the progress of the reaction mainly proceeds at the fluid boundary (3). Therefore, it is suggested that the reaction product is accumulated at the fluid boundary (3) only by the molecular diffusion effect. ing. (For example, see Non-Patent Document 2.) In the three types of liquid correlations, two fluid boundaries (3) are formed as shown in FIG. 4 , and the outer fluids cannot be brought into direct contact with each other. is characteristic efficient chemical reaction of the reaction in a minute space, quick extraction, it has not been possible to obtain a sufficient effect such inhibition of separating and side reactions.
[0004]
[Non-Patent Document 1]
H. Hisamoto (H. Hisamoto) et al., “Fast and high conversion phase-transfer synthesis synthesis the liquid-informed interface formed in a microchannel chip. Commun. , 2662-2663, published 2001 [Non-patent Document 2]
Fujii al., "Integrated microreactor chip" flow, Vol. 20, pp. 99-105, published in 2001 [0005]
[Problems to be solved by the invention]
The object of the present invention has been proposed in view of the conventional situation, and two or more fluids containing raw materials necessary for the reaction are introduced into the microchannel, and the fluid travels in the microchannel. When contact is made at the fluid boundary to cause a reaction and the product is extracted from the reaction phase to the extraction phase and separated, the reaction product accumulated at the fluid boundary is more evenly dispersed and extracted within the extraction phase. fine channel device having a structure that makes it possible to provide a further chemical reaction method using such a structure.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is a microchannel structure having a channel as a reaction phase that reacts by simultaneously contacting or mixing three or more fluids, one phase being the other phase. By using a micro-channel structure characterized by three-dimensionally arranging the channels so as to be in contact with all, two or more fluids including an extraction fluid and reaction raw materials are introduced into the micro-channel. The products obtained by the reaction of the reaction raw materials are moved to the extraction fluid as the reaction proceeds to obtain an extraction fluid and / or a fluid containing the reaction raw materials. The problems could be solved and the present invention was finally completed.
[0007]
That is, the present invention includes two or more inlets for introducing a fluid containing a reaction raw material and an introduction channel communicating therewith, an inlet for introducing a reaction product extraction fluid, and an extraction channel communicating therewith And a discharge channel for discharging the fluid and a discharge channel communicating with the discharge channel, and the introduction channel and the extraction channel are configured so that the introduced fluid can come into contact with each other A three-dimensionally arranged microchannel structure, and a method of performing a chemical reaction using a structure having a microchannel, wherein two or more fluids containing an extraction fluid and a reaction raw material Are introduced into the microchannel and brought into contact with each other, and then a product obtained by reaction of the reaction raw material is moved to the extraction fluid as the reaction proceeds, and the extraction fluid and / or the fluid containing the reaction raw material It is a chemical reaction method to obtain.
[0008]
Hereinafter, the present invention will be described in detail.
<Chemical reaction method>
As described above, the chemical reaction method of the present invention is a method in which a chemical reaction is performed using a structure having a micro flow channel, and an extraction fluid and two or more fluids containing reaction raw materials are transferred to the micro flow channel. After the introduction and contact with each other, the product obtained by the reaction of the reaction raw materials is moved to the extraction fluid as the reaction proceeds to obtain the extraction fluid and / or the fluid containing the reaction raw material.
[0009]
The extraction fluid used in the present invention refers to a medium that can extract a product obtained by reaction of a reaction raw material introduced into a structure having a microchannel, which is a reaction product or a solvent for dissolving the reaction product. It can select suitably according to physical properties, such as. For example, when iodomethane and ethylenediamine (both reaction raw materials are dissolved in acetonitrile) and the reaction product is N-methylethylenediamine, a hydrophilic medium such as water may be used. Depending on the type, a hydrophobic medium can be used. These may be used by appropriately selecting a known solvent according to the purpose.
[0010]
The two or more fluids containing the reaction raw material used in the present invention refer to a raw material introduced into a structure having a micro flow path and a medium for dissolving the same to obtain a target reaction product. The fluid containing is introduced from separate microchannels, and then the reaction proceeds by joining and contacting.
[0011]
The reaction raw material is not particularly limited as long as it is a raw material that reacts by contact between raw materials such as iodomethane and ethylenediamine. Also, as two or more fluids containing the reaction starting materials, if the fluid introduced is 3 or more, may be a fluid comprising the same material depending on the purpose. These are appropriately determined depending on the reaction efficiency and the solubility of the raw materials.
[0012]
The two or more fluids containing the extraction fluid and the reaction raw material are introduced into the microchannel, and the two or more fluids containing the reaction raw material come into contact with each other to cause a chemical reaction to generate a reaction product. And with the progress of the reaction, it moves into the extraction fluid which is fed at the same time as two or more fluids containing the reaction starting materials in the fine channel. In this way, by moving the reaction product to the extraction fluid, for example, the reaction product further changes to something other than the target product due to a side reaction or the like, and the original reaction hardly proceeds due to the presence of the reaction product. This can be suppressed, and the reaction can proceed efficiently.
[0013]
In addition, when the extraction fluid and the two or more fluids containing the reaction raw material are introduced into the microchannel, it is preferable that these fluids can form and react with each other because the above-described effects are further improved.
[0014]
Further, it is preferable to cause a chemical reaction to be performed at or near the interface between two or more fluids containing the reaction raw materials, and the vicinity of the interface between the two or more fluids containing the reaction raw materials by the extraction fluid. It is also effective to extract products generated in
[0015]
Then, after this, the extraction fluid, the fluid comprising a reactant or to obtain a both, so that the reaction product of interest are obtained. At this time, the reaction product can be separated / sorted in the minute channel or outside.
[0016]
Here, the introduction port provided in the microchannel structure of the present invention is an opening for introducing a fluid for performing a chemical reaction or the like into the microchannel structure, and the fluid to be introduced is this The liquid is fed from the introduction port through the introduction flow path communicating therewith. In the present invention, in order to carry out a chemical reaction, in order to introduce two or more fluids containing reaction raw materials and further to extract a fluid for extracting a reaction product as necessary, an introduction port and an introduction flow are introduced. It is essential to have two or more roads.
[0017]
The fluid sent to the introduction flow path is sent to the micro flow path communicating with the introduction flow path. No fluid is laminar flow introduced in the fine channel, causing a chemical reaction between the fluid phase in the microchannel. Further, if necessary, the chemical reaction can be efficiently performed by irradiating light with a light irradiation device or heating with a heating device to supply energy to the microchannel portion.
[0018]
After the chemical reaction in the micro flow path in this way, on the rear side of the micro flow path when viewed from the liquid feeding direction, two or more discharge flow paths for branching out of the micro flow path and discharging the fluid are provided. A communication outlet is provided. This discharge flow path has a branch portion at the communication portion between the micro flow path and the discharge flow path, and the laminar flow in the micro flow path is separated at the branch portion.
[0019]
Moreover, said microchannel is a channel generally having a width of 500 μm or less and a depth of 300 μm or less. The width and depth of the introduction channel and the discharge channel are not particularly limited, but may be the same width and depth as the microchannel. There is no particular restriction also the size of the inlet and outlet, generally may be a diameter of about number 0.1 to several mm.
<Microchannel structure>
The microchannel structure of the present invention is used in the above-described chemical reaction method, and includes two or more inlets for introducing a fluid containing a reaction raw material, an introduction channel communicating with the inlet, and a reaction product And an extraction passage communicating therewith, an exhaust passage communicating the fluid, and a discharge port communicating therewith, the introduction passage and the extraction passage being introduced The three fluids are arranged in three dimensions so that the fluids to be brought into contact with each other. By adopting such a configuration, the flow path of the microchannel structure of the present invention can function as a reaction phase that reacts by simultaneously contacting or mixing three or more fluids.
[0020]
Here, the inlet provided in the microchannel structure of the present invention is for introducing an extraction fluid for extracting a reaction product generated by a fluid containing a reaction raw material and a chemical reaction into the microchannel structure. Is the opening. The fluid containing the reaction raw material is fed from this introduction port through an introduction flow path communicating with this, and these introduction ports and the introduction flow path are provided with two or more depending on the target reaction product. The extraction fluid to extract the reaction product produced by the chemical reactions is fed through the extraction channel communicating thereto from the inlet.
[0021]
In the micro flow channel structure of the present invention, the introduction flow channel and the extraction flow channel are structured such that fluids sent to each other can come into contact with each other. It is possible to move the object to the extraction fluid.
[0022]
More specifically, the introduction flow path and the extraction flow path will be described. The introduction flow path has a structure in which fluids to be fed can be joined, and a raw material comes in contact from the joined part and a chemical reaction proceeds. ing. The extraction channel may have a structure in which the fluid to be fed can contact the fluid to be fed from the beginning to the introduction channel, but is not in contact with the fluid from the introduction port for an appropriate time. The structure may be such that the reaction product can be contacted from the site where the reaction product is gradually generated on the road.
[0023]
The arrangement of the extraction channel and these introduction flow path, may I be sterically arranged so as to be in contact the fluid to be introduced to each other. More specifically, taking the case where the microchannel structure is a flat plate as an example, the introduction channel is on the lower side and the extraction channel is on the upper side, or vice versa, and the introduction channel is on the upper side. The extraction flow path should just be arrange | positioned at the lower side. More specifically, it is possible to arrange such a microchannel structure by superimposing a microchannel substrate having at least an introduction channel and a microchannel substrate having at least an extraction channel. Can be achieved.
[0024]
And the reaction product produced | generated by reaction is extracted in an extraction flow path, is sent to the discharge flow path for discharging | emitting a fluid after that, and is discharged | emitted from the discharge port connected to a discharge flow path.
[0025]
As shown in FIG. 3, a microchannel structure (7) having a microchannel and two or more fluids flowing in contact with adjacent fluids along the fluid direction and maintaining a fluid boundary, and the one or more fluids flow A micro-channel structure / cover body (8) having micro-channels is formed on two separate substrates, and these are precisely bonded to each other through one fluid interface in which three or more fluids are continuous. A means for contacting at the same time is provided in the microchannel.
[0026]
The microchannel structure of the present invention may be provided with fluid introducing means such as a micropump for introducing fluid in the microchannel structure itself, but the structure of the microchannel structure is simplified. In order to facilitate the operation, the fluid introduction means is preferably provided outside, that is, the microchannel structure of the present invention has three or more inlets for introducing the reaction fluid and the extraction fluid. And one or more microchannels through which the introduced fluid flows, and one or more outlets through which the reaction fluid and extraction fluid are exhausted, and the microchannels include the inlet and the exhaust. A microchannel structure that communicates with the outlet is preferable. In this case, it is possible to easily introduce a fluid into the fluid inlet port and the like syringe pump installed outside the fine channel device.
[0027]
By giving the above-mentioned functions to the micro flow channel, two or more fluids containing raw materials necessary for the reaction are introduced into the micro flow channel, and the fluid flow direction in the micro flow channel When the reaction is caused to contact and the reaction product is extracted and separated from the reaction phase to the extraction phase, for example, the direct extraction phase with higher extraction efficiency of the product is in contact with the fluid boundary portion of the reaction phase. the reaction product is uniformly dispersed more quickly in the extraction phase in without being accumulated in the fluid boundary can obtain sufficient reaction and extraction effects. Moreover, since each fluid holds the fluid boundary, the extraction phase from which the product is extracted can be easily separated from the reaction phase, and effects such as suppression of subsequent side reactions can be sufficiently obtained. .
[0028]
A microchannel substrate having a microchannel can be manufactured by directly processing a substrate material such as glass, quartz, ceramic, silicon, or metal or resin by machining, laser processing, etching, or the like. Further, when the substrate material is ceramic or resin, it can also be manufactured by molding using a mold such as a metal having a channel shape. Generally, the microchannel substrate is laminated and integrated with a cover body having a small hole with a diameter of about several millimeters at a position corresponding to the fluid inlet, the fluid outlet, and the outlet of each microchannel. Used as a microchannel structure. As a method for joining the cover body and the microchannel substrate, soldering or adhesive is used when the substrate material is ceramic or metal, or hundreds to thousands of degrees when the substrate material is glass, quartz, or resin. A bonding method suitable for each substrate material is used, such as thermal bonding by applying a load at a high temperature, or when the substrate material is silicon, by activating the surface by washing and bonding at room temperature.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.
[0030]
In the embodiment, one micro flow channel is formed on one substrate. However, in the case of mass production industrially, a large number of micro flow channels are formed on a single substrate or a large number of micro flow channels are formed. This is possible by stacking one substrate.
[0031]
(Example)
As an example, the Ψ-shaped minute flow passage structure as shown in FIG. 4 was manufactured by the procedure shown in FIG. That is, in FIG. 5, the reaction microchannel (9) formed on the reaction microchannel substrate (11) has a width of 220 μm, a depth of 80 μm, and a length of 40 mm. Formed a partition wall having a height of 3 μm. The two microchannels on both sides connected to the fluid inlet (5) were merged with the central microchannel at an angle of 44 °. The extraction microchannel (10) has a width of 100 μm, a depth of 30 μm, and a length of 60 mm. The reaction microchannel (9) and the extraction microchannel (10) are 70 mm × 38 mm × 1 mm ( (Thickness) Pyrex (registered trademark) substrate was formed by general photolithography and wet etching to form a reaction microchannel substrate (11) and an extraction microchannel substrate (12). The extraction microchannel substrate (12) is provided with a small hole (13) having a diameter of 0.6 mm at the position of three fluid introduction ports (5) and one fluid discharge port (6) by mechanical processing means. It was. The reaction microchannel substrate (11) and the extraction microchannel substrate (12) were joined by thermal fusion to seal the reaction microchannel (9) and the extraction microchannel (10).
[0032]
The organic phase of the acetonitrile solution of iodomethane is sent from one of the fluid inlets (5) of this reaction microchannel (9), and the organic phase of the acetonitrile solution of ethylenediamine is sent from the other of the fluid inlets (5). Then, methylation reaction of ethylenediamine was performed. Water is introduced as an extraction solvent into the fluid introduction port (5) of the central extraction micro-channel (10), and the liquid supply speed of the organic phase and the aqueous phase of two acetonitriles is adjusted so that water as the extraction solvent is obtained. There was fed in contact with the sterically fluid boundary acetonitrile solution in acetonitrile and ethylene diamine Edometan. The liquid feeding speed of the two organic phases was 10 μl / min, and the liquid feeding speed of the aqueous phase was 5 μl / min. The aqueous phase discharged from the fluid outlet was collected with a test tube and analyzed using high performance liquid chromatography. As a result, the quantitative ratio of ethylenediamine and N-methylethylenediamine was confirmed to be about 91: 9. The conversion rate of methylethylenediamine was about 9%.
[0033]
(Comparative example)
As a comparative example, a Y-shaped microchannel structure as shown in FIG. 6 was manufactured. The formed microchannel (14) has a width of 220 μm, a depth of 80 μm, and a length of 40 mm. A partition wall having a height of 3 μm was formed near the center of the flow path. The flow path is formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching, and has two fluid inlets (5) and one fluid outlet (6). The Pyrex (registered trademark) substrate (16) of the same size, in which a small hole (13) having a diameter of 0.6 mm is provided by a mechanical processing means at a position corresponding to the above, is bonded by heat fusion. The microchannel (14) was sealed. An organic phase that is an acetonitrile solution of iodomethane is sent from one of the fluid inlets (5) of this microchannel, and an aqueous phase that is an aqueous solution of ethylenediamine is sent from the other fluid inlet (5). By adjusting the liquid feeding speed, a laminar flow was formed to carry out a methylation reaction of ethylenediamine. The liquid feeding speed was 10 μl / min for both the organic phase and the aqueous phase. In this case, the aqueous solution of ethylenediamine also serves as an extraction solvent for the product N-methylethylenediamine.
[0034]
The aqueous phase discharged from the fluid outlet was collected with a test tube and analyzed using high performance liquid chromatography. As a result, the quantitative ratio of ethylenediamine and N-methylethylenediamine was confirmed to be about 93: 7. The conversion rate of methylethylenediamine was about 7%.
[0035]
From the above, by bringing the extraction solvent into contact with the fluid boundary of the reaction phase in three dimensions, the extraction efficiency can be improved, and other than the solvent used in the reaction system can be used as the extraction solvent. It was confirmed that it can be made to proceed.
[0036]
【The invention's effect】
The microchannel structure of the present invention is a microchannel structure having a channel as a reaction phase that reacts by simultaneously contacting or mixing three or more fluids, and one phase is the entire other phase. In the microchannel structure in which the channels are three-dimensionally arranged so as to be in contact with each other, three or more fluids can be simultaneously contacted via one continuous fluid interface.
[0037]
In the chemical reaction method using the microchannel structure according to the present invention, two or more fluids containing raw materials necessary for the reaction are introduced into the microchannel, and the fluid boundaries in the direction of fluid movement in the microchannel When the reaction product is extracted from the reaction phase to the extraction phase and separated, the direct extraction phase with higher extraction efficiency of the product is in contact with the fluid boundary portion of the reaction phase. , the reaction product is uniformly dispersed more quickly in the extraction phase in without being accumulated in the fluid boundary can be obtained a sufficient reaction and extraction effect, also, since the fluid is holding the fluid boundary, generating things the extract phase, which is extracted can be easily separated from the reaction phase, can be obtained subsequently occurs the effect of suppressing such side reactions sufficiently. As a result, the reaction can proceed efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a conventional microchannel for generating droplets.
FIG. 2 is a conceptual diagram showing a laminar flow in a double Y-shaped microchannel.
FIG. 3 is a conceptual diagram showing a laminar flow in a ψ-shaped microchannel.
FIG. 4 is a conceptual diagram showing a micro flow channel structure having a flow channel as a reaction phase for reacting by contacting or mixing three or more kinds of fluids simultaneously.
FIG. 5 is a schematic diagram showing a solvent extraction microchannel in an example.
FIG. 6 is a schematic view showing a solvent extraction microchannel in an example.
[Explanation of symbols]
1: Water Phase 2: the organic phase 3: fluid interface 4: the width of the fine channel 5: fluid inlet port 6: fluid outlet 7: fine channel 8: fine channel device and the cover body 9: a reaction fine channel 10: extraction fine channel 11: reaction fine channel substrate 12: extraction fine channel substrate 13: through-eyelet 14: micro channel 15: fine channel substrate 16: cover

Claims (8)

反応原料を含む流体を導入するための2つの導入口及びそれに連通する2つの導入流路と、反応生成物の抽出用流体を導入するための1つの導入口及びそれに連通する抽出流路と、流体を排出するための排出流路及びそれに連通する排出口とを有した微小流路構造体であって、前記2つの導入流路は、送液される流体が合流し、2つの流体が隣り合う流体と流体方向に沿って接触し流体境界を保ちながら流れる微小流路構造となっており、前記流体境界の上に接触するように抽出流路が配置されており、前記2つの導入流路と前記流出流路を流れる流体が連続した1つの流体境界を介して同時に接触するよう立体的に配置されてなることを特徴とする微小流路構造体。Two inlets for introducing a fluid containing a reaction raw material and two introduction channels communicating therewith, one inlet for introducing a reaction product extraction fluid and an extraction channel communicating therewith, A microchannel structure having a discharge channel for discharging a fluid and a discharge port communicating with the discharge channel, wherein the two introduction channels have a fluid to be fed and two fluids are adjacent to each other. A flow path structure that flows along a fluid direction while maintaining a fluid boundary, and an extraction flow path is disposed so as to contact the fluid boundary, and the two introduction flow paths And a fluid that flows through the outflow channel are arranged in a three-dimensional manner so as to simultaneously contact each other through one continuous fluid boundary. 前記導入流路が下側に、前記抽出流路が上側に、配置されてなることを特徴とする請求項1記載の微小流路構造体。2. The microchannel structure according to claim 1, wherein the introduction channel is disposed on the lower side and the extraction channel is disposed on the upper side. 前記導入流路が上側に、前記抽出流路が下側に、配置されてなることを特徴とする請求項1記載の微小流路構造体。2. The microchannel structure according to claim 1, wherein the introduction channel is arranged on the upper side and the extraction channel is arranged on the lower side. 少なくとも導入流路を備えた微小流路基板と少なくとも抽出流路を備えた微小流路基板とを重ねあわせて形成されてなるものであることを特徴とする請求項1〜3のいずれかに記載の微小流路構造体。4. The micro-channel substrate having at least an introduction channel and the micro-channel substrate having at least an extraction channel are formed to overlap each other. The microchannel structure. 請求項1〜4のいずれかに記載の微小流路構造体を用いて化学反応を行う方法であって、抽出用流体と反応原料を含む2の流体とを微小流路へ導入して互いに接触させた後、反応原料が反応して得られる生成物を反応の進行と共に抽出用流体へ移動させ、前記抽出用流体及び/又は前記反応原料を含む流体を得ることを特徴とする化学反応方法。A method for performing a chemical reaction using the microchannel structure according to any one of claims 1 to 4, wherein an extraction fluid and two fluids containing reaction raw materials are introduced into the microchannel and contacted with each other. Then, the product obtained by reacting the reaction raw material is moved to the extraction fluid as the reaction proceeds to obtain the extraction fluid and / or the fluid containing the reaction raw material. 抽出用流体と反応原料を含む2の流体とを微小流路へ導入して層流を形成させることを特徴とする請求項5記載の化学反応方法。6. The chemical reaction method according to claim 5, wherein a laminar flow is formed by introducing an extraction fluid and two fluids containing reaction raw materials into a microchannel. 前記反応原料を含む2の流体の界面又はその近傍において化学反応を行わせることを特徴とする請求項6記載の化学反応方法。The chemical reaction method according to claim 6, wherein a chemical reaction is performed at or near an interface between the two fluids containing the reaction raw materials . 前記流出用流体を、前記反応原料を含む2の流体の界面近傍において生成する生成物を抽出することを特徴とする請求項7記載の化学反応方法。8. The chemical reaction method according to claim 7, wherein a product generated in the vicinity of the interface between the two fluids containing the reaction raw material is extracted from the outflow fluid.
JP2003104322A 2003-04-08 2003-04-08 Microchannel structure and chemical reaction method using the same Expired - Fee Related JP4599805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104322A JP4599805B2 (en) 2003-04-08 2003-04-08 Microchannel structure and chemical reaction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104322A JP4599805B2 (en) 2003-04-08 2003-04-08 Microchannel structure and chemical reaction method using the same

Publications (2)

Publication Number Publication Date
JP2004305940A JP2004305940A (en) 2004-11-04
JP4599805B2 true JP4599805B2 (en) 2010-12-15

Family

ID=33467184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104322A Expired - Fee Related JP4599805B2 (en) 2003-04-08 2003-04-08 Microchannel structure and chemical reaction method using the same

Country Status (1)

Country Link
JP (1) JP4599805B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643973B2 (en) * 2004-11-08 2011-03-02 富士フイルム株式会社 Inspection method of pump operating condition
JP4776246B2 (en) * 2005-02-08 2011-09-21 三菱瓦斯化学株式会社 Method for producing solution containing percarboxylic acid
JP2006263558A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Method for producing chemical substance
JP4687238B2 (en) * 2005-05-18 2011-05-25 東ソー株式会社 Micro channel structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
JP2000298079A (en) * 1999-04-13 2000-10-24 Kanagawa Acad Of Sci & Technol Molecule transportation and extraction method
WO2001068257A1 (en) * 2000-03-10 2001-09-20 Bioprocessors Corporation Microreactor
JP2003028836A (en) * 2001-07-11 2003-01-29 Kanagawa Acad Of Sci & Technol Microchannel solid crossing structure and method for forming solid crossing multilayered stream
WO2003008981A1 (en) * 2001-07-10 2003-01-30 Kanagawa Academy Of Science And Technology Integrated structure of multilayer flow microchannel and method for operating multilayer flow usigng it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
JP2000298079A (en) * 1999-04-13 2000-10-24 Kanagawa Acad Of Sci & Technol Molecule transportation and extraction method
WO2001068257A1 (en) * 2000-03-10 2001-09-20 Bioprocessors Corporation Microreactor
JP2003526359A (en) * 2000-03-10 2003-09-09 バイオプロセッサーズ・コーポレーション Micro reactor
WO2003008981A1 (en) * 2001-07-10 2003-01-30 Kanagawa Academy Of Science And Technology Integrated structure of multilayer flow microchannel and method for operating multilayer flow usigng it
JP2003028836A (en) * 2001-07-11 2003-01-29 Kanagawa Acad Of Sci & Technol Microchannel solid crossing structure and method for forming solid crossing multilayered stream

Also Published As

Publication number Publication date
JP2004305940A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP6367717B2 (en) Fast on-demand droplet generation and single-cell encapsulation driven by induced cavitation
JP5609648B2 (en) Microchannel device
US8557518B2 (en) Microfluidic and nanofluidic devices, systems, and applications
US20100051543A1 (en) Fine channel device and a chemically operating method for fluid using the device
WO2016078339A1 (en) Apparatus, system, and method for generating micro liquid droplets and single-cell/single-molecule analysis apparatus
WO2005049196A1 (en) Microchip device using liquid
JP4019044B2 (en) Multi-layer flow microchannel integrated structure and multi-layer flow operation method using the same
JP4470402B2 (en) Microchannel structure and fluid chemical operation method using the same
WO2002078836A1 (en) Microchip pileup type chemical reaction system
JP4599805B2 (en) Microchannel structure and chemical reaction method using the same
JP2009166039A (en) Fine particle manufacturing apparatus
JP4687238B2 (en) Micro channel structure
JP2005034679A (en) Method for practicing chemical operation and solvent extraction method using the method
JP4356312B2 (en) Microchannel structure
JP4389559B2 (en) Microchannel structure
JP2007098322A (en) Method for forming droplet according to micro droplet fusion and device therefor
JP4285256B2 (en) Method for carrying out chemical reaction and microchannel structure therefor
JP4419419B2 (en) Method for carrying out chemical reactions using microdroplets
JP2006208188A (en) Microchemical chip
JP2004181298A (en) Micro-reactor and reaction method therein
JP4453346B2 (en) Microchannel structure and chemical operation method using the same
JP4352890B2 (en) Fine particle production apparatus and fine particle production method using the same
Lin et al. Recent advances of microfluidics in Mainland China
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
Garshasbi et al. A Review on Nano/Microfluidic Devices for Cell Isolation Techniques: Recent Progress and Advances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4599805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees