JP4599350B2 - Wind power generator, active vibration control method thereof, and windmill tower - Google Patents

Wind power generator, active vibration control method thereof, and windmill tower Download PDF

Info

Publication number
JP4599350B2
JP4599350B2 JP2006510375A JP2006510375A JP4599350B2 JP 4599350 B2 JP4599350 B2 JP 4599350B2 JP 2006510375 A JP2006510375 A JP 2006510375A JP 2006510375 A JP2006510375 A JP 2006510375A JP 4599350 B2 JP4599350 B2 JP 4599350B2
Authority
JP
Japan
Prior art keywords
pitch angle
wind turbine
blade
control
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006510375A
Other languages
Japanese (ja)
Other versions
JPWO2005083266A1 (en
Inventor
強志 若狭
和成 井手
義之 林
昌明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2005083266A1 publication Critical patent/JPWO2005083266A1/en
Application granted granted Critical
Publication of JP4599350B2 publication Critical patent/JP4599350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/102Purpose of the control system to control acceleration (u)
    • F05B2270/1021Purpose of the control system to control acceleration (u) by keeping it below damagingly high values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/404Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/807Accelerometers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、風速の変動により誘起される振動を抑制可能な風力発電装置およびそのアクティブ制振方法並びに風車タワーに関し、特に、ナセル重量の増大を伴うことなく低コストで風力発電装置または風車タワーの振動低減を図り得る風力発電装置およびそのアクティブ制振方法並びに風車タワーに関するものである。   The present invention relates to a wind turbine generator capable of suppressing vibration induced by fluctuations in wind speed, an active damping method thereof, and a wind turbine tower, and more particularly, to a wind turbine generator or a wind turbine tower at a low cost without increasing the nacelle weight. The present invention relates to a wind turbine generator capable of reducing vibration, an active damping method thereof, and a windmill tower.

風力発電装置は、一般的に高さ数十[m]の円筒状タワーの上部に、翼、増速器および発電機などの重量物が設置される構造となっており、風速の変動により誘起される振動が極めて大きい。このような振動は、構造材の疲労荷重を増大させ、風車タワーの寿命を縮めることとなる。
近年、風力発電装置は大型化の傾向にあり、装置の大型化につれて、風速変動により誘起される振動の影響はますます顕著になり、風力発電装置または風車タワーにおける振動の低減は必須の技術課題となっている。
他方、ビルなどの高層建築物では、強風時の居住性を改善するためにアクティブ制振技術が実用化されている。種々の方式が提案されているが、AMD(Active
Mass Damper)に代表されるように、構造物上部に設置した重量物(mass)をモータなどのアクチュエータで駆動し、構造物本体の振動を吸収する方式が殆どである。
In general, a wind turbine generator has a structure in which heavy objects such as wings, gearboxes, and generators are installed on top of a cylindrical tower with a height of several tens [m], and is induced by fluctuations in wind speed. The vibration that is generated is extremely large. Such vibration increases the fatigue load of the structural material and shortens the life of the windmill tower.
In recent years, wind turbine generators have tended to increase in size, and as the size of the devices increases, the effects of vibrations induced by fluctuations in wind speed become more prominent, and reduction of vibrations in wind turbines or wind turbine towers is an essential technical issue. It has become.
On the other hand, in a high-rise building such as a building, active vibration suppression technology has been put into practical use in order to improve the comfort in a strong wind. Various methods have been proposed, but AMD (Active
As represented by Mass Damper), most of the systems absorb the vibration of the structure body by driving a mass installed on the top of the structure with an actuator such as a motor.

しかしながら、上記高層建造物などで実用化されているアクティブ制振技術(AMD)を、風車発電装置または風車タワーにそのまま適用しようとすると、以下のような問題が生じる。
第1に、十分な制振効果を得るためには、相当の重量物(mass)が必要であり、また同時に、この相当の重量物を駆動するためには、大容量のアクチュエータを用意しなければならない。このため、ナセル重量が大幅に増加してしまう。
第2に、風車タワーの上部に位置するナセル重量が増加する分だけ、そのナセルを支える風車タワーの強度を増やさなければならない。このような風車タワーやその他の構成要素の強度を大幅に増大させる必要性から、風力発電装置および風車タワーの全体のコストが増大してしまう。
第3に、重量物(mass)を駆動するアクチュエータが必要であり、駆動箇所が増えてメンテナンスコストも増大する。
そこで、例えば、特開2001−221145号公報(特許文献1)には、上述したような課題に対して、パッシブ・アクティブ・ピッチ・フラップ機構を設けることにより、風車タワーの振動を抑制する技術が開示されている。
特開2001−221145号公報
However, if the active vibration suppression technology (AMD) that has been put to practical use in the above-mentioned high-rise buildings or the like is applied as it is to the wind turbine generator or the wind turbine tower, the following problems arise.
First, in order to obtain a sufficient damping effect, a considerable mass is required, and at the same time, a large-capacity actuator must be prepared in order to drive this considerable weight. I must. This greatly increases the nacelle weight.
Secondly, the strength of the wind turbine tower that supports the nacelle must be increased by an increase in the weight of the nacelle located at the top of the wind turbine tower. The need to significantly increase the strength of such windmill towers and other components increases the overall cost of the wind turbine generator and the windmill tower.
Thirdly, an actuator that drives a heavy object is required, and the number of driving points increases and maintenance costs also increase.
Therefore, for example, Japanese Patent Laid-Open No. 2001-221145 (Patent Document 1) discloses a technique for suppressing vibration of a windmill tower by providing a passive active pitch flap mechanism with respect to the above-described problem. It is disclosed.
JP 2001-221145 A

しかしながら、上記特許文献1の発明では、結局、機械的な機構により風車タワーの振動を低減させる手法を取っているため、従来のAMDとかわらず、ナセルの重量増大を招く。また、複数の構造体を有するため、ナセルが大型化し、また、コスト高になるという問題もあった。   However, in the invention of the above-mentioned Patent Document 1, since the method of reducing the vibration of the windmill tower by a mechanical mechanism is eventually taken, the weight of the nacelle is increased regardless of the conventional AMD. Moreover, since it has several structures, there existed a problem that a nacelle enlarged and cost became high.

本発明は、上記問題を解決するためになされたもので、ナセル重量の増大を伴うことなく、低コストで振動を低減させることができる風力発電装置およびそのアクティブ制振方法並びに風車タワーを提供することを目的とする。   The present invention has been made to solve the above problems, and provides a wind turbine generator, an active damping method thereof, and a wind turbine tower that can reduce vibration at low cost without increasing the nacelle weight. For the purpose.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構を備えた風力発電装置であって、ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して翼ピッチ角指令を前記ピッチ角制御機構に出力するアクティブ制振手段とを具備する風力発電装置を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention is a wind power generator equipped with a pitch angle control mechanism for controlling the pitch angle of a windmill blade based on a blade pitch angle command, and is attached to a nacelle, and detects an acceleration of vibration of the nacelle, Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and the blade pitch angle command is transmitted to the pitch angle control mechanism. An active vibration control device for outputting to the wind turbine generator is provided.

本発明によれば、ナセルに取り付けられた加速度計により該ナセルの振動の加速度を検出し、アクティブ制振手段において、該加速度に基づき、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出し、これを翼ピッチ角指令としてピッチ角制御機構に出力して、風車ブレードのピッチ角を制御する。この場合において、風車ブレードに作用する抗力はナセルの前後方向にスラスト力として作用し、その大きさは風速と風車ブレードのピッチ角により変化することから、ピッチ角を所定の制御則に従って制御すれば、ナセル前後方向の振動をある程度制御することができる。   According to the present invention, the acceleration of the vibration of the nacelle is detected by the accelerometer attached to the nacelle, and the active vibration damping means generates a thrust force on the windmill blade so as to cancel the vibration of the nacelle based on the acceleration. The pitch angle of the wind turbine blade is calculated and output to the pitch angle control mechanism as a blade pitch angle command to control the pitch angle of the wind turbine blade. In this case, the drag acting on the wind turbine blade acts as a thrust force in the front-rear direction of the nacelle, and its magnitude varies depending on the wind speed and the pitch angle of the wind turbine blade, so if the pitch angle is controlled according to a predetermined control law. The vibration in the front-rear direction of the nacelle can be controlled to some extent.

また、本発明は、翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構を備えた風力発電装置であって、ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令を出力するアクティブ制振手段と、風速、風車ロータの回転数または当該風力発電装置の出力に基づき、当該風力発電装置の出力を所定値にするための前記風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力するピッチ角制御手段と、前記ピッチ角制御手段からの出力制御用翼ピッチ角指令に前記アクティブ制振手段からの制振用翼ピッチ角指令を重畳させた翼ピッチ角指令を前記ピッチ角制御機構に与える加算手段とを具備する風力発電装置を提供する。   The present invention also relates to a wind power generator equipped with a pitch angle control mechanism for controlling the pitch angle of a wind turbine blade based on a blade pitch angle command, the accelerometer being attached to a nacelle and detecting acceleration of the nacelle vibration. And, based on the acceleration detected by the accelerometer, calculating a pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade so as to cancel the vibration of the nacelle, and issuing a damping blade pitch angle command. Based on the active vibration damping means to be output and the wind speed, the rotational speed of the wind turbine rotor, or the output of the wind turbine generator, the pitch angle of the wind turbine blade for setting the output of the wind turbine generator to a predetermined value is calculated and output control is performed. A pitch angle control means for outputting a blade angle command for the blade, and a blade angle command for output control from the pitch angle control means. The blade pitch angle command overlapped with the use blade pitch angle command to provide a wind power generation apparatus comprising an adding means for providing the pitch control mechanism.

本発明によれば、ナセルに取り付けられた加速度計により該ナセルの振動の加速度を検出し、アクティブ制振手段において、該加速度に基づき、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令として出力する一方、ピッチ角制御手段において、出力を所定値にするための風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力し、加算手段により出力制御用翼ピッチ角指令に制振用翼ピッチ角指令を重畳させて、該重畳後の翼ピッチ角指令に基づき風車ブレードのピッチ角を制御する。   According to the present invention, the acceleration of the vibration of the nacelle is detected by the accelerometer attached to the nacelle, and the active vibration damping means generates a thrust force on the windmill blade so as to cancel the vibration of the nacelle based on the acceleration. And calculating the pitch angle of the wind turbine blade for output and outputting it as a damping blade pitch angle command, while the pitch angle control means calculates the pitch angle of the wind turbine blade for setting the output to a predetermined value for output control. The blade pitch angle command is output, the damping blade pitch angle command is superimposed on the output control blade pitch angle command by the adding means, and the pitch angle of the wind turbine blade is controlled based on the superimposed blade pitch angle command.

ここで、出力制御のためにピッチ角制御を行うことは従来より広く採用されている技術であるので、加速度計、アクティブ制振手段および加算手段を既存の風力発電装置に付加的に実装するだけで本発明を実現することが可能である。従って、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風力発電装置の振動低減を図ることができる。また、制振用翼ピッチ角指令を出力制御用翼ピッチ角指令に重畳させてピッチ角制御を行うので、出力制御および制振制御を同時に達成することができる。   Here, performing pitch angle control for output control is a technique that has been widely adopted in the past, so that an accelerometer, active vibration suppression means, and addition means are additionally mounted on an existing wind power generator. Thus, the present invention can be realized. Therefore, the application / operation cost of the active vibration suppression control can be significantly reduced, and the vibration of the wind turbine generator can be reduced at a low cost. Further, since the pitch angle control is performed by superimposing the damping blade pitch angle command on the output control blade pitch angle command, the output control and the damping control can be achieved simultaneously.

また、本発明の風力発電装置において、前記アクティブ制振手段は、前記加速度計により検出された加速度から速度を推定する速度推定手段と、前記速度推定手段から出力された速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する制御手段とを具備することが好ましい。   Further, in the wind turbine generator according to the present invention, the active vibration control unit includes a speed estimation unit that estimates a speed from the acceleration detected by the accelerometer, and a speed output from the speed estimation unit. It is preferable to comprise control means for calculating a pitch angle of the windmill blade for generating a thrust force on the windmill blade so as to cancel the vibration.

この発明によれば、アクティブ制振手段において、速度推定手段が加速度計により検出された加速度から速度を推定する。そして、制御手段が、推定された速度に基づいて、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する。
このように、アクティブ制振手段を速度推定手段および制御手段という簡単な構成で実現できるので、低コストで風力発電装置の振動低減を図ることができる。
According to this invention, in the active vibration damping means, the speed estimation means estimates the speed from the acceleration detected by the accelerometer. Then, the control means calculates a pitch angle of the windmill blade for generating a thrust force on the windmill blade so as to cancel the vibration of the nacelle based on the estimated speed.
Thus, since the active damping means can be realized with a simple configuration of the speed estimation means and the control means, the vibration of the wind turbine generator can be reduced at a low cost.

本発明の風力発電装置において、前記速度推定手段は、前記加速度計により検出された加速度を積分して速度を算出することが好ましい。
このように、速度推定手段が加速度計により検出された加速度を積分して速度を求めるので、高周波数帯のノイズを除去することが可能となる。これにより、後段の制御手段は、安定かつ効果的な制振制御を行うことができる。
In the wind turbine generator of the present invention, it is preferable that the speed estimation unit calculates a speed by integrating acceleration detected by the accelerometer.
In this way, the speed estimation means integrates the acceleration detected by the accelerometer to obtain the speed, so that it is possible to remove noise in the high frequency band. Thereby, the latter control means can perform stable and effective vibration suppression control.

本発明の風力発電装置において、前記制御手段は、前記速度推定手段から出力された速度の位相を所定量だけ進める位相進み補償手段を具備し、該位相進み補償後の速度に基づき、前記ピッチ角を算出することが好ましい。
更に、前記制御手段は、前記位相進み補償手段から出力された速度の位相を所定量だけ遅らせる位相遅れ補償手段を具備し、該位相遅れ補償後の速度に基づき、前記ピッチ角を算出することが好ましい。
In the wind turbine generator of the present invention, the control means includes phase advance compensation means for advancing the phase of the speed output from the speed estimation means by a predetermined amount, and the pitch angle is based on the speed after the phase advance compensation. Is preferably calculated.
Further, the control means includes phase lag compensation means for delaying the phase of the speed output from the phase advance compensation means by a predetermined amount, and calculates the pitch angle based on the speed after the phase lag compensation. preferable.

この発明によれば、該位相遅れ補償後の速度に基づき、ピッチ角を算出するので、加速度計出力の位相遅れを補償すると共に、高域周波数帯のノイズを低減することができるので、安定かつ効果的な制振制御を行うことができる。   According to the present invention, since the pitch angle is calculated based on the speed after the phase delay compensation, the phase delay of the accelerometer output can be compensated and the noise in the high frequency band can be reduced. Effective damping control can be performed.

本発明の風力発電装置において、前記制御手段は、前記速度推定手段により推定された速度を入力とする比例制御器、比例積分制御器、比例積分微分制御器、線形2次レギュレータ、及び線形2次ガウシャンレギュレータのうちいずれか1つを備え、前記ピッチ角を算出することが好ましい。
このように制御手段を構成することで、安定かつ効果的な制振制御を行うことができる。
In the wind turbine generator according to the present invention, the control means includes a proportional controller, a proportional-integral controller, a proportional-integral-derivative controller, a linear secondary regulator, and a linear secondary that receive the speed estimated by the speed estimating means. It is preferable to provide any one of Gaussian regulators and calculate the pitch angle.
By configuring the control means in this way, stable and effective vibration suppression control can be performed.

本発明の風力発電装置において、前記アクティブ制振手段は、前記風車ブレードのピッチ角又は前記風車ブレードのピッチ角の角速度を所定範囲内に制限する制限手段を有することが好ましい。   In the wind turbine generator according to the present invention, it is preferable that the active vibration damping unit includes a limiting unit that limits a pitch angle of the windmill blade or an angular velocity of the pitch angle of the windmill blade within a predetermined range.

この発明によれば、アクティブ制振手段、例えば、アクティブ制振手段が備える制御手段に、風車ブレードのピッチ角又は風車ブレードのピッチ角の角速度(変化率)を所定範囲内に制限する制限手段を具備して構成するので、ピッチ角制御機構の疲労を低減できると共に、パラメータの設定ミス等による不具合を防止できる。
更に、制振用翼ピッチ角指令を出力制御用翼ピッチ角指令に比べて非常に小さい範囲に制限した場合には、両指令値の干渉による影響を軽減若しくは防止することができる。
According to this invention, the limiting means for limiting the pitch angle of the windmill blade or the angular velocity (rate of change) of the pitch angle of the windmill blade within a predetermined range is provided in the active damping means, for example, the control means included in the active damping means. Since it comprises and comprises, the fatigue of a pitch angle control mechanism can be reduced, and the malfunction by the parameter setting mistake etc. can be prevented.
Furthermore, when the damping blade pitch angle command is limited to a very small range compared to the output control blade pitch angle command, the influence of interference between the two command values can be reduced or prevented.

本発明は、翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構と、ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計とを備えた風力発電装置のアクティブ制振方法であって、前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して翼ピッチ角指令を前記ピッチ角制御機構に出力するアクティブ制振ステップとを具備する風力発電装置のアクティブ制振方法を提供する。   The present invention provides an active control of a wind turbine generator that includes a pitch angle control mechanism that controls a pitch angle of a wind turbine blade based on a blade pitch angle command, and an accelerometer that is attached to the nacelle and detects acceleration of vibration of the nacelle. A blade pitch angle command for calculating a pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade so as to cancel the vibration of the nacelle based on the acceleration detected by the accelerometer. An active vibration damping method for a wind turbine generator, comprising: an active vibration damping step for outputting the power to the pitch angle control mechanism.

本発明によれば、ナセルに取り付けられた加速度計により該ナセルの振動の加速度を検出し、アクティブ制振ステップにおいて、該加速度に基づき、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出し、これを翼ピッチ角指令としてピッチ角制御機構に出力して、風車ブレードのピッチ角を制御する。このように、加速度計およびピッチ角制御機構のハードウェアとアクティブ制振ステップのソフトウェアで実現できるので、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風力発電装置の振動低減を図ることができる。   According to the present invention, the acceleration of the vibration of the nacelle is detected by an accelerometer attached to the nacelle, and a thrust force is generated in the wind turbine blade so as to cancel the vibration of the nacelle based on the acceleration in the active vibration suppression step. The pitch angle of the wind turbine blade is calculated and output to the pitch angle control mechanism as a blade pitch angle command to control the pitch angle of the wind turbine blade. In this way, it can be realized with the hardware of the accelerometer and pitch angle control mechanism and the software of the active vibration suppression step, so the application and operation costs of the active vibration suppression control can be significantly reduced, and the wind turbine generator can be operated at low cost. Vibration can be reduced.

本発明は、翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構と、ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計とを備えた風力発電装置のアクティブ制振方法であって、前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令を出力するアクティブ制振ステップと、風速、風車ロータの回転数または当該風力発電装置の出力に基づき、当該風力発電装置の出力を所定値にするための前記風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力するピッチ角制御ステップと、前記ピッチ角制御ステップによる出力制御用翼ピッチ角指令に前記アクティブ制振ステップによる制振用翼ピッチ角指令を重畳させた翼ピッチ角指令を前記ピッチ角制御機構に与える加算ステップとを具備する風力発電装置のアクティブ制振方法を提供する。   The present invention provides an active control of a wind turbine generator that includes a pitch angle control mechanism that controls a pitch angle of a wind turbine blade based on a blade pitch angle command, and an accelerometer that is attached to the nacelle and detects acceleration of vibration of the nacelle. A vibration control method that calculates a pitch angle of the wind turbine blade to generate a thrust force on the wind turbine blade so as to cancel the vibration of the nacelle based on the acceleration detected by the accelerometer. Based on the active vibration control step for outputting the pitch angle command and the wind speed, the rotation speed of the wind turbine rotor, or the output of the wind turbine generator, the pitch angle of the wind turbine blade for setting the wind turbine generator output to a predetermined value is calculated. A pitch angle control step for outputting the output control blade pitch angle command, and before the output control blade pitch angle command by the pitch angle control step. To provide an active damping method of a wind power generation apparatus comprising an adding step of providing a blade pitch angle command obtained by superimposing the vibration damping blade pitch angle command by the active damping step on the pitch angle control mechanism.

この発明によれば、ナセルに取り付けられた加速度計により該ナセルの振動の加速度を検出し、アクティブ制振ステップにおいて、該加速度に基づき、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令として出力する一方、ピッチ角制御ステップにおいて、出力を所定値にするための風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力し、加算ステップにより出力制御用翼ピッチ角指令に制振用翼ピッチ角指令を重畳させて、該重畳後の翼ピッチ角指令に基づき風車ブレードのピッチ角を制御する。出力制御のためにピッチ角制御を行うことは従来より広く採用されている技術であるので、アクティブ制振ステップおよび加算ステップを風力発電装置の既存の制御ソフトウェアに付加するだけで本発明を実現することが可能である。   According to this invention, the acceleration of the vibration of the nacelle is detected by an accelerometer attached to the nacelle, and a thrust force is generated in the windmill blade so as to cancel the vibration of the nacelle based on the acceleration in the active vibration suppression step. Calculating the pitch angle of the wind turbine blade for output and outputting it as a damping blade pitch angle command, while calculating the pitch angle of the wind turbine blade for setting the output to a predetermined value in the pitch angle control step. The blade pitch angle command is output, the damping blade pitch angle command is superimposed on the output control blade pitch angle command in the adding step, and the pitch angle of the wind turbine blade is controlled based on the superimposed blade pitch angle command. Performing pitch angle control for output control is a technique that has been widely used in the past, and thus the present invention is realized by simply adding an active vibration suppression step and an addition step to the existing control software of the wind turbine generator. It is possible.

これにより、加速度計の実装とソフトウェアの付加で実現が可能であるので、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風力発電装置の振動低減を図ることができる。また、制振用翼ピッチ角指令を出力制御用翼ピッチ角指令に重畳させてピッチ角制御を行うので、出力制御および制振制御を同時に達成することができる。   As a result, it can be realized by mounting an accelerometer and adding software, so the application and operation costs of active vibration suppression control can be greatly reduced, and vibration of the wind turbine generator can be reduced at low cost. . Further, since the pitch angle control is performed by superimposing the damping blade pitch angle command on the output control blade pitch angle command, the output control and the damping control can be achieved simultaneously.

本発明の風力発電装置のアクティブ制振方法において、前記アクティブ制振ステップは、前記加速度計により検出された加速度から速度を推定する速度推定ステップと、前記速度推定ステップにより推定された速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する制御ステップとを具備することが好ましい。   In the active vibration damping method for a wind turbine generator according to the present invention, the active vibration damping step is based on a speed estimation step for estimating a speed from an acceleration detected by the accelerometer, and a speed estimated by the speed estimation step. Preferably, the method includes a control step of calculating a pitch angle of the windmill blade for generating a thrust force on the windmill blade so as to cancel the vibration of the nacelle.

この発明によれば、アクティブ制振ステップにおいて、速度推定ステップにより、加速度計によって検出された加速度に基づいて速度を求め、制御ステップにより、該速度に基づいて、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する。このように、アクティブ制振ステップを速度推定ステップおよび制御ステップという簡単な構成で実現できるので、低コストで風力発電装置の振動低減を図ることができる。   According to the present invention, in the active vibration suppression step, the speed estimation step determines the speed based on the acceleration detected by the accelerometer, and the control step determines the wind turbine blade so as to cancel the nacelle vibration based on the speed. The pitch angle of the wind turbine blade for generating a thrust force is calculated. Thus, since the active vibration suppression step can be realized with a simple configuration of the speed estimation step and the control step, the vibration of the wind turbine generator can be reduced at a low cost.

本発明の風力発電装置のアクティブ制振方法において、前記速度推定ステップは、前記加速度計により検出された加速度を積分して速度を算出することが好ましい。
速度推定ステップにより、高周波数帯のノイズを除去することが可能となるので、アクティブ制振ステップとして、安定かつ効果的な制振制御を行うことができる。
In the active vibration damping method for a wind turbine generator according to the present invention, it is preferable that in the speed estimation step, a speed is calculated by integrating acceleration detected by the accelerometer.
Since it is possible to remove high frequency band noise by the speed estimation step, stable and effective vibration suppression control can be performed as the active vibration suppression step.

本発明の風力発電装置のアクティブ制振方法において、前記制御ステップは、前記速度推定ステップから出力された速度の位相を所定量だけ進める位相進み補償ステップを具備し、該位相進み補償後の速度に基づき、前記ピッチ角を算出することが好ましい。
本発明の風力発電装置のアクティブ制振方法において、前記制御ステップは、前記位相進み補償ステップから出力された速度の位相を所定量だけ遅らせる位相遅れ補償ステップを具備し、該位相遅れ補償後の速度に基づき、前記ピッチ角を算出することが好ましい。
In the active vibration damping method for a wind turbine generator according to the present invention, the control step includes a phase advance compensation step for advancing the phase of the speed output from the speed estimation step by a predetermined amount, and the speed after the phase advance compensation is adjusted. Based on this, it is preferable to calculate the pitch angle.
In the active vibration damping method for a wind turbine generator according to the present invention, the control step includes a phase delay compensation step of delaying the phase of the speed output from the phase advance compensation step by a predetermined amount, and the speed after the phase delay compensation It is preferable to calculate the pitch angle based on the above.

本発明によれば、制御ステップに、速度推定ステップから出力された速度の位相を所定量だけ進める位相進み補償ステップを具備し、制御ステップに、位相進み補償ステップから出力された速度の位相を所定量だけ遅らせる位相遅れ補償ステップを具備し、該位相遅れ補償後の速度に基づきピッチ角を算出する。これにより、加速度計出力の位相遅れを補償すると共に、高域周波数帯のノイズを低減することができるので、安定かつ効果的な制振制御を行うことができる。   According to the present invention, the control step includes the phase advance compensation step for advancing the phase of the speed output from the speed estimation step by a predetermined amount, and the control step includes the phase of the speed output from the phase advance compensation step. A phase delay compensation step for delaying by a fixed amount is provided, and the pitch angle is calculated based on the speed after the phase delay compensation. As a result, the phase delay of the accelerometer output can be compensated, and noise in the high frequency band can be reduced, so that stable and effective vibration suppression control can be performed.

本発明の風力発電装置のアクティブ制振方法において、前記制御ステップは、前記速度推定ステップにより推定された速度に対して、比例制御、比例積分制御、比例積分微分制御、線形2次レギュレータを用いた制御、及び線形2次ガウシャンレギュレータを用いた制御のいずれか1つの制御を行う補償ステップを備え、前記補償後の速度に基づき前記ピッチ角を算出することが好ましい。
これにより、安定かつ効果的な制振制御を行うことができる。
In the active vibration damping method for a wind turbine generator according to the present invention, the control step uses a proportional control, a proportional-integral control, a proportional-integral-derivative control, and a linear secondary regulator with respect to the speed estimated by the speed estimation step. It is preferable that a compensation step for performing any one of control and control using a linear secondary Gaussian regulator is provided, and the pitch angle is calculated based on the speed after the compensation.
Thereby, stable and effective vibration suppression control can be performed.

本発明の風力発電装置のアクティブ制振方法において、前記アクティブ制振ステップは、前記風車ブレードのピッチ角又は前記風車ブレードのピッチ角の角速度を所定範囲内に制限する制限ステップを有することが好ましい。
発明によれば、ピッチ角制御機構の疲労を低減できると共に、パラメータの設定ミス等による不具合を防止でき、さらに、制振用翼ピッチ角指令を出力制御用翼ピッチ角指令に比べて非常に小さい範囲に制限した場合には、両指令値の干渉による影響を軽減若しくは防止することができる。
In the active vibration damping method for a wind turbine generator according to the present invention, the active vibration damping step preferably includes a limiting step of limiting a pitch angle of the windmill blade or an angular velocity of the pitch angle of the windmill blade within a predetermined range.
According to the invention, it is possible to reduce fatigue of the pitch angle control mechanism, to prevent problems due to parameter setting errors and the like, and to further reduce the blade pitch angle command for vibration control compared to the blade pitch angle command for output control. When the range is limited, the influence of interference between both command values can be reduced or prevented.

本発明の風力発電装置は風車タワーに好適である。
本発明の風力発電装置を風車タワーに採用することにより、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風車タワーの振動低減を図ることができる。また、従来のAMDのように重量物や該重量物用のアクチュエータを用いないので、ナセル重量の増大を伴うことがなく、風車タワーの強度を上げる必要が無く低コストで実現できる。
The wind power generator of the present invention is suitable for a windmill tower.
By employing the wind turbine generator of the present invention for the wind turbine tower, the application / operation cost of the active vibration suppression control can be significantly reduced, and the vibration of the wind turbine tower can be reduced at a low cost. Further, since a heavy object and an actuator for the heavy object are not used unlike conventional AMD, the nacelle weight is not increased, and it is not necessary to increase the strength of the windmill tower, and can be realized at a low cost.

本発明の風力発電装置によれば、従来のAMDのように重量物や該重量物用のアクチュエータを用いることなく、加速度計、アクティブ制振部およびピッチ角制御機構により、振動を抑制させることができる。これにより、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風力発電装置の振動低減を図ることができるという効果を奏する。   According to the wind power generator of the present invention, vibration can be suppressed by an accelerometer, an active vibration control unit, and a pitch angle control mechanism without using a heavy object or an actuator for the heavy object as in conventional AMD. it can. As a result, the application / operation cost of the active vibration suppression control can be significantly reduced, and the vibration of the wind turbine generator can be reduced at a low cost.

本発明の一実施形態に係る風力発電装置の構成図である。It is a lineblock diagram of the wind power generator concerning one embodiment of the present invention. 風車ブレードに作用する力を説明する説明図である。It is explanatory drawing explaining the force which acts on a windmill blade. 風速変化に対してスラスト力とピッチ角の関係を例示する説明図である。It is explanatory drawing which illustrates the relationship between thrust force and pitch angle with respect to a wind speed change. 図4(a)は風車タワーの模式図、図4(b)は風車タワーを機械振動系としてモデル化したときの説明図である。4A is a schematic diagram of the windmill tower, and FIG. 4B is an explanatory diagram when the windmill tower is modeled as a mechanical vibration system. 本発明の一実施形態におけるアクティブ制振制御システムのブロック線図である。It is a block diagram of the active vibration suppression control system in one Embodiment of this invention. アクティブ制振部の制御部の構成を例示するブロック線図である。It is a block diagram which illustrates the composition of the control part of an active damping part. 図6に示したリミッタの制御内容の一例を示すフローチャートである。It is a flowchart which shows an example of the control content of the limiter shown in FIG. 図6に示したリミッタの制御内容の一例を示すフローチャートである。It is a flowchart which shows an example of the control content of the limiter shown in FIG. アクティブ制振制御システムを出力制御システムに組み込んだ時の制御システムのブロック線図である。It is a block diagram of a control system when an active vibration suppression control system is incorporated in an output control system. 風車発電装置の出力および風速間の特性を説明する説明図である。It is explanatory drawing explaining the characteristic between the output of a windmill electric power generating apparatus, and a wind speed. アクティブ制振部によるアクティブ制振がある時と無い時について、タワーシステムにおける振動振幅の周波数特性を例示する説明図である。It is explanatory drawing which illustrates the frequency characteristic of the vibration amplitude in a tower system, when there is active vibration suppression by an active vibration suppression part, and when there is no.

以下、本発明の風力発電装置およびそのアクティブ制振方法並びに風車タワーの実施形態について、図面を参照して詳細に説明する。
図1は本発明の一実施形態に係る風力発電装置の構成図である。同図において、本実施形態の風力発電装置は、風力発電装置の機械的部分10、アクティブ制振部20、ピッチ角制御部30および減算器40を備えて構成されている。まず、本実施形態の風力発電装置における各構成要素の概略を説明する。
Hereinafter, embodiments of a wind turbine generator, an active vibration suppression method thereof, and a wind turbine tower according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a wind turbine generator according to an embodiment of the present invention. In the figure, the wind turbine generator according to the present embodiment includes a mechanical portion 10 of the wind turbine generator, an active vibration damping unit 20, a pitch angle control unit 30, and a subtractor 40. First, the outline of each component in the wind turbine generator of the present embodiment will be described.

風力発電装置の機械的部分10は、風車ロータ11、風車ブレード12、ナセル13、及び、風速計16を主な構成要素としている。上記ナセル13は、増速機14、発電機15及び加速度計17を備えている。   The mechanical part 10 of the wind turbine generator includes a wind turbine rotor 11, a wind turbine blade 12, a nacelle 13, and an anemometer 16 as main components. The nacelle 13 includes a speed increaser 14, a generator 15 and an accelerometer 17.

この風力発電装置の機械的部分10では、風車ロータ11に取り付けられた複数枚の風車ブレード12が風力エネルギを受けて風車ロータ11と共に回転し、増速機14によって増速した後、発電機15を駆動して発電することにより風力エネルギを電気エネルギに変換している。なお、図1では増速機14を備えた構成としているが、増速機14を用いないダイレクトドライブ方式でもかまわない。   In the mechanical portion 10 of the wind turbine generator, a plurality of wind turbine blades 12 attached to the wind turbine rotor 11 receive wind energy and rotate together with the wind turbine rotor 11, and are increased in speed by the speed increaser 14. The wind energy is converted into electric energy by driving and generating electric power. In FIG. 1, the speed increaser 14 is provided, but a direct drive system that does not use the speed increaser 14 may be used.

本実施形態の風力発電装置の特徴である加速度計17は、ナセル13内部のタワー中心部に近い位置に設置され、ナセル13の前後方向の振動の加速度を検出する。   The accelerometer 17, which is a feature of the wind power generator according to the present embodiment, is installed at a position near the center of the tower inside the nacelle 13, and detects the acceleration of vibration in the front-rear direction of the nacelle 13.

また、ピッチ角制御部30は、風速計16で測定された風速v、風車ロータ11の回転数Nまたは当該風力発電装置の出力Pに基づき、当該風力発電装置の出力Pを所定値にするための風車ブレード12のピッチ角を算出し、これを出力制御用翼ピッチ角指令θとして出力する。このピッチ角制御による出力制御は従前より行われており、本実施形態のピッチ角制御部30も従前のものと同等である。Further, the pitch angle control unit 30 sets the output P of the wind turbine generator to a predetermined value based on the wind speed v measured by the anemometer 16, the rotational speed N of the wind turbine rotor 11, or the output P of the wind turbine generator. The pitch angle of the wind turbine blade 12 is calculated and output as an output control blade pitch angle command θ * . The output control by this pitch angle control has been performed conventionally, and the pitch angle control unit 30 of this embodiment is equivalent to the conventional one.

また、アクティブ制振部20は、加速度計17により検出された加速度に基づき、ナセル13の振動を打ち消すように風車ブレード12にスラスト力を発生させるための該風車ブレード12のピッチ角を算出し、これを制振用翼ピッチ角指令δθとして出力する。Further, the active vibration damping unit 20 calculates a pitch angle of the windmill blade 12 for generating a thrust force on the windmill blade 12 so as to cancel the vibration of the nacelle 13 based on the acceleration detected by the accelerometer 17. This is output as a damping blade pitch angle command δθ * .

さらに、減算器(加算部)40は、ピッチ角制御部30からの出力制御用翼ピッチ角指令θにアクティブ制振部20からの制振用翼ピッチ角指令δθを重畳させ、これを翼ピッチ角指令としてピッチ角制御機構に与える。ここで、ピッチ角制御機構(図示せず)は、翼ピッチ角指令に基づき風車ブレード12のピッチ角を制御するもので、その構造等は従来のものと同等である。Further, the subtractor (adder) 40 superimposes the blade pitch angle command δθ * for damping from the active damping unit 20 on the blade pitch angle command θ * for output control from the pitch angle control unit 30, It is given to the pitch angle control mechanism as a blade pitch angle command. Here, the pitch angle control mechanism (not shown) controls the pitch angle of the wind turbine blade 12 based on the blade pitch angle command, and its structure is the same as that of the conventional one.

次に、アクティブ制振部20の詳細な構成、並びに、アクティブ制振部20により風力発電装置および風車タワーの振動を低減させるアクティブ制振方法について詳しく説明する。   Next, a detailed configuration of the active damping unit 20 and an active damping method for reducing the vibration of the wind turbine generator and the wind turbine tower by the active damping unit 20 will be described in detail.

まず、アクティブ制振方法の基本的な考え方について図2および図3を参照して説明する。図2は、風車ブレード12(図1参照)の先端から根本の方を見たときの風車ブレード12の断面を示しており、風車ブレード12に作用する力を説明する説明図である。なお、同図において、風車ブレードの回転方向は右から左であり、風力発電装置または風車タワーの振動方向を上下(x)方向としている。また、図3は、6[m/s]から24[m/s]までの風速vそれぞれについて、スラスト力とピッチ角の関係を例示する説明図である。   First, the basic concept of the active vibration suppression method will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the windmill blade 12 when viewing the root from the tip of the windmill blade 12 (see FIG. 1), and is an explanatory diagram for explaining the force acting on the windmill blade 12. In the figure, the rotation direction of the wind turbine blade is from right to left, and the vibration direction of the wind turbine generator or the wind turbine tower is the vertical (x) direction. FIG. 3 is an explanatory diagram illustrating the relationship between the thrust force and the pitch angle for each of the wind speeds v from 6 [m / s] to 24 [m / s].

図2に示すように、風車運転中には、風車ブレードに対して揚力Lと抗力Dが作用する。抗力Dは、風車タワーのナセル13(図1参照)の前後方向にスラスト力として作用している。一方、図3に示すように、スラスト力の大きさは風速とピッチ角により変化する。したがって、ピッチ角を何らかの制御則に基づいて制御すれば、風車タワーのナセル13の前後方向のスラスト力を変化させて、風車タワーのナセル13の前後方向の振動をある程度制御することが可能である。本発明は、この点に着目したものであり、このピッチ角の制御則について、以下説明する。   As shown in FIG. 2, during the windmill operation, lift L and drag D act on the windmill blade. The drag D acts as a thrust force in the front-rear direction of the nacelle 13 (see FIG. 1) of the wind turbine tower. On the other hand, as shown in FIG. 3, the magnitude of the thrust force varies depending on the wind speed and the pitch angle. Therefore, if the pitch angle is controlled based on some control law, it is possible to control the vibration in the front-rear direction of the nacelle 13 of the windmill tower to some extent by changing the thrust force in the front-rear direction of the nacelle 13 of the windmill tower. . The present invention pays attention to this point, and the control law of the pitch angle will be described below.

図4(a)は、風車タワーの模式図、図4(b)は風車タワーを機械振動系としてモデル化したときの説明図である。すなわち、図4(a)では、風車タワーのナセル13に加速度計17を設置して、変位xについての加速度(dx/dt)を検出することを模式的に示している。また図4(b)に示すように、風車タワーは、質量mの物体、ばね定数kのばね、並びに、粘性抵抗cのダッシュポットでモデル化することができる。
この機械振動系において、平衡状態からの変位をxとすると、物体の振動の方程式は、(1)式となる。
FIG. 4A is a schematic diagram of the windmill tower, and FIG. 4B is an explanatory diagram when the windmill tower is modeled as a mechanical vibration system. That is, FIG. 4A schematically shows that the acceleration (d 2 x / dt 2 ) for the displacement x is detected by installing the accelerometer 17 in the nacelle 13 of the windmill tower. As shown in FIG. 4B, the wind turbine tower can be modeled by an object having a mass m, a spring having a spring constant k, and a dashpot having a viscous resistance c.
In this mechanical vibration system, assuming that the displacement from the equilibrium state is x, the equation of vibration of the object is expressed by equation (1).

Figure 0004599350
Figure 0004599350

ここで、f+Δfは物体に対して働く力であり、Δfはアクティブ制振部20のピッチ制御動作によって付加的に加わる力である。
(1)式について、変形すると(2)式が得られる。
Here, f + Δf is a force acting on the object, and Δf is a force additionally applied by the pitch control operation of the active vibration damping unit 20.
When the expression (1) is modified, the expression (2) is obtained.

Figure 0004599350
Figure 0004599350

ここで、系の固有振動数ωnおよび減衰率ζを次のように置いて、(2)式を書き換えると(5)式が得られる。
ωn =(k/m)1/2 (3)
ζ =c/2(mk)1/2 (4)
Here, when the natural frequency ωn and the damping factor ζ of the system are set as follows, the equation (2) is rewritten to obtain the equation (5).
ωn = (k / m) 1/2 (3)
ζ = c / 2 (mk) 1/2 (4)

Figure 0004599350
Figure 0004599350

さらに、(5)式をラプラス変換すれば、(6)式が得られる。
X(s)+2ζωnsX(s)+ωnX(s)
=(1/m)F(s) (6)
(6)式より、系の伝達関数G(s)は(7)式で与えられることになる。
G(s)=X(s)/F(s)
=(1/m)/(s+2ζωns+ωn) (7)
(7)式のような2次系の周波数応答特性において、(3)、(4)式から、質量mおよびばね定数kの変化で系の固有振動数ωnを変えることができるが、減衰率ζについては、質量mおよびばね定数kの変化の影響よりも粘性抵抗cの変化の影響の方が大きいことが分かる。
Further, if the equation (5) is Laplace transformed, the equation (6) is obtained.
s 2 X (s) + 2ζωnsX (s) + ωn 2 X (s)
= (1 / m) F (s) (6)
From the equation (6), the transfer function G (s) of the system is given by the equation (7).
G (s) = X (s) / F (s)
= (1 / m) / (s 2 + 2ζωns + ωn 2 ) (7)
In the frequency response characteristics of the secondary system as shown in Equation (7), the natural frequency ωn of the system can be changed by changing the mass m and the spring constant k from Equations (3) and (4). Regarding ζ, it can be seen that the influence of the change in the viscous resistance c is larger than the influence of the change in the mass m and the spring constant k.

一方、(1)式において、付加的に加わる力Δfを、例えば、   On the other hand, in the expression (1), an additionally applied force Δf is, for example,

Figure 0004599350
Figure 0004599350

と置くことにより、(1)式は(9)式のように書き換えることができる。   (1) can be rewritten as (9).

Figure 0004599350
Figure 0004599350

つまり、アクティブ制振部20のピッチ制御動作によって付加的に加わる力Δfを(8)式のように設定することにより、(9)式の1次項における+Dp分の増加によって減衰率ζをより大きな値に変えることができ、振動の減衰をより早めると共に、周波数応答特性において固有振動数ωnのゲインのピーク値をより抑えて、振動振幅を抑制することができることになる。
以上説明したアクティブ制振方法の基本的な考え方を踏まえて、次に、アクティブ制振制御のための具体的な構成とその動作について詳しく説明する、図5には、本実施形態におけるアクティブ制振制御システムのブロック線図を示す。
That is, by setting the force Δf that is additionally applied by the pitch control operation of the active vibration damping unit 20 as shown in the equation (8), the damping rate ζ is increased by the increase of + Dp in the primary term of the equation (9). Thus, the vibration can be attenuated more quickly, and the peak value of the gain of the natural frequency ωn can be further suppressed in the frequency response characteristics, thereby suppressing the vibration amplitude.
Based on the basic concept of the active vibration suppression method described above, a specific configuration and operation for active vibration suppression control will be described in detail next. FIG. 5 illustrates active vibration suppression in the present embodiment. 1 shows a block diagram of a control system.

図5において、符号51は、減算器40から出力される翼ピッチ角指令に基づき風車ブレード12を駆動してピッチ角度を制御するピッチアクチュエータである。ピッチアクチュエータ51は、具体的には、油圧シリンダまたは電動モータ等によって実現されるが、ここでは、機械振動系の観点から1次遅れ系でモデル化している。   In FIG. 5, reference numeral 51 denotes a pitch actuator that drives the wind turbine blade 12 based on the blade pitch angle command output from the subtractor 40 to control the pitch angle. Specifically, the pitch actuator 51 is realized by a hydraulic cylinder, an electric motor, or the like. Here, the pitch actuator 51 is modeled by a first-order lag system from the viewpoint of a mechanical vibration system.

また、符号52は、風車運転中に風車ブレードに対して作用するスラスト力を算出するブレードシステムである。図2に示したように、風車タワーのナセル13の前後方向のスラスト力は、揚力Lおよび抗力Dの前後方向成分の和であるので、加算器54でこれらを加算して出力している。また、抗力Dによるスラスト力については、風車ブレード12のピッチ角とスラスト力の間に図3に示したような特性を持つ。従って、スラスト力はピッチ角に逆比例すると見なして、その直線近似で得られる勾配に基づくKbをゲインとする増幅器53により求めている。   Reference numeral 52 denotes a blade system for calculating a thrust force acting on the windmill blade during the windmill operation. As shown in FIG. 2, since the thrust force in the front-rear direction of the nacelle 13 of the wind turbine tower is the sum of the front-rear components of the lift L and the drag D, these are added by the adder 54 and output. Further, the thrust force due to the drag D has a characteristic as shown in FIG. 3 between the pitch angle of the windmill blade 12 and the thrust force. Therefore, the thrust force is regarded as being inversely proportional to the pitch angle, and is obtained by the amplifier 53 using Kb based on the gradient obtained by the linear approximation as a gain.

符号55は、風車タワーを機械振動系としてモデル化したタワーシステムである。伝達関数は(7)式で求めたが、アクティブ制振制御システムでは、加速度(dx/dt)を加速度計17で検出してフィードバックをかけているので、(7)式にsを掛けた伝達関数でモデル化している。なお、このモデルは1次振動モードのみのモデルである。Reference numeral 55 denotes a tower system in which the windmill tower is modeled as a mechanical vibration system. The transfer function is calculated in (7), in the active damping control system, since the fed back by acceleration (d 2 x / dt 2) is detected by the accelerometer 17, s 2 in (7) Modeled with a transfer function multiplied by. This model is a model of only the primary vibration mode.

以上のピッチアクチュエータ51、ブレードシステム52およびタワーシステム55は、従来の風力発電装置が備える構成であるが、本実施形態では、これらに、タワーシステム55の出力である加速度を検出する加速度計17、風車タワーのナセル13の前後方向のスラスト力を変化させるための制振用翼ピッチ角指令δθを生成するアクティブ制振部20、並びに、アクティブ制振部20によって得られる制振用翼ピッチ角指令δθをピッチ角制御部30から出力される出力制御用翼ピッチ角指令θに重畳するべく、δθ−θの演算を行う減算器40を付加して、フィードバックループを構成している。
加速度計17は、出力に位相遅れがあるので1次遅れ系でモデル化している。また、アクティブ制振部20では、(8)式で設定したように、速度(dx/dt)にDpを掛けたものをアクティブ制振部20のピッチ制御動作によって付加的に加わる力としているので、加速度を積分して速度を求める積分器21、並びに、伝達関数Gc(s)を持つ制御部22を備えて構成されている。
The pitch actuator 51, the blade system 52, and the tower system 55 described above are configured in a conventional wind power generator. In the present embodiment, the accelerometer 17 that detects the acceleration that is the output of the tower system 55 is included in these components. An active damping unit 20 that generates a damping blade pitch angle command δθ * for changing the longitudinal thrust force of the nacelle 13 of the windmill tower, and a damping blade pitch angle obtained by the active damping unit 20 In order to superimpose the command δθ * on the output control blade pitch angle command θ * output from the pitch angle control unit 30, a subtractor 40 for calculating δθ ** is added to form a feedback loop. Yes.
The accelerometer 17 is modeled by a first-order lag system because the output has a phase lag. Further, in the active vibration damping unit 20, as set by the equation (8), a force obtained by multiplying the speed (dx / dt) by Dp is used as a force additionally applied by the pitch control operation of the active vibration damping unit 20. , An integrator 21 for integrating the acceleration to obtain the speed, and a control unit 22 having a transfer function Gc (s).

すなわち、ナセル13内部に設置された加速度計17により、ナセル13の前後方向の加速度(1次振動モード)を計測し、その計測した加速度をアクティブ制振部20に入力して、積分器21による積分演算によりナセル13の前後方向の速度を算出する。アクティブ制振部20の制御部22では、算出された速度に基づいて制振効果を得るための制振用翼ピッチ角指令δθを計算する。アクティブ制振部20で求められた制振用翼ピッチ角指令δθは、減算器40によってピッチ角制御部30(図1参照)で求められた出力制御用翼ピッチ角指令θに重畳される。ピッチアクチュエータ51では、この重畳された翼ピッチ角指令に基づき風車ブレード12を駆動してピッチ角度を制御する。このピッチ角度制御により、当該風力発電装置の出力が制御されると共に、ピッチ角に応じたスラスト力が風車タワーのナセル13の前後方向の振動を抑制するように作用して、振動の減衰を早める働きをする。That is, the acceleration in the front-rear direction (primary vibration mode) of the nacelle 13 is measured by the accelerometer 17 installed in the nacelle 13, and the measured acceleration is input to the active vibration damping unit 20. The speed in the front-rear direction of the nacelle 13 is calculated by integration calculation. The control unit 22 of the active vibration control unit 20 calculates a vibration control blade pitch angle command δθ * for obtaining a vibration control effect based on the calculated speed. The damping blade pitch angle command δθ * obtained by the active damping unit 20 is superimposed on the output control blade pitch angle command θ * obtained by the pitch angle control unit 30 (see FIG. 1) by the subtractor 40. The The pitch actuator 51 controls the pitch angle by driving the wind turbine blade 12 based on the superimposed blade pitch angle command. By this pitch angle control, the output of the wind turbine generator is controlled, and the thrust force according to the pitch angle acts so as to suppress the vibration in the front-rear direction of the nacelle 13 of the windmill tower, thereby speeding up the vibration attenuation. Work.

このように、本実施形態では、制振用翼ピッチ角指令δθを出力制御用翼ピッチ角指令θに重畳することで、出力制御および制振制御を同時に達成することができる。なお、速度を算出する積分器21は単に積分演算を行うだけでなく、周波数特性として相対的に高域周波数帯を抑制し且つ低域周波数帯を強調する特性を持つので、高周波数帯のノイズをカットする役目をも果たす。
なお、積分器の構造は完全積分(1/s)に限定されるものではなく、これと同等の作用をもつフィルタ(例えば1次遅れ要素など)あるいは、適当な状態推定器(同一・最小次元オブザーバやカルマンフィルタ)などでもよい。
Thus, in the present embodiment, by superimposing the damping blade pitch angle command δθ * on the output control blade pitch angle command θ * , output control and damping control can be achieved simultaneously. Note that the integrator 21 for calculating the speed has not only a simple integration operation but also a characteristic that relatively suppresses the high frequency band and emphasizes the low frequency band as the frequency characteristic. Also plays the role of cutting.
The structure of the integrator is not limited to perfect integration (1 / s), but a filter having the same function (for example, a first-order lag element) or an appropriate state estimator (same / minimum dimension). Observer or Kalman filter) may be used.

次に、図6(a)及び図6(b)を参照して、アクティブ制振部20の制御部22の具体的な構成および動作について説明する。図6(a)及び図6(b)は、共にアクティブ制振部20の制御部22の構成を例示するブロック線図である。   Next, a specific configuration and operation of the control unit 22 of the active vibration damping unit 20 will be described with reference to FIGS. 6 (a) and 6 (b). FIGS. 6A and 6B are block diagrams illustrating the configuration of the control unit 22 of the active vibration damping unit 20.

図6(a)において、制御部22aは、位相進み補償器62、位相遅れ補償器63、増幅器64およびリミッタ65を備えて構成されている。
上述のように、加速度計17の出力には位相遅れがあるので、位相進み補償器62によって位相を調整している。位相進み補償器62は、図示するように、(1+sαT1)/(1+sT1)の位相進み系の伝達関数(ここで、α<1)を持つ。
In FIG. 6A, the control unit 22a includes a phase lead compensator 62, a phase lag compensator 63, an amplifier 64, and a limiter 65.
As described above, since the output of the accelerometer 17 has a phase lag, the phase is adjusted by the phase lead compensator 62. As shown in the figure, the phase advance compensator 62 has a phase advance system transfer function (where α <1) of (1 + sαT1) / (1 + sT1).

また、位相進み補償器62を通過することにより、高域周波数帯でのノイズが増幅されてしまうので、その対策として位相遅れ補償器63を付加し、相対的に高域周波数帯を抑制し且つ低域周波数帯を強調している。位相遅れ補償器63は、図示するように、(1+sαT2)/(1+sT2)の位相遅れ系の伝達関数(ここで、α>1)を持つ。このように、アクティブ制振部20の制御部22に、位相進み補償器62および位相遅れ補償器63の2種類のフィルタを具備することにより、加速度計17出力の位相遅れを補償すると共に、高域周波数帯のノイズを低減することができるので、安定かつ効果的な制振制御を行うことができる。   Further, since noise in the high frequency band is amplified by passing through the phase lead compensator 62, a phase lag compensator 63 is added as a countermeasure to suppress the high frequency band relatively. Emphasizes the low frequency band. As shown in the figure, the phase lag compensator 63 has a phase lag transfer function (where α> 1) of (1 + sαT2) / (1 + sT2). As described above, the control unit 22 of the active vibration suppression unit 20 includes the two types of filters of the phase advance compensator 62 and the phase lag compensator 63, thereby compensating for the phase lag of the output of the accelerometer 17 and increasing the high frequency. Since noise in the frequency band can be reduced, stable and effective vibration suppression control can be performed.

また、(8)式の設定から、増幅器64は、ゲインDpの伝達関数を持つように構成される。ここで、ゲインDpは、シミュレーションや実験等の結果を踏まえて、設定されるのが望ましい。
なお、制御部22(図5参照)の構成は、上述した位相補償器に限定されることは無く、例えば比例制御器、比例積分制御器、比例積分微分制御器、LQレギュレータ(線形2次レギュレータ)、LQGレギュレータ(線形2次ガウシャンレギュレータ)などによっても実現可能である。
Further, from the setting of equation (8), the amplifier 64 is configured to have a transfer function of gain Dp. Here, it is desirable that the gain Dp is set based on the results of simulations and experiments.
The configuration of the control unit 22 (see FIG. 5) is not limited to the phase compensator described above. For example, a proportional controller, proportional integral controller, proportional integral derivative controller, LQ regulator (linear secondary regulator) ), An LQG regulator (linear secondary Gaussian regulator) or the like.

さらに、制振用翼ピッチ角指令δθによるピッチ角制御をあまり頻繁に行うと、ピッチ角制御機構が動きすぎて疲労を起こしてしまうことから、リミッタ65(図6(a)、(b)参照)により制振用翼ピッチ角指令δθに制限(例えば、±1[deg])を設けて、ピッチ角制御機構の疲労を低減するとよい。Furthermore, if the pitch angle control by the damping blade pitch angle command δθ * is performed too frequently, the pitch angle control mechanism will move too much and cause fatigue, so the limiter 65 (FIGS. 6A and 6B). For example, it is preferable to limit (for example, ± 1 [deg]) the damping blade pitch angle command δθ * to reduce fatigue of the pitch angle control mechanism.

具体的には、図6に示した増幅器64の出力(以下「ピッチ角指令」という。)が、予め設定されている最小ピッチ角よりも小さい場合には(図7のステップSA1において「YES」)、最小ピッチ角或いは最小ピッチ角よりも大きい所定のピッチ角を最終的な制振用翼ピッチ角指令δθとして出力する(図7のステップSA2)。一方、ピッチ角指令が最小ピッチ角以上であった場合には(図7のステップSA1において「NO」)、ピッチ角指令が予め設定されている最大ピッチ角よりも大きいか否かを判断する(図7のステップSA3)。Specifically, when the output of the amplifier 64 shown in FIG. 6 (hereinafter referred to as “pitch angle command”) is smaller than a preset minimum pitch angle (“YES” in step SA1 of FIG. 7). ), A minimum pitch angle or a predetermined pitch angle larger than the minimum pitch angle is output as a final damping blade pitch angle command δθ * (step SA2 in FIG. 7). On the other hand, if the pitch angle command is greater than or equal to the minimum pitch angle (“NO” in step SA1 in FIG. 7), it is determined whether or not the pitch angle command is larger than a preset maximum pitch angle ( Step SA3 in FIG.

この結果、ピッチ角指令が最大ピッチ角よりも大きい場合には(図7のステップSA3において「YES」)、最大ピッチ角或いは最大ピッチ角よりも小さい所定のピッチ角を最終的な制振用翼ピッチ角指令δθとして出力する(図7のステップSA4)。一方、当該ピッチ角指令が最大ピッチ角以下の場合には(図7のステップSA3において「NO」)、当該ピッチ角指令を最終的な制振用翼ピッチ角指令δθとして出力する(図7のステップSA5)。As a result, when the pitch angle command is larger than the maximum pitch angle ("YES" in step SA3 in FIG. 7), the final pitch of the damping blade is set to the maximum pitch angle or a predetermined pitch angle smaller than the maximum pitch angle. The pitch angle command δθ * is output (step SA4 in FIG. 7). On the other hand, when the pitch angle command is equal to or smaller than the maximum pitch angle (“NO” in step SA3 in FIG. 7), the pitch angle command is output as the final damping blade pitch angle command δθ * (FIG. 7). Step SA5).

また、上述したように、増幅器64(図6(a)(b)参照)の出力自体を制限するのではなく、この出力の変化率、言い換えると、ピッチ角度の角速度を一定範囲内に制限(例えば、±0.6[deg/sec])しても良い。   Further, as described above, the output of the amplifier 64 (see FIGS. 6A and 6B) is not limited, but the rate of change of this output, in other words, the angular velocity of the pitch angle is limited within a certain range ( For example, ± 0.6 [deg / sec]) may be used.

具体的には、図8に示すように、まず、増幅器64(図6参照)の出力の前回値(以下「ピッチ角指令の前回値」という。)と今回値(以下「ピッチ角指令の今回値」という。)とに基づいて変化率を算出し(ステップSB1)、この変化率が予め設定されている最小変化率よりも小さいか否かを判断する(ステップSB2)。この結果、変化率が予め設定されている最小変化率よりも小さい場合には(ステップSB2において「YES」)、ピッチ角指令の前回値に最小変化率を加算した値を最終的な制振用翼ピッチ角指令δθとして出力する(ステップSB3)。Specifically, as shown in FIG. 8, first, the previous value of the output of the amplifier 64 (see FIG. 6) (hereinafter referred to as “the previous value of the pitch angle command”) and the current value (hereinafter referred to as “the current value of the pitch angle command”). The rate of change is calculated based on the value (step SB1), and it is determined whether the rate of change is smaller than a preset minimum rate of change (step SB2). As a result, when the rate of change is smaller than the preset minimum rate of change (“YES” in step SB2), a value obtained by adding the minimum rate of change to the previous value of the pitch angle command is used for the final vibration suppression. The blade pitch angle command δθ * is output (step SB3).

一方、変化率が最小変化率以上であった場合には(ステップSB2において「NO」)、変化率が予め設定されている最大変化率よりも大きいか否かを判断する(ステップSB4)。この結果、変化率が最大変化率よりも大きい場合には(ステップSB4において「YES」)、ピッチ角指令の前回値に最大変化率を加算した値を最終的な制振用翼ピッチ角指令δθとして出力する(ステップSB5)。一方、変化率が最大変化率以下の場合には(ステップSB4において「NO」)、ピッチ角指令の今回値を最終的な制振用翼ピッチ角指令δθとして出力する(ステップSB6)。On the other hand, if the rate of change is equal to or greater than the minimum rate of change (“NO” in step SB2), it is determined whether the rate of change is greater than a preset maximum rate of change (step SB4). As a result, when the rate of change is larger than the maximum rate of change (“YES” in step SB4), a value obtained by adding the maximum rate of change to the previous value of the pitch angle command is used as the final damping blade pitch angle command δθ. * Is output (step SB5). On the other hand, if the rate of change is equal to or less than the maximum rate of change (“NO” in step SB4), the current value of the pitch angle command is output as the final damping blade pitch angle command δθ * (step SB6).

以上説明していたように、制振用翼ピッチ角指令δθまたはピッチ角指令δθ*の変化率を制限することにより、制振制御系のパラメータの設定ミス等によって風車タワーの振動がかえって増大してしまうなどの不具合を防止することができる。
さらに、制振用翼ピッチ角指令δθは、出力制御用翼ピッチ角指令θに比べて非常に小さい範囲に制限されるので、両指令値の干渉による影響を軽減若しくは防止することができる。
また、図6(b)に示す制御部22bでは、制御部22aの位相進み補償器62の前段に2次振動性の補償器61を付加して構成し、より高精度の制御を実現している。
As described above, by limiting the rate of change of the damping blade pitch angle command δθ * or the pitch angle command δθ * , the vibration of the wind turbine tower increases due to a parameter setting error of the damping control system. It is possible to prevent problems such as the failure.
Furthermore, since the damping blade pitch angle command δθ * is limited to a very small range compared to the output control blade pitch angle command θ * , the influence of interference between both command values can be reduced or prevented. .
In addition, the control unit 22b shown in FIG. 6B is configured by adding a secondary vibration compensator 61 to the previous stage of the phase advance compensator 62 of the control unit 22a to realize higher-precision control. Yes.

なお、以上の説明では、アクティブ制振部20をハードウェアで構成して、制振用翼ピッチ角指令δθを出力するものとして説明したが、各構成要素を順次実行されるサブプログラムとして構成しても良い。この場合、積分器20は積分ステップ(速度推定ステップ)、制御部22は制御ステップ、また、制御部22内の各構成要素もそれぞれ位相進み補償ステップ、位相遅れ補償ステップ、制限ステップ等に置き換えられ、これら各ステップはいわゆるコントローラ内部のCPU,MPU或いはDSP上で実行されるサブプログラムとなる。In the above description, the active damping unit 20 is configured by hardware and outputs the damping blade pitch angle command δθ * . However, each component is configured as a subprogram that is sequentially executed. You may do it. In this case, the integrator 20 is replaced with an integration step (speed estimation step), the control unit 22 is replaced with a control step, and each component in the control unit 22 is replaced with a phase lead compensation step, a phase delay compensation step, a limiting step, and the like. These steps are subprograms executed on the CPU, MPU or DSP in the so-called controller.

次に、上述したアクティブ制振部20によるアクティブ制振制御システムを、従来の風力発電装置で実現されているピッチ角制御部30(図1参照)による出力制御システムに組み込んだ時の制御システムのブロック線図を図9に示し、ピッチ角制御部30による出力制御について簡単に説明する。
図9において、ピッチ角制御部は、減算器31、32と、風速制御部33と、回転数制御部34と、出力制御部35と、選択部36とを備えている。
風速制御部33は、風速計16によって測定した風速v[m/s]に基づき翼ピッチ角指令θvを求めて出力する。また、回転数制御部34は、風車ロータ11の回転数N[rpm]に基づき、所定回転数(目標値)Nとなるような翼ピッチ角指令θNを算出して出力する。さらに、出力制御部35は、当該風力発電装置の出力P[kW]に基づき、所定出力(目標値)Pとなるような翼ピッチ角指令θPを算出して出力する。
Next, the control system when the above-described active vibration suppression control system by the active vibration suppression unit 20 is incorporated into the output control system by the pitch angle control unit 30 (see FIG. 1) realized by a conventional wind power generator. A block diagram is shown in FIG. 9, and output control by the pitch angle control unit 30 will be briefly described.
In FIG. 9, the pitch angle control unit includes subtractors 31 and 32, a wind speed control unit 33, a rotation speed control unit 34, an output control unit 35, and a selection unit 36.
The wind speed control unit 33 obtains and outputs a blade pitch angle command θv based on the wind speed v [m / s] measured by the anemometer 16. Further, the rotation speed control unit 34 calculates and outputs a blade pitch angle command θ N that becomes a predetermined rotation speed (target value) N * based on the rotation speed N [rpm] of the wind turbine rotor 11. Furthermore, the output control unit 35 calculates and outputs a blade pitch angle command θ P that gives a predetermined output (target value) P * based on the output P [kW] of the wind turbine generator.

また、選択部36では、風速制御部33、回転数制御部34および出力制御部35のそれぞれで求めた翼ピッチ角指令θv、θNおよびθPの内の最小値を選択(minimum selection)、即ち、最も出力を出さない翼ピッチ角指令を選んで、出力制御用翼ピッチ角指令θとして出力する。また、一般に、風車発電装置の出力P[kW]と風速v[m/s]の特性は、図10に示す説明図のようになる。定格出力、定格風速となるまでは、風速v[m/s]に基づく制御を行い、定格出力、定格風速に至った後は風車ロータ11の回転数N[rpm]または風力発電装置の出力P[kW]に基づく制御を行う。
なお、ピッチ角制御部30によるピッチ角の範囲は、ファインピッチ(約−20[deg]でこの時回転数は大きい)からフェザー(約−104[deg]でこの時回転数は小さい)までと広い制御範囲を持つ。
Further, the selecting section 36, the wind speed control unit 33, respectively obtained blade pitch angle command θv of the rotating speed control unit 34 and the output control unit 35, selects the minimum value of theta N and θ P (minimum selection), That is, the blade pitch angle command that produces the least output is selected and output as an output control blade pitch angle command θ * . In general, the characteristics of the output P [kW] and the wind speed v [m / s] of the wind turbine generator are as shown in the explanatory diagram of FIG. Control is performed based on the wind speed v [m / s] until the rated output and the rated wind speed are reached, and after reaching the rated output and the rated wind speed, the rotational speed N [rpm] of the wind turbine rotor 11 or the output P of the wind turbine generator Control based on [kW] is performed.
Note that the pitch angle range by the pitch angle control unit 30 ranges from fine pitch (about −20 [deg] at which the rotational speed is large at this time) to feather (about −104 [deg] at which the rotational speed is small at this time). Has a wide control range.

次に、本実施形態の風力発電装置およびそのアクティブ制振方法の効果を、シミュレーション実験結果を例示して説明する。図11は、アクティブ制振部20(図1参照)によるアクティブ制振がある時と無い時について、タワーシステム55(図5参照)における振動振幅の周波数特性を示している。タワーシステム55の固有振動数付近で振動振幅が抑制されていることが顕著に表れている。なお、タワーシステム55の固有振動数は予め分かっているので、固有振動数に応じた制御システムのパラメータ設定を行うことで、より最適な制振制御を行うことができる。   Next, the effect of the wind power generator of this embodiment and its active vibration suppression method will be described by exemplifying simulation experiment results. FIG. 11 shows the frequency characteristics of the vibration amplitude in the tower system 55 (see FIG. 5) when there is active vibration suppression by the active vibration suppression unit 20 (see FIG. 1) and when there is no active vibration suppression. It is noticeable that the vibration amplitude is suppressed near the natural frequency of the tower system 55. Since the natural frequency of the tower system 55 is known in advance, more optimal vibration suppression control can be performed by setting the control system parameters in accordance with the natural frequency.

以上説明したように、本実施形態の風力発電装置またはそのアクティブ制振方法では、図1に示すように、ナセル13に取り付けられた加速度計17により該ナセル13の振動の加速度を検出し、アクティブ制振部20(アクティブ制振ステップ)において、該加速度に基づき、ナセル13の振動を打ち消すように風車ブレード12にスラスト力を発生させるための該風車ブレード12のピッチ角を算出し、これを制振用翼ピッチ角指令δθとして出力する。一方、ピッチ角制御部30(ピッチ角制御ステップ)において、出力を所定値にするための風車ブレード12のピッチ角を算出してこれを出力制御用翼ピッチ角指令θとして出力する。そして、減算器40(加算ステップ)により出力制御用翼ピッチ角指令θに制振用翼ピッチ角指令δθを重畳させて、該重畳後の翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するようにしている。As described above, in the wind turbine generator of the present embodiment or the active vibration suppression method thereof, as shown in FIG. 1, the acceleration of the vibration of the nacelle 13 is detected by the accelerometer 17 attached to the nacelle 13. Based on the acceleration, the vibration damping unit 20 (active vibration damping step) calculates the pitch angle of the wind turbine blade 12 for generating a thrust force on the wind turbine blade 12 so as to cancel the vibration of the nacelle 13 and controls this. Output as the blade pitch angle command δθ * . On the other hand, in the pitch angle control unit 30 (pitch angle control step), the pitch angle of the wind turbine blade 12 for setting the output to a predetermined value is calculated and output as a blade pitch angle command θ * for output control. Then, the subtractor 40 (addition step) superimposes the damping blade pitch angle command δθ * on the output control blade pitch angle command θ *, and calculates the pitch angle of the wind turbine blade based on the superimposed blade pitch angle command. I try to control it.

出力制御のためにピッチ角制御を行うことは従来より広く採用されている技術であるので、加速度計17、アクティブ制振部20(アクティブ制振ステップ)および減算器40(加算ステップ)を既存の風力発電装置に付加的に実装するだけで本実施形態を実現することが可能である。すなわち、容易に実装が可能であるので、アクティブ制振制御の適用・運用コストを格段に下げることができ、低コストで風力発電装置の振動低減を図ることができる。また、制振用翼ピッチ角指令δθを出力制御用翼ピッチ角指令θに重畳させてピッチ角制御を行うので、出力制御および制振制御を同時に達成することができる。
本実施形態の風力発電装置またはそのアクティブ制振方法では、図1に示すように、アクティブ制振部20(アクティブ制振ステップ)において、加速度計により検出された加速度を積分器21(積分ステップ)により積分して速度を求め、制御部22(制御ステップ)により、該速度に基づいて、ナセルの振動を打ち消すように風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する。このように、本発明によれば、アクティブ制振部20(アクティブ制振ステップ)を積分器21(積分ステップ)および制御部22(制御ステップ)という簡単な構成で実現できるので、低コストで風力発電装置の振動低減を図ることができる。また、積分器21(積分ステップ)を介して高周波数帯のノイズも除去されるので、安定かつ効果的な制振制御を行うことができる。
Performing pitch angle control for output control is a technique that has been widely used in the past, so that the accelerometer 17, the active vibration suppression unit 20 (active vibration suppression step), and the subtractor 40 (addition step) are already installed. This embodiment can be realized only by additionally mounting on a wind turbine generator. That is, since it can be easily mounted, the application / operation cost of the active vibration suppression control can be significantly reduced, and the vibration of the wind turbine generator can be reduced at a low cost. Further, since the pitch angle control is performed by superimposing the damping blade pitch angle command δθ * on the output control blade pitch angle command θ * , the output control and the damping control can be achieved simultaneously.
In the wind turbine generator of the present embodiment or the active vibration suppression method thereof, as shown in FIG. 1, in the active vibration suppression unit 20 (active vibration suppression step), the acceleration detected by the accelerometer is integrated in an integrator 21 (integration step). Then, the speed is obtained by integration, and the control unit 22 (control step) calculates the pitch angle of the windmill blade for generating a thrust force on the windmill blade so as to cancel the vibration of the nacelle based on the speed. As described above, according to the present invention, the active damping unit 20 (active damping step) can be realized with a simple configuration of the integrator 21 (integration step) and the control unit 22 (control step). It is possible to reduce the vibration of the power generation device. In addition, since noise in the high frequency band is also removed through the integrator 21 (integration step), stable and effective vibration suppression control can be performed.

本実施形態の風力発電装置またはそのアクティブ制振方法によれば、図1、図6(a)、及び図6(b)に示すように、制御部22(制御ステップ)に、積分器21(積分ステップ)から出力された速度の位相を所定量だけ進める位相進み補償器62(位相進み補償ステップ)と、位相進み補償器62(位相進み補償ステップ)から出力された速度の位相を所定量だけ遅らせる位相遅れ補償器63(位相遅れ補償ステップ)を具備し、該位相遅れ補償後の速度に基づき、ピッチ角を算出する。これにより、加速度計出力の位相遅れを補償すると共に、高域周波数帯のノイズを低減することができるので、安定かつ効果的な制振制御を行うことができる。
本実施形態の風力発電装置またはそのアクティブ制振方法によれば、図6(a)及び図6(b)に示すように、制御部22(制御ステップ)に、算出されたピッチ角を所定範囲内に制限するリミッタ65(制限ステップ)を具備して構成するので、ピッチ角制御機構の疲労を低減できると共に、パラメータの設定ミス等による不具合を防止でき、さらに、制振用翼ピッチ角指令δθを出力制御用翼ピッチ角指令θに比べて非常に小さい範囲に制限した場合には、両指令値の干渉による影響を軽減若しくは防止することができる。
According to the wind turbine generator of the present embodiment or the active vibration suppression method thereof, as shown in FIGS. 1, 6A, and 6B, the integrator 21 (control step) includes the integrator 21 (control step). The phase advance compensator 62 (phase advance compensation step) that advances the phase of the velocity output from the integration step) by a predetermined amount and the phase of the velocity output from the phase advance compensator 62 (phase advance compensation step) by a predetermined amount. A phase delay compensator 63 (phase delay compensation step) for delaying is provided, and the pitch angle is calculated based on the speed after the phase delay compensation. As a result, the phase delay of the accelerometer output can be compensated, and noise in the high frequency band can be reduced, so that stable and effective vibration suppression control can be performed.
According to the wind turbine generator of the present embodiment or the active vibration suppression method thereof, as shown in FIGS. 6A and 6B, the calculated pitch angle is set to a predetermined range in the control unit 22 (control step). Since the limiter 65 (limit step) for limiting the pitch angle is included, it is possible to reduce fatigue of the pitch angle control mechanism, to prevent problems due to parameter setting errors, etc. When * is limited to a very small range compared to the output control blade pitch angle command θ * , the influence of interference between both command values can be reduced or prevented.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
上記実施形態の説明では、風力発電装置およびそのアクティブ制振方法について詳細に述べたが、本実施形態の風力発電装置およびそのアクティブ制振方法をそのまま風車タワーに適用することができる。この場合、上述した効果の他に、次のような効果をも奏する。すなわち、従来のAMDのように重量物や該重量物用のアクチュエータを用いないので、ナセル13の重量が増大することがなく、風車タワー自体の強度を上げる必要が無いことから、低コストで実現できる点である。
また、実施形態では、ピッチ角制御によって出力制御を行っているが、他の出力制御を採用している風力発電装置または風車タワーにも適用できる。但し、この場合、新たに風車ブレード12のピッチ角を制御するピッチ角制御機構を付加する必要がある。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
In the description of the above embodiment, the wind turbine generator and its active vibration control method have been described in detail. However, the wind turbine generator and its active vibration control method of this embodiment can be directly applied to the wind turbine tower. In this case, in addition to the effects described above, the following effects are also achieved. That is, unlike a conventional AMD, a heavy object and an actuator for the heavy object are not used, so the weight of the nacelle 13 does not increase, and it is not necessary to increase the strength of the windmill tower itself. This is a possible point.
Moreover, although output control is performed by pitch angle control in the embodiment, the present invention can also be applied to a wind power generator or a windmill tower that employs other output control. However, in this case, it is necessary to newly add a pitch angle control mechanism for controlling the pitch angle of the windmill blade 12.

さらに、実際の運用において、信頼性や安全性を高める観点から以下のような構成や手法を採ることも可能である。
例えば、フェールセーフのためにナセル13内部に常時2つの加速度計を動作させておき、アクティブ制振制御には片方の検出結果のみを使用し、どちらか一方が故障した場合には、アクティブ制振制御を自動的に停止させる手法である。
また、制振制御系のパラメータ(主としてフィードバックゲインGc(s))の設定値が不適切である場合、例えば、符号が逆転していたり許容範囲を超えたハイゲインに設定したりした場合などには、制振制御系が不安定となって風車タワー(ナセル13)の振動が増大してしまうようなことが起き得るが、(加速度計17等によって)このような状態を自動的に検知し、アクティブ制振制御を自動的に停止させる手法なども考えられる。
Furthermore, in the actual operation, the following configurations and methods can be adopted from the viewpoint of improving reliability and safety.
For example, two accelerometers are always operated in the nacelle 13 for fail-safe operation, and only one detection result is used for active vibration suppression control. This is a method of automatically stopping control.
Further, when the set value of the vibration suppression control system parameter (mainly feedback gain Gc (s)) is inappropriate, for example, when the sign is reversed or the gain is set to a high gain exceeding the allowable range. The vibration control system may become unstable and vibration of the wind turbine tower (nacelle 13) may increase, but this state is automatically detected (by the accelerometer 17 or the like) A method of automatically stopping active vibration suppression control is also conceivable.

Claims (17)

翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構を備えた風力発電装置であって、
ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、
前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して翼ピッチ角指令を前記ピッチ角制御機構に出力するアクティブ制振手段と
を有する風力発電装置。
A wind turbine generator having a pitch angle control mechanism for controlling a pitch angle of a wind turbine blade based on a blade pitch angle command,
An accelerometer attached to the nacelle for detecting the acceleration of vibration of the nacelle;
Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and the blade pitch angle command is transmitted to the pitch angle control mechanism. An active vibration damping means for outputting to the wind turbine generator.
翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構を備えた風力発電装置であって、
ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、
前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令を出力するアクティブ制振手段と、
風速、風車ロータの回転数または当該風力発電装置の出力に基づき、当該風力発電装置の出力を所定値にするための前記風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力するピッチ角制御手段と、
前記ピッチ角制御手段からの出力制御用翼ピッチ角指令に前記アクティブ制振手段からの制振用翼ピッチ角指令を重畳させた翼ピッチ角指令を前記ピッチ角制御機構に与える加算手段と
を有する風力発電装置。
A wind turbine generator having a pitch angle control mechanism for controlling a pitch angle of a wind turbine blade based on a blade pitch angle command,
An accelerometer attached to the nacelle for detecting the acceleration of vibration of the nacelle;
Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and a damping blade pitch angle command is output. Active vibration control means,
Based on the wind speed, the rotational speed of the wind turbine rotor, or the output of the wind turbine generator, the pitch angle of the wind turbine blade for setting the output of the wind turbine generator to a predetermined value is calculated and the blade pitch angle command for output control is output. Pitch angle control means;
And adding means for giving the pitch angle control mechanism a blade pitch angle command in which the blade pitch angle command for damping from the active damping means is superimposed on the blade pitch angle command for output control from the pitch angle control means. Wind power generator.
前記アクティブ制振手段は、
前記加速度計により検出された加速度から速度を推定する速度推定手段と、
前記速度推定手段から出力された速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する制御手段と
を有する請求項1に記載の風力発電装置。
The active vibration control means includes
Speed estimation means for estimating speed from acceleration detected by the accelerometer;
2. Control means for calculating a pitch angle of the windmill blade for generating a thrust force on the windmill blade so as to cancel vibration of the nacelle based on the speed output from the speed estimation means. Wind power generator.
前記速度推定手段は、前記加速度計により検出された加速度を積分して速度を算出する請求項3に記載の風力発電装置。  The wind power generator according to claim 3, wherein the speed estimation unit calculates a speed by integrating acceleration detected by the accelerometer. 前記制御手段は、前記速度推定手段から出力された速度の位相を所定量だけ進める位相進み補償手段を有し、該位相進み補償後の速度に基づき、前記ピッチ角を算出する請求項3に記載の風力発電装置。  The said control means has a phase advance compensation means which advances the phase of the speed output from the said speed estimation means by a predetermined amount, The said pitch angle is calculated based on the speed after this phase advance compensation. Wind power generator. 前記制御手段は、前記位相進み補償手段から出力された速度の位相を所定量だけ遅らせる位相遅れ補償手段を有し、該位相遅れ補償後の速度に基づき、前記ピッチ角を算出する請求項5に記載の風力発電装置。  6. The control unit according to claim 5, further comprising a phase lag compensation unit that delays a phase of the speed output from the phase lead compensation unit by a predetermined amount, and calculates the pitch angle based on the speed after the phase lag compensation. The wind power generator described. 前記制御手段は、前記速度推定手段により推定された速度を入力とする比例制御器、比例積分制御器、比例積分微分制御器、線形2次レギュレータ、及び線形2次ガウシャンレギュレータのうちいずれか1つを備え、前記ピッチ角を算出する請求項3に記載の風力発電装置。  The control means is one of a proportional controller, a proportional-integral controller, a proportional-integral-derivative controller, a linear secondary regulator, and a linear quadratic Gaussian regulator that receive the speed estimated by the speed estimating means. The wind power generator according to claim 3, wherein the pitch angle is calculated. 前記アクティブ制振手段は、前記風車ブレードのピッチ角又は前記風車ブレードのピッチ角の角速度を所定範囲内に制限する制限手段を有する請求項1に記載の風力発電装置。  2. The wind turbine generator according to claim 1, wherein the active damping unit includes a limiting unit that limits a pitch angle of the windmill blade or an angular velocity of the pitch angle of the windmill blade within a predetermined range. 翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構と、
ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、を備えた風力発電装置のアクティブ制振方法であって、
前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して翼ピッチ角指令を前記ピッチ角制御機構に出力するアクティブ制振ステップと
を有する風力発電装置のアクティブ制振方法。
A pitch angle control mechanism for controlling the pitch angle of the wind turbine blade based on the blade pitch angle command;
An active vibration damping method for a wind turbine generator, comprising: an accelerometer attached to the nacelle and detecting acceleration of vibration of the nacelle;
Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and the blade pitch angle command is transmitted to the pitch angle control mechanism. An active vibration suppression method for a wind turbine generator, comprising:
翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構と、
ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、を備えた風力発電装置のアクティブ制振方法であって、
前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して制振用翼ピッチ角指令を出力するアクティブ制振ステップと、
風速、風車ロータの回転数または当該風力発電装置の出力に基づき、当該風力発電装置の出力を所定値にするための前記風車ブレードのピッチ角を算出して出力制御用翼ピッチ角指令を出力するピッチ角制御ステップと、
前記ピッチ角制御ステップによる出力制御用翼ピッチ角指令に前記アクティブ制振ステップによる制振用翼ピッチ角指令を重畳させた翼ピッチ角指令を前記ピッチ角制御機構に与える加算ステップと
を有する風力発電装置のアクティブ制振方法。
A pitch angle control mechanism for controlling the pitch angle of the wind turbine blade based on the blade pitch angle command;
An active vibration damping method for a wind turbine generator, comprising: an accelerometer attached to the nacelle and detecting acceleration of vibration of the nacelle;
Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and a damping blade pitch angle command is output. Active damping step,
Based on the wind speed, the rotational speed of the wind turbine rotor, or the output of the wind turbine generator, the pitch angle of the wind turbine blade for setting the output of the wind turbine generator to a predetermined value is calculated and the blade pitch angle command for output control is output. A pitch angle control step;
A wind power generation comprising: an adding step for providing the pitch angle control mechanism with a blade pitch angle command obtained by superimposing a blade pitch angle command for damping in the active damping step on the blade pitch angle command for output control in the pitch angle control step Active vibration control method for equipment.
前記アクティブ制振ステップは、
前記加速度計により検出された加速度から速度を推定する速度推定ステップと、
前記速度推定ステップにより推定された速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出する制御ステップと
を有する請求項9に記載の風力発電装置のアクティブ制振方法。
The active vibration suppression step includes:
A speed estimation step of estimating a speed from the acceleration detected by the accelerometer;
The control step of calculating a pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade so as to cancel the vibration of the nacelle based on the speed estimated by the speed estimation step. Vibration control method for wind power generators in Japan.
前記速度推定ステップは、前記加速度計により検出された加速度を積分して速度を算出する請求項11に記載のアクティブ制振方法。  The active vibration suppression method according to claim 11, wherein the speed estimation step calculates a speed by integrating acceleration detected by the accelerometer. 前記制御ステップは、前記速度推定ステップにより推定された速度の位相を所定量だけ進める位相進み補償ステップを有し、該位相進み補償後の速度に基づき、前記ピッチ角を算出する請求項11に記載の風力発電装置のアクティブ制振方法。  12. The control step includes a phase advance compensation step of advancing a phase of the speed estimated by the speed estimation step by a predetermined amount, and the pitch angle is calculated based on the speed after the phase advance compensation. Vibration control method for wind power generators in Japan. 前記制御ステップは、前記位相進み補償ステップから出力された速度の位相を所定量だけ遅らせる位相遅れ補償ステップを有し、該位相遅れ補償後の速度に基づき、前記ピッチ角を算出する請求項13に記載の風力発電装置のアクティブ制振方法。  The control step includes a phase delay compensation step of delaying the phase of the speed output from the phase advance compensation step by a predetermined amount, and the pitch angle is calculated based on the speed after the phase delay compensation. An active vibration damping method for a wind power generator as described. 前記制御ステップは、前記速度推定ステップにより推定された速度に対して、比例制御、比例積分制御、比例積分微分制御、線形2次レギュレータを用いた制御、及び線形2次ガウシャンレギュレータを用いた制御のいずれか1つの制御を行う補償ステップを備え、前記補償後の速度に基づき前記ピッチ角を算出する請求項11に記載の風力発電装置のアクティブ制振方法。  In the control step, proportional control, proportional-integral control, proportional-integral-derivative control, control using a linear quadratic regulator, and control using a linear quadratic Gaussian regulator are performed on the speed estimated in the speed estimation step. The active vibration damping method for a wind turbine generator according to claim 11, further comprising a compensation step for performing any one of the control, wherein the pitch angle is calculated based on the speed after the compensation. 前記アクティブ制振ステップは、前記風車ブレードのピッチ角又は前記風車ブレードのピッチ角の角速度を所定範囲内に制限する制限ステップを有する請求項9に記載の風力発電装置のアクティブ制振方法。  The active vibration damping method for a wind turbine generator according to claim 9, wherein the active vibration damping step includes a limiting step of limiting a pitch angle of the windmill blade or an angular velocity of the pitch angle of the windmill blade within a predetermined range. 翼ピッチ角指令に基づき風車ブレードのピッチ角を制御するピッチ角制御機構と、
ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、
前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出して翼ピッチ角指令を前記ピッチ角制御機構に出力するアクティブ制振手段と
を有する風力発電装置を備える風車タワー。
A pitch angle control mechanism for controlling the pitch angle of the wind turbine blade based on the blade pitch angle command;
An accelerometer attached to the nacelle for detecting the acceleration of vibration of the nacelle;
Based on the acceleration detected by the accelerometer, the pitch angle of the wind turbine blade for generating a thrust force on the wind turbine blade is calculated so as to cancel the vibration of the nacelle, and the blade pitch angle command is transmitted to the pitch angle control mechanism. A windmill tower comprising a wind turbine generator having active vibration control means for outputting to the wind turbine.
JP2006510375A 2004-02-27 2004-11-12 Wind power generator, active vibration control method thereof, and windmill tower Active JP4599350B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004055515 2004-02-27
JP2004055515 2004-02-27
PCT/JP2004/016851 WO2005083266A1 (en) 2004-02-27 2004-11-12 Wind turbine generator, active vibration damping method for the same, and wind turbine tower

Publications (2)

Publication Number Publication Date
JPWO2005083266A1 JPWO2005083266A1 (en) 2008-01-17
JP4599350B2 true JP4599350B2 (en) 2010-12-15

Family

ID=34908870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510375A Active JP4599350B2 (en) 2004-02-27 2004-11-12 Wind power generator, active vibration control method thereof, and windmill tower

Country Status (9)

Country Link
US (6) US7692322B2 (en)
EP (1) EP1719910B1 (en)
JP (1) JP4599350B2 (en)
KR (1) KR20070026362A (en)
CN (1) CN100400861C (en)
AU (1) AU2004316333B2 (en)
CA (1) CA2557396C (en)
TW (1) TWI261088B (en)
WO (1) WO2005083266A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644546A (en) * 2011-02-15 2012-08-22 Ssb风***两合公司 Blade load reduction for wind turbine
JP2015124736A (en) * 2013-12-27 2015-07-06 株式会社日立製作所 Wind power generator
EP3276166A1 (en) 2016-07-29 2018-01-31 Hitachi, Ltd. Wind power generating system

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083266A1 (en) 2004-02-27 2005-09-09 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active vibration damping method for the same, and wind turbine tower
US7309930B2 (en) * 2004-09-30 2007-12-18 General Electric Company Vibration damping system and method for variable speed wind turbines
US9010261B2 (en) 2010-02-11 2015-04-21 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US9521858B2 (en) 2005-10-21 2016-12-20 Allen Szydlowski Method and system for recovering and preparing glacial water
NO325856B1 (en) * 2005-11-01 2008-08-04 Hywind As Method for damping unstable free rigid body oscillations in a floating wind turbine installation
DE102006022266A1 (en) * 2005-11-04 2007-05-10 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Wind turbine
JP4814644B2 (en) * 2006-02-01 2011-11-16 富士重工業株式会社 Wind power generator
WO2007089136A2 (en) * 2006-02-03 2007-08-09 Pantheon Bv Wind turbine tower vibration damping
CN101401294B (en) * 2006-03-17 2013-04-17 英捷电力技术有限公司 Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
BRPI0711641A2 (en) * 2006-05-15 2012-01-17 Igus Innovative Tech Systeme Gmbh process and device for monitoring rotor blade status in wind power installations
ES2288121B1 (en) * 2006-05-31 2008-10-16 GAMESA INNOVATION &amp; TECHNOLOGY, S.L. METHOD OF OPERATION OF AN AEROGENERATOR.
WO2008006020A2 (en) * 2006-07-06 2008-01-10 Acciona Windpower, S.A Systems, methods and apparatuses for a wind turbine controller
NO335851B1 (en) * 2006-08-22 2015-03-09 Hywind As Procedure for wind turbine installation for damping tower oscillations
ES2755000T3 (en) 2006-09-14 2020-04-21 Vestas Wind Sys As Methods for controlling a wind turbine connected to the electricity supply network, wind turbine and wind farm
CN101517229B (en) 2006-09-14 2012-05-23 维斯塔斯风力***有限公司 Method for controlling a wind turbine connected to the utility grid, wind turbine and wind park
AU2007304633B2 (en) 2006-10-02 2011-02-24 Vestas Wind Systems A/S A wind turbine, a method for damping edgewise oscillations in one or more blades of a wind turbine by changing the blade pitch and use hereof
CA2664080A1 (en) * 2006-10-02 2008-04-10 Clipper Windpower Technology, Inc. Wind turbine with blade pitch control to compensate for wind shear and wind misalignment
DE102006051352C5 (en) * 2006-10-25 2011-09-15 Nordex Energy Gmbh Method for operating a wind energy plant
JP2010514978A (en) 2006-12-28 2010-05-06 クリッパー・ウィンドパワー・テクノロジー・インコーポレーテッド Damping tower resonant motion and symmetric blade motion using estimation methods in wind turbines
JP2008184932A (en) * 2007-01-29 2008-08-14 Mitsubishi Heavy Ind Ltd Wind power generator
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
JP5022102B2 (en) * 2007-05-25 2012-09-12 三菱重工業株式会社 Wind power generator, wind power generator system, and power generation control method for wind power generator
EP2000667B1 (en) 2007-06-04 2011-08-10 Siemens Aktiengesellschaft Method and device for controlling load reduction for a wind turbine rotor
DK179081B1 (en) * 2007-06-25 2017-10-16 Siemens Wind Power As Monitoring of a wind turbine's wing frequencies
DE102007031969A1 (en) * 2007-07-06 2009-01-08 Nordex Energy Gmbh Method and device for determining a load of a wind energy plant
WO2009010059A2 (en) 2007-07-14 2009-01-22 Vestas Wind Systems A/S Control of rotor during a stop process of a wind turbine
US8672649B2 (en) 2007-10-10 2014-03-18 Delta T Corporation Ceiling fan system with brushless motor
US20100259045A1 (en) * 2007-10-15 2010-10-14 Suzlon Energy Gmbh Wing Energy Installation with Enhanced Overvoltage Protection
US8183707B2 (en) * 2007-10-30 2012-05-22 General Electric Company Method of controlling a wind energy system and wind speed sensor free wind energy system
DK2063110T4 (en) 2007-11-26 2019-09-23 Siemens Ag Method for attenuating tower vibration of a wind turbine and slope control system
US8240990B2 (en) * 2007-12-06 2012-08-14 General Electric Company Apparatus and method for reducing asymmetric rotor loads in wind turbines during shutdown
US20090148289A1 (en) * 2007-12-06 2009-06-11 Thomas Edenfeld Active damper against generator base frame vibrations
EP2071213B1 (en) * 2007-12-11 2014-12-03 General Electric Company Gearbox noise reduction by electrical drive control
US8123479B2 (en) 2007-12-19 2012-02-28 Delta T Corporation Method to minimize oscillation in ceiling fans
DE102007063082B4 (en) 2007-12-21 2010-12-09 Repower Systems Ag Method for operating a wind energy plant
DE102008010543A1 (en) * 2008-02-22 2009-08-27 Nordex Energy Gmbh Method for operating a wind turbine and wind turbine
JP5150306B2 (en) * 2008-03-03 2013-02-20 株式会社竹中工務店 Vibration control device
DE102008012956B4 (en) * 2008-03-06 2011-06-30 REpower Systems AG, 22297 Blattwinkelverstellratengrenzwertanpassung
EP2103915B1 (en) * 2008-03-17 2016-11-16 Siemens Aktiengesellschaft Apparatus and method for determining a resonant frequency of a wind turbine tower
ES2528743T3 (en) * 2008-04-02 2015-02-12 Siemens Aktiengesellschaft Vibration damping method of a wind turbine tower and control system for wind turbines
US7942629B2 (en) * 2008-04-22 2011-05-17 General Electric Company Systems and methods involving wind turbine towers for power applications
ATE530765T1 (en) * 2008-07-16 2011-11-15 Siemens Ag METHOD AND ARRANGEMENT FOR DAMPING TOWER VIBRATIONS
US7922448B2 (en) * 2008-09-19 2011-04-12 General Electric Company Differential vibration control for wind turbines
WO2010059983A2 (en) 2008-11-21 2010-05-27 Preus Robert W Wind turbine
WO2010060772A2 (en) * 2008-11-28 2010-06-03 Vestas Wind Systems A/S Control strategy for wind turbine
US8344673B2 (en) * 2008-12-04 2013-01-01 Nuovo Pignone S.P.A. Torsional mode damping apparatus
DE102008063871A1 (en) * 2008-12-19 2010-07-01 Robert Bosch Gmbh Stationary power generation plant with a control device and method for controlling the same
DE102009011084A1 (en) * 2008-12-19 2010-06-24 Robert Bosch Gmbh Stationary power generation plant with a device for damping mechanical vibrations
GB2466649B (en) * 2008-12-30 2014-01-29 Hywind As Blade pitch control in a wind turbine installation
JP5010619B2 (en) * 2009-01-06 2012-08-29 三菱重工業株式会社 Wind power generator and control method of wind power generator
JP5148517B2 (en) * 2009-01-07 2013-02-20 三菱重工業株式会社 Wind power generator
EP2365214B1 (en) 2009-01-22 2013-05-29 Vestas Wind Systems A/S Control of rotor during a stop process of a wind turbine
EP2389510B1 (en) * 2009-01-22 2013-04-03 Vestas Wind Systems A/S Control of a wind turbine rotor during a stop process using pitch and a surface altering device
SE536174C2 (en) * 2009-02-09 2013-06-11 Xemc Xiangtan Electric Mfg Group Corp Lt Method for controlling a wind turbine
US8334610B2 (en) * 2009-02-13 2012-12-18 Robert Migliori Gearless pitch control mechanism for starting, stopping and regulating the power output of wind turbines without the use of a brake
US8659178B2 (en) * 2009-02-27 2014-02-25 Acciona Windpower, S.A. Wind turbine control method, control unit and wind turbine
BRPI0924514A2 (en) * 2009-03-26 2016-03-01 Nheolis Soc Par Actions Simplifiee rotor for power generator from a fluid flow, in particular for wind turbines and power generation device
GB0907132D0 (en) * 2009-04-24 2009-06-03 Statoilhydro Asa Wave energy extraction
ES2535409T3 (en) 2009-05-18 2015-05-11 Vestas Wind Systems A/S Wind turbine control procedure
US20100327599A1 (en) * 2009-06-30 2010-12-30 Vestas Wind Systems A/S Wind power plant predictive protection circuit
DE102009039340A1 (en) * 2009-08-29 2011-03-03 Robert Bosch Gmbh Operating system of a wind turbine and method using the management system
US8279073B2 (en) * 2009-09-18 2012-10-02 General Electric Company Systems, methods, and apparatus for monitoring and controlling a wind driven machine
US7772713B2 (en) * 2009-09-30 2010-08-10 General Electric Company Method and system for controlling a wind turbine
US9371114B2 (en) 2009-10-15 2016-06-21 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US9017123B2 (en) 2009-10-15 2015-04-28 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US8924311B2 (en) 2009-10-15 2014-12-30 World's Fresh Waters Pte. Ltd. Method and system for processing glacial water
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN102216608B (en) * 2010-02-08 2014-05-07 三菱重工业株式会社 Wind-powered electrical generator and blade pitch control method therefor
US11584483B2 (en) 2010-02-11 2023-02-21 Allen Szydlowski System for a very large bag (VLB) for transporting liquids powered by solar arrays
DE102010002203B4 (en) 2010-02-22 2014-05-15 Senvion Se Method for operating a wind energy plant
DK2365215T3 (en) * 2010-03-10 2013-01-28 Siemens Ag Controlling the rotational speed of a wind turbine based on rotor acceleration
GB2478600A (en) 2010-03-12 2011-09-14 Vestas Wind Sys As A wind energy power plant optical vibration sensor
GB201004469D0 (en) 2010-03-18 2010-05-05 Rolls Royce Plc Controlling blade pitch angle
ES2381094B1 (en) * 2010-04-13 2013-04-23 Gamesa Innovation & Technology, S.L. METHODS OF MONITORING OF AEROGENERATORS
JP5627301B2 (en) * 2010-06-08 2014-11-19 株式会社日立製作所 Wind power generator
CN101900080B (en) * 2010-07-21 2011-11-23 上海电气集团股份有限公司 Fan control system adopting variable-structure PID (Proportion Integration Differentiation) variable-propeller control
EP2572426B1 (en) * 2010-08-13 2014-06-18 Siemens Aktiengesellschaft Arrangement for generating a control signal for controlling a power output of a power generation system
KR20130100159A (en) * 2010-09-28 2013-09-09 지멘스 악티엔게젤샤프트 Power oscillation damping by a converter-based power generation device
JP5449111B2 (en) * 2010-11-18 2014-03-19 三菱重工業株式会社 Windmill and its vibration control method
US8169098B2 (en) * 2010-12-22 2012-05-01 General Electric Company Wind turbine and operating same
US9909564B2 (en) 2010-12-23 2018-03-06 Vestas Wind Systems A/S Supervision of controller instability in a wind turbine
ES2400884B1 (en) * 2011-01-03 2014-03-18 Acciona Windpower, S.A. OSCILLATION REDUCTION METHOD IN AN AIRBRUSHER
KR101215503B1 (en) * 2011-02-21 2012-12-26 삼성중공업 주식회사 System and method for compensation nacelle wind velocity of wind turbine
US20120257967A1 (en) * 2011-04-05 2012-10-11 Per Egedal Method and controller for generating a blade pitch angle control signal and wind turbine comprising the controller
EP2565442A1 (en) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft System and method for operating a wind turbine using adaptive reference variables
TWI481780B (en) * 2011-08-02 2015-04-21 Univ Nat Sun Yat Sen An adjustable-pitch control of wind power system and method thereof
CN102435294B (en) * 2011-09-27 2013-02-06 成都阜特科技股份有限公司 Vibration analysis method applied to vibration analyzer
EP2761713B1 (en) * 2011-09-30 2018-04-18 Vestas Wind Systems A/S Control device for damping electrical grid oscillations
JP2013087703A (en) * 2011-10-19 2013-05-13 Mitsubishi Heavy Ind Ltd Wind power generation device and method for the same, and program therefor
JP5981120B2 (en) * 2011-10-20 2016-08-31 Ntn株式会社 Wind power generator condition monitoring system
US20120133134A1 (en) * 2011-11-15 2012-05-31 General Electric Company Method and apparatus for damping vibrations in a wind energy system
US8823199B2 (en) 2011-11-25 2014-09-02 Rupert Stephen Tull de Salis Fluid driven turbine
EP2604853A1 (en) * 2011-12-15 2013-06-19 Siemens Aktiengesellschaft Method of controlling a wind turbine
US8736094B2 (en) * 2012-01-20 2014-05-27 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control system, wind turbine generator, wind farm, and wind-turbine-generator control method
US20130195653A1 (en) * 2012-01-30 2013-08-01 Mitsubishi Heavy Industries, Ltd. Wind turbine and vibration damping method thereof
US9404478B2 (en) * 2012-04-24 2016-08-02 General Electric Company Methods and systems for operating a wind turbine in noise reduced operation modes
US9091250B2 (en) 2012-05-02 2015-07-28 United Technologies Corporation Ultra high efficiency low friction drive chain for wind turbine applications
US8933576B2 (en) 2012-05-02 2015-01-13 United Technologies Corporation Hybrid friction wheel gearbox drivetrain for wind turbine applications
US20130300115A1 (en) * 2012-05-08 2013-11-14 Johnson Controls Technology Company Systems and methods for optimizing power generation in a wind farm turbine array
DE102012010420A1 (en) * 2012-05-29 2013-12-05 Robert Bosch Gmbh Method for damping torsional vibrations in a driveline component
US8598725B1 (en) 2012-06-11 2013-12-03 United Technologies Corporation Utilizing flux controllable PM electric machines for wind turbine applications
US9644606B2 (en) * 2012-06-29 2017-05-09 General Electric Company Systems and methods to reduce tower oscillations in a wind turbine
KR101336718B1 (en) * 2012-07-09 2013-12-03 (주)에스엠인스트루먼트 Wind turbine condition monitoring system alarm setting method
US8704393B2 (en) 2012-08-09 2014-04-22 General Electric Company System and method for controlling speed and torque of a wind turbine during post-rated wind speed conditions
ES2491015B1 (en) * 2012-09-28 2015-09-17 Acciona Windpower, S.A. METHOD OF AIRCRAFT CONTROL
DE102012218484A1 (en) * 2012-10-10 2014-04-10 Wobben Properties Gmbh Method for operating a wind energy plant
DK2918827T3 (en) * 2012-12-26 2017-04-24 Mhi Vestas Offshore Wind As Control device, method and program and liquid, wind driven and power generating device equipped therewith
US9556851B2 (en) 2013-04-03 2017-01-31 General Electric Company System for reducing vibration in a wind turbine
ES2643741T3 (en) * 2013-05-03 2017-11-24 Alstom Renovables España, S.L. Operating procedure of a wind turbine
US9518560B2 (en) * 2013-05-28 2016-12-13 Siemens Aktiengesellschaft Method to individually optimize respective pitch angles of a plurality of blades in a wind turbine
PT3004636T (en) * 2013-05-30 2017-03-01 Mhi Vestas Offshore Wind As Tilt damping of a floating wind turbine
JP6262994B2 (en) 2013-09-18 2018-01-17 三菱重工業株式会社 Hydraulic transmission, machine including the same, and operation method of hydraulic transmission
KR102134058B1 (en) 2013-09-18 2020-07-14 아르테미스 인텔리전트 파워 리미티드 Hydraulic transmission
WO2015078478A1 (en) * 2013-11-29 2015-06-04 Vestas Wind Systems A/S Power-ramping pitch feed-forward
EP2878809B1 (en) * 2013-11-29 2017-06-14 Alstom Renovables España, S.L. Methods of operating a wind turbine, wind turbines and wind parks
ES2694009T3 (en) * 2013-12-09 2018-12-17 Vestas Wind Systems A/S Method of operation of a wind turbine
US10065730B2 (en) * 2014-01-22 2018-09-04 Bell Helicopter Textron Inc. Active vibration control system with non-concentric revolving masses
US9372201B2 (en) * 2014-03-31 2016-06-21 Alstom Renewable Technologies Yaw and pitch angles
CN104033334B (en) * 2014-06-27 2016-11-23 国电联合动力技术有限公司 A kind of wind generator set blade vibration-reducing control method and system
US20150379408A1 (en) * 2014-06-30 2015-12-31 Microsoft Corporation Using Sensor Information for Inferring and Forecasting Large-Scale Phenomena
WO2016023556A1 (en) * 2014-08-13 2016-02-18 Vestas Wind Systems A/S Improvements relating to the determination of rotor imbalances in a wind turbine
DK201470481A1 (en) * 2014-08-13 2015-08-17 Vestas Wind Sys As Improvements relating to wind turbine operation
CN104533717B (en) * 2014-12-12 2017-05-03 中船重工(重庆)海装风电设备有限公司 Method and system for suppressing tower vibration
CN104533732B (en) * 2015-01-23 2017-07-14 中船重工(重庆)海装风电设备有限公司 A kind of control method and device for suppressing wind-power generating unit tower side-to-side vibrations
JP6462388B2 (en) 2015-02-06 2019-01-30 株式会社日立製作所 Wind power generator
WO2016128004A1 (en) * 2015-02-12 2016-08-18 Vestas Wind Systems A/S Control system for damping structural vibrations of a wind turbine system having multiple rotors
WO2016149520A1 (en) * 2015-03-17 2016-09-22 Open Access Technology International, Inc. Systems and methods for local demand optimization
ES2822986T3 (en) * 2015-03-20 2021-05-05 Vestas Wind Sys As Damping of oscillations in a wind turbine
EP3308015B1 (en) * 2015-06-11 2020-04-29 Vestas Wind Systems A/S Ramping power in a wind turbine using gain scheduling
DK179069B1 (en) * 2015-09-04 2017-10-02 Envision Energy Denmark Aps A wind turbine and a method of operating a wind turbine with a rotational speed exclusion zone
CN105179168B (en) * 2015-10-10 2018-03-13 浙江运达风电股份有限公司 A kind of large-scale wind electricity set tower frame automatic virtual blocks control method
KR102411521B1 (en) * 2015-11-10 2022-06-21 대우조선해양 주식회사 Control system for reducing vibration of wind turbine tower
JP6510959B2 (en) * 2015-11-19 2019-05-08 株式会社三井E&Sホールディングス Wind turbine drive train control system
US11136962B2 (en) * 2015-12-04 2021-10-05 Envision Energy (Denmark) Aps Wind turbine and a method of operating a wind turbine for reducing edgewise vibrations
JP6405324B2 (en) 2016-01-29 2018-10-17 三菱重工業株式会社 Wind power generator and operation method thereof
US10267819B2 (en) * 2016-02-04 2019-04-23 GM Global Technology Operations LLC Method and apparatus to monitor a resolver
US10767628B2 (en) 2016-04-08 2020-09-08 Vestas Wind Systems A/S Control of a wind turbine comprising multi-axial accelerometers
US10774810B2 (en) 2016-04-25 2020-09-15 General Electric Company System and method for estimating high bandwidth tower deflection for wind turbines
CN105863971A (en) * 2016-06-27 2016-08-17 国电联合动力技术有限公司 Anti-vibration virtual quality control method applicable to towers of wind turbine generator systems
CN109642542B (en) * 2016-06-30 2021-04-20 维斯塔斯风力***集团公司 Diagnostic system and method for a wind turbine
CN106194580A (en) * 2016-07-13 2016-12-07 广东明阳风电产业集团有限公司 A kind of thrust abatement control algolithm of wind power generating set
US9806690B1 (en) * 2016-09-30 2017-10-31 AEP Transmission Holding Company, LLC Subsynchronous oscillation relay
DK201770358A1 (en) 2017-05-19 2018-11-23 Vestas Wind Systems A/S Position based vibration reduction of nacelle movement
US10539119B2 (en) 2017-07-10 2020-01-21 WindESCo, Inc. System and method for augmenting control of a wind turbine assembly
US10333444B2 (en) * 2017-08-31 2019-06-25 Eaton Intelligent Power Limited System and method for stability control in adjustable speed drive with DC link thin film capacitor
FR3073496B1 (en) * 2017-11-15 2020-11-20 Sereema SYSTEM AND METHOD FOR DIAGNOSING A ROTOR IMBALANCE OF A WIND TURBINE
WO2019114908A1 (en) * 2017-12-14 2019-06-20 Vestas Wind Systems A/S Tower damping in wind turbine power production
CN111712632B (en) * 2017-12-14 2023-04-25 维斯塔斯风力***集团公司 Tower damping in wind turbine power production
US11754043B2 (en) * 2018-05-17 2023-09-12 Vestas Wind Systems A/S Method and system for controlling a wind turbine to reduce nacelle vibration
EP3591218B1 (en) 2018-07-06 2023-02-22 Vestas Wind Systems A/S Multi-rotor wind turbine vibration damage protection
EP3818262B1 (en) 2018-07-06 2024-03-13 Vestas Wind Systems A/S Multi-rotor wind turbine oscillation damping
US10808680B2 (en) * 2018-07-17 2020-10-20 General Electric Company System and method for reducing loads of a wind turbine when a rotor blade becomes stuck
US11635062B2 (en) 2018-11-07 2023-04-25 General Electric Renovables Espana, S.L. Wind turbine and method to determine modal characteristics of the wind turbine in a continuous manner
CN109611274B (en) * 2018-12-11 2021-03-30 苏州科技大学 LQG (Linear quadratic glass) optimization control method for high wind speed area of wind generating set
EP3667074A1 (en) * 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Device and method of damping front and backward movements of a tower of a wind turbine
WO2020125891A1 (en) * 2018-12-18 2020-06-25 Vestas Wind Systems A/S Control of side-side and fore-aft vibrational movement of a wind turbine
JP7266447B2 (en) * 2019-04-09 2023-04-28 三菱重工業株式会社 Offshore installation method of wind turbine using semi-submersible floating body and semi-submersible floating body
CN112012884B (en) * 2019-05-28 2022-08-16 北京金风科创风电设备有限公司 Control method and device of wind generating set
US11208986B2 (en) 2019-06-27 2021-12-28 Uptake Technologies, Inc. Computer system and method for detecting irregular yaw activity at a wind turbine
US10975841B2 (en) * 2019-08-02 2021-04-13 Uptake Technologies, Inc. Computer system and method for detecting rotor imbalance at a wind turbine
ES2812374B2 (en) 2019-09-16 2022-02-17 Esteyco S A CONTROL PROCEDURE OF A FLOATING TYPE OFFSHORE WIND TURBINE, AS WELL AS THE SYSTEM AND THE WIND TURBINE THAT INCORPORATES THIS PROCEDURE
CN113357097B (en) * 2020-03-02 2024-01-26 北京金风科创风电设备有限公司 Blade clamping detection method and device for wind generating set
CN113446149B (en) * 2020-03-27 2022-10-21 新疆金风科技股份有限公司 Control method and device of wind generating set
CN113833606B (en) * 2021-09-29 2023-09-26 上海电气风电集团股份有限公司 Damping control method, system and readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178885A (en) * 1982-04-02 1983-10-19 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Wind-force turbine system for electric power generation

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998406A (en) * 1964-05-28 1976-12-21 Aeronutronic Ford Corporation Guided missile system
US4029271A (en) 1976-04-07 1977-06-14 United Technologies Corporation Automatic approach to hover system
US4115755A (en) 1976-06-11 1978-09-19 United Technologies Corporation Aerodynamic surface load sensing
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
US4161658A (en) * 1978-06-15 1979-07-17 United Technologies Corporation Wind turbine generator having integrator tracking
US4160170A (en) * 1978-06-15 1979-07-03 United Technologies Corporation Wind turbine generator pitch control system
US4193005A (en) * 1978-08-17 1980-03-11 United Technologies Corporation Multi-mode control system for wind turbines
US4339666A (en) 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
US4410806A (en) * 1981-09-03 1983-10-18 Brulle Robert V Control system for a vertical axis windmill
US4420692A (en) * 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US4656362A (en) 1982-11-08 1987-04-07 United Technologies Corporation Blade pitch angle control for large wind turbines
US4703189A (en) 1985-11-18 1987-10-27 United Technologies Corporation Torque control for a variable speed wind turbine
JPH0674674B2 (en) * 1986-09-18 1994-09-21 三菱重工業株式会社 Vibration control device
US4955269A (en) * 1988-02-04 1990-09-11 Westinghouse Electric Corp. Turbine blade fatigue monitor
JPH0280771A (en) * 1988-09-17 1990-03-20 Hazama Gumi Ltd Wind vibration reducing device of construction
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5284418A (en) * 1991-07-29 1994-02-08 Toyota Jidosha Kabushiki Kaisha Electric pitch control apparatus for variable pitch propeller capable of controlling the pitch angle based instantaneous operational conditions of the propeller
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
DE69425270T2 (en) * 1993-11-02 2001-01-18 Autoliv Japan Ltd IMPACT SENSOR
JP3064186B2 (en) * 1994-07-05 2000-07-12 三菱重工業株式会社 Vibration damper for tower structures
JP3228490B2 (en) * 1994-07-27 2001-11-12 株式会社エイチエヌディ Method and apparatus for measuring damping force of body-mounted shock absorber
US7386401B2 (en) * 1994-11-21 2008-06-10 Phatrat Technology, Llc Helmet that reports impact information, and associated methods
US5584655A (en) 1994-12-21 1996-12-17 The Wind Turbine Company Rotor device and control for wind turbine
DE4445996C2 (en) * 1994-12-22 2002-10-24 Bosch Gmbh Robert Restraint release procedures
US5607122A (en) 1994-12-22 1997-03-04 Bell Helicopter Textron Inc. Tail rotor authority control for a helicopter
KR0181232B1 (en) * 1996-10-31 1999-03-20 오상수 Half-active electromagnetic control suspension system
US5833156A (en) * 1997-04-22 1998-11-10 Aquametrics Inc. Fishing reel with automatic backlash control
DE19731918B4 (en) 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Wind turbine
US5978600A (en) * 1997-09-30 1999-11-02 Nikon Corporation Motion compensation device to compensate for motion of an optical system without using motion sensors
ES2178872T3 (en) * 1998-01-14 2003-01-01 Dancontrol Engineering As PROCEDURE TO MEASURE AND CONTROL OSILATIONS IN A WIND ENGINE.
WO1999044016A1 (en) * 1998-02-25 1999-09-02 Koninklijke Philips Electronics N.V. Method of and system for measuring performance during an exercise activity, and an athletic shoe for use in the system
DE19814357A1 (en) * 1998-03-31 1999-10-07 Maha Gmbh & Co Kg Measuring device for vehicle diagnosis
EP0995904A3 (en) * 1998-10-20 2002-02-06 Tacke Windenergie GmbH Wind turbine
EP1034818A1 (en) * 1999-03-05 2000-09-13 Andrea Dr. Talkenberg Golf navigation apparatus
EP1063108B1 (en) * 1999-06-24 2006-03-01 STMicroelectronics S.r.l. Method and device for controlling semiactive suspensions of motor vehicles
US6619918B1 (en) 1999-11-03 2003-09-16 Vestas Wind Systems A/S Method of controlling the operation of a wind turbine and wind turbine for use in said method
JP4104037B2 (en) * 2000-02-04 2008-06-18 独立行政法人科学技術振興機構 Passive active pitch flap mechanism
US6441507B1 (en) 2000-03-22 2002-08-27 The Wind Turbine Company Rotor pitch control method and apparatus for parking wind turbine
DE10016912C1 (en) * 2000-04-05 2001-12-13 Aerodyn Eng Gmbh Operation of offshore wind turbines dependent on the natural frequency of the tower
JP2002176791A (en) * 2000-09-26 2002-06-21 Yaskawa Electric Corp Motor controller
JP4006178B2 (en) * 2000-12-25 2007-11-14 キヤノン株式会社 Lens barrel, photographing device and observation device
JP4229358B2 (en) * 2001-01-22 2009-02-25 株式会社小松製作所 Driving control device for unmanned vehicles
DE10106208C2 (en) * 2001-02-10 2002-12-19 Aloys Wobben Wind turbine
DE10113038C2 (en) * 2001-03-17 2003-04-10 Aloys Wobben Tower vibration monitoring
US6726439B2 (en) 2001-08-22 2004-04-27 Clipper Windpower Technology, Inc. Retractable rotor blades for power generating wind and ocean current turbines and means for operating below set rotor torque limits
EP1429025B1 (en) * 2001-12-28 2013-11-27 Mitsubishi Heavy Industries, Ltd. Up-wind type windmill and operating method therefor
US7071578B1 (en) * 2002-01-10 2006-07-04 Mitsubishi Heavy Industries, Ltd. Wind turbine provided with a controller for adjusting active annular plane area and the operating method thereof
US7246991B2 (en) * 2002-09-23 2007-07-24 John Vanden Bosche Wind turbine blade deflection control system
US7160083B2 (en) 2003-02-03 2007-01-09 General Electric Company Method and apparatus for wind turbine rotor load control
US6888262B2 (en) 2003-02-03 2005-05-03 General Electric Company Method and apparatus for wind turbine rotor load control
US7004724B2 (en) 2003-02-03 2006-02-28 General Electric Company Method and apparatus for wind turbine rotor load control based on shaft radial displacement
US6940185B2 (en) * 2003-04-10 2005-09-06 Advantek Llc Advanced aerodynamic control system for a high output wind turbine
EP2562415B1 (en) * 2003-09-10 2016-01-06 MITSUBISHI HEAVY INDUSTRIES, Ltd. Blade-pitch-angle control device and wind power generator
JP4269941B2 (en) * 2004-01-08 2009-05-27 株式会社日立製作所 Wind power generator and control method thereof
WO2005083266A1 (en) 2004-02-27 2005-09-09 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active vibration damping method for the same, and wind turbine tower
WO2006134425A2 (en) * 2004-05-06 2006-12-21 Zf Friedrichshafen Ag Helicopter rotor control system with individual blade control
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
DE102005017054B4 (en) * 2004-07-28 2012-01-05 Igus - Innovative Technische Systeme Gmbh Method and device for monitoring the condition of rotor blades on wind turbines
US7309930B2 (en) * 2004-09-30 2007-12-18 General Electric Company Vibration damping system and method for variable speed wind turbines
US7822560B2 (en) * 2004-12-23 2010-10-26 General Electric Company Methods and apparatuses for wind turbine fatigue load measurement and assessment
DE102005004086A1 (en) * 2005-01-21 2006-07-27 Xybermind Gmbh Device and method for detecting movement
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
US20070182162A1 (en) * 2005-07-27 2007-08-09 Mcclintic Frank Methods and apparatus for advanced windmill design
US7342323B2 (en) * 2005-09-30 2008-03-11 General Electric Company System and method for upwind speed based control of a wind turbine
US20070114799A1 (en) * 2005-11-18 2007-05-24 Andre Riesberg Systems and methods for damping a displacement of a wind turbine tower
DE102006001613B4 (en) * 2006-01-11 2008-01-31 Repower Systems Ag Method for operating a wind turbine and wind turbine
JP4814644B2 (en) * 2006-02-01 2011-11-16 富士重工業株式会社 Wind power generator
JP4738206B2 (en) * 2006-02-28 2011-08-03 三菱重工業株式会社 Wind power generation system and control method thereof
JP4872393B2 (en) * 2006-03-14 2012-02-08 株式会社日立製作所 Wind power generation hydrogen production system
CN101400892B (en) * 2006-03-16 2013-04-17 维斯塔斯风力***有限公司 A method and control system for reducing the fatigue loads in the components of a wind turbine subjected to asymmetrical loading of the rotor plane
US7355294B2 (en) * 2006-05-22 2008-04-08 General Electric Company Method and system for wind turbine blade movement
EP2035699B1 (en) * 2006-06-30 2018-08-08 Vestas Wind Systems A/S A wind turbine tower and method for altering the eigenfrequency of a wind turbine tower
US7417332B2 (en) * 2006-08-24 2008-08-26 General Electric Company Method and apparatus of monitoring a machine
ES2755000T3 (en) * 2006-09-14 2020-04-21 Vestas Wind Sys As Methods for controlling a wind turbine connected to the electricity supply network, wind turbine and wind farm
AU2007304633B2 (en) * 2006-10-02 2011-02-24 Vestas Wind Systems A/S A wind turbine, a method for damping edgewise oscillations in one or more blades of a wind turbine by changing the blade pitch and use hereof
WO2008049426A1 (en) * 2006-10-24 2008-05-02 Vestas Wind Systems A/S A method for damping tower oscillations, an active stall controlled wind turbine and use hereof
CN101589229B (en) * 2006-12-08 2011-11-16 维斯塔斯风力***有限公司 A method for damping edgewise oscillations in one or more blades of a wind turbine, an active stall controlled wind turbine and use hereof
JP2010514978A (en) * 2006-12-28 2010-05-06 クリッパー・ウィンドパワー・テクノロジー・インコーポレーテッド Damping tower resonant motion and symmetric blade motion using estimation methods in wind turbines
JP4501958B2 (en) * 2007-05-09 2010-07-14 株式会社日立製作所 Wind power generation system and control method thereof
JP4994947B2 (en) * 2007-05-21 2012-08-08 三菱重工業株式会社 Wind power generator and yaw rotation drive method for wind power generator
JP5022102B2 (en) * 2007-05-25 2012-09-12 三菱重工業株式会社 Wind power generator, wind power generator system, and power generation control method for wind power generator
JP4962195B2 (en) * 2007-08-03 2012-06-27 コニカミノルタオプティクス株式会社 Pulse oximeter
US7709972B2 (en) * 2007-08-30 2010-05-04 Mitsubishi Heavy Industries, Ltd. Wind turbine system for satisfying low-voltage ride through requirement
EP2232062B1 (en) * 2007-11-30 2017-06-14 Vestas Wind Systems A/S A wind turbine, a method for controlling a wind turbine and use thereof
ES2644843T3 (en) * 2007-11-30 2017-11-30 Vestas Wind Systems A/S A wind turbine, a method for controlling and using a wind turbine
WO2009078072A1 (en) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. Wind power generation system and its operation control method
US7948100B2 (en) * 2007-12-19 2011-05-24 General Electric Company Braking and positioning system for a wind turbine rotor
EP2108830B1 (en) * 2008-01-10 2019-08-28 Siemens Gamesa Renewable Energy A/S Method for determining fatigue load of a wind turbine and for fatigue load control, and wind turbines therefor
US7956482B2 (en) * 2008-01-18 2011-06-07 General Electric Company Speed controlled pitch system
ES2528743T3 (en) * 2008-04-02 2015-02-12 Siemens Aktiengesellschaft Vibration damping method of a wind turbine tower and control system for wind turbines
EP2110551B2 (en) * 2008-04-15 2019-02-27 Siemens Aktiengesellschaft Method and apparatus for prediction-based wind turbine control
US7942629B2 (en) * 2008-04-22 2011-05-17 General Electric Company Systems and methods involving wind turbine towers for power applications
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor
EP2133563A1 (en) * 2008-06-09 2009-12-16 Siemens Aktiengesellschaft Method for the determination of a nacelle-inclination
EP2287465B1 (en) * 2008-06-18 2016-06-22 Mitsubishi Heavy Industries, Ltd. Wind-turbine-dynamic-characteristics monitoring apparatus and method therefore
ATE530765T1 (en) * 2008-07-16 2011-11-15 Siemens Ag METHOD AND ARRANGEMENT FOR DAMPING TOWER VIBRATIONS
US20100070161A1 (en) * 2008-09-14 2010-03-18 Harris Scott C Multimode Navigator device
US8128361B2 (en) * 2008-12-19 2012-03-06 Frontier Wind, Llc Control modes for extendable rotor blades
US8178986B2 (en) * 2009-03-18 2012-05-15 General Electric Company Wind turbine operation system and method
US20110158806A1 (en) * 2009-04-15 2011-06-30 Arms Steven W Wind Turbines and Other Rotating Structures with Instrumented Load-Sensor Bolts or Instrumented Load-Sensor Blades
US20100283246A1 (en) * 2009-05-07 2010-11-11 Vestas Wind Systems A/S Wind turbine
CN102439296B (en) * 2009-06-26 2014-05-28 三菱重工业株式会社 Wind driven generator and method of controlling same
JP5550283B2 (en) * 2009-08-06 2014-07-16 三菱重工業株式会社 Wind turbine generator, wind turbine generator control method, wind turbine generator system, and wind turbine generator system control method
US8162788B2 (en) * 2009-08-27 2012-04-24 General Electric Company System, device and method for wind turbine control based on operating profiles
US7772713B2 (en) * 2009-09-30 2010-08-10 General Electric Company Method and system for controlling a wind turbine
US7880320B2 (en) * 2009-10-30 2011-02-01 General Electric Company System, device, and method for controlling a wind turbine using seasonal parameters
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation
CN102216608B (en) * 2010-02-08 2014-05-07 三菱重工业株式会社 Wind-powered electrical generator and blade pitch control method therefor
US8169098B2 (en) * 2010-12-22 2012-05-01 General Electric Company Wind turbine and operating same
US20110193344A1 (en) * 2010-12-29 2011-08-11 Vestas Wind Systems A/S Control Network for Wind Turbine Park
US8121739B2 (en) * 2010-12-29 2012-02-21 Vestas Wind Systems A/S Reactive power management for wind power plant internal grid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178885A (en) * 1982-04-02 1983-10-19 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Wind-force turbine system for electric power generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644546A (en) * 2011-02-15 2012-08-22 Ssb风***两合公司 Blade load reduction for wind turbine
CN102644546B (en) * 2011-02-15 2014-09-10 Ssb风***两合公司 Blade load reduction for wind turbine
JP2015124736A (en) * 2013-12-27 2015-07-06 株式会社日立製作所 Wind power generator
EP3276166A1 (en) 2016-07-29 2018-01-31 Hitachi, Ltd. Wind power generating system

Also Published As

Publication number Publication date
AU2004316333B2 (en) 2010-09-02
CN100400861C (en) 2008-07-09
US20130230396A1 (en) 2013-09-05
CA2557396A1 (en) 2005-09-09
EP1719910A1 (en) 2006-11-08
US20130001947A1 (en) 2013-01-03
KR20070026362A (en) 2007-03-08
JPWO2005083266A1 (en) 2008-01-17
US20080206051A1 (en) 2008-08-28
US20110309622A1 (en) 2011-12-22
US8546968B2 (en) 2013-10-01
CA2557396C (en) 2010-12-21
US8026623B2 (en) 2011-09-27
EP1719910A4 (en) 2012-02-22
US20100187820A1 (en) 2010-07-29
TWI261088B (en) 2006-09-01
US8115331B2 (en) 2012-02-14
EP1719910B1 (en) 2019-06-26
US7692322B2 (en) 2010-04-06
US8395273B2 (en) 2013-03-12
CN1906409A (en) 2007-01-31
AU2004316333A1 (en) 2005-09-09
WO2005083266A1 (en) 2005-09-09
TW200530504A (en) 2005-09-16
US20110156393A1 (en) 2011-06-30
US8299643B2 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
JP4599350B2 (en) Wind power generator, active vibration control method thereof, and windmill tower
EP2107236B1 (en) Method of damping tower vibrations of a wind turbine and control system for wind turbines
Jonkman Influence of control on the pitch damping of a floating wind turbine
CN110446853B (en) System and method for managing torsional oscillations of a wind turbine tower
KR101660553B1 (en) Blade pitch control in a wind turbine installation
EP2063110B1 (en) Method of damping tower vibrations of a wind turbine and inclination control system
US9523352B2 (en) Methods and systems for alleviating the loads generated in wind turbines by wind asymmetries
EP2489872B1 (en) Blade load reduction for wind turbine
JP5237455B2 (en) Blade pitch control device, wind power generator, and blade pitch control method
JP5200097B2 (en) Wind turbine generator and blade pitch angle control method thereof
JP6537069B2 (en) Motion control of a floating wind turbine
WO2015086024A1 (en) Operating method for a wind turbine
JP6756489B2 (en) How to control wind power generators
JP6554368B2 (en) Wind power generation system or control method of wind power generation system
MXPA06009297A (en) Wind turbine generator, active vibration damping method for the same, and wind turbine tower

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R151 Written notification of patent or utility model registration

Ref document number: 4599350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250