JP4598176B2 - Piezoelectric ceramic composition, method for producing the same, and piezoelectric element - Google Patents

Piezoelectric ceramic composition, method for producing the same, and piezoelectric element Download PDF

Info

Publication number
JP4598176B2
JP4598176B2 JP2003026199A JP2003026199A JP4598176B2 JP 4598176 B2 JP4598176 B2 JP 4598176B2 JP 2003026199 A JP2003026199 A JP 2003026199A JP 2003026199 A JP2003026199 A JP 2003026199A JP 4598176 B2 JP4598176 B2 JP 4598176B2
Authority
JP
Japan
Prior art keywords
ceramic composition
piezoelectric ceramic
piezoelectric
compound containing
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003026199A
Other languages
Japanese (ja)
Other versions
JP2003342071A (en
Inventor
康善 齋藤
一雅 鷹取
隆彦 本間
尚史 高尾
龍彦 野々山
年厚 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2003026199A priority Critical patent/JP4598176B2/en
Priority to EP03006066A priority patent/EP1346966B1/en
Priority to EP08155445A priority patent/EP1947071B1/en
Priority to US10/391,192 priority patent/US7150838B2/en
Priority to DE60323704T priority patent/DE60323704D1/en
Publication of JP2003342071A publication Critical patent/JP2003342071A/en
Application granted granted Critical
Publication of JP4598176B2 publication Critical patent/JP4598176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【技術分野】
本発明は,組成物中に鉛を含有しない圧電磁器組成物及びその製造方法,並びに該圧電磁器組成物を材料とする圧電素子に関する。
【0002】
【従来技術】
従来より,圧電磁器組成物としては,鉛を含んだPZT(PbTiO3−PbZrO3)成分系磁器が用いられてきた。
上記PZTは,電気機械結合係数や圧電定数等の圧電特性に優れており,上記PZTを利用した圧電素子は,センサ,アクチュエータ,フィルター等に広く利用されている。
【0003】
ところが,上記PZTから成る圧電磁器組成物は,優れた特性を有する一方で,その構成元素に鉛を含んでいるため,PZTを含んだ製品の産業廃棄物から有害な鉛が溶出し,環境汚染を引き起こすおそれがあった。そして,近年の環境問題に対する意識の高まりは,PZTのように環境汚染の原因となりうる製品の製造を困難にしてきた。そのため,組成中に鉛を含有しない圧電磁器組成物の開発が求められ,一般式(K1-xNax)NbO3(但し,0<x<1)で表される圧電磁器組成物(非特許文献1参照)が注目されてきた。
【0004】
【非特許文献1】
“Journal of the American Ceramic Society”,米国,1962,Vol.45,No.5,p.209
【0005】
【解決しようとする課題】
しかしながら,上記一般式(K1-xNax)NbO3(但し,0<x<1)で表される圧電磁器組成物は,焼成が困難であるため,ホットプレス焼成を行う必要がある。そのため,製造コストが高くなるという問題があった。
【0006】
また,上記従来の圧電磁器組成物は,圧電d31定数及び電気機械結合係数Kpが低いため,高い圧電d31定数及び高い電気機械結合係数Kpを要する圧電フィルター,圧電振動子,圧電トランス,圧電超音波モータ,圧電ジャイロセンサ,ノックセンサ素子等の圧電素子への適用が困難であるという問題があった。そのため,上記一般式(K1-xNax)NbO3(但し,0<x<1)で表される圧電磁器組成物は,PZTに代わる新しい圧電磁器組成物として有望視されているものの,ほとんど実用化には至っていない。それ故,上記の一般式で表される圧電磁器組成物が開発された後も,環境汚染のおそれがあるPZT等の鉛系圧電磁器組成物が広く利用されているのが現状である。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,鉛を含有せず,常圧にて焼成が可能で,かつ圧電d31定数及び電気機械結合係数Kpが高い圧電磁器組成物及びその製造方法,並びに該圧電磁器組成物を利用した圧電素子を提供しようとするものである。
【0008】
【課題の解決手段】
第1の発明は,一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にあり,
圧電d 31 定数が46.5pm/V以上であり、かつ電気機械結合係数Kpが0.324以上であることを特徴とする圧電磁器組成物にある(請求項1)。
【0009】
次に,本発明の作用効果につき説明する。
本発明の圧電磁器組成物は,上記一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,組成物中に鉛を含有していない。
そのため,上記圧電磁器組成物は,該圧電磁器組成物の廃棄物等から有害な鉛が自然界に流出することがなく,安全である。
【0010】
また,上記の一般式において,x,y,z,及びnがそれぞれ上記の範囲にある。そのため,後述する実施例でも明らかとなるように,上記圧電磁器組成物は,圧電d31定数及び電気機械結合係数Kpが高い。そして,上記圧電磁器組成物は,常圧下での焼成によっても充分に緻密化することができる。
【0011】
したがって,本発明によれば,鉛を含有せず,常圧にて焼成が可能で,かつ圧電d31定数及び電気機械結合係数Kpが高い圧電磁器組成物を提供することができる。なお,本発明における圧電磁器組成物は,圧電特性を有する磁器組成物に限らず,誘電特性を有する誘電磁器組成物をも含む概念である。
【0012】
次に,第2の発明は,一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にある圧電磁器組成物からなる粉末を成形し,焼成することにより上記第1の発明の圧電磁器組成物を得ることを特徴とする圧電磁器組成物の製造方法にある(請求項)。
【0013】
上記組成物よりなる粉末を用いて成形した成形体は,常圧下にて焼成することができる。そのため,簡単で,低コストに焼成を行うことができる。そして,上記焼成後に得られる圧電磁器組成物は,鉛を含有せず,圧電d31定数及び電気機械結合係数Kpが高いものとなる。そのため,高性能な圧電素子又は誘電素子等の材料として利用することができる。
【0014】
第3の発明は,リチウムを含有してなる化合物と,ナトリウムを含有してなる化合物と,カリウムを含有してなる化合物と,ニオブを含有してなる化合物と,タンタルを含有してなる化合物と,マンガンを含有してなる化合物と,タングステンを含有してなる化合物とを混合,焼成することにより上記第1の発明の圧電磁器組成物を得ることを特徴とする圧電磁器組成物の製造方法にある(請求項)。
【0015】
本発明においては,上記のごとく,リチウムを含有してなる化合物と,ナトリウムを含有してなる化合物と,カリウムを含有してなる化合物と,ニオブを含有してなる化合物と,タンタルを含有してなる化合物と,マンガンを含有してなる化合物と,タングステンを含有してなる化合物とを混合,焼成する。
これにより上記一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にある圧電磁器組成物を容易に得ることができる。
【0016】
また,上記焼成時には,常圧下にて上記圧電磁器組成物を焼成することができる。そして,上記焼成後に得られる圧電磁器組成物は,鉛を含有せず,圧電d31定数及び電気機械結合係数Kpが高いものとなる。
【0017】
第4の発明は,第1の発明の圧電磁器組成物を有することを特徴とする圧電素子にある(請求項)。
【0018】
本発明の圧電素子においては,一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にあることを特徴とする圧電磁器組成物を用いている
そのため,上記圧電素子は,上記圧電磁器組成物の,鉛を含有せず,圧電d31定数及び電気機械結合係数Kpが高いという優れた特性をそのまま利用することができる。
【0019】
第5の発明は,第2の発明又は第3の発明製造方法により製造される圧電磁器組成物を有することを特徴とする圧電素子にある(請求項)。
【0020】
本発明の圧電素子は,上記第2の発明(請求項)又は第3の発明(請求項)の製造方法により得られる圧電磁器組成物を用いている。そのため,上記圧電素子は,上記圧電磁器組成物が有する優れた特性をそのまま利用することができる。
【0021】
【発明の実施の形態】
本発明において,上記圧電磁器組成物は,一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にある。
ここで,x>0.2,z>0.4,n>0.1又は,n=0の場合には,上記圧電磁器組成物の圧電d31定数及び電気機械結合係数Kpが低下し,所望の圧電特性を有する圧電磁器組成物を得ることができない。
【0022】
また第1の発明(請求項1)において,上記圧電磁器組成物は,圧電d31定数が30pm/V以上であることが好ましい
この場合には,上記30pm/V以上という高い圧電d31定数を活かして,上記圧電磁器組成物を感度の高いセンサ素子及びアクチュエータ素子等として利用することができる。
【0023】
次に,上記圧電磁器組成物は,電気機械結合係数Kpが0.25以上であることが好ましい
この場合には,上記0.25以上という高い電気機械結合係数Kpを活かして,上記圧電磁器組成物を機械エネルギーと電気エネルギーの変換効率に優れた圧電アクチュエータ,圧電振動子等として利用することができる。
【0024】
次に,上記圧電磁器組成物は,誘電損失が0.05以下であることが好ましい(請求項)。
この場合には,0.05以下という低い誘電損失を活かして,上記圧電磁器組成物を誘電損失に起因する誘電損失ノイズの少ないセンサ素子等として利用することができる。
【0025】
次に,上記圧電磁器組成物は,キュリー温度が200℃以上であることが好ましい(請求項)。
この場合には,200℃以上という高いキュリー温度を活かして,上記圧電磁器組成物を,例えば自動車のエンジン付近等のように高温度の環境下にて利用することができる。
【0026】
また,第3の発明(請求項)において,リチウムを含有してなる化合物はLi2CO3であり,ナトリウムを含有してなる化合物はNa2CO3であり,カリウムを含有してなる化合物はK2CO3であり,ニオブを含有してなる化合物はNb25であり,タンタルを含有してなる化合物はTa25であり,マンガンを含有してなる化合物はMnO,MnO2またはMnCO3であり,タングステンを含有してなる化合物はWO3であることが好ましい(請求項)。
この場合には,上記圧電磁器組成物を容易に作製することができる。
また,マンガン及びタングステンを含有する化合物としてMnWO4を用いることができる。
【0027】
また,第4の発明(請求項)又は第5の発明(請求項)において,上記圧電素子としては,例えば圧電振動子,表面波フィルター素子,圧電センサ素子,アクチュエータ素子,超音波モータ素子,圧電トランス素子,圧電ジャイロセンサ素子,ノックセンサ素子等がある。
【0028】
【実施例】
(実施例1)
本例の実施例にかかる圧電磁器組成物につき説明する。
本例では,上記の圧電磁器組成物を製造し,該圧電磁器組成物の圧電特性を測定した。
本例の圧電磁器組成物は,一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にある。
以下,本例の圧電磁器組成物の製造方法につき説明する。
【0029】
まず,圧電磁器組成物の原料として,純度99%以上の高純度のLi2CO3,K2CO3,Na2CO3,Nb25,Ta25,MnO2,WO3を準備した。これらの原料を上記一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3において,x=0.1,y=0.5,z=0.1,n=0.02となるように配合した。配合後の原料をボールミルによりアセトン中にて24時間混合して原料混合物を作製した。
【0030】
次に,この原料混合物を750℃にて5時間仮焼し,この仮焼後の原料混合物をボールミルにて24時間粉砕した。続いて,バインダーとしてポリビニールブチラールを添加し,造粒した。
造粒後の粉体を圧力2ton/cm2にて,直径13mm,厚さ2mmの円盤状に加圧成形し,成形体を常圧下,1000〜1300℃にて1時間焼成した。
ここで,焼成後の成形体は相対密度98%以上に緻密化されていた。
【0031】
次に,焼成後の各成形体の両面を平行研磨し,円形研磨した後,この円盤試料の両面にスパッタ法により金電極を設けた。そして,100℃のシリコーンオイル中にて1〜5kV/mmの直流電圧を10分間電極間に印加し,厚み方向に分極を施して本例の圧電磁器組成物(本発明品)とした。
【0032】
上記のようにして作製した本例の圧電磁器組成物について,圧電d31定数,電気機械結合係数Kp,誘電損失,キュリー温度,比誘電率及び径方向の周波数定数Np,及び絶縁抵抗率を測定した。ここで圧電d31定数,電気機械結合係数Kp及び周波数定数Npは,インピーダンスアナライザーを用いて共振−***振法により測定した。また,誘電損失及び比誘電率は,インピーダンスアナライザーを用いて,測定周波数1kHzにて測定し,キュリー温度は,上記圧電磁器組成物の温度を一分当たり2℃ずつ600℃まで上げながら比誘電率を測定し,該比誘電率が最も高いときの温度をもってキュリー温度とした。また,絶縁抵抗率は,超抵抗計を用いて,印加電圧5V/mmの条件にて二端子法により測定した。
その結果を表1に示す。
【0033】
【表1】

Figure 0004598176
【0034】
また,本例では上記圧電磁器組成物の優れた特性を明らかにするために,以下のようにして比較品を作製した。
まず,比較品の原料として,純度99%以上の高純度のLi2CO3,K2CO3,Na2CO3,Nb25及びTa25を準備した。これらの原料を上記一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3において,x=0.1,y=0.5,z=0.1,n=0となるように配合した。配合後の原料をボールミルによりアセトン中にて24時間混合して原料混合物を作製した。
【0035】
次に,この原料混合物を750℃にて5時間仮焼し,上記本発明品と同様にして,ボールミルにて24時間粉砕,造粒した。
造粒後の粉体を圧力2ton/cm2にて,直径13mm,厚さ2mmの円盤状に加圧成形し,成形体を常圧下,1000〜1300℃にて1時間焼成した。ここで,焼成後の成形体は相対密度98%以上に緻密化されていた。
【0036】
次に,焼成後の成形体の両面を平行研磨し,上記本発明品と同様に,金電極を設けた。そして,100℃のシリコーンオイル中にて1〜5kV/mmの直流電圧を10分間電極間に印加し,厚み方向に分極を施して比較品とした。
【0037】
上記のようにして作製した比較品についても,圧電d31定数,電気機械結合係数Kp,誘電損失,キュリー温度,比誘電率及び径方向の周波数定数Npを測定した。各測定値の測定方法は,本発明品の場合と同様とした。
その結果を表1に示す。
【0038】
表1より知られるごとく,本発明品の圧電d31定数は,比較品よりも高い値を示した。
一般に,上記圧電d31定数は,電荷検出型回路あるいは電流検出型回路を用いた場合には,加速度センサ,加重センサ,衝撃センサ及びノックセンサ等の圧電型センサの出力電圧に比例する。また,上記圧電d31定数は圧電アクチュエータの変位量にも比例する。その点からみると,圧電d31定数が高い圧電磁器組成物ほど電荷センサ出力の大きなセンサ,又は変位量の大きな圧電アクチュエータをを作ることができる。そして,比較品と同等以上の特性を有するセンサ又は圧電アクチュエータを作製するには,少なくとも30pm/V以上の圧電d31定数を有することが好ましい。
【0039】
また,本発明品の電気機械結合係数Kpは,比較品よりも高い値を示した。
一般に上記電気機械結合係数Kpは,圧電トランス素子,超音波モータ素子,アクチュエータ素子,又は超音波振動子等の電気機械エネルギー変換効率に比例する。その点からみると,電気機械結合係数Kpが高い圧電磁器組成物ほど電気変換効率の高い圧電トランス素子,超音波モータ素子,アクチュエータ素子,又は超音波振動子を作ることができる。そして,比較品と同等以上の特性を有する圧電トランス素子,超音波モータ素子,又は超音波振動子を作製するには,少なくとも0.25以上の電気機械結合係数Kpを有することが好ましいといえる。
【0040】
また,本発明品の誘電損失は,比較品に比べて低い値を示した。したがって,本発明品の圧電磁器組成物は,誘電損失に起因する誘電損失ノイズの少ないセンサ等に利用することができる
【0041】
また,本発明品のキュリー温度は,415℃という高い値を示した。そのため,本発明品の圧電磁器組成物は,自動車のエンジン付近等の高温度部においても長時間安定に使用することができるノックセンサ等の高温用センサ部品,アクチュエータ部品又は超音波モータ部品等として利用することができる。なお,上記高温用センサ部品等として長時間安定に使用するためには,上記キュリー温度は,200℃以上であることが好ましい。
【0042】
また,本発明品の比誘電率は比較品よりも高く,809という高い値を示した。そのため,本発明品の圧電磁器組成物は,圧電体のみならず誘電体としても利用することができる。そして,上記比誘電率は,一般に積層コンデンサ部品等のコンデンサの静電容量に比例する。その点からみると,上記比誘電率が高い圧電磁器組成物ほど静電容量の大きなコンデンサを作ることができる。本発明品の圧電磁器組成物は,上記のような高い比誘電率を有しているため,大きな静電容量を有するコンデンサ等に利用することができる。
【0043】
また,本発明品の周波数定数Npは比較品よりも高い値を示した。そのため,本発明品の圧電磁器組成物を用いると,周波数が高くかつ小型の圧電振動子部品を作製することができる。
【0044】
また,本発明品の絶縁抵抗率は,比較品よりも非常に高い値を示した。このように高い絶縁抵抗率を生かして,本発明品は,高電界で使用する圧電アクチュエータに最適なものとなる。
【0045】
なお,上記一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3の上記組成範囲内(0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1)において,上記本発明品とは異なる組成範囲についても本例と同様に圧電磁器組成物を作製し圧電特性の測定をおこなったところ,本例と同様の効果が得られることを確認できた。[0001]
【Technical field】
The present invention relates to a piezoelectric ceramic composition that does not contain lead in the composition, a method for producing the same, and a piezoelectric element using the piezoelectric ceramic composition as a material.
[0002]
[Prior art]
Conventionally, PZT (PbTiO 3 —PbZrO 3 ) component-based porcelain containing lead has been used as a piezoelectric ceramic composition.
The PZT is excellent in piezoelectric characteristics such as an electromechanical coupling coefficient and a piezoelectric constant, and the piezoelectric element using the PZT is widely used for sensors, actuators, filters, and the like.
[0003]
However, the piezoelectric ceramic composition comprising PZT described above has excellent characteristics, but contains lead as a constituent element, so that harmful lead is eluted from industrial waste of products containing PZT, resulting in environmental pollution. There was a risk of causing. The recent increase in awareness of environmental problems has made it difficult to manufacture products that can cause environmental pollution such as PZT. Therefore, the development of a piezoelectric ceramic composition containing no lead in the composition is required, and a piezoelectric ceramic composition represented by the general formula (K 1-x Na x ) NbO 3 (where 0 <x <1) (non- (See Patent Document 1).
[0004]
[Non-Patent Document 1]
“Journal of the American Ceramic Society”, USA, 1962, Vol. 45, no. 5, p. 209
[0005]
[Problems to be solved]
However, since the piezoelectric ceramic composition represented by the general formula (K 1-x Na x ) NbO 3 (where 0 <x <1) is difficult to sinter, it is necessary to perform hot press firing. Therefore, there has been a problem that the manufacturing cost becomes high.
[0006]
Further, the conventional piezoelectric ceramic composition for piezoelectric d 31 constant and electromechanical coupling factor Kp is low, piezoelectric filters requiring high piezoelectric d 31 constant and a high electromechanical coupling factor Kp, the piezoelectric vibrator, a piezoelectric transformer, piezoelectric There is a problem that it is difficult to apply to piezoelectric elements such as an ultrasonic motor, a piezoelectric gyro sensor, and a knock sensor element. Therefore, although the piezoelectric ceramic composition represented by the above general formula (K 1-x Na x ) NbO 3 (where 0 <x <1) is promising as a new piezoelectric ceramic composition replacing PZT, Almost no practical use. Therefore, even after the development of the piezoelectric ceramic composition represented by the above general formula, lead-based piezoelectric ceramic compositions such as PZT that are likely to cause environmental pollution are still widely used.
[0007]
The present invention has been made in view of such conventional problems, and includes a piezoelectric ceramic composition that does not contain lead, can be fired at normal pressure, and has a high piezoelectric d 31 constant and a high electromechanical coupling coefficient Kp. An object of the present invention is to provide a manufacturing method thereof and a piezoelectric element using the piezoelectric ceramic composition.
[0008]
[Means for solving problems]
The first invention of the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) is represented by O 3, and x, y, z , n is Ri composition range near each 0 ≦ x ≦ 0.2,0 ≦ y ≦ 1.0,0 ≦ z ≦ 0.4,0 <n ≦ 0.1,
The piezoelectric ceramic composition is characterized in that the piezoelectric d 31 constant is 46.5 pm / V or more and the electromechanical coupling coefficient Kp is 0.324 or more (Claim 1).
[0009]
Next, the effects of the present invention will be described.
The piezoelectric ceramic composition of the present invention are represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, the composition Contains no lead.
Therefore, the piezoelectric ceramic composition is safe because harmful lead does not flow out to the natural world from the waste of the piezoelectric ceramic composition.
[0010]
In the above general formula, x, y, z, and n are each in the above range. Therefore, as will be apparent from the examples described later, the piezoelectric ceramic composition has a high piezoelectric d 31 constant and an electromechanical coupling coefficient Kp. The piezoelectric ceramic composition can be sufficiently densified by firing under normal pressure.
[0011]
Therefore, according to the present invention, it is possible to provide a piezoelectric ceramic composition that does not contain lead, can be fired at normal pressure, and has a high piezoelectric d 31 constant and a high electromechanical coupling coefficient Kp. In addition, the piezoelectric ceramic composition in the present invention is a concept including not only a ceramic composition having piezoelectric characteristics but also a dielectric ceramic composition having dielectric characteristics.
[0012]
Next, the second invention are represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, and x, Powder comprising a piezoelectric ceramic composition in which y, z, n are in the composition ranges of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, and 0 <n ≦ 0.1, respectively. The piezoelectric ceramic composition according to the first aspect of the present invention is obtained by molding and firing the piezoelectric ceramic composition (Claim 4 ).
[0013]
A molded body formed using the powder made of the above composition can be fired under normal pressure. Therefore, firing can be performed easily and at low cost. The piezoelectric ceramic composition obtained after firing does not contain lead and has a high piezoelectric d 31 constant and an electromechanical coupling coefficient Kp. Therefore, it can be used as a material such as a high-performance piezoelectric element or dielectric element.
[0014]
A third invention comprises a compound containing lithium, a compound containing sodium, a compound containing potassium, a compound containing niobium, and a compound containing tantalum. A method for producing a piezoelectric ceramic composition comprising obtaining a piezoelectric ceramic composition of the first invention by mixing and firing a compound containing manganese and a compound containing tungsten. (Claim 5 ).
[0015]
In the present invention, as described above, a compound containing lithium, a compound containing sodium, a compound containing potassium, a compound containing niobium, and tantalum are contained. And a compound containing manganese and a compound containing tungsten are mixed and fired.
Thus, the above general formula {Li x (K 1 -y Na y ) 1 -x } (Nb 1 -zn Ta z (Mn 0.5 W 0.5 ) n ) O 3 is represented, and x, y, z, n are Piezoelectric ceramic compositions having composition ranges of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, and 0 <n ≦ 0.1, respectively, can be easily obtained.
[0016]
In the firing, the piezoelectric ceramic composition can be fired under normal pressure. The piezoelectric ceramic composition obtained after firing does not contain lead and has a high piezoelectric d 31 constant and an electromechanical coupling coefficient Kp.
[0017]
The fourth invention is a piezoelectric element characterized by comprising a piezoelectric ceramic composition of the first invention (Claim 7).
[0018]
In the piezoelectric element of the present invention, it is represented by the general formula {Li x (K 1 -y Na y ) 1 -x } (Nb 1 -zn Ta z (Mn 0.5 W 0.5 ) n ) O 3 , and x, y , z, n piezoelectric ceramic composition, characterized in that is in the composition range of each 0 ≦ x ≦ 0.2,0 ≦ y ≦ 1.0,0 ≦ z ≦ 0.4,0 <n ≦ 0.1 The thing is used .
Therefore, the piezoelectric element can use the excellent characteristics of the piezoelectric ceramic composition, which does not contain lead, and has a high piezoelectric d 31 constant and high electromechanical coupling coefficient Kp.
[0019]
According to a fifth aspect of the present invention, there is provided a piezoelectric element comprising the piezoelectric ceramic composition produced by the production method of the second or third aspect of the invention (invention 8 ).
[0020]
The piezoelectric element of the present invention uses a piezoelectric ceramic composition obtained by the production method of the second invention (invention 4 ) or the third invention (invention 5 ). Therefore, the piezoelectric element can use the excellent characteristics of the piezoelectric ceramic composition as it is.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the piezoelectric ceramic composition is represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, and x, y, z, and n are in the composition ranges of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, and 0 <n ≦ 0.1, respectively.
Here, when x> 0.2, z> 0.4, n> 0.1, or n = 0, the piezoelectric d 31 constant and the electromechanical coupling coefficient Kp of the piezoelectric ceramic composition are reduced, A piezoelectric ceramic composition having desired piezoelectric characteristics cannot be obtained.
[0022]
In the first invention (invention 1), the piezoelectric ceramic composition preferably has a piezoelectric d 31 constant of 30 pm / V or more .
In this case, the piezoelectric ceramic composition can be used as a highly sensitive sensor element, actuator element or the like by utilizing the high piezoelectric d 31 constant of 30 pm / V or more.
[0023]
Next, the piezoelectric ceramic composition preferably has an electromechanical coupling coefficient Kp of 0.25 or more .
In this case, utilizing the high electromechanical coupling coefficient Kp of 0.25 or more, the piezoelectric ceramic composition can be used as a piezoelectric actuator, a piezoelectric vibrator, etc. excellent in conversion efficiency between mechanical energy and electric energy. it can.
[0024]
Next, the piezoelectric ceramic composition is preferably a dielectric loss is 0.05 or less (claim 2).
In this case, utilizing the low dielectric loss of 0.05 or less, the piezoelectric ceramic composition can be used as a sensor element with little dielectric loss noise caused by dielectric loss.
[0025]
Next, the piezoelectric ceramic composition is preferably Curie temperature of 200 ° C. or more (claim 3).
In this case, utilizing the high Curie temperature of 200 ° C. or higher, the piezoelectric ceramic composition can be used in a high temperature environment such as the vicinity of an automobile engine.
[0026]
In the third invention (Claim 5 ), the compound containing lithium is Li 2 CO 3 , the compound containing sodium is Na 2 CO 3 , and the compound containing potassium Is K 2 CO 3 , the compound containing niobium is Nb 2 O 5 , the compound containing tantalum is Ta 2 O 5 , and the compound containing manganese is MnO, MnO 2 Alternatively, the compound containing MnCO 3 and containing tungsten is preferably WO 3 (claim 6 ).
In this case, the piezoelectric ceramic composition can be easily produced.
Further, MnWO 4 can be used as a compound containing manganese and tungsten.
[0027]
In the fourth invention (invention 7 ) or the fifth invention (invention 8 ), examples of the piezoelectric element include a piezoelectric vibrator, a surface wave filter element, a piezoelectric sensor element, an actuator element, and an ultrasonic motor element. , Piezoelectric transformer elements, piezoelectric gyro sensor elements, knock sensor elements, and the like.
[0028]
【Example】
Example 1
The piezoelectric ceramic composition according to the example of this example will be described.
In this example, the above-described piezoelectric ceramic composition was manufactured, and the piezoelectric characteristics of the piezoelectric ceramic composition were measured.
The piezoelectric ceramic composition of this example is represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, and x, y, z, and n are in the composition ranges of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, and 0 <n ≦ 0.1, respectively.
Hereinafter, the manufacturing method of the piezoelectric ceramic composition of this example will be described.
[0029]
First, as a raw material of the piezoelectric ceramic composition, high-purity Li 2 CO 3 , K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , and WO 3 having a purity of 99% or more are prepared. did. In these materials the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, x = 0.1, y = 0 .5, z = 0.1, and n = 0.02. The blended raw materials were mixed in acetone for 24 hours by a ball mill to prepare a raw material mixture.
[0030]
Next, this raw material mixture was calcined at 750 ° C. for 5 hours, and the calcined raw material mixture was pulverized for 24 hours by a ball mill. Subsequently, polyvinyl butyral was added as a binder and granulated.
The granulated powder was pressure-molded into a disk shape having a diameter of 13 mm and a thickness of 2 mm at a pressure of 2 ton / cm 2 , and the compact was fired at 1000 to 1300 ° C. for 1 hour under normal pressure.
Here, the molded body after firing was densified to a relative density of 98% or more.
[0031]
Next, both sides of each fired compact were polished in parallel and circularly polished, and then gold electrodes were provided on both sides of the disk sample by sputtering. Then, a DC voltage of 1 to 5 kV / mm was applied between the electrodes in 100 ° C. silicone oil for 10 minutes to polarize in the thickness direction to obtain a piezoelectric ceramic composition of the present example (product of the present invention).
[0032]
For the piezoelectric ceramic composition of this example manufactured as described above, the piezoelectric d 31 constant, electromechanical coupling coefficient Kp, dielectric loss, Curie temperature, relative dielectric constant and radial frequency constant Np, and insulation resistivity were measured. did. Here, the piezoelectric d 31 constant, the electromechanical coupling coefficient Kp, and the frequency constant Np were measured by an resonance-antiresonance method using an impedance analyzer. The dielectric loss and the relative dielectric constant are measured using an impedance analyzer at a measurement frequency of 1 kHz. The Curie temperature is raised by increasing the temperature of the piezoelectric ceramic composition by 2 ° C. per minute to 600 ° C. The temperature at which the relative dielectric constant was the highest was taken as the Curie temperature. The insulation resistivity was measured by a two-terminal method using a super resistance meter under the condition of an applied voltage of 5 V / mm.
The results are shown in Table 1.
[0033]
[Table 1]
Figure 0004598176
[0034]
In this example, in order to clarify the excellent characteristics of the piezoelectric ceramic composition, a comparative product was produced as follows.
First, high purity Li 2 CO 3 , K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 with a purity of 99% or more were prepared as comparative materials. In these materials the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, x = 0.1, y = 0 .5, z = 0.1, and n = 0. The blended raw materials were mixed in acetone for 24 hours by a ball mill to prepare a raw material mixture.
[0035]
Next, this raw material mixture was calcined at 750 ° C. for 5 hours, and pulverized and granulated in a ball mill for 24 hours in the same manner as the product of the present invention.
The granulated powder was pressure-molded into a disk shape having a diameter of 13 mm and a thickness of 2 mm at a pressure of 2 ton / cm 2 , and the compact was fired at 1000 to 1300 ° C. for 1 hour under normal pressure. Here, the molded body after firing was densified to a relative density of 98% or more.
[0036]
Next, both surfaces of the fired molded body were parallel-polished, and a gold electrode was provided in the same manner as the product of the present invention. Then, a direct current voltage of 1 to 5 kV / mm was applied between the electrodes in a silicone oil at 100 ° C. for 10 minutes, and polarization was applied in the thickness direction to obtain a comparative product.
[0037]
For the comparative product produced as described above, the piezoelectric d 31 constant, the electromechanical coupling coefficient Kp, the dielectric loss, the Curie temperature, the relative dielectric constant, and the radial frequency constant Np were measured. The measurement method for each measurement value was the same as that for the product of the present invention.
The results are shown in Table 1.
[0038]
As is known from Table 1, the piezoelectric d 31 constant of the product of the present invention was higher than that of the comparative product.
In general, the piezoelectric d 31 constant is proportional to the output voltage of a piezoelectric sensor such as an acceleration sensor, a weight sensor, an impact sensor, or a knock sensor when a charge detection circuit or a current detection circuit is used. The piezoelectric d 31 constant is also proportional to the displacement of the piezoelectric actuator. From this point of view, a piezoelectric ceramic composition having a higher piezoelectric d 31 constant can produce a sensor having a larger charge sensor output or a piezoelectric actuator having a larger displacement. In order to produce a sensor or piezoelectric actuator having characteristics equal to or better than those of the comparative product, it is preferable to have a piezoelectric d 31 constant of at least 30 pm / V.
[0039]
Further, the electromechanical coupling coefficient Kp of the product of the present invention was higher than that of the comparative product.
In general, the electromechanical coupling coefficient Kp is proportional to the electromechanical energy conversion efficiency of a piezoelectric transformer element, an ultrasonic motor element, an actuator element, or an ultrasonic transducer. From this point of view, a piezoelectric transformer element, an ultrasonic motor element, an actuator element, or an ultrasonic vibrator having a higher electric conversion efficiency can be produced as a piezoelectric ceramic composition having a higher electromechanical coupling coefficient Kp. In order to manufacture a piezoelectric transformer element, an ultrasonic motor element, or an ultrasonic vibrator having characteristics equivalent to or better than those of the comparative product, it can be said that it preferably has an electromechanical coupling coefficient Kp of at least 0.25.
[0040]
In addition, the dielectric loss of the product of the present invention was lower than that of the comparative product. Therefore, the piezoelectric ceramic composition of the present invention can be used for a sensor or the like with little dielectric loss noise caused by dielectric loss .
[0041]
Further, the Curie temperature of the product of the present invention showed a high value of 415 ° C. Therefore, the piezoelectric ceramic composition of the present invention is used as a high-temperature sensor component such as a knock sensor, an actuator component, or an ultrasonic motor component that can be used stably for a long time even in a high-temperature part such as the vicinity of an automobile engine. Can be used. Note that the Curie temperature is preferably 200 ° C. or higher in order to be used stably for a long time as the high-temperature sensor component or the like.
[0042]
Further, the relative dielectric constant of the product of the present invention was higher than that of the comparative product, and showed a high value of 809. Therefore, the piezoelectric ceramic composition of the present invention can be used not only as a piezoelectric material but also as a dielectric material. The relative dielectric constant is generally proportional to the capacitance of a capacitor such as a multilayer capacitor component. From this point of view, a piezoelectric ceramic composition having a higher relative dielectric constant can produce a capacitor having a larger capacitance. Since the piezoelectric ceramic composition of the present invention has a high dielectric constant as described above, it can be used for a capacitor having a large capacitance.
[0043]
The frequency constant Np of the product of the present invention was higher than that of the comparative product. Therefore, when the piezoelectric ceramic composition of the present invention is used, a small piezoelectric vibrator component having a high frequency can be produced.
[0044]
In addition, the insulation resistivity of the product of the present invention was much higher than that of the comparative product. Utilizing such a high insulation resistivity, the product of the present invention is optimal for a piezoelectric actuator used in a high electric field.
[0045]
In addition, within the above composition range (0 ≦ x ≦ 0.2) of the above general formula {Li x (K 1−y Na y ) 1−x } (Nb 1−zn Ta z (Mn 0.5 W 0.5 ) n ) O 3 , 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, 0 <n ≦ 0.1), a piezoelectric ceramic composition was prepared in the same manner as in this example for a composition range different from that of the present invention product. When the piezoelectric characteristics were measured, it was confirmed that the same effect as this example was obtained.

Claims (8)

一般式{Lix(K1-yNay1-x}(Nb1-z-nTaz(Mn0.50.5n)O3で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にあり,
圧電d 31 定数が46.5pm/V以上であり、かつ電気機械結合係数Kpが0.324以上であることを特徴とする圧電磁器組成物。
Is represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, and x, y, z, n are each 0 ≦ composition range near the x ≦ 0.2,0 ≦ y ≦ 1.0,0 ≦ z ≦ 0.4,0 <n ≦ 0.1 is,
A piezoelectric ceramic composition having a piezoelectric d 31 constant of 46.5 pm / V or more and an electromechanical coupling coefficient Kp of 0.324 or more .
請求項1において,上記圧電磁器組成物は,誘電損失が0.05以下であることを特徴とする圧電磁器組成物。The piezoelectric ceramic composition according to claim 1, wherein the piezoelectric ceramic composition has a dielectric loss of 0.05 or less . 請求項1又は2において,上記圧電磁器組成物は,キュリー温度が200℃以上であることを特徴とする圧電磁器組成物。3. The piezoelectric ceramic composition according to claim 1, wherein the piezoelectric ceramic composition has a Curie temperature of 200 ° C. or higher . 一般式{Li x (K 1-y Na y 1-x }(Nb 1-z-n Ta z (Mn 0.5 0.5 n )O 3 で表され,かつx,y,z,nがそれぞれ0≦x≦0.2,0≦y≦1.0,0≦z≦0.4,0<n≦0.1の組成範囲にある組成物からなる粉末を成形し,焼成することにより請求項1〜3のいずれか一項に記載の圧電磁器組成物を得ることを特徴とする圧電磁器組成物の製造方法 Is represented by the general formula {Li x (K 1-y Na y) 1-x} (Nb 1-zn Ta z (Mn 0.5 W 0.5) n) O 3, and x, y, z, n are each 0 ≦ A powder comprising a composition in a composition range of x ≦ 0.2, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, 0 <n ≦ 0.1 is formed and fired. A method for producing a piezoelectric ceramic composition, comprising obtaining the piezoelectric ceramic composition according to any one of claims 1 to 3 . リチウムを含有してなる化合物と,ナトリウムを含有してなる化合物と,カリウムを含有してなる化合物と,ニオブを含有してなる化合物と,タンタルを含有してなる化合物と,マンガンを含有してなる化合物と,タングステンを含有してなる化合物とを混合,焼成することにより請求項1〜3のいずれか一項に記載の圧電磁器組成物を得ることを特徴とする圧電磁器組成物の製造方法 A compound containing lithium, a compound containing sodium, a compound containing potassium, a compound containing niobium, a compound containing tantalum, and manganese. A method for producing a piezoelectric ceramic composition according to any one of claims 1 to 3, wherein the piezoelectric ceramic composition according to any one of claims 1 to 3 is obtained by mixing and firing a compound comprising . 請求項5において,リチウムを含有してなる化合物はLi 2 CO 3 であり,ナトリウムを含有してなる化合物はNa 2 CO 3 であり,カリウムを含有してなる化合物はK 2 CO 3 であり,ニオブを含有してなる化合物はNb 2 5 であり,タンタルを含有してなる化合物はTa 2 5 であり,マンガンを含有してなる化合物はMnO,MnO 2 またはMnCO 3 であり,タングステンを含有してなる化合物はWO 3 であることを特徴とする圧電磁器組成物の製造方法。 In claim 5, the compound comprising lithium is Li 2 CO 3, compounds comprising the sodium is Na 2 CO 3, compounds comprising potassium are K 2 CO 3, The compound containing niobium is Nb 2 O 5 , the compound containing tantalum is Ta 2 O 5 , the compound containing manganese is MnO, MnO 2 or MnCO 3 , tungsten manufacturing method of the piezoelectric ceramic composition, wherein the compound comprising is WO 3. 請求項1〜3のいずれか1項に記載の圧電磁器組成物を有することを特徴とする圧電素子 A piezoelectric element comprising the piezoelectric ceramic composition according to claim 1 . 請求項4〜6のいずれか1項に記載の圧電磁器組成物の製造方法により製造される圧電磁器組成物を有することを特徴とする圧電素子 A piezoelectric element comprising a piezoelectric ceramic composition manufactured by the method for manufacturing a piezoelectric ceramic composition according to claim 4 .
JP2003026199A 2002-03-20 2003-02-03 Piezoelectric ceramic composition, method for producing the same, and piezoelectric element Expired - Fee Related JP4598176B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003026199A JP4598176B2 (en) 2002-03-20 2003-02-03 Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
EP03006066A EP1346966B1 (en) 2002-03-20 2003-03-19 Piezoelectric ceramic composition, its production method and piezoelectric device
EP08155445A EP1947071B1 (en) 2002-03-20 2003-03-19 Piezoelectric ceramic composition, its production method and piezoelectric device
US10/391,192 US7150838B2 (en) 2002-03-20 2003-03-19 Piezoelectric ceramic composition, its production method and piezoelectric device
DE60323704T DE60323704D1 (en) 2002-03-20 2003-03-19 Piezoelectric ceramic composition, process for its preparation and piezoelectric device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002077592 2002-03-20
JP2002-77592 2002-03-20
JP2003026199A JP4598176B2 (en) 2002-03-20 2003-02-03 Piezoelectric ceramic composition, method for producing the same, and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2003342071A JP2003342071A (en) 2003-12-03
JP4598176B2 true JP4598176B2 (en) 2010-12-15

Family

ID=29781900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026199A Expired - Fee Related JP4598176B2 (en) 2002-03-20 2003-02-03 Piezoelectric ceramic composition, method for producing the same, and piezoelectric element

Country Status (1)

Country Link
JP (1) JP4598176B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1346966B1 (en) 2002-03-20 2008-09-24 Denso Corporation Piezoelectric ceramic composition, its production method and piezoelectric device
JP4541985B2 (en) 2004-10-29 2010-09-08 株式会社デンソー Method for producing polycrystal
DE102008042955A1 (en) 2007-11-08 2009-05-14 Denso Corp., Kariya-shi Method for producing a ceramic with crystal orientation
JP2009302382A (en) * 2008-06-16 2009-12-24 Taiheiyo Cement Corp Piezoelectric transformer
DE102010000783A1 (en) 2009-01-12 2010-09-16 Denso Corporation, Kariya-City Piezoelectric ceramics for piezoelectric element, contain crystal grain comprising shell and core phases, each differing in composition and having preset amount of crystal lattice defects
JP5190894B2 (en) * 2009-03-13 2013-04-24 国立大学法人 名古屋工業大学 Piezoelectric or dielectric ceramic composition, piezoelectric device and dielectric device
CN109477242B (en) * 2017-06-29 2021-07-23 京瓷株式会社 Piezoelectric substrate and surface acoustic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (en) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc Piezoelectric material composition of alkali metal- containing niobium oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (en) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc Piezoelectric material composition of alkali metal- containing niobium oxide

Also Published As

Publication number Publication date
JP2003342071A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4631246B2 (en) Piezoelectric ceramic composition, manufacturing method thereof, piezoelectric element and dielectric element
JP4929522B2 (en) Piezoelectric ceramic composition
JP4480967B2 (en) Piezoelectric ceramic composition, piezoelectric element, and dielectric element
JP4156461B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP4878133B2 (en) Piezoelectric actuator
JP4510140B2 (en) Piezoelectric ceramic composition, piezoelectric element and dielectric element
JP2006105964A (en) Piezoelectric sensor
JP2006108639A (en) Piezoelectric actuator
KR100821542B1 (en) Piezoelectric porcelain and method for production thereof
JP4163068B2 (en) Piezoelectric ceramic composition and piezoelectric element
EP1947071B1 (en) Piezoelectric ceramic composition, its production method and piezoelectric device
JP4598176B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP4616544B2 (en) Piezoelectric ceramic composition, production method thereof, and piezoelectric element
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP5022926B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP5011140B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP5000817B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP2010215435A (en) Piezoelectric ceramic and method for producing the same
KR910007120B1 (en) Oxide piezo-electric materials
KR100544091B1 (en) Piezoelectric Ceramic Composition
JPH10158062A (en) Piezoelectric porcelain composition
Chen et al. High Q m Lead Free Sodium Potassium Niobate Piezoelectric Ceramics and Middle Frequency Resonator
JPH07172913A (en) Piezoelectric ceramic composition
JP2001019541A (en) Piezoelectric ceramic composition
JPH10158061A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100923

R150 Certificate of patent or registration of utility model

Ref document number: 4598176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees