JP4593551B2 - 電子機器用基板及びその製造方法と電子機器 - Google Patents

電子機器用基板及びその製造方法と電子機器 Download PDF

Info

Publication number
JP4593551B2
JP4593551B2 JP2006309011A JP2006309011A JP4593551B2 JP 4593551 B2 JP4593551 B2 JP 4593551B2 JP 2006309011 A JP2006309011 A JP 2006309011A JP 2006309011 A JP2006309011 A JP 2006309011A JP 4593551 B2 JP4593551 B2 JP 4593551B2
Authority
JP
Japan
Prior art keywords
film
copper
substrate
forming
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006309011A
Other languages
English (en)
Other versions
JP2007065689A (ja
Inventor
基成 蔡
真 佐々木
健二 山本
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Priority to JP2006309011A priority Critical patent/JP4593551B2/ja
Publication of JP2007065689A publication Critical patent/JP2007065689A/ja
Application granted granted Critical
Publication of JP4593551B2 publication Critical patent/JP4593551B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、液晶表示装置などの電子機器に備えられる薄膜トランジスタ(TFT)アレイ基板などの電子機器用基板及びその製造方法と電子機器に関わり、低抵抗の銅を電極や配線材料として用いる場合に、水分やレジスト剥離液に対する耐酸化性を向上でき、しかもエッチング剤などに対する耐酸性を向上できる電子機器用基板及びその製造方法と、そのような電子機器用基板を備えた電子機器に関する。
一般に、液晶表示装置に備えられる基板としては、薄膜トランジスタ(TFT)アレイ基板が知られている。図15と図16は、ゲート配線Gとソース配線Sなどの部分を基板86上に備えた一般的な薄膜トランジスタアレイ基板の一構造例を示すものである。図15と図16に示す薄膜トランジスタアレイ基板において、ガラスなどの透明の基板86上に、ゲート配線Gとソース配線Sとがマトリクス状に配線されている。また、ゲート配線Gとソース配線Sとで囲まれた領域が画素部81とされ、各画素部81には薄膜トランジスタ83が設けられている。
薄膜トランジスタ83はエッチストッパ型の一般的な構成のものであり、ゲート配線Gとこのゲート配線Gから引き出して設けたAl又はAl合金などの導電材料からなるゲート電極88上に、ゲート絶縁膜89を設け、このゲート絶縁膜89上にアモルファスシリコン(a-Si)からなる半導体能動膜90をゲート電極88に対向させて設け、更にこの半導体能動膜90上にAl又はAl合金などの導電材料からなるドレイン電極91とソース電極92とを相互に対向させて設けて構成されている。なお、半導体能動膜90の両側の上部側にはリンなどのドナーとなる不純物を高濃度にドープしたアモルファスシリコンなどのオーミックコンタクト膜90a、90aが形成され、それらの上にドレイン電極91とソース電極92とで挟まれた状態でエッチングストッパー93が形成されている。また、ドレイン電極91の上からドレイン電極91の側方側にかけて透明電極材料からなる透明画素電極95が接続されている。
そして、ゲート絶縁膜89と透明画素電極95とドレイン電極91とソース電極92などの上を覆ってこれらの上にパッシベーション膜96が設けられている。このパッシベーション膜96上には図示略の配向膜が形成され、この配向膜上方に液晶が設けられてアクティブマトリクス液晶表示装置が構成されていて、透明画素電極95によって液晶の分子に電界を印加すると液晶分子の配向制御ができるようになっている。
図15と図16に示した薄膜トランジスタアレイ基板を製造する方法としては、アルミニウムまたはアルミニウム合金からなるターゲットを用い、該ターゲットに交流電力を印加する通常のスパッタ法などの薄膜形成手段によりガラス基板86上にAl又はAl合金層を形成後、フォトリソグラフィー法によりゲート形成位置以外の場所のAl又はAl合金層を除去してゲート電極88を形成した後、CVD法などの薄膜形成手段によりゲート絶縁膜89、半導体能動膜90、エッチングストッパー93を形成し、ついでこれらの上に上述のスパッタ法、フォトリソグラフィー法によりオーミックコンタクト膜90a、ドレイン電極91及びソース電極92を形成し、ついで形成したドレイン電極91及びソース電極92をマスクして、オーミックコンタクト膜90aの一部を除去してオーミックコンタクト膜90aを分割した後、CVD法などによりパッシベーション膜96を形成することにより、薄膜トランジスタアレイ基板が得られる。
ところで、近年、液晶表示装置の高速化等に伴い、ゲート電極、ドレイン電極やソース電極などの配線の抵抗による信号伝達の遅延の問題が顕在化されており、このような問題を解決するために電極や配線を構成する材料としてAlまたはAl合金より低抵抗の銅の使用が検討されている。この銅配線は、AlまたはAl合金から配線を構成する場合と同様に通常のスパッタ法によりCu層を形成後、フォトリソグラフィー法により配線形成位置以外の場所のCu層を除去することにより形成できる。
しかしながら図15と図16に示したような構造の薄膜トランジスタアレイ基板が備えられた液晶表示装置において、電極や配線材料として銅を用いると、銅が薬液に弱いため、後工程で他の層をエッチングする際に使用される酸化力のある酸系エッチング剤が銅膜にしみ込んで来たときにこの銅膜がエッチングされて損傷を受けることがあり、さらに損傷が進行すると断線不良が生じることがあるため、用いるエッチング剤が制限されてしまうという問題があった。また、電極や配線材料として銅を用いると、フォトリソグラフィー工程で使用されるレジスト剥離液が銅膜にしみ込んで来たときにこのレジスト剥離液により銅膜が腐食することがあった。また、銅膜のエッチングメカニズムは、銅膜表面を酸化してエッチングを行うものであるが、エッチング前に空気中の水分により銅膜の表面にCuOやCuO2などの酸化層ができてしまうと、酸化力のないエッチング剤でもエッチングされて損傷を受け、さらには断線不良が生じるという問題があった。なお、銅は、AlやSiやCrより酸化されにくいものであるが、水分の存在によって酸化されて、腐食が生じ易い。そこで、表面にCuOやCuO2などの酸化層の発生を防止できるCu系配線材料として、Cu合金が考えられているが、Cu合金はCuに比べて配線比抵抗が大きくなってしまい、低抵抗の材料を用いる効果があまり期待できなくなってしまう。
本発明は上記事情に鑑みてなされたもので、低抵抗の銅を電極や配線材料として用いる場合に、水分やレジスト剥離液に対する耐酸化性を向上でき、しかもエッチング剤などに対する耐酸性を向上できる電子機器用基板及びその製造方法を提供することと、そのような電子機器用基板を備えた電子機器を提供することを目的とする。
本発明の電子機器用基板は、上記課題を解決するために、少なくとも表面が絶縁性である基板上に銅配線を形成し、該銅配線をリン化銅、ホウ化銅、シュウ化銅、窒化銅のうちから選択されるいずれかの銅化合物層によって被覆したことを特徴とする。上記銅化合物層の厚みは、50〜500オングストローム程度とすることが好ましい。銅化合物層の厚みが50オングストローム未満であると、薄すぎて水分やレジスト剥離液に対する耐酸化性ならびにエッチング剤などに対する耐酸性をあまり向上できず、500オングストロームを超えて厚くしても目的とする効果をあまり向上できず、また、配線比抵抗が低下してしまう。
また、本発明に係わる電子機器用基板は、上記課題を解決するために、銅配線の外面をリン化銅、ホウ化銅、シュウ化銅、窒化銅のうちから選択されるいずれかの銅化合物層によって被覆してなる配線構造体を、少なくとも表面が絶縁性である基板上に設けたことを特徴とする。上記銅化合物層のうち基板と銅配線の間に位置する銅化合物層の厚みは、50〜500オングストローム程度とすることが好ましい。銅化合物層の厚みが50オングストローム未満であると、薄すぎて 基板をなす材料がガラス基板である場合にガラス基板中のSiO2の酸素が銅配線に入り込み、銅配線と基板との界面が酸化してしまい、500オングストロームを超えて厚くしても目的とする効果をあまり向上できず、経済的にも不利となる。
本発明の電子機器用基板にあっては、上述のような構成とすることにより、レジスト剥離液やエッチング液などの薬液や水分に強い保護層としての銅化合物層が銅配線の表面または外周面(外面)に形成されたこととなる。このような構成の電子機器用基板によれば、後工程で他の層をエッチングする際に使用される酸化力のある酸系エッチング剤が銅配線にまでしみ込んで来ても銅配線の表面または外周面(外面)に上記銅化合物層が形成されているので、銅配線がエッチング剤により損傷を受けにくく、断線不良の発生を防止でき、また、用いるエッチング剤の自由度が大きい。
また、フォトリソグラフィー工程で使用されるレジスト剥離液が銅配線にまでしみ込んで来ても銅配線の表面または外面に上記銅化合物層が形成されているので、レジスト剥離液による銅配線の腐食を防止できる。また、銅配線の表面に上記銅化合物層が形成されているので、エッチング前に水分の存在により銅配線の表面に酸化層が形成されることがなくなり、酸化力のないエッチング剤により損傷を受けにくく、断線不良の発生を防止できる。従って、本発明の電子機器用基板によれば、低抵抗の銅を電極や配線材料として用いる特性を損なうことなく、水分やレジスト剥離液に対する耐酸化性を向上でき、しかもエッチング剤などに対する耐酸性を向上できるので、断線不良や腐食を防止でき、また、用いるエッチング剤の自由度が大きいので、銅配線形成後の工程が制約されにくい。また、本発明の電子機器用基板において、上記の銅配線を被覆する銅化合物層は、銅配線を成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、製造工程が複雑になることがない。さらに、上記銅化合物層は、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C以上の加熱に耐えられないガラス基板などの基板を用いる場合にも適用できる。
また、本発明に係わる電子機器用基板において、銅配線の外面を上記銅化合物層によって被覆してなる配線構造体を、少なくとも表面が絶縁性である基板上に形成したものにあっては、上記銅配線と上記基板との間に上記銅化合物層が形成されているので、基板をなす材料がガラス基板であってもガラス基板中のSiO2の酸素が銅配線に入り込むのを回避でき、銅配線と基板との界面が酸化するのを防止できる。また、本発明に係わる電子機器用基板は、上記基板は表面に窒化シリコン膜を有するものであってもよい。このような構成の電子機器用基板によれば、上記銅配線と基板との間に窒化シリコン膜が介在されているので、基板中のSiO2が含まれているときこれの酸素が銅配線に入り込むのを回避でき、銅配線と基板との界面が酸化するのを防止できる。
本発明の電子機器用基板の製造方法は、上記課題を解決するために、プラズマ装置を構成する減圧状態に保持可能な処理室内に、表面に銅配線が形成された基板を配置し、上記処理室内に少なくとも窒素ガスまたはアンモニアガスを含有する処理ガスを供給し、上記銅配線表面を窒化銅被膜で覆うようにプラズマ処理することを特徴とする。また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、プラズマ装置を構成する減圧状態に保持可能な処理室内に、表面に銅配線が形成された基板を配置し、上記処理室内に少なくともPH3ガスを含有する処理ガスを供給し、上記銅配線表面をリン化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、プラズマ装置を構成する減圧状態に保持可能な処理室内に、表面に銅配線が形成された基板を配置し、上記処理室内に少なくともB26ガスを含有する処理ガスを供給し、上記銅配線表面をホウ化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、プラズマ装置を構成する減圧状態に保持可能な処理室内に、表面に銅配線が形成された基板を配置し、上記処理室内に少なくともHBrガスを含有する処理ガスを供給し、上記銅配線表面を臭化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。
上記のいずれかの構成の本発明の電子機器用基板の製造方法によれば、基板上に銅配線が形成され、該銅配線が上記銅化合物層によって被覆された構造の本発明の電子機器用基板を製造できる。また、上記銅配線の表面を覆う窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜は銅配線を成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、また、製造工程が複雑になることもない。さらに、上記被膜は、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C以上の加熱に耐えられないガラス基板を基板として用いる場合にも適用できる。また、基板上に銅配線が形成され、該銅配線が上記銅化合物層によって被覆された構造の本発明の電子機器用基板の製造方法は、上述の製造方法に限定されず、イオン打ち込み装置を構成するイオン打ち込み室内に、表面に銅配線が形成された基板を配置し、上記イオン打ち込み内にイオン源から質量分析器を経て発生させたリンイオン、ホウ素イオン、臭素イオン、窒素イオンなどのうちから選択される特定のイオンを加速器により加速し、この加速したイオンを上記銅配線表面にドープして銅配線表面に窒化銅被膜、リン化銅被膜、ホウ化銅被膜、臭化銅被膜のいずれかの被膜を形成するイオン打ち込み法(イオンドープ法)などによっても製造できる。
本発明係わる電子機器用基板の製造方法は、上記課題を解決するために、成膜室内に基板を装着し、上記成膜室内に少なくとも窒素ガスまたはアンモニアガスを含有する第1の処理ガスを供給し、蒸着法により上記基板表面に窒化銅膜を形成し、次いで上記成膜室内に不活性ガスを供給し、蒸着法により上記窒化銅膜表面に銅膜を形成し、上記窒化銅膜と上記銅膜との積層膜をパターニングして配線を形成し、次いでプラズマ処理室内に少なくとも窒素ガスまたはアンモニアガスを含有する第2の処理ガスを供給し、上記配線の外面を窒化銅被膜で覆うようプラズマ処理することを特徴とする。また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、成膜室内に基板を装着し、上記成膜室内に少なくともPH3ガスを含有する第1の処理ガスを供給し、蒸着法により上記基板表面にリン化銅膜を形し、次いで上記成膜室内に不活性ガスを供給し、蒸着法により上記リン化銅膜表面に銅膜を形成し、上記リン化銅膜と上記銅膜との積層膜をパターニングして配線を形成し、次いでプラズマ処理室内に少なくともPH3ガスを含有する第2の処理ガスを供給し、上記配線の外面をリン化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。
また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、成膜室内に基板を装着し、上記成膜室内に少なくともB26ガスを含有する第1の処理ガスを供給し、蒸着法により上記基板表面にホウ化銅膜を形成し、次いで上記成膜室内に不活性ガスを供給し、蒸着法により上記ホウ化銅膜表面に銅膜を形成し、上記ホウ化銅膜と上記銅膜との積層膜をパターニングして配線を形成し、次いでプラズマ処理室内に少なくともB26ガスを含有する第2の処理ガスを供給し、上記配線の外面をホウ化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。また、本発明に係わる電子機器用基板の製造方法は、上記課題を解決するために、成膜室内に基板を装着し、上記成膜室内に少なくともHBrガスを含有する第1の処理ガスを供給し、蒸着法により上記基板表面に臭化銅膜を形成し、次いで上記成膜室内に不活性ガスを供給し、蒸着法により上記臭化銅膜表面に銅膜を形成し、上記臭化銅膜と上記銅膜との積層膜をパターニングして配線を形成し、次いでプラズマ処理室内に少なくともHBrガスを含有する第2の処理ガスを供給し、上記配線の外面を臭化銅被膜で覆うようプラズマ処理することを特徴とするものであってもよい。
上記のいずれかの構成の本発明の電子機器用基板の製造方法によれば、銅配線の外面を上記銅化合物層によって被覆してなる配線構造体を、少なくとも表面が絶縁性である基板上に設けた構造の本発明の電子機器用基板を製造できる。また、上記銅配線の外周面(外面)を覆う窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜を、銅配線を成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、また、製造工程が複雑になることもない。さらに、上記被膜は、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C以上の加熱に耐えられないガラス基板を基板として用いる場合にも適用できる。
また、銅配線の外面を上記銅化合物層によって被覆してなる配線構造体を、少なくとも表面が絶縁性である基板上に設けた構造の本発明の電子機器用基板の製造方法は、上述の製造方法に限定されず、イオン打ち込み装置を構成するイオン打ち込み室内に、表面に銅膜が形成された基板を配置し、上記イオン打ち込み内にイオン源から質量分析器を経て発生させたリンイオン、ホウ素イオン、臭素イオン、窒素イオンなどのうちから選択される特定のイオンを加速器により加速し、この加速したイオンを上記銅膜表面にドープ(イオン打ち込み法)して窒化銅被膜、リン化銅被膜、ホウ化銅被膜、臭化銅被膜のいずれかの被膜を形成し、次いで蒸着法により上記被膜表面に銅膜を形成し、上記被膜と上記銅膜との積層膜をパターニングして配線を形成し、次いで上記イオン源から質量分析器を経て発生させたリンイオン、ホウ素イオン、臭素イオン、窒素イオンなどのうちから選択される特定のイオンを加速器により加速し、この加速したイオンを上記配線の外面にドープ(イオン打ち込み法)して配線の外面を窒化銅被膜、リン化銅被膜、ホウ化銅被膜、臭化銅被膜のいずれかの被膜で覆うことにより製造することもできる。なお、本発明の電子機器用基板の製造方法において、上記蒸着法としては真空蒸着法、スパッタ蒸着法を採用することができる。
本発明に係わる電子機器は、上記課題を解決するために、上記のいずれか構成の本発明の電子機器用基板を用いたことを特徴とする。本発明の電子機器によれば、低抵抗配線として銅配線を用いた本発明の電子機器用基板が備えられているので、配線抵抗に起因する信号電圧降下や配線遅延が生じにくく、配線が長くなる大面積の表示や配線が細くなる高詳細な表示に最適な表示装置等を容易に実現できるという利点がある。また、断線不良や腐食の発生のない本発明の電子機器用基板が備えられているので、特性の良好な電子機器を提供できる。
以上説明したように本発明によれば、低抵抗の銅を電極や配線材料として用いる場合に、水分やレジスト剥離液に対する耐酸化性を向上でき、しかもエッチング剤などに対する耐酸性を向上できる電子機器用基板及びその製造方法を提供することと、そのような電子機器用基板を備えた電子機器を提供できる。
発明の実施するための最良の形態
以下に本発明の各実施形態を詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。図1は本発明の電子機器を液晶表示装置に適用した第1の実施形態の要部を示すもので、この例の液晶表示装置30は、本発明の電子機器用基板の実施形態の薄膜トランジスタアレイ基板31と、この薄膜トランジスタアレイ基板31に平行に隔離して設けられた透明の対向基板32と、上記薄膜トランジスタアレイ基板31と対向基板32との間に封入された液晶層33を具備して構成されている。上記薄膜トランジスタアレイ基板31には、図15に示した従来の構造と同様に縦列の多数のソース配線と横列の多数のゲート配線が、対向基板32の上面側から平面視した場合にマトリクス状になるように配列形成され、ソース配線とゲート配線とで囲まれた多数の領域のそれぞれが画素部とされ、各画素部に対応する領域にそれぞれITO(インジウムスズ酸化物)等の透明導電材料からなる画素電極35が形成されるとともに、各画素電極35の近傍に薄膜トランジスタが設けられている。
図1はソース配線とゲート配線とで囲まれた1つの画素部に対応する領域に設けられた薄膜トランジスタの部分とその周囲部分を拡大して示すもので、薄膜トランジスタアレイ基板31には画素部が多数整列形成されて液晶表示装置30としての表示画面が構成されている。この形態の薄膜トランジスタアレイ基板31にあっては、各画素部において少なくとも表面が絶縁性である基板36上にゲート電極40が設けられ、このゲート電極40と基板36を覆ってゲート絶縁膜41が設けられ、ゲート電極40上のゲート絶縁膜41上にゲート電極40よりも小さな半導体能動膜42が積層され、この半導体能動膜42の両端部上にn+層などからなるオーミックコンタクト膜43、44が、半導体能動膜42の端部と位置を合わせ、半導体能動膜42の中央部側に間隙をあけて相互に隔離して積層されている。ここでの基板36としては、ガラス基板や、表面にSiNx膜36aが形成された基板を用いることもできる。ここでゲート電極40は、銅層(銅配線)40aをリン化銅、ホウ化銅、シュウ化銅、窒化銅のうちから選択されるいずれかの銅化合物層40bによって被覆したものである。
次に、図1の左側(図1に示す画素電極35から離れた側)のオーミックコンタクト膜43の上面と左側面とその下の半導体能動膜42の左側面とそれらに連続するゲート絶縁膜41の上面の一部分を覆って、即ち、半導体能動膜42とオーミックコンタクト膜43の重なり部分(重畳部分)を覆ってa-Si:n+層、クロムシリサイドなどからなる低抵抗シリコン化合物膜45が設けられ、その上にソース電極46が形成されている。ここでのソース電極46は、銅層(銅配線)46aをリン化銅、ホウ化銅、シュウ化銅、窒化銅のうちから選択されるいずれかの銅化合物層46bによって被覆したものである。
また、図1の右側(図1に示す画素電極35に近い側)のオーミックコンタクト膜44の上面と右側面とその下の半導体能動膜42の右側面とそれらに連続するゲート絶縁膜41の上面の一部分を覆って、即ち、半導体能動膜42とオーミックコンタクト膜43の重畳部分を覆ってn+層などからなる低抵抗シリコン化合物膜47が設けられ、その上にドレイン電極48が形成されている。ここでのドレイン電極48は、銅層(銅配線)48aをリン化銅、ホウ化銅、シュウ化銅、窒化銅のうちから選択されるいずれかの銅化合物層48bによって被覆したものである。また、これらの各膜の上にはこれらを覆ってパッシベーション膜49が設けられ、ドレイン電極48の右側端部上のパッシベーション膜49上には画素電極35が形成されていて、この画素電極35はパッシベーション膜49に形成されたコンタクトホール(導通孔)50に設けた接続導体部51を介してドレイン電極48に接続されている。
一方、薄膜トランジスタアレイ基板31に対して設けられている対向基板32の液晶側には、対向基板32側から順にカラーフィルタ52と共通電極膜53とが積層されている。上記カラーフィルタ52は、表示に寄与しない薄膜トランジスタ部分やゲート配線部分およびソース配線部分を覆い隠すためのブラックマトリクス54と、画素電極35を設けた画素領域で表示に寄与する部分を通過する光を透過させ、更に、カラー表示をするためのカラー画素部55を主体として構成されている。これらのカラー画素部55は、液晶表示装置がカラー表示の構造の場合に必要とされ、画素部毎に設けられているが、隣接する画素部において色違いとなるように、例えば、R(赤)、G(緑)、B(青)の3元色のものが色の偏りがないように規則的にあるいはランダムに配置される。なお、図1に示す断面構造では薄膜トランジスタアレイ基板31の液晶側と対向基板32の液晶側に設けられる配向膜は省略してあるとともに、薄膜トランジスタアレイ基板31の外側と対向基板32の外側に設けられる偏光板を省略してある。
図1に示す液晶表示装置30に備えらた薄膜トランジスタアレイ基板31にあっては、後工程で他の層をエッチングする際に使用される酸化力のある酸系エッチング剤がゲート電極40やソース電極46やドレイン電極48にまでしみ込んで来ても表面に上記銅化合物層40b,46b,48bが形成されているので、銅層がエッチング剤により損傷を受けにくく、断線不良の発生を防止でき、また、用いるエッチング剤の自由度が大きい。また、フォトリソグラフィー工程で使用されるレジスト剥離液がゲート電極40やソース電極46やドレイン電極48にまでしみ込んで来ても表面に上記銅化合物層40b,46b,48bが形成されているので、レジスト剥離液により銅層が酸化されにくく、腐食を防止できる。また、ゲート電極40やソース電極46やドレイン電極48は、表面に銅化合物層40b,46b、48bが形成されているので、エッチング前に水分の存在により電極の表面に酸化層が形成されることがなくなり、酸化力のないエッチング剤により損傷を受けにくく、断線不良の発生を防止できる。
従って、実施形態の薄膜トランジスタアレイ基板31によれば、低抵抗の銅を電極や配線材料として用いる特性を損なうことなく、水分やレジスト剥離液に対する耐酸化性を向上でき、しかもエッチング剤などに対する耐酸性を向上できるので、断線不良や腐食を防止でき、また、用いるエッチング剤の自由度が大きいので、電極形成後の工程が制約されにくい。また、実施形態の薄膜トランジスタアレイ基板31において、上記銅層40a,46a,48aを被覆する銅化合物層40b,46b,48bは、銅層40a,46a,48aを成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、また、製造工程が複雑になることもない。さらに、上記銅化合物層40b,46b,48bは、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C 以上で加熱できないガラス基板を基板として用いる場合にも適用できる。また、基板36として表面にSiNx膜36aを形成したものを用いたものにあっては、ゲート電極40と基板36との間にSiNx膜36aが介在されているので、基板中にSiO2が含まれていてもこれの酸素がゲート電極40に入り込むのを回避でき、ゲート電極40と基板36との界面が酸化するのを防止できる。
実施形態の液晶表示装置30によれば、上述のような薄膜トランジスタアレイ基板31が備えられているので、配線抵抗に起因する信号電圧降下や配線遅延が生じにくく、配線が長くなる大面積の表示や配線が細くなる高詳細な表示に最適な表示装置を容易に実現できるという利点がある。また、断線不良や腐食の発生のない薄膜トランジスタアレイ基板31が備えられているので、特性の良好な液晶表示装置を提供できる。
次に、本発明の電子機器用基板の製造方法を図1に示す構造の薄膜トランジスタアレイ基板を製造する方法に適用した一例について説明する。図2は、実施形態の薄膜トランジスタアレイ基板の製造方法に好適に用いられる薄膜の製造装置の成膜室を示す概略構成図であり、図3は、薄膜の製造装置の全体構成を示す平面図であり、図4は、図3に示す薄膜の製造装置の一部を拡大した側面図である。図2は、減圧状態に保持可能な成膜室(処理室)を示し、この成膜室60は、図3に示すように搬送室61の側部にゲートバルブ62を介して接続されている。上記搬送室61の周囲には成膜室60の他に、ロータ゛ー室63とアンロータ゛ー室66とストッカーチャンバ65がそれぞれ搬送室61を囲むように接続され、搬送室61とその周囲の各室との間にはそれぞれゲートバルブ66、67、68が設けられている。以上の説明のように、成膜室60と搬送室61とロータ゛室63とアンロータ゛ー室66とストッカーチャンバ65により薄膜の製造装置A’が構成されている。
上記成膜室60は、図2に示すように、その上部に第1の電極70が設けられ、第1の電極70の底面にターゲット71が着脱自在に装着されているとともに、成膜室60の底部には第2の電極72が設けられ、第2の電極72の上面に少なくとも表面が絶縁性である基板36が着脱自在に装着されている。上記ターゲット71をなす材料としては、ゲート電極40、ソース電極46、ドレイン電極48を形成する場合、銅が用いられ、a−Si:n+層を形成する場合、n型a−Si:n+生成用のPドープSiが用いられる。上記基板36としては、薄膜トランジスタアレイ基板を製造する場合にはガラス基板を好適に用いることができる。なお、上記ターゲット71の装着には静電チャックなどの通常知られたターゲット装着機構を用いることができる。上記第1の電極70は、導電性材料からなる母体70aとこの母体70aの表面に形成された酸化膜、窒化膜あるいはフッ化膜などからなる保護層70bとから構成されている。
そして、上記第1の電極70には第1の交流電源75が接続されるとともに、第1の電極70と第1の交流電源75との間には整合回路75aが組み込まれていて、この整合回路75aは高周波電力の反射波をゼロにする作用を奏する。また、第1の電極70には、インピーダンス調整用のローパスフィルタなどのバンドパスフィルタ77を介して直流電源78が接続されている。このバンドパスフィルタ77は、直流電源78に高周波が乗らないように回路のインピーダンスを無限大に調整するものである。更に、上記第2の電極72にも第2の交流電源80が接続されるとともに、第2の電極72と第2の交流電源80の間には上記整合回路75aと同様の作用を奏する整合回路80aが組み込まれている。なお、上記成膜室60には、真空引き用およびガス排気用の排気ユニット60a、成膜室60内への反応ガス供給機構60b等を含んでいるが図2では説明の簡略化のためにこれらを簡略化して記載した。
次に、上記搬送室61には、リンク式の搬送機構(マジックハンド)69が設けられ、この搬送機構69は搬送室61の中心部に立設された支軸74を支点として回動自在に設けられ、ストッカーチャンバ65に配置されているカセット79からターゲット71を取り出して必要に応じて成膜室60に搬送し、成膜室60の第1の電極70にターゲット71を装着できるようになっている。なお、上記カセット79にはダミーターゲット71aも収納されていて、必要に応じてダミーターゲット71aも成膜室60に搬送できるようになっている。
図2乃至図4に示す薄膜の製造装置は、1つの成膜室60で1つ以上の薄膜(例えば、ゲート電極40を形成するための銅膜とこの表面を覆う窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜と、ゲート絶縁膜41と、半導体能動膜42と、オーミックコンタクト膜43,44と、低抵抗シリコン化合物膜45,47と、ソース電極46を形成するための銅膜とこの表面を覆う窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜と、ドレイン電極48を形成するための銅膜とこの表面を覆う窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜)を連続成膜することができる装置である。即ち、成膜室60において、CVD成膜(ゲート絶縁膜・半導体能動膜・ゲート電極の銅膜を覆う被膜・ソース電極の銅膜を覆う被膜・ドレイン電極の銅膜を覆う被膜の成膜)とスパッタ成膜(オーミックコンタクト膜・低抵抗シリコン化合物膜・ゲート電極の銅膜・ソース電極の銅膜・ドレイン電極の銅膜の成膜)を電源を切り替えることにより行なうことができる。まず、成膜室60と搬送室61とストッカーチャンバ65を減圧したならば、ゲートバルブ62と18を開放して搬送機構33によりガラス基板36を第2の電極72に装着する。この状態からゲートバルブ62を閉じたならば、以下の工程に準じて基板36上にゲート電極40などの薄膜を順次形成する。
(1)ゲート電極の銅膜の成膜工程成膜室60をArガス雰囲気とし、第1の電極70に銅からなるターゲット71を装着し、直流電源78か第1の交流電源75を作動させて第1の電力(直流電力と交流電力のうち少なくともどちらか一方)をターゲット71に印加するとともに第2の交流電源80を作動させて第2の交流電力をガラス基板36に印加するスパッタ法により、銅膜のスパッタ成膜を行い、図5のAに示すように基板36上に銅膜40cを形成する。
(2)ゲート電極の銅層のパターニング工程銅膜40cの表面にレジストを塗布してパターン露光し、エッチングにより不要部分を除去した後にレジストを剥離するパターニングを施して、図5のBに示すような銅層(銅配線)40aを形成する。
(3)ゲート電極の銅化合物層の成膜工程第1の電極70から銅からなるターゲット71を外して、Si、SiO2などからなるダミーターゲット71aを装着し、一方、第2の電極72に装着されたガラス基板36はそのままで、成膜室60内に処理ガスを供給する。ここで用いられる処理ガスとしては、窒化銅被膜を形成する場合、窒素ガスまたはアンモニアガスの混合ガスが用いられ、リン化銅被膜を形成する場合はPH3ガスが用いられ、ほう化銅被膜を形成する場合はB26ガスとの混合ガスが用いられ、臭化銅被膜を形成する場合はHBrガスが用いられる。なお、ここでの処理ガスには、Arなどの不活性ガスや水素ガスが含まれていてもよい。処理ガスの流量は、ゲート絶縁膜を成膜するCVD工程のときと同程度である。
ついで、第1の交流電源75から第1の電極70に周波数40MHz程度の高周波を供給し、負荷電位をフローティングしてプラズマを発生させ、更に、第2の交流電源80から第2の電極72に周波数13.6MHz程度の高周波電力を印加し、上記処理ガス中の成分を銅膜40c上に堆積させるとともに上記成分中のN、P、B、Brなどと銅と反応させて、銅層40aの表面を窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜などの被膜で覆うようプラズマ処理を行うと、図5のCに示すように銅層40aの表面が銅化合物層40bによって被覆されたゲート電極40が得られる。この工程では、基板36に印加する電力は、0.5乃至2W/cm2程度である。また、プラズマ処理時間としては、10秒乃至10分程度、好ましくは1分乃至3分程度である。プラズマ処理時間は、長い方が銅化合物層の厚みを厚くできるが、該化合物層の厚みが厚くなり過ぎると比抵抗が低下してしまう。
(4)ゲート絶縁膜(窒化ケイ素膜)41のCVD成膜工程成膜室60をSiH4+NH3+N2混合ガス雰囲気とし、第1の電極70にダミーターゲット71aを装着し、第1の交流電源75から第1の電極70に周波数200MHzの高周波を供給し、負荷電位をフローティングしてプラズマを発生させて窒化ケイ素膜を基板36上に堆積させるCVD成膜を行ない、図5のDに示すようなゲート絶縁膜41を形成する。このCVD成膜の場合は、第1の電極70に装着されたダミーターゲット71aをスパッタしないように供給する周波数を大きく設定し、第1の電極70にかかるイオンエネルギーを小さくするとともに、第2の電極72に高周波電力を供給し、基板36にかかるイオンエネルギーを制御する。
(5)半導体能動膜(a−Si層)42のCVD成膜工程成膜室60をSiH4+H2混合ガス雰囲気とし、第1の電極70にダミーターゲット71aを装着したままで第1の交流電源75から第1の電極70に周波数200MHz程度の高周波を供給し、更に、第2の交流電源80から第2の電極72に高周波電力を供給し、ガラス基板36にかかるイオンエネルギーを制御してa−Si層の成膜を行い、半導体能動膜42を形成する。
(6)オーミックコンタクト膜(a−Si:n+層)43aのスパッタ成膜工程成膜室60をArガス雰囲気とし、第1の電極70にa−Si:n+層生成用のPドープSiからなるターゲット71を装着し、第1の交流電源75から第1の電極70に周波数13.6MHz程度の高周波を供給し、更に直流電源78から負荷する負荷電位を−200Vにしてスパッタリングを行ない、半導体能動膜42上にオーミックコンタクト膜43aを形成する。
(7)半導体能動膜42とオーミックコンタクト膜43aのパターニング工程オーミックコンタクト膜43aの表面にレジストを塗布してパターン露光し、エッチングにより不要部分を除去した後にレジストを剥離するパターニングを施して、図5のDに示すようにゲート電極40よりも小さいアイランド状の半導体能動膜42とオーミックコンタクト膜43aを得る。半導体能動膜42と、オーミックコンタクト膜43aの形成位置は、ゲート電極40上のゲート絶縁膜41においてゲート電極40と対向する位置である。
(8)低抵抗シリコン化合物膜(a−Si:n+層)45aのスパッタ成膜工程オーミックコンタクト膜43aとゲート絶縁膜41上を覆うように低抵抗シリコン化合物膜45aを上記オーミックコンタクト膜43aのスパッタ成膜と同様にして成膜する。
(9)ソース電極46及びドレイン電極48の銅膜のスパッタ成膜工程成膜室60をArガス雰囲気とし、第1の電極70に銅からなるターゲット71を装着し、直流電源78か第1の交流電源75を作動させて第1の電力をターゲット71に印加するとともに第2の交流電源80を作動させて第2の交流電力をガラス基板36に印加するスパッタ法により、図5のDに示すような銅膜46cのスパッタ成膜を行なう。
(10)オーミックコンタクト膜43,44と、低抵抗シリコン化合物膜45,47と、ソース電極46及びドレイン電極48の銅層の形成工程半導体能動膜42の中央部分の上部をエッチングにより除去し、半導体能動膜42の中央部分上のオーミックコンタクト膜43aと低抵抗シリコン化合物膜45aと銅膜46cを除去することで、図6のAに示すように半導体能動膜42の両端部分上に相互に離隔してオーミックコンタクト膜43,44を形成し、各オーミックコンタクト膜上に被覆された形の低抵抗シリコン化合物膜45,47とソース電極46の銅層46aとドレイン電極48の銅層48aとを形成することができる。
(11)ソース電極46及びドレイン電極48の銅化合物層46b,48bの形成工程ソース電極46及びドレイン電極48の銅化合物層46b,48bの表面を、上記ゲート電極40の銅層40aの表面をプラズマ処理した方法とほぼ同様にしてプラズマ処理して、図6のBに示すような銅層46a,48aの表面が銅化合物層46b,48bによって被覆されたソース電極46とドレイン電極48が得られる。
(12)パッシベーション膜49のCVD成膜工程半導体能動膜42とソース電極46とドレイン電極48を覆うように窒化ケイ素からなるパッシベーション膜49をゲート絶縁膜41のCVD成膜工程とほぼ同様にして成膜する。
(13)画素電極形成工程パッシベーション膜49上にITO層を形成した後、パターニングすることにより画素電極35を形成し、ついで、パッシベーション膜49を乾式法あるいは乾式法と湿式法の併用によりエッチングしてコンタクトホール50を形成した後、導電材料からなる層形成した後、パターンニングすることにより、図1に示すようにコンタクトホール50の底面および内壁面、パッシベーション膜49の上面にかけて接続導体部51を形成し、この接続導体部51を介してドレイン電極48と画素電極35を接続すると、図1と同様の薄膜トランジスタアレイ基板31が得られる。なお、基板36として表面にSiNx膜36aが形成されたものを用いる場合は、基板36上に銅層40aを形成する前に、上述のゲート絶縁膜41のCVD成膜工程と同様の方法でSiNx膜を成膜しておく。なお、ソース配線については図面に記載していないが、ゲート絶縁膜41上にソース電極46を形成する場合の成膜時およびエッチング時に同時に形成すれば良い。
以上説明の方法により薄膜トランジスタアレイ基板を製造するならば、銅化合物層40b,46b,48bは銅層40a,46a,48aを成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、また、製造工程が複雑になることもない。さらに、上記銅化合物層40b,46b,48bは、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C以上の加熱に耐えられないガラス基板を基板として用いる場合にも適用できる。なお、上記実施形態においては、オーミックコンタクト膜43とソース電極46との間と、オーミックコンタクト膜44とドレイン電極48との間に低抵抗シリコン化合物膜を設ける場合について説明したが、低抵抗シリコン化合物は必ずしも設けられていなくてもよい。なお、上述の第1の実施形態の薄膜トランジスタアレイ基板の製造方法においては、図2に示したようなプラズマ装置を構成する処理室内で電極を構成する銅層(銅配線)を形成した場合について説明したが、銅層は通常のスパッタ装置で形成してもよい。
図7は、本発明の電子機器を液晶表示装置に適用した第2の実施形態の要部を示すもので、この例の液晶表示装置30aが、図1に示した第1の実施形態の液晶表示装置と異なるところは、ゲート電極(配線構造体)40が銅層(銅配線)40aと、これの外周面(外面)を被覆する銅化合物層40bから構成された薄膜トランジスタアレイ基板31aが備えられており、すなわち、基板36と銅層40aの間にも銅化合物層40bが形成されている点である。第2の実施形態の液晶表示装置30aによれば、上記ゲート電極の銅層40aと基板36との間に銅化合物層40bが形成されているので、基板をなす材料がガラス基板であってもガラス基板中のSiO2の酸素が銅配線に入り込むのを回避でき、ゲート電極40と基板36との界面が酸化するのを防止できる。
次に、図7に示す構造の薄膜トランジスタアレイ基板31aの製造方法は、基板36上に銅膜40cを形成する前に後述するような銅膜と基板間の銅化合物層形成用の被膜40eの成膜工程(P−1)を行った後、この被膜40e上に上述の(1)ゲート電極の銅膜の成膜工程と同様にして銅膜40cを形成し、ついで、上述の(2)ゲート電極の銅層のパターニング工程に代えて後述するような被膜40eと銅膜40cの積層膜のパターニング工程(2−2)を行う以外は、上述の第1の実施形態の薄膜トランジスタアレイ基板31の製造方法と同様である。
(P−1)銅膜40cと基板間の被膜40eの成膜工程第1の電極70に銅からなるターゲット71を装着し、成膜室60内に上記処理ガスを供給し、直流電源78か第1の交流電源75を作動させて第1の電力(直流電力と交流電力のうち少なくともどちらか一方)をターゲット71に印加するとともに第2の交流電源80を作動させて第2の交流電力をガラス基板36に印加するスパッタ法により、図8のAに示すように基板36上に窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜などの被膜40eを成膜する。
(2−2)被膜40eと銅膜40cのパターニング工程銅膜40cの表面にレジストを塗布してパターン露光し、エッチングにより銅膜40cと被膜40eの不要部分を除去した後にレジストを剥離するパターニングを施して、図8のBに示すように銅層(銅配線)40aと、これと基板36との間の銅化合物層40bを形成する。第2の実施形態の薄膜トランジスタアレイ基板の製造方法によれば、窒化銅被膜、リン化銅被膜、ほう化銅被膜、臭化銅被膜のいずれかの被膜40eは、銅膜40cを成膜したものと同じ成膜装置を用いて成膜できるので、特別な製造装置を設ける必要もなく、また、製造工程が複雑になることもない。さらに、上記被膜40eは、アンモニアガスなどの処理ガス雰囲気中で800゜C以上の高い温度で熱処理を要しないので、600゜C以上の加熱に耐えられないガラス基板を基板として用いる場合にも適用できる。
なお、上述の第2の実施形態の薄膜トランジスタアレイ基板の製造方法においては、図2に示したようなプラズマ装置を構成する処理室内で電極を構成する銅層と、該銅層と基板間の銅化合物層を形成した場合について説明したが、銅化合物層はプラズマCVD装置で形成してもよく、銅層は通常のスパッタ装置で形成してもよい。上記実施形態においては、本発明の電子機器用基板及びその製造方法と電子機器を薄膜トランジスタアレイ基板及びその製造方法と液晶表示装置に適用した場合について説明したが、半導体集積装置用基板およびその製造方法と半導体集積装置に適用することができる。
(実施例1)図2ないし図4に示した薄膜の製造装置を用い、成膜室60をArガス雰囲気とし、第1の電極70に銅からなるターゲット71を装着し、直流電源78を作動させて直流電力をターゲット71に印加するとともに第2の交流電源80を作動させて高周波電力をガラス基板36に印加するスパッタ法により、ガラス基板上に膜厚2000オングストロームの銅膜を形成した。
ついで、第1の電極70から銅からなるターゲット71を外して、Si、SiO2などからなるダミーターゲット71aを装着し、一方、第2の電極72に装着されたガラス基板36はそのままで、成膜室60内に処理ガスとしてNH3ガスを流量600ccmで供給した。ついで、第1の交流電源75から第1の電極70に周波数40MHzの高周波を供給し、負荷電位をフローティングしてプラズマを発生させ、更に、第2の交流電源80から第2の電極72に周波数13.6MHz程度の高周波電力を印加し、上記処理ガス中の窒素を上記銅膜上に堆積させるとともに銅と反応させて、1分間プラズマ処理を行い、銅膜の表面が厚さ200オングストロームの窒化銅層によって被覆された配線層を作製した。この工程では、基板36に印加する電力は、0.5乃至2W/cm2程度とした。この実施例1で得られた配線層の比抵抗を測定したところ、2.05Ω・cmであった。
(実施例2)プラズマ処理時間を3分にした以外は、上記実施例1と同様にして配線層を作製した。ここで得られた配線層は、窒化銅層の厚みは、400オングストロームであった。この実施例2で得られた配線層の比抵抗を測定したところ、2.11Ω・cmであった。
(比較例1)実施例1と同様にしてガラス基板上に膜厚2000オングストロームの銅膜を形成し、銅膜のみからなる配線層を形成した。この比較例1で得られた配線層の比抵抗を測定したところ、1.9Ω・cmであった。
(実験例)実施例1、2、比較例1で得られた配線層を過硫酸アンモニウム(エッチング液)に1分間浸漬し、これらを剥離液から取り出し、リンス洗浄、乾燥させた。薬液耐性について調べた。また、各配線層のエッチングレートを測定したところ、実施例1の配線層は200オングストローム/分、実施例2の配線層は70オングストローム/分、比較例1の配線層は1280オングストローム/分であった。過硫酸アンモニウム浸漬前と浸漬後の実施例1、2、比較例1の導電層の状態を原子力間顕微鏡(AFM)により観察した。その結果を図9から図14に示す。図9は、過硫酸アンモニウム浸漬前の実施例1の配線層表面の金属組織を示す写真であり、図10は過硫酸アンモニウム浸漬後の実施例1の配線層表面の金属組織を示す写真である。図11は、過硫酸アンモニウム浸漬前の実施例2の配線層表面の金属組織を示す写真であり、図12は過硫酸アンモニウム浸漬後の実施例2の配線層表面の金属組織を示す写真である。図13は、過硫酸アンモニウム浸漬前の比較例1の配線層表面の金属組織を示す写真であり、図14は過硫酸アンモニウム浸漬後の比較例1の配線層表面の金属組織を示す写真である。
図9乃至図14に示した結果ならびにエッチングレートの測定結果から明らかなように比較例1の配線層は、過硫酸アンモニウムによるエッチングレートが大きく、銅膜がほぼ全面に亘ってエッチングされて(表面保護率が0%に近い。)ガラス基板表面に銅膜がわずかに残っているだけであり、エッチング液により大きなダメージを受けていることがわかる。これに対して実施例1,2のものは、比較例1のものに比べて過硫酸アンモニウムによるエッチングレートが大きく、プラズマ処理が1分の実施例1の配線層の表面保護率は50%、プラズマ処理が3分の実施例2の配線層は表面保護率が70%であり、エッチング液浸漬前後の配線層表面の状態があまり変化しておらず、比較例1のものに比べて薬液耐性が優れていることがわかる。なお、ここでの表面保護率とは、エッチング液浸漬前の配線層表面積(100%)に対するエッチング液浸漬後に残った表面部分の合計面積の割合である。
本発明に係わる第1の実施形態の液晶表示装置と薄膜トランジスタアレイ基板の断面を示す図である。 本発明に係わる第1の実施形態の薄膜トランジスタアレイ基板の製造方法に好適に用いられる薄膜の製造装置の成膜室を示す構成図である。 本発明に係わる第1の実施形態の薄膜トランジスタアレイ基板の製造方法に好適に用いられる薄膜の製造装置の全体構成を示す平面図である。 図3に示す薄膜の製造装置の一部を拡大した側面図である。 本発明に係わる第1の実施形態の薄膜トランジスタアレイ基板の製造方法を工程順に示す図である。 本発明に係わる第1の実施形態の薄膜トランジスタアレイ基板の製造方法を工程順に示す図である。 本発明に係わる第2の実施形態の液晶表示装置と薄膜トランジスタアレイ基板の断面を示す図である。 本発明に係わる第2の実施形態の薄膜トランジスタアレイ基板の製造方法を説明するための図である。 エッチング液浸漬前の実施例1の配線層表面の金属組織を示す写真である。 エッチング液浸漬後の実施例1の配線層表面の金属組織を示す写真である。 エッチング液浸漬前の実施例2の配線層表面の金属組織を示す写真である。 エッチング液浸漬後の実施例2の配線層表面の金属組織を示す写真である。 エッチング液浸漬前の比較例1の配線層表面の金属組織を示す写真である。 エッチング液浸漬後の比較例1の配線層表面の金属組織を示す写真である。 従来の液晶表示装置に備えられた薄膜トランジスタアレイ基板の一例の画素部を示す平面略図である。 図15の薄膜トランジスタアレイ基板を示す断面図である。
符号の説明
30,30a・・・液晶表示装置、31,31a・・・薄膜トランジスタアレイ基板、36・・・基板、36a・・・SiNx膜、40・・・ゲート電極、40a,46a,48a・・・銅層、40b,46b,48b・・・銅化合物層、40c,46c・・・銅膜、40e・・・被膜、46・・・ソース電極、48・・・ドレイン電極、60・・・成膜室。

Claims (4)

  1. 成膜室内に基板を装着し、前記成膜室内に少なくともPH3ガスを含有する第1の処理ガスを供給し、蒸着法により前記基板表面に第1リン化銅膜を形成し、次いで前記成膜室内に不活性ガスを供給し、蒸着法により前記第1リン化銅膜表面に第1銅膜を形成し、前記第1リン化銅膜と前記第1銅膜との積層膜をパターニングしてゲート配線を形成し、次いでプラズマ処理室内に少なくともPH3ガスを含有する第2の処理ガスを供給し、前記ゲート配線の外面を第2リン化銅被膜で覆うようプラズマ処理する工程と、
    前記ゲート配線が形成される前記基板上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上に半導体能動膜とオーミックコンタクト膜を順次に形成し、前記半導体能動膜とオーミックコンタクト膜をパターニングする工程と、
    前記半導体能動膜とオーミックコンタクト膜が形成される前記ゲート絶縁膜上に、前記蒸着法により第2銅膜を形成し、前記第2銅膜をパターニングしてソース及びドレイン配線を形成する工程と、
    前記プラズマ処理室内に少なくとも前記PH 3 ガスを含有する第2の処理ガスを供給し、前記ソース及びドレイン配線の外面を第3リン化銅被膜で覆うようプラズマ処理する工程と、
    前記ソース及びドレイン配線が形成される前記ゲート絶縁膜上に、パッシベーション膜を形成する工程と、
    前記パッシベーション膜上に、画素電極を形成する工程と、を含むことを特徴とする薄膜トランジスタアレイ基板の製造方法。
  2. 成膜室内に基板を装着し、前記成膜室内に少なくともB26ガスを含有する第1の処理ガスを供給し、蒸着法により前記基板表面に第1ホウ化銅膜を形成し、次いで前記成膜室内に不活性ガスを供給し、蒸着法により前記第1ホウ化銅膜表面に第1銅膜を形成し、前記第1ホウ化銅膜と前記第1銅膜との積層膜をパターニングしてゲート配線を形成し、次いでプラズマ処理室内に少なくともB26ガスを含有する第2の処理ガスを供給し、前記ゲート配線の外面を第2ホウ化銅被膜で覆うようプラズマ処理する工程と、
    前記ゲート配線が形成される前記基板上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上に半導体能動膜とオーミックコンタクト膜を順次に形成し、前記半導体能動膜とオーミックコンタクト膜をパターニングする工程と、
    前記半導体能動膜とオーミックコンタクト膜が形成される前記ゲート絶縁膜上に、前記蒸着法により第2銅膜を形成し、前記第2銅膜をパターニングしてソース及びドレイン配線を形成する工程と、
    前記プラズマ処理室内に少なくとも前記B 2 6 ガスを含有する第2の処理ガスを供給し、前記ソース及びドレイン配線の外面を第3ホウ化銅被膜で覆うようプラズマ処理する工程と、
    前記ソース及びドレイン配線が形成される前記ゲート絶縁膜上に、パッシベーション膜を形成する工程と、
    前記パッシベーション膜上に、画素電極を形成する工程と、を含むことを特徴とする薄膜トランジスタアレイ基板の製造方法。
  3. 成膜室内に基板を装着し、前記成膜室内に少なくともHBrガスを含有する第1の処理ガスを供給し、蒸着法により前記基板表面に第1臭化銅膜を形成し、次いで前記成膜室内に不活性ガスを供給し、蒸着法により前記第1臭化銅膜表面に第1銅膜を形成し、前記第1臭化銅膜と前記第1銅膜との積層膜をパターニングしてゲート配線を形成し、次いでプラズマ処理室内に少なくともHBrガスを含有する第2の処理ガスを供給し、前記ゲート配線の外面を第2臭化銅被膜で覆うようプラズマ処理する工程と、
    前記ゲート配線が形成される前記基板上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上に半導体能動膜とオーミックコンタクト膜を順次に形成し、前記半導体能動膜とオーミックコンタクト膜をパターニングする工程と、
    前記半導体能動膜とオーミックコンタクト膜が形成される前記ゲート絶縁膜上に、前記蒸着法により第2銅膜を形成し、前記第2銅膜をパターニングしてソース及びドレイン配線を形成する工程と、
    前記プラズマ処理室内に少なくとも前記HBrガスを含有する第2の処理ガスを供給し、前記ソース及びドレイン配線の外面を第3臭化銅被膜で覆うようプラズマ処理する工程と、
    前記ソース及びドレイン配線が形成される前記ゲート絶縁膜上に、パッシベーション膜を形成する工程と、
    前記パッシベーション膜上に、画素電極を形成する工程と、を含むことを特徴とする薄膜トランジスタアレイ基板の製造方法。
  4. 前記ソース及びドレイン配線を形成する以前に、前記半導体能動膜とオーミックコンタクト膜が形成される前記ゲート絶縁膜上に、低抵抗シリコン化合物膜を形成する工程を追加で含み、
    前記低抵抗シリコン化合物膜を前記第2銅膜とともにパターニングすることを含むことを特徴とする請求項1、2又は3に記載の薄膜トランジスタアレイ基板の製造方法
JP2006309011A 2006-11-15 2006-11-15 電子機器用基板及びその製造方法と電子機器 Expired - Lifetime JP4593551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309011A JP4593551B2 (ja) 2006-11-15 2006-11-15 電子機器用基板及びその製造方法と電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309011A JP4593551B2 (ja) 2006-11-15 2006-11-15 電子機器用基板及びその製造方法と電子機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10352111A Division JP2000165002A (ja) 1998-11-26 1998-11-26 電子機器用基板及びその製造方法と電子機器

Publications (2)

Publication Number Publication Date
JP2007065689A JP2007065689A (ja) 2007-03-15
JP4593551B2 true JP4593551B2 (ja) 2010-12-08

Family

ID=37927876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309011A Expired - Lifetime JP4593551B2 (ja) 2006-11-15 2006-11-15 電子機器用基板及びその製造方法と電子機器

Country Status (1)

Country Link
JP (1) JP4593551B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222355B2 (ja) * 2008-04-09 2013-06-26 暁東 馬 ナノワイヤの形成方法
WO2009125504A1 (ja) * 2008-04-09 2009-10-15 Ma Xiaodong ナノワイヤ及びその形成方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202841A (ja) * 1988-02-08 1989-08-15 Hitachi Ltd 半導体集積回路装置及びその製造方法
JPH0499290A (ja) * 1990-08-11 1992-03-31 Sony Corp 銅薄膜の選択的ドライエッチング方法
JPH04243134A (ja) * 1991-01-18 1992-08-31 Sony Corp 銅系金属配線の形成方法
JPH05144811A (ja) * 1991-11-22 1993-06-11 Hitachi Ltd 薄膜半導体装置及びその製造方法
JPH07230991A (ja) * 1994-02-17 1995-08-29 Fujitsu Ltd 半導体装置の製造方法
JPH09181173A (ja) * 1995-12-25 1997-07-11 Matsushita Electric Ind Co Ltd 半導体装置
JPH09232579A (ja) * 1996-02-20 1997-09-05 Fujitsu Ltd 薄膜トランジスタマトリクス及びその製造方法
JPH09237838A (ja) * 1996-02-28 1997-09-09 Lg Semicon Co Ltd 金属配線構造及びその形成方法
JPH09289211A (ja) * 1996-02-23 1997-11-04 Ricoh Co Ltd 半導体装置およびその製造方法
JPH1012614A (ja) * 1996-06-24 1998-01-16 Hitachi Ltd 半導体装置用配線およびその製造方法
JPH1012600A (ja) * 1996-06-12 1998-01-16 Samsung Electron Co Ltd 半導体デバイス製造工程のプラズマエッチング方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202841A (ja) * 1988-02-08 1989-08-15 Hitachi Ltd 半導体集積回路装置及びその製造方法
JPH0499290A (ja) * 1990-08-11 1992-03-31 Sony Corp 銅薄膜の選択的ドライエッチング方法
JPH04243134A (ja) * 1991-01-18 1992-08-31 Sony Corp 銅系金属配線の形成方法
JPH05144811A (ja) * 1991-11-22 1993-06-11 Hitachi Ltd 薄膜半導体装置及びその製造方法
JPH07230991A (ja) * 1994-02-17 1995-08-29 Fujitsu Ltd 半導体装置の製造方法
JPH09181173A (ja) * 1995-12-25 1997-07-11 Matsushita Electric Ind Co Ltd 半導体装置
JPH09232579A (ja) * 1996-02-20 1997-09-05 Fujitsu Ltd 薄膜トランジスタマトリクス及びその製造方法
JPH09289211A (ja) * 1996-02-23 1997-11-04 Ricoh Co Ltd 半導体装置およびその製造方法
JPH09237838A (ja) * 1996-02-28 1997-09-09 Lg Semicon Co Ltd 金属配線構造及びその形成方法
JPH1012600A (ja) * 1996-06-12 1998-01-16 Samsung Electron Co Ltd 半導体デバイス製造工程のプラズマエッチング方法
JPH1012614A (ja) * 1996-06-24 1998-01-16 Hitachi Ltd 半導体装置用配線およびその製造方法

Also Published As

Publication number Publication date
JP2007065689A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4247772B2 (ja) 配線とこれを用いた薄膜トランジスタ基板およびその製造方法と液晶表示装置
KR101167661B1 (ko) 배선 구조와 배선 형성 방법 및 박막 트랜지스터 기판과 그제조 방법
KR101199533B1 (ko) 식각액, 이를 이용하는 배선 형성 방법 및 박막 트랜지스터기판의 제조 방법
US6350995B1 (en) Thin film transistor and manufacturing method therefore
JP3940385B2 (ja) 表示デバイスおよびその製法
JP4368200B2 (ja) 薄膜トランジスタ基板及びその製造方法
KR20070049278A (ko) 배선, 이를 포함하는 박막 트랜지스터 기판과 그 제조 방법
CN1917202B (zh) 布线结构、布线制造方法、薄膜晶体管基板及其制造方法
KR100750922B1 (ko) 배선 및 그 제조 방법과 그 배선을 포함하는 박막트랜지스터 기판 및 그 제조 방법
JP2007212699A (ja) 反射型tft基板及び反射型tft基板の製造方法
KR20040063367A (ko) 박막 트랜지스터 기판 및 박막 트랜지스터 기판의금속배선 형성방법
KR20070019458A (ko) 배선 및 그 형성 방법과 박막 트랜지스터 기판 및 그 제조방법
GB2416908A (en) Array substrate for LCD and fabrication method thereof
JP4593551B2 (ja) 電子機器用基板及びその製造方法と電子機器
CN112951845A (zh) 阵列基板
JP2000165002A (ja) 電子機器用基板及びその製造方法と電子機器
JP4886285B2 (ja) 表示デバイス
CN211743124U (zh) 阵列基板及显示面板
CN111403336A (zh) 阵列基板、显示面板以及阵列基板的制作方法
KR100656913B1 (ko) 박막 트랜지스터 기판 및 그 제조 방법
KR20030028110A (ko) 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법
US20210217978A1 (en) Transistor array
KR100777706B1 (ko) 배선 및 그 제조 방법과 그 배선을 포함하는 박막트랜지스터 기판 및 그 제조 방법
KR100709707B1 (ko) 박막 트랜지스터 기판 및 그 제조 방법
KR100767379B1 (ko) 박막 트랜지스터 기판의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term