JP4592082B2 - Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate - Google Patents

Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate Download PDF

Info

Publication number
JP4592082B2
JP4592082B2 JP2005094977A JP2005094977A JP4592082B2 JP 4592082 B2 JP4592082 B2 JP 4592082B2 JP 2005094977 A JP2005094977 A JP 2005094977A JP 2005094977 A JP2005094977 A JP 2005094977A JP 4592082 B2 JP4592082 B2 JP 4592082B2
Authority
JP
Japan
Prior art keywords
rubber
laminate
vulcanizing agent
epichlorohydrin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005094977A
Other languages
Japanese (ja)
Other versions
JP2006272739A (en
Inventor
豊史 大高
茂 庄治
康 羽村
俊幸 船山
茂樹 伊藤
秀諭 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Air Water Inc
Original Assignee
Daiso Co Ltd
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd, Air Water Inc filed Critical Daiso Co Ltd
Priority to JP2005094977A priority Critical patent/JP4592082B2/en
Publication of JP2006272739A publication Critical patent/JP2006272739A/en
Application granted granted Critical
Publication of JP4592082B2 publication Critical patent/JP4592082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明はエピクロルヒドリン系ゴム−フッ素樹脂積層体に係わり、更に詳しくは大気圧プラズマ法により特定の条件で処理されたフッ素系樹脂層と、耐熱性、耐油性、耐寒性、耐候性、耐オゾン性、耐摩耗性、耐薬品性に優れたエピクロルヒドリン系ゴム組成物層とが強固に接着されてなる積層体、積層ホース、および積層体の製造方法に関する。このような積層体やホースは例えば車両用燃料油系ホース、化学工場用ケミカルホース、水道水用ホースなどに用いられる。   The present invention relates to an epichlorohydrin rubber-fluorine resin laminate, more specifically, a fluorine resin layer treated under specific conditions by an atmospheric pressure plasma method, and heat resistance, oil resistance, cold resistance, weather resistance, and ozone resistance. The present invention relates to a laminate, a laminated hose, and a method for producing the laminate, in which an epichlorohydrin rubber composition layer excellent in wear resistance and chemical resistance is firmly bonded. Such laminates and hoses are used, for example, as fuel oil hoses for vehicles, chemical hoses for chemical factories, and hoses for tap water.

従来、ガソリン等の燃料油に使用されるホースや、酸、アルカリ、有機溶剤等に使用されるケミカルホースは、最内層材に化学薬品や有機溶剤に耐性の高いフッ素ゴム加硫物からなる層を配し、それに直接積層される層にエピクロルヒドリン系ゴム加硫物からなる層を配した多層ホースが好適に用いられてきた。特に、耐サワーガソリン性、耐ガソリン透過性が要求される自動車用燃料系ホースの場合には、最内材にフッ素ゴム加硫物からなる層を配し、それに直接積層される層にエピクロロヒドリン系ゴム加硫物からなる層を配した多層ホースが好適に用いられてきた。しかしながら、近年、蒸散規制等のため、燃料油系ホースの使用ゴム材料として、耐ガソリン透過性を併せ持つ材料が要求されるようになってきており、フッ素ゴム加硫物に代わり燃料不透過性が更に優れたフッ素樹脂の使用が望まれるようになっている。   Conventionally, hoses used for fuel oils such as gasoline, and chemical hoses used for acids, alkalis, organic solvents, etc. are layers made of fluorinated rubber vulcanizates that are highly resistant to chemicals and organic solvents. A multilayer hose in which a layer made of an epichlorohydrin rubber vulcanizate is disposed on a layer directly laminated thereon has been suitably used. In particular, in the case of automobile fuel hoses that require sour gasoline resistance and gasoline permeation resistance, a layer made of a fluoro rubber vulcanizate is disposed on the innermost material, and epichloromethane is directly deposited on the layer laminated directly thereon. A multilayer hose having a layer made of a hydrin rubber vulcanizate has been suitably used. However, in recent years, due to transpiration regulations, etc., a material having both gasoline permeability resistance has been required as a rubber material used for fuel oil-based hoses, and fuel impermeability has been substituted for fluorinated rubber vulcanizates. Furthermore, the use of superior fluororesins has been desired.

多層ホースの場合、異種ゴム間および/またはゴム−樹脂間の接着性が最も重要な課題である。フッ素ゴムもしくはフッ素樹脂とエピクロルヒドリン系ゴムは、これらをそのまま加硫接着しようとしても接着性が乏しいことが知られている。フッ素ゴムもしくはフッ素樹脂とエピクロルヒドリン系ゴムの接着性を改良する手段としては、例えばエピクロルヒドリン系ゴムとしてエピクロロヒドリン系ゴムに1,8−ジアザビシクロ−(5,4,0)−ウンデセン−7(以下DBUと記す)、あるいはその誘導体のような添加剤を配合しておき、加硫接着する手段が提案されている。他方、フッ素系部材の表面を処理して接着性を向上させる方法も種々試みられている。フッ素系部材の処理方法としては、部材表面の機械的な粗面化、化学的エッチング、さらにプラズマ、コロナなどの放電処理方法が知られている。このうちプラズマ放電処理方法による表面処理は、クリーンでかつ表面改質の自由度が大きいことから、フッ素系部材の表面処理方法として注目されている。
特開平9−85898号 特開平10−264314号 特開平2001−107013号 特開平04−145139号 特開平07−178875号 特開平08−118546号
In the case of a multi-layer hose, adhesion between different rubbers and / or rubber-resin is the most important issue. It is known that fluororubber or fluororesin and epichlorohydrin rubber have poor adhesion even if they are vulcanized and bonded as they are. As a means for improving the adhesion between fluororubber or fluororesin and epichlorohydrin rubber, for example, epichlorohydrin rubber as epichlorohydrin rubber is added to 1,8-diazabicyclo- (5,4,0) -undecene-7 (hereinafter referred to as epichlorohydrin rubber). DBU), or a means for vulcanizing and bonding an additive such as a derivative thereof has been proposed. On the other hand, various methods for improving the adhesion by treating the surface of the fluorine-based member have been tried. Known methods for treating fluorine-based members include mechanical surface roughening, chemical etching, and discharge treatment methods such as plasma and corona. Among these, the surface treatment by the plasma discharge treatment method is attracting attention as a surface treatment method for fluorine-based members because it is clean and has a high degree of freedom for surface modification.
JP-A-9-85898 JP-A-10-264314 JP-A-2001-107013 JP 04-145139 A JP 07-178875 A JP 08-118546 A

しかしながら、エピクロロヒドリン系ゴムに特定の添加剤を配合しておき、加硫接着する方法では、フッ素ゴムとの接着性は比較的良好なものの、フッ素樹脂との接着性が十分に得られないため更なる接着性の改善が求められている。   However, the method of blending a specific additive with epichlorohydrin rubber and vulcanizing and adhering it is relatively good in adhesion to fluororubber, but sufficient adhesion to fluororesin is obtained. Therefore, there is a need for further improvement in adhesion.

また、フッ素系部材をプラズマ放電処理方法により親水化し接着に適する表面に改質する場合のプラズマ処理方法は、酸素、アルゴン、窒素やこれらを含む気体雰囲気下で行われており、特に、酸素/四フッ化炭素混合ガスを用いる方法がよく知られている。しかしながら、これらの方法においてもフッ素系部材表面を十分に親水化させることができず、結果的にフッ素系部材とエピクロルヒドリン系ゴム組成物層との接着性は十分でなく、更なる改良が求められている。   In addition, the plasma processing method in the case where a fluorine-based member is hydrophilized by a plasma discharge processing method and modified to a surface suitable for adhesion is performed in a gas atmosphere containing oxygen, argon, nitrogen, or these, and in particular, oxygen / A method using a carbon tetrafluoride mixed gas is well known. However, even in these methods, the surface of the fluorine-based member cannot be sufficiently hydrophilized, and as a result, the adhesion between the fluorine-based member and the epichlorohydrin rubber composition layer is not sufficient, and further improvement is required. ing.

本発明の目的は、フッ素樹脂とエピクロルヒドリン系ゴムの接着性に関する上記のような問題点を解消し、フッ素樹脂層とエピクロルヒドリン系ゴム組成物層とが強固に加硫接着された加硫ゴム積層体、積層ホース、および積層体の製造方法を提供しようとするものである。   An object of the present invention is to solve the above-mentioned problems relating to the adhesiveness between a fluororesin and an epichlorohydrin rubber, and a vulcanized rubber laminate in which a fluororesin layer and an epichlorohydrin rubber composition layer are firmly vulcanized and bonded. The present invention intends to provide a laminated hose and a method for producing a laminated body.

本発明者らは、上記課題を解決すべく種々検討を重ね、大気圧プラズマ法により特定の条件で処理されたフッ素系樹脂層と、エピクロルヒドリン系ゴム組成物層を積層し、加熱加硫接着することにより、強固に加硫接着された積層体が得られることを見出し、本発明を完成するに到った。   The inventors of the present invention have made various studies to solve the above-mentioned problems, laminated a fluororesin layer treated with a specific condition by an atmospheric pressure plasma method and an epichlorohydrin rubber composition layer, and bonded by heat vulcanization. As a result, it was found that a strongly vulcanized and bonded laminate could be obtained, and the present invention was completed.

本発明はすなわち、
1):大気圧プラズマ処理法により表面処理されたフッ素樹脂層とエピクロルヒドリン系ゴム組成物層とが加硫接着されてなるエピクロルヒドリン系ゴム−フッ素樹脂積層体において、
エピクロルヒドリン系ゴム組成物が、アミン系加硫剤、チオウレア系加硫剤、チアジアゾール系加硫剤、トリアジン系加硫剤、及び硫黄からなる群より選ばれた加硫剤を含有し、
大気圧プラズマ処理法が水素ガス、アルゴン及びヘリウムを含む混合ガス雰囲気で行なわれる積層体であり、
2):1)において混合ガス中の水素ガス濃度が0.5(vol)%以上含む混合ガス雰囲気で行なわれる積層体、
3):1)または2)において、大気圧プラズマ処理法がプラズマエネルギー密度1.0〜20J/cm2、で行なわれる積層体、
4):大気圧プラズマ処理法により表面処理されたフッ素樹脂からなる内層の処理面と、エピクロルヒドリン系ゴム組成物からなる外層とが加硫接着されてなる積層構造を、少なくとも含むエピクロルヒドリン系ゴム−フッ素樹脂積層ホースにおいて、
エピクロルヒドリン系ゴム組成物が、アミン系加硫剤、チオウレア系加硫剤、チアジアゾール系加硫剤、トリアジン系加硫剤、及び硫黄からなる群より選ばれた加硫剤を含有し、
大気圧プラズマ処理法が水素ガス、アルゴン及びヘリウムを含む混合ガス雰囲気で行なわれる積層ホース、
5):4)において混合ガス中の水素ガス濃度が0.5(vol)%以上含む混合ガス雰囲気で行われる積層ホース、
6):4)または5)において大気圧プラズマ処理法がプラズマエネルギー密度1.0〜20J/cm2で行なわれる積層ホース、
7):大気圧プラズマ法により表面処理されたフッ素樹脂層とエピクロルヒドリン系ゴム組成物層とが加硫接着されてなる、エピクロルヒドリン系ゴム−フッ素樹脂積層体の製造方法において、
エピクロルヒドリン系ゴム組成物が、アミン系加硫剤、チオウレア系加硫剤、チアジアゾール系加硫剤、トリアジン系加硫剤、及び硫黄からなる群より選ばれた加硫剤を含有し、
大気圧プラズマ処理法が水素ガス、アルゴン及びヘリウムを含む混合ガス雰囲気で行なう積層体の製造方法、
8):7)において水素ガス濃度が0.5(vol)%以上含む混合ガス雰囲気で行なう積層体の製造方法、
9):7)または8)において、大気圧プラズマ処理法がプラズマエネルギー密度1.0〜20J/cm2で行なわれる積層体の製造方法、
に関する。
The present invention is
1) In an epichlorohydrin rubber-fluorine resin laminate in which a fluororesin layer surface-treated by an atmospheric pressure plasma treatment method and an epichlorohydrin rubber composition layer are vulcanized and bonded,
The epichlorohydrin rubber composition contains an amine vulcanizing agent, a thiourea vulcanizing agent, a thiadiazole vulcanizing agent, a triazine vulcanizing agent, and a vulcanizing agent selected from the group consisting of sulfur,
A laminate in which atmospheric pressure plasma treatment is performed in a mixed gas atmosphere containing hydrogen gas, argon and helium,
2) A laminate that is performed in a mixed gas atmosphere containing hydrogen gas concentration of 0.5 (vol)% or more in 1) in 1),
3) A laminate in which atmospheric pressure plasma treatment is performed at a plasma energy density of 1.0 to 20 J / cm 2 in 1) or 2),
4): Epichlorohydrin-based rubber-fluorine including at least a laminated structure in which a treated surface of an inner layer made of a fluororesin surface-treated by an atmospheric pressure plasma treatment method and an outer layer made of an epichlorohydrin-based rubber composition are bonded by vulcanization In resin laminated hose,
The epichlorohydrin rubber composition contains an amine vulcanizing agent, a thiourea vulcanizing agent, a thiadiazole vulcanizing agent, a triazine vulcanizing agent, and a vulcanizing agent selected from the group consisting of sulfur,
A laminated hose in which atmospheric pressure plasma treatment is performed in a mixed gas atmosphere containing hydrogen gas, argon and helium,
5): Laminated hose performed in 4) in a mixed gas atmosphere containing a hydrogen gas concentration of 0.5 (vol)% or more in the mixed gas,
6): Laminated hose in which the atmospheric pressure plasma treatment method is performed at a plasma energy density of 1.0 to 20 J / cm 2 in 4) or 5)
7): In a method for producing an epichlorohydrin rubber-fluorine resin laminate, in which a fluororesin layer surface-treated by an atmospheric pressure plasma method and an epichlorohydrin rubber composition layer are vulcanized and bonded,
The epichlorohydrin rubber composition contains an amine vulcanizing agent, a thiourea vulcanizing agent, a thiadiazole vulcanizing agent, a triazine vulcanizing agent, and a vulcanizing agent selected from the group consisting of sulfur,
A method for producing a laminate in which the atmospheric pressure plasma treatment method is performed in a mixed gas atmosphere containing hydrogen gas, argon, and helium;
8): A method for producing a laminate in 7) performed in a mixed gas atmosphere containing a hydrogen gas concentration of 0.5 (vol)% or more,
9): A method for producing a laminate in which the atmospheric pressure plasma treatment method is performed at a plasma energy density of 1.0 to 20 J / cm 2 in 7) or 8).
About.

本発明により強固に加硫接着されてなるエピクロルヒドリン系ゴム−フッ素樹脂積層体が得られ、該フッ素樹脂を内層とする積層体からなる積層ホースは耐熱性、耐候性、耐寒性、耐酸敗ガソリン性、耐アルコール含有ガソリン性、耐ガソリン透過性、耐薬品性に優れている。   According to the present invention, an epichlorohydrin-based rubber-fluorine resin laminate that is firmly vulcanized and bonded is obtained, and a laminated hose comprising a laminate having the fluororesin as an inner layer has heat resistance, weather resistance, cold resistance, and anti-soaking gasoline resistance. Excellent in alcohol-containing gasoline resistance, gasoline permeation resistance and chemical resistance.

以下、本発明の構成につき詳細に説明する。本発明に用いられるフッ素樹脂は当該技術分野で通常用いられているフッ素樹脂であり、例えばビニリデンフルオライド-ヘキサフルオロプロペン二元共重合体、ビニリデンフルオライド-ヘキサフルオロプロペン-テトラフルオロエチレン三元共重合体、ビニリデンフルオライド-トリフルオロクロロエチレン二元共重合体、ビニリデンフルオライド-フルオロメチルビニルエーテル-テトラフルオロエチレン三元共重合体、テトラフルオロエチレン-プロピレン二元共重合体、ビニリデンフルオライド-テトラフルオロエチレン-テトラフルオロエチレン三元共重合体、ビニリデンフルオライド−ヘキサフルオロプロペン−テトラフルオロエチレン三元共重合体、エチレン−テトラフルオロエチレン二元共重合体、ヘキサフルオロプロペン−テトラフルオロエチレン二元共重合体、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等が挙げられ、なかでも好ましくはエチレン−テトラフルオロエチレン二元共重合体(ETFE)が挙げられる。上記フッ素樹脂は必要に応じて通常この分野で使用される充填剤を含むものであっても良い。   Hereinafter, the configuration of the present invention will be described in detail. The fluororesin used in the present invention is a fluororesin commonly used in the art, such as vinylidene fluoride-hexafluoropropene binary copolymer, vinylidene fluoride-hexafluoropropene-tetrafluoroethylene ternary copolymer. Polymer, vinylidene fluoride-trifluorochloroethylene binary copolymer, vinylidene fluoride-fluoromethyl vinyl ether-tetrafluoroethylene terpolymer, tetrafluoroethylene-propylene binary copolymer, vinylidene fluoride-tetra Fluoroethylene-tetrafluoroethylene terpolymer, vinylidene fluoride-hexafluoropropene-tetrafluoroethylene terpolymer, ethylene-tetrafluoroethylene binary copolymer, hexafluoropropene-tetraf Oroechiren binary copolymer, polyvinylidene fluoride, polytetrafluoroethylene or the like can be mentioned, with preference ethylene - tetrafluoroethylene binary copolymer (ETFE) and the like. The fluororesin may contain a filler usually used in this field as necessary.

本発明において、フッ素樹脂はエピクロルヒドリン系ゴムと加硫接着する前に、大気圧プラズマ法により、表面処理を行う。一般に、大気圧プラズマ処理は、例えば、大気圧プラズマ処理装置として、チャンバー内に空間を介して対向する高圧電極と低圧電極を設けたものを用いて行うことができる。高圧電極、低圧電極は通常金属で作られており、これらの対向電極の少なくとも一方は、放電を安定な状態で持続させるために誘電体にする必要がある。高圧電極、低圧電極を形成する金属は、銀、白金、ステンレス、アルミニウム、鉄等の汎用の金属が使用でき、誘電体は通常金属に被覆することにより設けられ、その材料としては、ケイ酸塩系ガラス、ホウ酸塩系ガラス、リン酸塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナジン酸塩ガラス等を用いることができる。上記電極の間に、フィルムを配置するとともに、チャンバー内に大気圧プラズマに用いるガスを供給した後、上記電極の間に電圧を印加して大気圧プラズマを発生させる。図1に大気圧プラズマ処理装置の例を示す。電極は、図1では双方とも平板電極で描かれているが、一方もしくは双方の電極を円筒状電極、角柱状電極、ロール状電極を用いてもよい。   In the present invention, the fluororesin is subjected to a surface treatment by an atmospheric pressure plasma method before being vulcanized and bonded to epichlorohydrin rubber. In general, the atmospheric pressure plasma treatment can be performed using, for example, an atmospheric pressure plasma treatment apparatus in which a high pressure electrode and a low pressure electrode facing each other through a space are provided in a chamber. The high-voltage electrode and the low-voltage electrode are usually made of metal, and at least one of these counter electrodes needs to be a dielectric in order to sustain discharge in a stable state. General-purpose metals such as silver, platinum, stainless steel, aluminum, and iron can be used as the metal forming the high-voltage electrode and the low-voltage electrode, and the dielectric is usually provided by coating the metal. Glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass, and the like can be used. A film is disposed between the electrodes, and a gas used for atmospheric pressure plasma is supplied into the chamber, and then a voltage is applied between the electrodes to generate atmospheric pressure plasma. FIG. 1 shows an example of an atmospheric pressure plasma processing apparatus. In FIG. 1, both electrodes are drawn as flat electrodes, but one or both electrodes may be cylindrical electrodes, prismatic electrodes, or roll electrodes.

上記大気圧プラズマ処理において、通常行われる条件を以下に示す。電極の間に印加する電圧は、通常、1〜10KVの範囲である。また、その電源の周波数は、1kHz〜150MHzの範囲であるが、それよりも高いGHz帯であってもよい。ただし、被処理物の熱の影響を考慮すれば、1kHz〜500kHzの範囲が好ましい。処理時のプラズマエネルギー密度(単位:J/cm2)は、電極間に加わる放電電力(単位:w)に処理時間(単位:s)を掛けて算出するプラズマエネルギー(単位:J)を電極面積(単位:cm2)で割って算出すされるが、通常、10μJ/cm2〜200J/cm2の範囲に設定される。
本発明において、処理時のプラズマエネルギー密度は、好ましくは1〜20(J/cm2)、更に好ましくは1〜15(J/cm2)である。
Conditions that are normally performed in the atmospheric pressure plasma treatment are shown below. The voltage applied between the electrodes is usually in the range of 1 to 10 KV. Further, the frequency of the power source is in the range of 1 kHz to 150 MHz, but may be a higher GHz band. However, the range of 1 kHz to 500 kHz is preferable in consideration of the influence of heat of the workpiece. The plasma energy density (unit: J / cm 2) at the time of processing is calculated by multiplying the discharge power (unit: w) applied between the electrodes by the processing time (unit: s) and calculating the plasma energy (unit: J) as the electrode area (unit: J). Although it is calculated by dividing by unit: cm2), it is usually set in the range of 10 μJ / cm2 to 200 J / cm2.
In the present invention, the plasma energy density during treatment is preferably 1 to 20 (J / cm 2), more preferably 1 to 15 (J / cm 2).

本発明において大気圧プラズマ処理は水素ガス、アルゴン(以下Arと略す)及びヘリウム(以下Heと略す)を含む混合ガス雰囲気で行なわれることが必要であり、好ましくは水素ガス、アルゴン及びヘリウムからなる混合ガス雰囲気で行われるが、本発明の効果を損なわない限り、通常大気圧プラズマ処理に使用される、ネオン、クリプトン、キセノン、ラドン、窒素等の不活性ガスを少量含むものであっても良い。 In the present invention, the atmospheric pressure plasma treatment needs to be performed in a mixed gas atmosphere containing hydrogen gas, argon (hereinafter abbreviated as Ar) and helium (hereinafter abbreviated as He), and preferably comprises hydrogen gas, argon and helium. Although it is carried out in a mixed gas atmosphere, it may contain a small amount of an inert gas such as neon, krypton, xenon, radon, nitrogen, etc., which is usually used for atmospheric pressure plasma treatment unless the effect of the present invention is impaired. .

以下において、水素ガス濃度%は(vol)%を表し、Ar/He比は(vol)比を表す。
本発明においては、処理ガス雰囲気は水素ガス、Ar及びHeからなる混合ガスであることが必須であり、水素ガス、Ar、Heのいずれかを含まない場合は、強固な接着力が得られない。混合ガス中の水素ガス濃度は、好ましくは水素ガス濃度が0.5%以上である。また、Ar、He混合ガスの混合比は、好ましくはAr/He=80/20〜20/80、更に好ましくはAr/He=60/40〜40/60である。
In the following, hydrogen gas concentration% represents (vol)%, and Ar / He ratio represents (vol) ratio.
In the present invention, it is essential that the processing gas atmosphere is a mixed gas composed of hydrogen gas, Ar, and He. If any of hydrogen gas, Ar, and He is not included, a strong adhesive force cannot be obtained. . The hydrogen gas concentration in the mixed gas is preferably such that the hydrogen gas concentration is 0.5% or more. Further, the mixing ratio of the Ar and He mixed gas is preferably Ar / He = 80/20 to 20/80, and more preferably Ar / He = 60/40 to 40/60.

本発明で用いられるエピクロルヒドリン系ゴムとは、エピクロルヒドリン単独重合体またはエピクロルヒドリンと共重合可能な他のエポキシド、例えばエチレンオキサイド、プロピレンオキサイド、アリルグリシジルエーテル等との共重合体をいう。これらを例示すれば、エピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−プロピレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体、エピクロルヒドリン−エチレンオキサイド−プロピレンオキサイド−アリルグリシジルエーテル四元共重合体、等を挙げることができる。好ましくはエピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体であり、さらに好ましくはエピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体である。   The epichlorohydrin rubber used in the present invention refers to an epichlorohydrin homopolymer or a copolymer with another epoxide copolymerizable with epichlorohydrin, such as ethylene oxide, propylene oxide, allyl glycidyl ether, and the like. Examples of these are epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-propylene oxide copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer, epichlorohydrin-ethylene oxide-propylene oxide-allyl. Examples thereof include glycidyl ether quaternary copolymers. Preferred are epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer, and more preferred epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether. A terpolymer.

本発明においては、加硫剤として、アミン系加硫剤、チオウレア系加硫剤、チアジアゾール系加硫剤、トリアジン系加硫剤、及び硫黄よりなる群から選ばれた加硫剤が適宜使用される。   In the present invention, a vulcanizing agent selected from the group consisting of an amine-based vulcanizing agent, a thiourea-based vulcanizing agent, a thiadiazole-based vulcanizing agent, a triazine-based vulcanizing agent, and sulfur is appropriately used as the vulcanizing agent. The

加硫剤を例示すれば、アミン系加硫剤としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンテトラミン、p-フェニレンジアミン、クメンジアミン、N,N′−ジシンナリデン−1,6−ヘキサンジアミン、エチレンジアミンカーバメート、ヘキサメチレンジアミンカーバメート等が挙げられ、チオウレア系加硫剤としては、2−メルカプトイミダゾリン、1,3−ジエチルチオウレア、1,3−ジブチルチオウレア、トリメチルチオウレア等が挙げられ、チアジアゾール系加硫剤としては、2,5−ジメルカプト−1,3,4−チアジアゾール、2−メルカプト−1,3,4−チアジアゾール−5−チオベンゾエート等が挙げられ、トリアジン系加硫剤としては、2,4,6−トリメルカプト−1,3,5−トリアジン、1−ヘキシルアミノ−3,5−ジメルカプトトリアジン、1−ジエチルアミノ−3,5−ジメルカプトトリアジン、1−シクロヘキシルアミノ−3,5−ジメルカプトトリアジン、1−ジブチルアミノ−3,5−ジメルカプトトリアジン、2−アニリノ−4,6−ジメルカプトトリアジン、1−フェニルアミノ−3,5−ジメルカプトトリアジン等が挙げられる。
加硫剤の配合量は、エピクロルヒドリン系ゴム100重量部に対して0.1〜10重量部、好ましくは0.3〜5重量部である。
Examples of vulcanizing agents include amine vulcanizing agents such as ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, p-phenylenediamine, cumenediamine, N, N'-dicinnaridene-1,6. -Hexanediamine, ethylenediamine carbamate, hexamethylenediamine carbamate and the like, and thiourea vulcanizing agents include 2-mercaptoimidazoline, 1,3-diethylthiourea, 1,3-dibutylthiourea, trimethylthiourea, etc. Examples of the thiadiazole vulcanizing agent include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole-5-thiobenzoate, and the triazine vulcanizing agent. , 2, 4 6-trimercapto-1,3,5-triazine, 1-hexylamino-3,5-dimercaptotriazine, 1-diethylamino-3,5-dimercaptotriazine, 1-cyclohexylamino-3,5-dimercaptotriazine 1-dibutylamino-3,5-dimercaptotriazine, 2-anilino-4,6-dimercaptotriazine, 1-phenylamino-3,5-dimercaptotriazine and the like.
The compounding quantity of a vulcanizing agent is 0.1-10 weight part with respect to 100 weight part of epichlorohydrin type rubbers, Preferably it is 0.3-5 weight part.

また、通常これらの加硫剤と共に用いられる公知の促進剤(即ち、加硫促進剤)、遅延剤等を本発明の加硫用ゴム組成物にもそのまま用いることができる。これらの加硫促進剤の例としては、硫黄、チウラムスフィド類、モルホリンスルフィド類、アミン類、アミンの弱酸塩類、塩基性シリカ、四級アンモニウム塩類、四級ホスホニウム塩類、多官能ビニル化合物、メルカプトベンゾチアゾール類、スルフェンアミド類、ジメチオカーバメート類等、1,8-ジアザビシクロ(5,4,0)ウンデセン-7およびその塩、1,5-ジアザビシクロ(4,3,0)ノネン-5およびその塩等、を挙げることができる。遅延剤としてはN−シクロヘキサンチオフタルイミド等を挙げることができる。促進剤または遅延剤の配合量は、エピクロルヒドリン系ゴム100重量部に対して0〜10重量部、例えば0.1〜5重量部である。   In addition, known accelerators (that is, vulcanization accelerators), retarders and the like which are usually used together with these vulcanizing agents can be used as they are in the rubber composition for vulcanization of the present invention. Examples of these vulcanization accelerators include sulfur, thiuram sulfides, morpholine sulfides, amines, weak acid salts of amines, basic silica, quaternary ammonium salts, quaternary phosphonium salts, polyfunctional vinyl compounds, mercapto 1,8-diazabicyclo (5,4,0) undecene-7 and salts thereof, 1,5-diazabicyclo (4,3,0) nonene-5 and the like, such as benzothiazoles, sulfenamides, dimethiocarbamates The salt etc. can be mentioned. Examples of the retarder include N-cyclohexanethiophthalimide. The compounding quantity of an accelerator or a retarder is 0-10 weight part with respect to 100 weight part of epichlorohydrin type rubbers, for example, 0.1-5 weight part.

受酸剤は、加硫剤に応じて公知の受酸剤を使用できるが、好ましくは金属化合物および/または無機マイクロポーラス・クリスタルである。金属化合物としては、周期表第II族(2族および12族)金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第III族(3族および13族)金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第IV族(4族および14族)金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩、三塩基性硫酸塩等の金属化合物が挙げられる。   As the acid acceptor, a known acid acceptor can be used depending on the vulcanizing agent, but a metal compound and / or an inorganic microporous crystal is preferable. Examples of metal compounds include Group II (Group 2 and Group 12) metal oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, Periodic Table III Group (Group 3 and Group 13) metal oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, Group IV (Groups 4 and 14) metals And metal compounds such as oxides, basic carbonates, basic carboxylates, basic phosphites, basic sulfites, and tribasic sulfates.

無機マイクロポーラス・クリスタルとは、結晶性の多孔体を言い、無定型の多孔体、例えばシリカゲル、アルミナ等とは明瞭に区別できるものである。このような無機マイクロポーラス・クリスタルの例としては、ゼオライト類、アルミノホスフェート型モレキュラーシーブ、層状ケイ酸塩、合成ハイドロタルサイト、チタン酸アルカリ金属塩等が挙げられる。特に好ましい受酸剤としては、合成ハイドロタルサイトが挙げられる。   An inorganic microporous crystal refers to a crystalline porous body, and can be clearly distinguished from an amorphous porous body such as silica gel, alumina and the like. Examples of such inorganic microporous crystals include zeolites, aluminophosphate type molecular sieves, layered silicates, synthetic hydrotalcites, alkali metal titanates and the like. A particularly preferred acid acceptor is synthetic hydrotalcite.

受酸剤の配合量は、エピクロルヒドリン系100重量部に対して0.2〜50重量部、例えば0.5〜50重量部、特に1〜20重量部である。   The compounding quantity of an acid acceptor is 0.2-50 weight part with respect to 100 weight part of epichlorohydrin type, for example, 0.5-50 weight part, Especially 1-20 weight part.

本発明による上記加硫接着用組成物には加硫剤、促進剤、遅延剤、受酸剤の他、ゴム加工分野において通常用いられる各種配合剤である充填剤、補強剤、可塑剤、老化防止剤、滑剤、接着賦与剤、安定剤、粘性賦与剤、顔料、難燃剤、紫外線吸収剤、発泡剤、消泡剤、加硫調整剤等を適宜添加することができる。また、強度、剛性を向上させるため短繊維等の添加も可能である。これら加硫剤や他の添加剤の種類、および添加量は、用いられるゴム材料、求められる特性に応じて適宜設定される。 The vulcanized adhesive composition according to the present invention includes a vulcanizing agent, an accelerator, a retarder, an acid acceptor, a filler, a reinforcing agent, a plasticizer, and an aging agent which are various compounding agents usually used in the rubber processing field. An inhibitor, a lubricant, an adhesion-imparting agent, a stabilizer, a viscosity-imparting agent, a pigment, a flame retardant, an ultraviolet absorber, a foaming agent, an antifoaming agent, a vulcanization regulator, and the like can be appropriately added. In addition, short fibers can be added to improve strength and rigidity. The types and addition amounts of these vulcanizing agents and other additives are appropriately set according to the rubber material used and the required characteristics.

エピクロルヒドリン系ゴム加硫接着用組成物の作成方法としては、通常ゴム加工分野において利用されている任意の手段、例えばミキシングロ−ル、バンバリ−ミキサ−、各種ニ−ダ−類等を用いる方法を適用することができる。本発明による加硫接着用組成物を用いたゴム加硫物は、本発明加硫接着用組成物を通常100〜200℃に加熱することで得られ、加硫時間は温度により異なるが普通0.5〜300分の間である。加硫成型の方法としては、金型による圧縮成型、射出成型、スチ−ム缶、エア−バス、赤外線或いはマイクロウエ−ブによる加熱等任意の方法を用いることができる。 As a method for preparing an epichlorohydrin-based rubber vulcanized adhesive composition, a method using any means usually used in the field of rubber processing, such as, for example, mixin gall, Banbury mixer, various kinds of kneaders, etc. Can be applied. The rubber vulcanizate using the vulcanizing adhesive composition according to the present invention is usually obtained by heating the vulcanizing adhesive composition of the present invention to 100 to 200 ° C., and the vulcanization time varies depending on the temperature, but usually 0. Between 5 and 300 minutes. As a method for vulcanization molding, any method such as compression molding using a mold, injection molding, steam can, air bath, infrared ray, or heating using a microwave can be used.

本発明において積層体を製造する方法としては、同時押出成形、逐次押出成形により、エピクロルヒドリン系ゴム未加硫組成物層とフッ素樹脂層を積層せしめ、次いで積層物を加熱加硫もしくは加熱加硫成型する方法、金型を用いてエピクロルヒドリン系ゴム未加硫組成物層とフッ素樹脂層を積層すると同時に加熱加硫成型する方法等がある。また未加硫ゴムを型崩れしない程度に弱く加熱加硫した後に両者を積層して十分に加熱加硫成形せしめる方法も採用できる。いずれの方法においても、大気圧プラズマ処理されたフッ素樹脂面がエピクロルヒドリン系ゴム加硫用組成物層と接触するように積層して加熱加硫成型する。上記押出成形により積層された積層体を加熱加硫成型する方法としては金型による加圧成型のほか、スチ−ム缶、エア−バス、赤外線、マイクロウエ−ブ、被鉛加硫等の公知の方法が任意に採用できる。加硫条件としては、用いられるエピクロルヒドリン系ゴム、および用いられる加硫剤に応じて適宜設定されるが、加硫温度は通常100〜200℃であり、加熱時間は温度によって異なるが0.5〜300分間の範囲内にある。   In the present invention, as a method for producing a laminate, an epichlorohydrin rubber unvulcanized composition layer and a fluororesin layer are laminated by coextrusion molding and sequential extrusion molding, and then the laminate is heated or vulcanized. And an epichlorohydrin rubber unvulcanized composition layer and a fluororesin layer using a mold and simultaneously heat vulcanization molding. Further, it is also possible to employ a method in which the unvulcanized rubber is heated and vulcanized so weak that it does not lose its shape, and then both are laminated and sufficiently heated and vulcanized. In either method, the fluororesin surface that has been subjected to the atmospheric pressure plasma treatment is laminated so as to be in contact with the epichlorohydrin-based rubber vulcanizing composition layer, followed by heat vulcanization molding. Known methods such as steam cans, air baths, infrared rays, microwaves, lead vulcanization, etc., as well as pressure molding with molds as methods for heat vulcanization molding of laminates laminated by the above extrusion molding The method can be arbitrarily adopted. The vulcanization conditions are appropriately set according to the epichlorohydrin rubber used and the vulcanizing agent used, but the vulcanization temperature is usually 100 to 200 ° C., and the heating time varies depending on the temperature. Within 300 minutes.

本発明の積層体を燃料油系ホースに適応する場合の態様としては、
図2に示すように、フッ素樹脂からなる層を内層(1)に、エピクロルヒドリン系ゴムからなる層を外層(2)にそれぞれ配してなる2層ホース
図3に示すように、2層ホースの外側に編組材料を編組補強層(3)を配してなる3層ホース、
図4に示すように、3層ホースの外側にゴムからなる最外層(4)を配してなる4層ホース等を代表的に挙げることができる。上記3層ホースまたは4層ホース等に用いられる編組材料としては、ポリエステル繊維、ポリアミド繊維、ガラス繊維、ビニロン繊維、綿、ワイヤー等の編組したものが例示される。また上記4層ホースの最外層(4)の材料としては、エピクロロヒドリン系ゴムのほか、アクリルゴム、エチレン−アクリルゴム、クロロプレンゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム等の耐老化性、耐候性、耐油性等のある合成ゴムが通常用いられる。
更に、図5に示すように、内層がフッ素樹脂層だけでは柔軟性が乏しく接合パイプとの密着性が弱い場合、更にその内側にゴム弾性を有し燃料油性に優れたゴム層(5)を配したホースも使用可能である。ゴム層(5)に用いられるゴムの例としては、エピクロロヒドリン系ゴム、ニトリルブタジエンゴム、ニトリルブタジエンゴムとポリ塩化ビニルのブレンド物、水素添加ニトリルブタジエンゴム、フッ素ゴムなどが例示される。
As an aspect when the laminate of the present invention is applied to a fuel oil-based hose,
As shown in FIG. 2, a two-layer hose in which a layer made of fluororesin is arranged on the inner layer (1) and a layer made of epichlorohydrin rubber is arranged on the outer layer (2), as shown in FIG. A three-layer hose having a braided reinforcing layer (3) arranged on the outside with a braided material;
As shown in FIG. 4, a representative example is a four-layer hose in which an outermost layer (4) made of rubber is disposed on the outside of the three-layer hose. Examples of the braiding material used for the three-layer hose or the four-layer hose include braided materials such as polyester fiber, polyamide fiber, glass fiber, vinylon fiber, cotton, and wire. In addition to the epichlorohydrin rubber, the outermost layer (4) of the above four-layer hose is resistant to aging such as acrylic rubber, ethylene-acrylic rubber, chloroprene rubber, chlorinated polyethylene rubber, and chlorosulfonated polyethylene rubber. Synthetic rubber having properties such as heat resistance, weather resistance and oil resistance is usually used.
Furthermore, as shown in FIG. 5, when the inner layer is only a fluororesin layer and the flexibility is poor and the adhesion to the joining pipe is weak, a rubber layer (5) having rubber elasticity and excellent fuel oiliness is further provided on the inner side. The arranged hose can also be used. Examples of the rubber used for the rubber layer (5) include epichlorohydrin rubber, nitrile butadiene rubber, a blend of nitrile butadiene rubber and polyvinyl chloride, hydrogenated nitrile butadiene rubber, and fluorine rubber.

本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。
(実施例1〜11、比較例1〜7)
(1)積層体の作成
Specific modes for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
(Examples 1-11, Comparative Examples 1-7)
(1) Creation of laminate

(実施例1〜8、比較例1〜4)
表1に示す組成のエピクロルヒドリン系ゴム組成物を7インチロールにて70〜80℃で15〜20分間混練し、厚さ2mmの未加硫シートS1〜S4を作製した。
フッ素樹脂(ダイキン工業(株)社製ネオフロンETFE EP-610:エチレン−テトラフルオロエチレン二元共重合体)のペレットを240℃に保持された金型で、20〜25kg/cm2で4分間加圧し、厚さ0.3mmのシートAを得た。
(Examples 1-8, Comparative Examples 1-4)
The epichlorohydrin rubber composition having the composition shown in Table 1 was kneaded with a 7-inch roll at 70 to 80 ° C. for 15 to 20 minutes to prepare unvulcanized sheets S1 to S4 having a thickness of 2 mm.
A pellet of fluororesin (Nephron ETFE EP-610: ethylene-tetrafluoroethylene binary copolymer manufactured by Daikin Industries, Ltd.) was pressed at 20-25 kg / cm2 for 4 minutes with a mold held at 240 ° C. A sheet A having a thickness of 0.3 mm was obtained.

上記シートAを図1に示す大気圧プラズマ処理機により、高圧電極と低圧電極の極間を3mmに設定し、周波数5kHzの交流電源を用い、2.2kVの電圧を印加し、Ar/He比、水素濃度(%)、プラズマエネルギー密度(J/cm2)は表2aおよび表2bに示す条件でプラズマ処理を行い、シートB〜Kを得た。   With the atmospheric pressure plasma processing machine shown in FIG. 1, the sheet A is set to 3 mm between the electrodes of the high voltage electrode and the low voltage electrode, an AC power source with a frequency of 5 kHz is applied, a voltage of 2.2 kV is applied, and an Ar / He ratio The hydrogen concentration (%) and the plasma energy density (J / cm 2) were subjected to plasma treatment under the conditions shown in Tables 2a and 2b to obtain sheets B to K.

(実施例9〜11、比較例5〜7)
フッ素樹脂(ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー社製3M THV フルオロプラティック 500G:テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオライド三元共重合体)のペレットを185℃に保持された金型で、25kg/cm2で4分間加圧し、厚さ0.3mmのシートJを得た。
(Examples 9-11, Comparative Examples 5-7)
Gold in which pellets of fluororesin (manufactured by Minnesota Mining and Manufacturing Company, 3M THV Fluoroplastic 500G: tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer) are held at 185 ° C. The sheet was pressed at 25 kg / cm 2 for 4 minutes to obtain a sheet J having a thickness of 0.3 mm.

上記シートJを図1に示す大気圧プラズマ処理機により大気圧プラズマ処理を行い、シートKを得た、処理条件はAr/He比=50/50、水素濃度2(%)、プラズマエネルギー密度7.2J/cm2で行った。   The sheet J was subjected to atmospheric pressure plasma treatment using an atmospheric pressure plasma treatment machine shown in FIG. 1 to obtain a sheet K. The treatment conditions were Ar / He ratio = 50/50, hydrogen concentration 2 (%), plasma energy density 7 .2 J / cm @ 2.

上記未加硫塩素含有ゴム組成物からなるシートS1〜S4とフッ素系樹脂シートA〜Mを貼り合わせ、170℃、25kg/cm2で15分間加圧し、厚さ2mmの加硫ゴム積層体を得た。   The sheets S1 to S4 made of the above-mentioned unvulcanized chlorine-containing rubber composition and fluorine resin sheets A to M are bonded together and pressurized at 170 ° C. and 25 kg / cm 2 for 15 minutes to obtain a vulcanized rubber laminate having a thickness of 2 mm. It was.

(2)性能試験
上記加硫エピクロルヒドリン系ゴム組成物−フッ素樹脂積層体について、接着性の評価試験をした。
(2) Performance test The adhesive evaluation test was done about the said vulcanized epichlorohydrin type rubber composition-fluororesin laminated body.

接着性評価試験:
ゴム−ゴム積層体およびゴム−樹脂積層体をそれぞれ2.5cm幅×10cmの短冊状に切断して接着試験用試験片を作製し、この試験片について、JIS−K−6256(加硫ゴムの接着試験方法)に記載の方法に準拠し、25℃において50mm/minの引張速度で剥離試験を行った。
各試験方法より得られた実施例及び比較例の試験結果を表2〜4に示す。
Adhesion evaluation test:
A rubber-rubber laminate and a rubber-resin laminate were cut into strips each having a width of 2.5 cm and a width of 10 cm to produce a test piece for adhesion test. JIS-K-6256 (vulcanized rubber In accordance with the method described in Adhesion Test Method), a peel test was performed at 25 ° C. and a tensile speed of 50 mm / min.
Tables 2 to 4 show the test results of Examples and Comparative Examples obtained from each test method.

Figure 0004592082
Figure 0004592082

Figure 0004592082
Figure 0004592082

Figure 0004592082
Figure 0004592082

Figure 0004592082
Figure 0004592082

Figure 0004592082
Figure 0004592082

表1〜4から明らかなように、実施例の加硫接着用組成物および加硫ゴム積層体はいずれの項目においても良好な結果を示し、本発明によりフッ素樹脂からなる層とエピクロルヒドリン系ゴム組成物からなる層とが強固に接着された加硫ゴム積層体または積層ホースを提供することができることがわかる。 As is apparent from Tables 1 to 4, the vulcanized adhesive compositions and vulcanized rubber laminates of the examples show good results in all items, and the layer composed of the fluororesin and the epichlorohydrin rubber composition according to the present invention. It can be seen that it is possible to provide a vulcanized rubber laminate or a laminated hose in which a layer made of a product is firmly bonded.

本発明の積層体は車両用燃料油系ホース、化学工場用ケミカルホース、水道水用ホースなど、耐熱性、耐候性、耐寒性、耐酸敗ガソリン性、耐アルコール含有ガソリン性、耐ガソリン透過性、耐薬品性が要求される分野で好適に用いられる。   The laminate of the present invention is a fuel oil hose for vehicles, a chemical hose for chemical factories, a hose for tap water, etc., such as heat resistance, weather resistance, cold resistance, acid resistance gasoline resistance, alcohol resistance gasoline resistance, gasoline permeability resistance, It is suitably used in fields where chemical resistance is required.

大気圧プラズマ処理機の構成を示す図である。It is a figure which shows the structure of an atmospheric pressure plasma processing machine. 2層ホースを示す斜視図である。It is a perspective view which shows a 2 layer hose. 3層ホースを示す斜視図である。It is a perspective view which shows a 3 layer hose. 4層ホースを示す斜視図である。It is a perspective view which shows a 4 layer hose. 最内層を有する積層ホースを示す斜視図である。It is a perspective view which shows the lamination | stacking hose which has an innermost layer.

符号の説明Explanation of symbols

(図1の符号)
1:高圧電極
2:低圧電極
3:ガス導入口
4:ガス排出口
5:フィルム
(Reference in FIG. 1)
1: High voltage electrode 2: Low voltage electrode 3: Gas inlet 4: Gas outlet 5: Film

(図2〜図5の符号)
1:内層
2:外層
3:編組補強層
4:最外層
5:最内層
(Reference numerals in FIGS. 2 to 5)
1: Inner layer 2: Outer layer 3: Braided reinforcing layer 4: Outermost layer 5: Innermost layer

Claims (2)

大気圧プラズマ法により表面処理されたフッ素樹脂層の処理面とエピクロルヒドリン系ゴム組成物層とが加硫接着されてなる、エピクロルヒドリン系ゴム−フッ素樹脂積層体の製造方法において、  In the method for producing an epichlorohydrin rubber-fluorine resin laminate, in which a treated surface of a fluororesin layer surface-treated by an atmospheric pressure plasma method and an epichlorohydrin rubber composition layer are vulcanized and bonded,
エピクロルヒドリン系ゴム組成物が、アミン系加硫剤、チオウレア系加硫剤、チアジアゾール系加硫剤、トリアジン系加硫剤、及び硫黄からなる群より選ばれる加硫剤を含有し、  The epichlorohydrin rubber composition contains an amine vulcanizing agent, a thiourea vulcanizing agent, a thiadiazole vulcanizing agent, a triazine vulcanizing agent, and a vulcanizing agent selected from the group consisting of sulfur,
大気圧プラズマ処理法が水素ガス、アルゴン及びヘリウムを含む混合ガス雰囲気で行なわれ、混合ガス中の水素ガス濃度が0.5(vol)%以上である積層体の製造方法。A method for producing a laminate, wherein the atmospheric pressure plasma treatment is performed in a mixed gas atmosphere containing hydrogen gas, argon, and helium, and the hydrogen gas concentration in the mixed gas is 0.5 (vol)% or more.
大気圧プラズマ処理法のプラズマエネルギー密度が1.0〜20J/cm2である請求項1に記載の積層体の製造方法。  The method for producing a laminate according to claim 1, wherein the plasma energy density of the atmospheric pressure plasma treatment method is 1.0 to 20 J / cm2.
JP2005094977A 2005-03-29 2005-03-29 Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate Expired - Fee Related JP4592082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094977A JP4592082B2 (en) 2005-03-29 2005-03-29 Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094977A JP4592082B2 (en) 2005-03-29 2005-03-29 Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate

Publications (2)

Publication Number Publication Date
JP2006272739A JP2006272739A (en) 2006-10-12
JP4592082B2 true JP4592082B2 (en) 2010-12-01

Family

ID=37207949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094977A Expired - Fee Related JP4592082B2 (en) 2005-03-29 2005-03-29 Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate

Country Status (1)

Country Link
JP (1) JP4592082B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602932B1 (en) 2013-12-24 2014-10-08 株式会社ニチリン Vulcanized adhesive laminate and rubber composition used therefor
JP6510774B2 (en) * 2014-07-28 2019-05-08 積水化学工業株式会社 Film surface treatment method and apparatus
CN106687510B (en) * 2014-09-05 2020-11-10 国立大学法人大阪大学 Method for producing surface-modified molded article, and method for producing composite using same
JP7078452B2 (en) * 2018-05-08 2022-05-31 株式会社ブリヂストン Manufacturing method of laminated hose and laminated hose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145139A (en) * 1990-10-05 1992-05-19 Bridgestone Corp Surface-treating method of fluorine based member and method for bonding fluorine based member
JP2001107013A (en) * 1999-07-28 2001-04-17 Daiso Co Ltd Vulcanizable adhesion composition and laminated product and laminated hose using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145139A (en) * 1990-10-05 1992-05-19 Bridgestone Corp Surface-treating method of fluorine based member and method for bonding fluorine based member
JP2001107013A (en) * 1999-07-28 2001-04-17 Daiso Co Ltd Vulcanizable adhesion composition and laminated product and laminated hose using same

Also Published As

Publication number Publication date
JP2006272739A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4972973B2 (en) Vulcanized rubber laminate
JP5499713B2 (en) Vulcanized rubber laminate
EP0979968B1 (en) Method of producing fuel hose and fuel hose obtained thereby
JP4592082B2 (en) Epichlorohydrin rubber-fluorine resin laminate, laminated hose, and method for producing laminate
EP2439067B1 (en) Rubber-resin laminate
EP3088176B1 (en) Vulcanization-bonded laminate, and rubber composition for use in same
JP2009056632A (en) Laminate of fluorine-containing polymer and vulcanized rubber
JP2001107013A (en) Vulcanizable adhesion composition and laminated product and laminated hose using same
JP2006272741A (en) Epichlorohydrin rubber-fluorocarbon resin laminate, laminated hose, and method for producing laminate
JP3106925B2 (en) Vulcanized rubber laminate
JP2003155409A (en) Rubber composition for vulcanization and its vulcanized rubber material
JP4213937B2 (en) Fuel hose
JP2010071418A (en) Refrigerant transportation hose
JP5622100B2 (en) Vulcanized rubber laminate
JP5477690B2 (en) Vulcanized rubber laminate
JP5441012B2 (en) Vulcanized rubber laminate
JP5602933B1 (en) Vulcanized adhesive laminate and rubber composition used therefor
JP5790995B2 (en) Rubber-metal laminate
JP2005249086A (en) Multi-layer hose
JP5724726B2 (en) Vulcanized rubber-metal laminate
WO2023190177A1 (en) Composition for vulcanization bonding, compositions for vulcanization-bonded laminate, and laminate obtained from said compositions
JP2003238714A (en) Method for producing sealing medium
JP2010069777A (en) Refrigerant transport hose
JP2008093993A (en) Cooling medium transport hose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees