JP4592023B2 - Online spectral transmission color measurement method and online spectral transmission color measurement device - Google Patents

Online spectral transmission color measurement method and online spectral transmission color measurement device Download PDF

Info

Publication number
JP4592023B2
JP4592023B2 JP2006315438A JP2006315438A JP4592023B2 JP 4592023 B2 JP4592023 B2 JP 4592023B2 JP 2006315438 A JP2006315438 A JP 2006315438A JP 2006315438 A JP2006315438 A JP 2006315438A JP 4592023 B2 JP4592023 B2 JP 4592023B2
Authority
JP
Japan
Prior art keywords
measured
measurement
color
transmission
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006315438A
Other languages
Japanese (ja)
Other versions
JP2008128873A (en
Inventor
健夫 山田
猛 山本
保文 加藤
崇寛 山倉
眞治 林
信輔 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP2006315438A priority Critical patent/JP4592023B2/en
Publication of JP2008128873A publication Critical patent/JP2008128873A/en
Application granted granted Critical
Publication of JP4592023B2 publication Critical patent/JP4592023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、透明な物体(プラスティック、ガラスなど)の分光透過率、分光透過色、ヘーズ(曇り価)を、オンラインで測定する方法、及び装置に関するものである。   The present invention relates to an on-line method and apparatus for measuring the spectral transmittance, spectral transmission color, and haze (cloudiness value) of a transparent object (plastic, glass, etc.).

物体の色測定方法は、JIS Z 8722 「色の測定方法−反射色及び透過物体色」に、色の表示方法は、JIS Z 8701 「色の表示方法−XYZ表色系及びX10Y10Z10表色系」、JIS Z 8730 「色の表示方法−物体色の色差」に記載されており、この規格に対応した製品は多く市販されている。   The object color measurement method is JIS Z 8722 “Color measurement method-reflection color and transmission object color”, and the color display method is JIS Z 8701 “Color display method-XYZ color system and X10Y10Z10 color system”. , JIS Z 8730 “Color Display Method-Color Difference of Object Color”, and many products corresponding to this standard are commercially available.

最近では、FPD(Flat Panel Display)表示装置の発展に伴い、使用される透明体、透明拡散体の透過率測定、透過色測定だけでなく、ヘーズ(曇り価)の測定ニーズが強まっている。   Recently, with the development of FPD (Flat Panel Display) display devices, there is an increasing need for measuring haze (cloudiness value) as well as measuring transmittance and transmission color of transparent bodies and transparent diffusers used.

また、樹脂表面の改質技術としてコロナ放電処理装置が広く使用されているが、表面処理の改質レベルを定量的にオンラインで測定する方法が無いために、製品の安定化が問題になっている。   In addition, corona discharge treatment equipment is widely used as a resin surface modification technique. However, there is no method for quantitatively measuring the surface treatment modification level online, so stabilization of the product becomes a problem. Yes.

また、農業用のビニールハウスに使用されるフィルムなどは、太陽光の照射角度の影響を受けずに、全ての場所に光を拡散させるために適切な拡散度が必要である。   Moreover, the film used for the greenhouse for agriculture, etc. needs an appropriate diffusion degree in order to diffuse light to all places, without being influenced by the irradiation angle of sunlight.

多くのフィルム・シートは透明体、半透明体であることから、光学特性も重要な管理項目である。又、コロナ処理により改質されたフィルムの透過色とその表面粗さを測定するニーズは強い。   Since many films and sheets are transparent and translucent, optical properties are also an important management item. In addition, there is a strong need to measure the transmitted color and surface roughness of a film modified by corona treatment.

ヘーズの測定法は、JIS K 7105 「プラスティックの光学的特性試験方法」に記載されている。この方式に従ったオフライン機器はヘーズ・透過率計などの名称で市販されている。しかし、ここに説明されている方法は、積分球式光線透過率測定装置であるので、オンラインでは使用できない。   The haze measurement method is described in JIS K 7105 “Testing method for optical properties of plastics”. Off-line devices according to this method are commercially available under names such as haze and transmittance meters. However, since the method described here is an integrating sphere light transmittance measuring device, it cannot be used online.

本発明は、このような事情に鑑みてなされたもので、オンラインで分光透過率・透過色と、ヘーズ値と同等な特性を持つ分光透過拡散度を同時に測定可能なオンライン分光透過色測定方法及びオンライン分光透過色測定装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and an on-line spectral transmission color measurement method capable of simultaneously measuring a spectral transmission factor / transmission color and a spectral transmission diffusivity having characteristics equivalent to a haze value online. It is an object of the present invention to provide an on-line spectral transmission color measurement device.

前記課題を解決するための第1の手段は、連続スペクトルを有する照射光を放出する光源により被測定物体を照明し、前記被測定物体に照射され前記被測定物体を透過した前記光源よりの光を分光する分光センサを使用し、前記分光センサを、前記被測定物体の測定点を中心として円弧状に回動させて、前記分光センサの受光位置を前記照射光の光軸上1点と、前記被測定物の測定点を中心とした円弧上であって、前記光軸からある角度ずれた1点もしくは複数点として、前記分光センサによる測定を行い、これらの測定値から、分光透過測色値と透過拡散度値を、1つの光源と1つの分光センサを用いて測定するオンライン分光透過色測定方法であって、
光源校正時に、被測定対象物の無い状態(空気層)で、前記光軸上の1点(θ=0°)と前記光軸からある角度ずれた1点又は複数点(θn°)で、前記分光センサにより分光透過率測定を行い、空気層のそれぞれの角度での前記分光透過率から透過色の刺激値Yを求め、前記光軸からある角度(θn°)ずれた位置の透過色の刺激値Y (θn°)と前記光軸上の1点(0°)の透過色の刺激値Y (0°)により空気層の正規化刺激値R (θn°)=Y (θn°)/Y (0°)*100を求めておき、
次に検出部を測定対象物のある測定位置に移動して、前記測定対象物を透過した光について、前記光源校正時と同じ検出角度で前記分光センサにより分光透過率測定を行い、前記光軸上の1点(0°)で求めた分光透過率から、分光透過測色値である透過色の三刺激値X,Y,Z、色彩値L ,a ,b ,及び色差値ΔL ,Δa ,Δb ,ΔEab の少なくとも1組を求めると共に、
前記光軸からずれたそれぞれの角度での分光透過率から透過色の刺激値Yを求め、ある角度(θn°)での透過色の刺激値Y (θn°)と前記光軸上(0°)の透過色の刺激値Y (0°)から、前記被測定物の正規化刺激値R (θn°)=Y (θn°)/Y (0°)*100を求め、前記空気層の正規化刺激値正規R (θn°)と前記被測定対象物の正規化刺激値Rs(θn°)に基づいて、前記被測定物の透過拡散度を求めることを特徴とするものである
A first means for solving the above-described problem is that the object to be measured is illuminated by a light source that emits irradiation light having a continuous spectrum, and the light from the light source that is irradiated to the object to be measured and transmitted through the object to be measured. The spectral sensor is rotated in an arc shape around the measurement point of the object to be measured, and the light receiving position of the spectral sensor is set to one point on the optical axis of the irradiation light, Measurement is performed by the spectroscopic sensor as one or a plurality of points on an arc centered on the measurement point of the object to be measured and shifted from the optical axis by an angle, and spectral transmission colorimetry is performed from these measured values. values and transmission diffusivity values, a single light source and measuring to Luo inline spectral transmittance color measurement method using one spectral sensor,
At the time of light source calibration, in a state where there is no object to be measured (air layer), one point (θ = 0 °) on the optical axis and one point or a plurality of points (θn °) shifted from the optical axis by a certain angle, Spectral transmittance is measured by the spectral sensor, and a stimulus value Y of the transmitted color is obtained from the spectral transmittance at each angle of the air layer, and the transmitted color at a position shifted by a certain angle (θn °) from the optical axis. Normalized stimulus value R A (θn °) = Y A ( Ya ( ) of the air layer by the stimulus value Y A (θn °) and the stimulus value Y A (0 °) of one point (0 °) on the optical axis. θn °) / Y A (0 °) * 100 is obtained,
Next, the detection unit is moved to a measurement position where the measurement object is present, and the light transmitted through the measurement object is subjected to spectral transmittance measurement by the spectral sensor at the same detection angle as that during light source calibration, and the optical axis From the spectral transmittance determined at the above one point (0 °), the transmitted color tristimulus values X, Y, Z, the color values L * , a * , b * , and the color difference value ΔL, which are spectral transmission colorimetric values. Obtain at least one set of * , Δa * , Δb * , ΔEab * ,
The transmitted color stimulus value Y is determined from the spectral transmittance at each angle shifted from the optical axis, and the transmitted color stimulus value Y S (θn °) at a certain angle (θn °) and the optical axis (0 °) from the stimulus value Y S (0 °) of the transmitted color, the normalized stimulus value R S (θn °) = Y S (θn °) / Y S (0 °) * 100 of the object to be measured is obtained. Based on the normalized stimulus value normal RA (θn °) of the air layer and the normalized stimulus value Rs (θn °) of the object to be measured, the transmission diffusivity of the object to be measured is obtained. Is .

前記課題を解決するための第の手段は、前記第1の手段であって、前記被測定対象物の特定角度の透過拡散度H(θn°)を、前記被測定対象物の正規化刺激値Rs(θn°)と、前記空気層の正規化刺激値R(θn°)の差、H(θn°)=Rs(θn°)−R(θn°)として求めることを特徴とするものである。
The second means for solving the problem is the first means, wherein the transmission diffusion degree H S (θn °) of the specific angle of the measurement object is normalized to the measurement object. The difference between the stimulation value Rs (θn °) and the normalized stimulation value R A (θn °) of the air layer is obtained as H S (θn °) = Rs (θn °) −R A (θn °). It is what.

前記課題を解決するための第の手段は、前記第2の手段であって、前記透過拡散度H(θn°)のサンプル基準値HS0(θn°)を登録し、被測定対象物との透過拡散度差ΔH(θn°)=H(θn°)−HS0(θn°)を計算し、表示・記録することを特徴とするものである。
The third means for solving the above-mentioned problem is the second means , which registers the sample reference value H S0 (θn °) of the transmission diffusivity H S (θn °), and the object to be measured. Difference in transmission diffusivity ΔH S (θn °) = H S (θn °) −H S0 (θn °) is calculated, displayed, and recorded.

前記課題を解決するための第の手段は、前記第1の手段から第の手段のいずれかのオンライン分光透過色測定方法を実施する制御シーケンスを格納した計測用計算機からなるオンライン分光透過色測定装置である
前記課題を解決するための第5の手段は、前記第4の手段であって、前記光源はLED光源であり、前記分光センサは、LVF(Linear Variable Filter)と金属コリメータとリニアアレイセンサを組み合わせたものであり、前記分光センサは、円弧駆動機構により前記被測定物体の測定点を中心として円弧状に回動されるように構成され、かつ、前記光源の出射側と前記分光センサの入射側にはコリメータが設けられ、前記光源の出射側に設けられたコリメータにより前記被測定物上での照明パターンが、前記分光センサのサイズに対し、長辺サイズが1.0〜1.2倍、短辺サイズが1〜1.5倍の長方形とされていることを特徴とするものである。
The fourth means for solving the above-mentioned problem is an on-line spectral transmission color comprising a measuring computer storing a control sequence for executing the on-line spectral transmission color measurement method of any one of the first to third means. It is a measuring device .
A fifth means for solving the problem is the fourth means, wherein the light source is an LED light source, and the spectroscopic sensor is a combination of an LVF (Linear Variable Filter), a metal collimator, and a linear array sensor. The spectroscopic sensor is configured to be rotated in an arc shape around the measurement point of the object to be measured by an arc driving mechanism, and the emission side of the light source and the incident side of the spectroscopic sensor Is provided with a collimator, and the illumination pattern on the object to be measured by the collimator provided on the emission side of the light source has a long side size of 1.0 to 1.2 times the size of the spectroscopic sensor, The short side size is a rectangle having a size of 1 to 1.5 times.

本発明によれば、オンラインで分光透過率・透過色と、ヘーズ値と同等な特性を持つ分光透過拡散度を同時に測定可能なオンライン分光透過色測定方法及びオンライン分光透過色測定装置を提供することができる。   According to the present invention, it is possible to provide an on-line spectral transmission color measuring method and an on-line spectral transmission color measuring device capable of simultaneously measuring a spectral transmission factor / transmission color and a spectral transmission diffusivity having characteristics equivalent to a haze value on-line. Can do.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施形態の1例である、オンライン分光透過測色計・透過拡散度計の例を示す概要図である。被測定物体1を挟むようにしてC型フレーム2が設けられており、このC型フレーム2は駆動機構3の駆動台4に固定され、前後(図の左右)に移動し、オンラインで被測定物体1の分光透過率測定をし、オフラインの位置で空気の透過率測定(光源の分光スペクトル測定)を行う。C型フレーム2の中には光源部5が設けられており、光源部5の中に設けられたLED光源(図示せず)からの光8が、被測定物体1を照射し、透過した光8がC型フレーム2に設けられた検出部6で検出されるようになっている。駆動制御装置9は計測用計算機10からの指令により駆動機構3を左右に駆動する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of an on-line spectral transmission colorimeter / transmission diffusivity meter, which is an example of an embodiment of the present invention. A C-shaped frame 2 is provided so as to sandwich the object 1 to be measured. The C-shaped frame 2 is fixed to the drive base 4 of the drive mechanism 3 and moves back and forth (left and right in the figure). Spectral transmittance is measured and air transmittance is measured at an off-line position (light source spectral spectrum measurement). A light source unit 5 is provided in the C-shaped frame 2, and light 8 from an LED light source (not shown) provided in the light source unit 5 irradiates the object to be measured 1 and is transmitted. 8 is detected by the detection unit 6 provided in the C-shaped frame 2. The drive control device 9 drives the drive mechanism 3 to the left and right according to a command from the measurement computer 10.

図2は、光源部5に設置されるLED光源7と光の広がりを制限するコリメータ11の概要を示す図である。分光透過率測定のみであれば、必ずしもコリメータ11を必要としないが、透過拡散度を測定するには、被測定物体1上における約3×12mmの面積に光8を集光することが肝要であり、そのためにコリメータ11が使用される。   FIG. 2 is a diagram showing an outline of the LED light source 7 installed in the light source unit 5 and the collimator 11 for limiting the spread of light. If only spectral transmittance measurement is required, the collimator 11 is not necessarily required. However, in order to measure the transmission diffusivity, it is important to focus the light 8 on an area of about 3 × 12 mm on the object 1 to be measured. Yes, the collimator 11 is used for this purpose.

コリメータ11の採用により、光源はコリメータ11の内部のみを透過した光8が被測定物体1上に投光される。例えば、にコリメータ11を使用しないときの、被測定物体1上の投光形状は、20mm角以上になるが、コリメータ11の使用により、被測定物体1上の投光形状は、分光センサであるリニアセンサより若干大きい約3×12mmの長方形となる。   By adopting the collimator 11, the light 8 that has passed through only the inside of the collimator 11 is projected onto the object 1 to be measured. For example, when the collimator 11 is not used, the light projecting shape on the measured object 1 is 20 mm square or more, but by using the collimator 11, the light projecting shape on the measured object 1 is a spectroscopic sensor. It becomes a rectangle of about 3 × 12 mm that is slightly larger than the linear sensor.

図3は、検出部6内に設置される分光センサと付属回路の概要を示す図である。光源部5から発した光8は、被測定物体1を透過し、透過光14となる。コリメータ15で透過光14の一部が透過光16として集光され、LVF17、金属コリメータ18、リニアセンサ19及びリニアセンサパッケージ20で構成される分光センサ上に入射する。この分光センサの詳しい形状は、特開2003−131015号公報に記載されているので、その説明を省略する。リニアセンサ19の出力は付属回路21でデジタル信号として計測用計算機10に送信される。コリメータ15、分光センサ、付属回路21は受光部22として一体化されている。   FIG. 3 is a diagram showing an outline of the spectroscopic sensor installed in the detection unit 6 and the attached circuit. Light 8 emitted from the light source unit 5 passes through the object to be measured 1 and becomes transmitted light 14. A part of the transmitted light 14 is collected as transmitted light 16 by the collimator 15 and is incident on a spectroscopic sensor including the LVF 17, the metal collimator 18, the linear sensor 19, and the linear sensor package 20. Since the detailed shape of this spectroscopic sensor is described in Japanese Patent Application Laid-Open No. 2003-131015, the description thereof is omitted. The output of the linear sensor 19 is transmitted to the measuring computer 10 as a digital signal by the attached circuit 21. The collimator 15, the spectroscopic sensor, and the attached circuit 21 are integrated as a light receiving unit 22.

図4は、検出部6内の受光部22とセンサ回転機構部23の概要を示す図である。被測定物体1の測定点24を中心に、受光部22を0〜45°回転させるために、カムフォロワ25、
ガイド26、レール27が設けられている。カムフォロワ25が一軸駆動機構により直線運動することにより、ガイド26がレール27に沿って測定点24を中心に回動する。受光部22はガイド26に取り付けられているので、ガイド26の回動と共に回動する。
FIG. 4 is a diagram illustrating an outline of the light receiving unit 22 and the sensor rotation mechanism unit 23 in the detection unit 6. In order to rotate the light receiving unit 22 about 0 to 45 degrees around the measurement point 24 of the measured object 1, a cam follower 25,
A guide 26 and a rail 27 are provided. As the cam follower 25 moves linearly by the uniaxial drive mechanism, the guide 26 rotates about the measurement point 24 along the rail 27. Since the light receiving unit 22 is attached to the guide 26, the light receiving unit 22 rotates with the rotation of the guide 26.

カムフォロワ25のL1の位置が角度−45°に相当する。角度0°からのカムフォロワ25の移動距離L2を測定し、
L2=L1−L1×tan(−θ)
の式から角度θを求める。この演算は計測用計算機10で行い、目的とする角度θが得られるように、一軸駆動機構の制御を行う。これにより、分光センサの受光角を被測定物体1に垂直の角度(光源7からの光の光軸に一致する角度)0°から45°まで、計測用計算機10の指令により任意の角度に設定できる。
The position of L1 of the cam follower 25 corresponds to an angle of −45 °. Measure the travel distance L2 of the cam follower 25 from the angle 0 °,
L2 = L1−L1 × tan (−θ)
The angle θ is obtained from the following equation. This calculation is performed by the measurement computer 10, and the uniaxial drive mechanism is controlled so that the target angle θ is obtained. As a result, the light receiving angle of the spectroscopic sensor is set to an angle perpendicular to the measured object 1 (an angle that coincides with the optical axis of the light from the light source 7) from 0 ° to 45 ° by an instruction from the measuring computer 10. it can.

このオンライン分光透過色・透過拡散度計を用いた被測定物体1の測定は、以下のようにして行う。これらの制御シーケンスは、計測用計算機10内に格納され、計測用計算機10により行われる。   The measurement of the measurement object 1 using this online spectral transmission color / transmission diffusivity meter is performed as follows. These control sequences are stored in the measurement computer 10 and performed by the measurement computer 10.

まずLED光源7の光源スペクトルを測定する。そのために、C型フレーム2を後退させて被測定物体1から離れた状態とし、光源部5からの光8が直接検出部6に到達するようにする。この状態で、計測用計算機10はセンサ回転機構部23に測定角度指令を出す。最初はθ=0°である。この場合、光源7から被測定物体1に垂直に入射した光の光軸上に分光センサが位置する。その状態でLED光源7の光源スペクトルVaを測定する。この値は被測定物体の透過率が100%のときの分光スペクトルに対応する。このときに求められた透過色の刺激値Y(0°)と同時にその値Vaを記憶する。このVaの値は透過率分布計算時に使用される。 First, the light source spectrum of the LED light source 7 is measured. For this purpose, the C-shaped frame 2 is moved backward to be away from the measured object 1 so that the light 8 from the light source unit 5 reaches the detection unit 6 directly. In this state, the measurement computer 10 issues a measurement angle command to the sensor rotation mechanism unit 23. Initially, θ = 0 °. In this case, the spectroscopic sensor is located on the optical axis of the light that has entered the measurement object 1 perpendicularly from the light source 7. In this state, the light source spectrum Va of the LED light source 7 is measured. This value corresponds to the spectrum when the transmittance of the object to be measured is 100%. The value Va is stored simultaneously with the transmission color stimulus value Y A (0 °) obtained at this time. The value of Va is used when calculating the transmittance distribution.

そして、角度θを変化させて被測定物体1の分光透過率τ(θn°)を測定し、透過色の刺激値Y(θn°)を計算し、その値を記憶する。測定角度θが複数(M個)の場合はそれぞれの角度θni°(i=1〜M)についてセンサ回転機構部23で設定後、同様の測定と計算を行い記憶する。 Then, the spectral transmittance τ A (θn °) of the measured object 1 is measured by changing the angle θ, the transmitted color stimulus value Y A (θn °) is calculated, and the value is stored. When there are a plurality (M) of measurement angles θ, the sensor rotation mechanism unit 23 sets each angle θni ° (i = 1 to M), and then performs the same measurement and calculation and stores them.

ここで、光源の正規化刺激値R(0°)=Y(0°)/Y(0°)*100=100、
(θn°)=Y(θn°)/Y(0°)*100の計算を実施し記憶する。
Here, the normalized stimulus value R A (0 °) = Y A (0 °) / Y A (0 °) * 100 = 100 of the light source
Calculate and store R A (θn °) = Y A (θn °) / Y A (0 °) * 100.

次に、被測定物体1の透過率測定を行う。このために、計測用計算機10から駆動制御装置9に測定位置へ移動する指令を出し、駆動機構3によりC型フレーム2を移動させて、被測定物体1の分光透過色測定・透過拡散度測定を実施する。その手順は、光源測定時と同様であるが下記のように行う。   Next, the transmittance of the measured object 1 is measured. For this purpose, a command to move to the measurement position is issued from the measurement computer 10 to the drive control device 9, the C-type frame 2 is moved by the drive mechanism 3, and the spectral transmission color measurement / transmission diffusivity measurement of the measured object 1 is performed. To implement. The procedure is the same as that at the time of light source measurement, but is performed as follows.

まず、センサ回転機構部23によりセンサ角度を垂直(θ=0°)にセットする。そしてこの状態で、被測定物体1の分光透過率を測定する。この状態の測定値τ(0°)が自然光透過率分布である。 First, the sensor rotation mechanism unit 23 sets the sensor angle to be vertical (θ = 0 °). In this state, the spectral transmittance of the measured object 1 is measured. The measured value τ S (0 °) in this state is the natural light transmittance distribution.

この分布から、透過色の三刺激値(X,Y,Z)を計算し、色彩値(L*,a,*,b*)なども計算する。この結果が、分光透過色測定結果として表示・記憶される。このとき、分光透過色の三刺激値Y(0°)を記憶する。 From this distribution, tristimulus values (X, Y, Z) of transmitted colors are calculated, and color values (L *, a, *, b *) are also calculated. This result is displayed and stored as a spectral transmission color measurement result. At this time, the tristimulus value Y S (0 °) of the spectrally transmitted color is stored.

次に、センサ回転機構部23によりセンサ角度をθn°に設定し、分光透過率τ(θn°)を測定し、透過色の三刺激値Y(θn°)を計算し、記憶する。更に正規化刺激値R(θn°)=Y(θn°)/Y(0°)*100
の計算をし、記憶する。測定角度が複数点(M個)のときはθni°(i=1〜M)についてθn°と同様の測定・計算を実施する。
Next, the sensor rotation mechanism unit 23 sets the sensor angle to θn °, measures the spectral transmittance τ S (θn °), and calculates and stores the transmitted color tristimulus value Y S (θn °). Further, normalized stimulus value R S (θn °) = Y S (θn °) / Y S (0 °) * 100
Calculate and memorize. When there are a plurality of measurement angles (M), θni ° (i = 1 to M) is measured and calculated in the same manner as θn °.

透過拡散度H(θn°)は、すでに計算し記憶した値から次式で計算する。 The transmission diffusivity H S (θn °) is calculated by the following equation from the values calculated and stored.

(θn°)=R(θn°)−R(θn°)
この計算結果を表示・記憶することにより、透過拡散度計としての機能を果たす。
H S (θn °) = R S (θn °) −R A (θn °)
By displaying and storing this calculation result, it functions as a transmission diffusivity meter.

分光透過測色計では、通常基準となる色彩値を登録し、測定対象物の色差値を計算し表示・記録することが行われる。本装置でも基準の色彩値登録及び色差値の計算・表示・記録すると共に、拡散度値についてもサンプル基準値HS0(θn°)を登録し、オンライン測定時にその値を呼び出して、
透過拡散度差ΔHs(θn°)=H (θn°)−HS0 (θn°)
を計算し、表示・記録する。
In a spectral transmission colorimeter, a color value that is a normal reference is registered, and a color difference value of a measurement object is calculated, displayed, and recorded. In this device, reference color value registration and calculation / display / recording of color difference values are also performed, and sample reference value H S0 (θn °) is also registered for diffusivity values.
Transmission diffusivity difference ΔHs (θn °) = H S (θn °) −H S0 (θn °)
Is calculated and displayed / recorded.

自然光透過色測定については、透過率分布を求め、光源を仮定し、等色関数を用いて透過色三刺激値X,Y,Zを計算すること、またL*,a*,b*の色彩値を求め色差値(ΔL*,Δa*,Δb*,ΔEab*)を計算する方法は公知であるので、その説明を省略する。   For natural light transmitted color measurement, the transmittance distribution is obtained, the light source is assumed, the transmitted color tristimulus values X, Y, and Z are calculated using the color matching function, and the colors of L *, a *, and b * Since a method for obtaining the value and calculating the color difference values (ΔL *, Δa *, Δb *, ΔEab *) is known, the description thereof is omitted.

図1と同等の機能を持った卓上型の変角分光透過測色計により、各種の透過膜の透過率分布及び透過色測定を、透過光受光垂直軸θ=0°からθ=−45°までの間において測定した。θ=0〜−10°は1°おきに、θ=−10〜−45°は5°おきに測定した。   With a desktop variable angle spectral transmission colorimeter having the same function as in FIG. 1, the transmittance distribution and the transmission color measurement of various transmission films are measured using the transmitted light receiving vertical axis θ = 0 ° to θ = −45 °. Measured in the interval. θ = 0 to −10 ° was measured every 1 °, and θ = −10 to −45 ° was measured every 5 °.

測定対象は、下記の7枚のサンプルを用いた。拡散度の高い方から順に並べると下記の通りである。 The following seven samples were used for measurement. Arranged in descending order of diffusivity is as follows.

S.No.1:PC液晶モニタのバックライト光源用プリズムフィルム
S.No.2:PC液晶モニタのバックライト光源用上用拡散フィルム
S.No.3:PC液晶モニタのバックライト光源用下用拡散フィルム
S.No.4:化学処理をした半透明フィルム
S.No.5:OHP−A
S.No.6:OHP−B
S.No.7:OHP−C
S. No. 1: Prism film for backlight source of PC liquid crystal monitor No. 2: Upper diffusion film for backlight source of PC liquid crystal monitor No. 3: Diffusion film for bottom for backlight source of PC liquid crystal monitor No. 4: Translucent film chemically treated No. 5: OHP-A
S. No. 6: OHP-B
S. No. 7: OHP-C

図5に、角度0〜45°の透過測色三刺激値Y値を、光源(LS:Light Source)のY値と共に示す。又、図6に、図5におけるS.No.1とS.No.2の結果を拡大して示す。   FIG. 5 shows the transmission colorimetric tristimulus value Y value at an angle of 0 to 45 ° together with the Y value of the light source (LS). FIG. 6 shows the S.P. No. 1 and S.M. No. The result of 2 is enlarged and shown.

図7に、正規化刺激値RsとRの測定結果を示す。 FIG. 7 shows the measurement results of the normalized stimulus values Rs and RA .

図7の正規化刺激値Rsの角度分布で拡散度の低いものと拡散度の高いものの区別は可能である。しかし、このままでは、かなり多くの角度について測定する必要が有り、オンライン測定には不向きである。   In the angular distribution of the normalized stimulus value Rs in FIG. 7, it is possible to distinguish between those having a low diffusivity and those having a high diffusivity. However, if this is the case, it is necessary to measure a considerably large number of angles, which is not suitable for online measurement.

図8に、透過拡散度H(θn°)=R(θn°)−R((θn°)の測定結果を示す。この図から透明度が高く透過拡散度が小さいものは、H(θn°)の値が0に近く、半透明のものは透過拡散度H(θn°)の値が30〜50であり、透過光の拡散度を高めることを目的にしたプリズムフィルムはH(θn°)の値が90〜100に近い値を示していることがわかる。 Figure 8 shows the results of measurement of transmission diffusion degree H S (θn °) = R S (θn °) -R A ((θn °). Those having high transparency and permeability diffusivity from FIG is small, H S The value of (θn °) is close to 0, the translucent one has a transmission diffusivity H S (θn °) of 30-50, and the prism film intended to increase the diffusivity of transmitted light is H It can be seen that the value of S (θn °) is close to 90-100.

図9に、透明度が高く拡散度が低いOHPフィルム(S.No.5〜S.No.7)の結果のみを示す。透明度が高いものでも、微妙な差を検出可能である。透明度の高い高機能フィルムや光学ガラスなどの透過拡散度の計測も可能である。   FIG. 9 shows only the results of OHP films (S.No. 5 to S.No. 7) having high transparency and low diffusion. Even if the transparency is high, a subtle difference can be detected. It is also possible to measure the transmission diffusivity of highly functional films with high transparency and optical glass.

図8及び図9から、透過拡散度のオンライン評価法として、2点測定でも十分であり、透過拡散度の高い被測定物体は。H(θn°)が高く、透過拡散度の低い被測定物体は。H(θn°)が低くなるので、H(θn°)の値が、透過拡散度を示すパラメータとして使用できることが分かる。 From FIG. 8 and FIG. 9, two-point measurement is sufficient as an on-line evaluation method for transmission diffusivity, and an object to be measured having a high transmission diffusivity. What is the object to be measured having a high H S (θn °) and a low transmission diffusivity? Since H S (θn °) is lowered, it can be seen that the value of H S (θn °) can be used as a parameter indicating the transmission diffusivity.

測定対象が決まれば、垂直軸(光軸)1点と測定角度3〜8°間の1点の計2点を測定すれば、ほぼ透過拡散度の評価はできる。透過拡散度H(θn°)が5以下の低い場合は3〜4°の1点、5〜50の場合は、3〜5°の1点、50〜100の場合は4〜8°の1点が目安となる。最終的には、各種のサンプルについて最適角度を決めればよい。 If the measurement object is determined, the transmission diffusivity can be almost evaluated by measuring a total of two points: one point on the vertical axis (optical axis) and one point between the measurement angles of 3 to 8 °. When the transmission diffusivity H S (θn °) is 5 or less, the point is 3 to 4 °, the point is 5 to 50, the point is 3 to 5 °, and the case is 50 to 100 is 4 to 8 °. One point is a guide. Ultimately, the optimum angle may be determined for various samples.

本発明の典型例は、被測定対象物に対して、測定角度0°で従来の自然光透過色を測定し、測定角度3〜8°の間の1点もしくは、0〜45°間の複数点の透過率測定を付加することにより透過拡散度を測定し、一組の分光透過率計でオンライン測定可能な方法及び装置を、提供するものである。このような技術は従来存在しておらず、光学特性を新に定義し定量化可能となり、工業生産の歩留まり向上に大いに貢献するものである。   In a typical example of the present invention, a conventional natural light transmission color is measured with respect to an object to be measured at a measurement angle of 0 °, and one point between measurement angles of 3 to 8 ° or a plurality of points between 0 to 45 °. By adding the transmittance measurement, the transmission diffusivity is measured, and a method and apparatus capable of measuring on-line with a set of spectral transmittance meters are provided. Such a technique has not existed so far, and optical characteristics can be newly defined and quantified, which greatly contributes to the improvement of industrial production yield.

本発明の実施形態の1例である、オンライン分光透過測色計・透過拡散度計の例を示す概要図である。It is a schematic diagram showing an example of an on-line spectral transmission colorimeter / transmission diffusivity meter, which is an example of an embodiment of the present invention. 光源部に設置されるLED光源と光の広がりを制限するコリメータの概要を示す図である。It is a figure which shows the outline | summary of the collimator which restrict | limits the LED light source installed in a light source part, and the breadth of light. 検出部内に設置される分光センサと付属回路の概要を示す図である。It is a figure which shows the outline | summary of the spectral sensor installed in a detection part, and an attached circuit. 検出部内の受光部と回転機構部の概要を示す図である。It is a figure which shows the outline | summary of the light-receiving part in a detection part, and a rotation mechanism part. 角度0〜45°の透過測色三刺激値Y値を、光源(LS:Light Source)のY値と共に示す図である。It is a figure which shows the transmission colorimetric tristimulus value Y value of angle 0-45 degree with the Y value of a light source (LS: Light Source). 図5におけるS.No.1とS.No.2の結果を拡大して示す図である。In FIG. No. 1 and S.M. No. It is a figure which expands and shows the result of 2. 正規化刺激値RsとRの測定結果を示す図である。It is a figure which shows the measurement result of normalized stimulation value Rs and RA . 透過拡散度H(θn°)の測定結果を示す図である。Is a graph showing measurement results of transmittance diffusivity H S (θn °). 図8における、(S.No.5〜S.No.7)の測定結果を拡大して示す図である。It is a figure which expands and shows the measurement result of (S.No.5-S.No.7) in FIG.

符号の説明Explanation of symbols

1…被測定物体、2…C型フレーム、3…駆動機構、4…駆動台、5…光源部、6…検出部、7…(LED)光源、8…光、9…駆動制御装置、10…計測用計算機、11…コリメータ、14…透過光、15…コリメータ、16…透過光、17…LVF、18…金属コリメータ、19…リニアセンサ、20…リニアセンサパッケージ、21…付属回路、22…受光部、23…センサ回転機構部、24…測定点、25…カムフォロワ、26…ガイド、27…レール DESCRIPTION OF SYMBOLS 1 ... Object to be measured, 2 ... C type frame, 3 ... Drive mechanism, 4 ... Drive stand, 5 ... Light source part, 6 ... Detection part, 7 ... (LED) light source, 8 ... Light, 9 ... Drive control apparatus, 10 Computer for measurement, 11 ... Collimator, 14 ... Transmitted light, 15 ... Collimator, 16 ... Transmitted light, 17 ... LVF, 18 ... Metal collimator, 19 ... Linear sensor, 20 ... Linear sensor package, 21 ... Attached circuit, 22 ... Light receiving part, 23 ... Sensor rotation mechanism part, 24 ... Measurement point, 25 ... Cam follower, 26 ... Guide, 27 ... Rail

Claims (5)

連続スペクトルを有する照射光を放出する光源により被測定物体を照明し、前記被測定物体に照射され前記被測定物体を透過した前記光源よりの光を分光する分光センサを使用し、前記分光センサを、前記被測定物体の測定点を中心として円弧状に回動させて、前記分光センサの受光位置を前記照射光の光軸上1点と、前記被測定物の測定点を中心とした円弧上であって、前記光軸からある角度ずれた1点もしくは複数点として、前記分光センサによる測定を行い、これらの測定値から、分光透過測色値と透過拡散度値を、1つの光源と1つの分光センサを用いて測定するオンライン分光透過色測定方法であって、
光源校正時に、被測定対象物の無い状態(空気層)で、前記光軸上の1点(θ=0°)と前記光軸からある角度ずれた1点又は複数点(θn°)で、前記分光センサにより分光透過率測定を行い、空気層のそれぞれの角度での前記分光透過率から透過色の刺激値Yを求め、前記光軸からある角度(θn°)ずれた位置の透過色の刺激値Y (θn°)と前記光軸上の1点(0°)の透過色の刺激値Y (0°)により空気層の正規化刺激値R (θn°)=Y (θn°)/Y (0°)*100を求めておき、
次に検出部を測定対象物のある測定位置に移動して、前記測定対象物を透過した光について、前記光源校正時と同じ検出角度で前記分光センサにより分光透過率測定を行い、前記光軸上の1点(0°)で求めた分光透過率から、分光透過測色値である透過色の三刺激値X,Y,Z、色彩値L ,a ,b ,及び色差値ΔL ,Δa ,Δb ,ΔEab の少なくとも1組を求めると共に、
前記光軸からずれたそれぞれの角度での分光透過率から透過色の刺激値Yを求め、ある角度(θn°)での透過色の刺激値Y (θn°)と前記光軸上(0°)の透過色の刺激値Y (0°)から、前記被測定物の正規化刺激値R (θn°)=Y (θn°)/Y (0°)*100を求め、前記空気層の正規化刺激値R (θn°)と前記被測定対象物の正規化刺激値Rs(θn°)に基づいて、前記被測定物の透過拡散度を求めることを特徴とするオンライン分光透過色測定方法。
Illuminating the object to be measured with a light source that emits irradiation light having a continuous spectrum, using a spectroscopic sensor that radiates light from the light source that has been irradiated on the object to be measured and transmitted through the object to be measured, Rotating in a circular arc around the measurement point of the object to be measured, and the light receiving position of the spectroscopic sensor on an arc centered on the optical axis of the irradiation light and the measurement point of the object to be measured The measurement by the spectroscopic sensor is performed as one point or a plurality of points deviated from the optical axis by a certain angle, and from these measured values, the spectral transmission colorimetric value and the transmission diffusivity value are obtained with one light source and one point. One of a measurement to Luo inline spectral transmittance color measurement method using a spectroscopic sensor,
At the time of light source calibration, in a state where there is no object to be measured (air layer), one point (θ = 0 °) on the optical axis and one point or a plurality of points (θn °) shifted from the optical axis by a certain angle, Spectral transmittance is measured by the spectral sensor, and a stimulus value Y of the transmitted color is obtained from the spectral transmittance at each angle of the air layer, and the transmitted color at a position shifted by a certain angle (θn °) from the optical axis. Normalized stimulus value R A (θn °) = Y A ( Ya ( ) of the air layer by the stimulus value Y A (θn °) and the stimulus value Y A (0 °) of one point (0 °) on the optical axis. θn °) / Y A (0 °) * 100 is obtained,
Next, the detection unit is moved to a measurement position where the measurement object is present, and the light transmitted through the measurement object is subjected to spectral transmittance measurement by the spectral sensor at the same detection angle as that during light source calibration, and the optical axis From the spectral transmittance determined at the above one point (0 °), the transmitted color tristimulus values X, Y, Z, the color values L * , a * , b * , and the color difference value ΔL, which are spectral transmission colorimetric values. Obtain at least one set of * , Δa * , Δb * , ΔEab * ,
The transmitted color stimulus value Y is determined from the spectral transmittance at each angle shifted from the optical axis, and the transmitted color stimulus value Y S (θn °) at a certain angle (θn °) and the optical axis (0 °) from the stimulus value Y S (0 °) of the transmitted color, the normalized stimulus value R S (θn °) = Y S (θn °) / Y S (0 °) * 100 of the object to be measured is obtained. The transmission diffusivity of the object to be measured is obtained based on the normalized stimulation value R A (θn °) of the air layer and the normalized stimulation value Rs (θn °) of the object to be measured. Spectral transmission color measurement method.
前記被測定対象物の特定角度の透過拡散度H(θn°)を、前記被測定対象物の正規化刺激値Rs(θn°)と、前記空気層の正規化刺激値R(θn°)の差、H(θn°)=Rs(θn°)−R(θn°)として求めることを特徴とする請求項1に記載のオンライン分光透過色測定方法。 The transmission diffusivity H S (θn °) at a specific angle of the object to be measured is defined as a normalized stimulus value Rs (θn °) of the object to be measured and a normalized stimulus value R A (θn °) of the air layer. difference), H S (θn °) = Rs (θn °) -R a ( line spectral transmission color measuring method according to claim 1, wherein the determination as .theta.n °). 前記透過拡散度H(θn°)のサンプル基準値HS0(θn°)を登録し、被測定対象物との透過拡散度差ΔH(θn°)=H(θn°)−HS0(θn°)を計算し、表示・記録することを特徴とする請求項に記載のオンライン分光透過色測定方法。 The registered sample reference value H S0 of the transmission diffusivity H S (θn °) (θn °), transmission diffusion degree difference ΔH S (θn °) with the object to be measured = H S (θn °) -H S0 The on-line spectral transmission color measurement method according to claim 2 , wherein (θn °) is calculated, displayed, and recorded. 請求項1から請求項のうちいずれか1項に記載のオンライン分光透過色測定方法を実施する制御シーケンスを格納した計測用計算機からなるオンライン分光透過色測定装置。 An on-line spectral transmission color measuring device comprising a measuring computer storing a control sequence for executing the on-line spectral transmission color measuring method according to any one of claims 1 to 3 . 前記光源はLED光源であり、前記分光センサは、LVF(Linear Variable Filter)と金属コリメータとリニアアレイセンサを組み合わせたものであり、前記分光センサは、円弧駆動機構により前記被測定物体の測定点を中心として円弧状に回動されるように構成され、かつ、前記光源の出射側と前記分光センサの入射側にはコリメータが設けられ、前記光源の出射側に設けられたコリメータにより前記被測定物上での照明パターンが、前記分光センサのサイズに対し、長辺サイズが1.0〜1.2倍、短辺サイズが1〜1.5倍の長方形とされていることを特徴とする請求項4に記載のオンライン分光透過色測定装置 The light source is an LED light source, and the spectroscopic sensor is a combination of an LVF (Linear Variable Filter), a metal collimator, and a linear array sensor. A collimator is configured to be rotated in an arc shape as a center, and a collimator is provided on the emission side of the light source and the incident side of the spectral sensor, and the object to be measured is provided by a collimator provided on the emission side of the light source. The upper illumination pattern is a rectangle having a long side size of 1.0 to 1.2 times and a short side size of 1 to 1.5 times the size of the spectroscopic sensor. Item 5. The on-line spectral transmission color measurement device according to item 4 .
JP2006315438A 2006-11-22 2006-11-22 Online spectral transmission color measurement method and online spectral transmission color measurement device Expired - Fee Related JP4592023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315438A JP4592023B2 (en) 2006-11-22 2006-11-22 Online spectral transmission color measurement method and online spectral transmission color measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315438A JP4592023B2 (en) 2006-11-22 2006-11-22 Online spectral transmission color measurement method and online spectral transmission color measurement device

Publications (2)

Publication Number Publication Date
JP2008128873A JP2008128873A (en) 2008-06-05
JP4592023B2 true JP4592023B2 (en) 2010-12-01

Family

ID=39554840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315438A Expired - Fee Related JP4592023B2 (en) 2006-11-22 2006-11-22 Online spectral transmission color measurement method and online spectral transmission color measurement device

Country Status (1)

Country Link
JP (1) JP4592023B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013325A1 (en) * 2008-07-30 2010-02-04 株式会社ニレコ Spectrophotometer
CN103076093A (en) * 2012-12-31 2013-05-01 上海汉谱光电科技有限公司 Colored glass matching method and system of color temperature illuminometer
JP6529107B2 (en) * 2014-08-19 2019-06-12 株式会社川島織物セルコン Method of evaluating light transmission and diffusion, and transmission and diffusion evaluation system used to carry out the evaluation method
JP6422191B2 (en) * 2016-06-30 2018-11-14 株式会社パパラボ Oblique illumination imaging device
CN113692089B (en) * 2021-07-29 2023-07-11 中山市小兀照明科技有限公司 Light source control method and device and computer readable storage medium
CN114414502A (en) * 2022-01-07 2022-04-29 中国工程物理研究院激光聚变研究中心 Variable-angle transmittance measuring device, measuring system and measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915151A (en) * 1995-06-29 1997-01-17 Canon Inc Diffusion characteristic measuring device
WO2004109379A1 (en) * 2003-06-04 2004-12-16 Nippon Polyester Co.,Ltd. Light diffusing plate for liquid crystal display and polycarbonate resin composition for light diffusing plate for liquid crystal display
JP2005227120A (en) * 2004-02-13 2005-08-25 Hitachi Naka Instruments Co Ltd Spectrophotometer
JP2005326393A (en) * 2004-04-12 2005-11-24 Nireco Corp Spectral transmittance measuring instrument, transmission type thickness gage, color value measuring instrument, spectral transmittance measuring method, thickness measuring method, and color value measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180523A (en) * 2005-05-05 2008-05-14 纳幕尔杜邦公司 Color clustering technique for matching refinish paints

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915151A (en) * 1995-06-29 1997-01-17 Canon Inc Diffusion characteristic measuring device
WO2004109379A1 (en) * 2003-06-04 2004-12-16 Nippon Polyester Co.,Ltd. Light diffusing plate for liquid crystal display and polycarbonate resin composition for light diffusing plate for liquid crystal display
JP2005227120A (en) * 2004-02-13 2005-08-25 Hitachi Naka Instruments Co Ltd Spectrophotometer
JP2005326393A (en) * 2004-04-12 2005-11-24 Nireco Corp Spectral transmittance measuring instrument, transmission type thickness gage, color value measuring instrument, spectral transmittance measuring method, thickness measuring method, and color value measuring method

Also Published As

Publication number Publication date
JP2008128873A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4592023B2 (en) Online spectral transmission color measurement method and online spectral transmission color measurement device
JP3730612B2 (en) Thin film inspection method and apparatus
US9423346B2 (en) System and method for haze measurement
CN109564156A (en) For analyzing the calibration of Optical devices and associated method of glassing quality
JP2006030204A (en) Goniometric inspection device of optical surface characteristics
CN102809567A (en) Image acquisition apparatus, pattern inspection apparatus, and image acquisition method
CN109490253B (en) Novel test of two-way reflection distribution function of simulation natural light device
JP2012505397A (en) Backlight vision machine
JP2012255781A (en) Device for referenced measurement of reflected light and method for calibrating the device
CN107884368A (en) A kind of optic testing system and method for testing
JP2005172665A (en) Light radiation pattern measuring apparatus
CN105300524B (en) Polarize axis detector, polarimetry device and method, polarized light illumination device
JP3175079U (en) Refractometer
JP5372719B2 (en) Surface property measuring method and apparatus
ES2808550T3 (en) Method and system for real-time measurement during the coating thickness process
US5760890A (en) Device for measuring optical characteristic quantities of transparent materials
CN102809550A (en) Continuous spectrum two-way transmission distribution function measuring device
JP2014149275A (en) Colorimeter
CN109001159B (en) Device and method for rapidly measuring solid content of liquid water reducing agent
JP2013246161A (en) Spectrophotometer and spectrometry
JP5983881B2 (en) V-block type refractive index measuring apparatus, refractive index calculating apparatus and refractive index calculating method used therefor
JPH0843299A (en) Optical measuring apparatus for component analyzer
JP2012088265A (en) Method and device for measuring glossiness
CN105372239B (en) Urine desiccation analytical equipment and analysis method based on optical fiber
JP2008151642A (en) Colorimetric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees