JP4591940B2 - Variable splitting ratio optical splitter - Google Patents

Variable splitting ratio optical splitter Download PDF

Info

Publication number
JP4591940B2
JP4591940B2 JP2001182480A JP2001182480A JP4591940B2 JP 4591940 B2 JP4591940 B2 JP 4591940B2 JP 2001182480 A JP2001182480 A JP 2001182480A JP 2001182480 A JP2001182480 A JP 2001182480A JP 4591940 B2 JP4591940 B2 JP 4591940B2
Authority
JP
Japan
Prior art keywords
polarization
optical
variable
optical path
polarization direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001182480A
Other languages
Japanese (ja)
Other versions
JP2002372696A (en
Inventor
昇平 阿部
英則 中田
秀生 竹下
博章 小野
秀亮 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2001182480A priority Critical patent/JP4591940B2/en
Priority to US10/173,237 priority patent/US6798566B2/en
Publication of JP2002372696A publication Critical patent/JP2002372696A/en
Application granted granted Critical
Publication of JP4591940B2 publication Critical patent/JP4591940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入力光を任意の比率で2つの光に分岐して出力する機能を有する可変分岐比光スプリッタに関するものである。本装置は、例えば光通信などの分野において、光導波路や光ファイバを伝搬する光の分岐比可変などに有用である。
【0002】
【従来の技術】
光通信などの分野では、光導波路や光ファイバを伝搬する光(情報)を別の経路にも分岐して伝送したい場合がある。そのような場合に、光分岐器が用いられている。従来技術では、光分岐器は、分岐導波路やファイバ融着などにより作製されている。
【0003】
【発明が解決しようとする課題】
これら従来の光分岐器は、構成が簡単であるが、分岐比は固定であって可変できない。もし、入力光を任意の比率で2つの光に分岐して出力することができれば、新たな機能を持つ光デバイスを開発する道も開けてくる。
【0004】
本発明の目的は、入力光を自由に任意の比率で2つの光に分岐して出力することができる可変分岐光スプリッタを提供することである。
【0005】
【課題を解決するための手段】
本発明は、偏波方向が直交関係にある同じ光路の光を分離する分離用複屈折素子、偏波方向に応じて光路を制御する光路制御用複屈折素子、偏波方向が直交関係にある異なる光路の光を合成する合成用複屈折素子を、この順序で間隔をおいて配置し、分離用複屈折素子と光路制御用複屈折素子との間に、偏波方向を直交関係から平行関係に変換する偏波回転手段と、それらの光の偏波方向を任意の角度回転させる可変偏光回転子とを配置し、光路制御用複屈折素子と合成用複屈折素子との間に、対角の関係にある2つの光路の光は偏波方向を90度回転し、他の2つの光路の光は偏波方向を維持する偏波制御手段を配置し、可変偏光回転子による偏波方向の回転角度の制御に応じて光分岐比を自由に調整可能としたことを特徴とする可変分岐比光スプリッタである。
【0006】
可変偏光回転子としては、ファラデー素子と該ファラデー素子に可変磁界を印加する電磁石とを組み合わせた90度可変ファラデー回転子を用いるのが好ましい。
【0007】
偏波回転手段は、片側光路に挿入した直線位相子でよい。あるいは、偏波回転手段は、両側光路に挿入した光学軸が対称方向を向く一対の直線位相子で構成してもよい。
【0008】
偏波制御手段は、偏波方向を90度回転する対角の関係にある2つの光路に挿入した同一方向の光学軸をもつ直線位相子で構成できる。あるいは、偏波制御手段は、偏波方向を90度回転する対角の関係にある一方の光路とそれに隣接する光路に共通に挿入した直線位相子と、偏波方向を90度回転する対角の関係にある他方の光路とそれに隣接する光路に共通に挿入した直線位相子とを有し、両方の直線位相子が一つの光路で重なるように設置されている構成でもよい。
【0009】
複屈折素子としては、直方体状のルチル単結晶が望ましい。直線位相子としては、例えば水晶からなる1/2波長板を用いることができる。
【0010】
【実施例】
図1は本発明に係る可変分岐比光スプリッタの一実施例を示す説明図であり、各光学部品の配列状況と各光学部品間での偏波状況を示している。なお、各光学部品中における矢印は、光学軸の方向もしくはファラデー回転の方向を示している。また、説明を分かり易くするために、次のような座標軸を設定する。光部品の配列方向をz方向(図面では奥行き方向)とし、それに対して直交する2方向をx方向(図面では水平方向)、y方向(図面では垂直方向)とする。回転方向は、z方向を見て時計回りをプラス側とする。
【0011】
偏波方向が直交関係にある同じ光路の光をx方向に分離する分離用複屈折素子10、偏波方向に応じて常光は直進し異常光は+y方向に光路をシフトする光路制御用複屈折素子12、偏波方向が直交関係にある異なる光路の光をx方向で合成する合成用複屈折素子14を、この順序で間隔をおいてz方向に配置する。
【0012】
z方向を見て、分離用複屈折素子10と光路制御用複屈折素子12との間に、偏波方向を直交関係から平行関係に変換する偏波回転手段16と、それらの光の偏波方向を任意の角度回転させる可変偏光回転子18とを配置する。ここで偏波回転手段16は、右側光路のみに水晶からなる1/2波長板20を挿入した構成である。この1/2波長板20は、図2のAに示されているように、光学軸がx軸から45度傾いているものである。可変偏光回転子18は、ファラデー素子22と該ファラデー素子22に可変磁界を印加する電磁石(図示せず)とを組み合わせた90度可変ファラデー回転子であり、0度から90度の範囲で偏波方向を回転制御できるように構成する。ファラデー素子22としては、例えばBi置換希土類鉄ガーネットLPE(液相エピタキシャル成長)膜が好適である。
【0013】
更にz方向を見て、光路制御用複屈折素子12と合成用複屈折素子14との間に、対角の関係にある2つの光路の光は偏波方向を90度回転し、他の2つの光路の光は偏波方向を維持する偏波制御手段24を配置する。ここで偏波制御手段24は、対角の関係にある2つの光路(左上方光路と右下方光路)に挿入した同一方向(図2のBに示すように、x軸から45度傾いている方向)の光学軸をもつ1/2波長板26,28からなる。具体的には、例えば水晶からなる。
【0014】
図3は、この可変分岐比光スプリッタの光路説明図であり、Aは光路の側面を表し、Bは平面を表している。z方向を見て、分離用複屈折素子10の前方の左下方位置に入力ポートを設定し、合成用複屈折素子14の後方の右上方位置に出力ポート1を、右下方位置に出力ポート2を設定する。この状態で、可変偏光回転子18による偏波方向の回転角度を変化させると、それに応じて出力ポート1と出力ポート2への光分岐比を自由に変えることができる。
【0015】
次に、この可変分岐比光スプリッタの動作について、更に詳しく説明する。入力ポートからz方向に入力した光は、分離用複屈折素子10で常光は直進し、異常光は屈折してx方向に分離する。左側光路を通る光は、偏波回転手段16である1/2波長板20をバイパスするため偏波方向は変わらない。それに対して、右側光路を通る光は、偏波回転手段16である1/2波長板20によって偏波方向が回転する。前記のように、光学軸がx軸から45度傾いているため、偏波方向は水平方向から垂直方向に変わる。1/2波長板は、入力光の偏波方向をその光学軸に関して対称に変換する性質を有するからである。
【0016】
従って、左右の光路を通る光の偏波方向は平行(垂直方向)となって、可変偏光回転子18に入力する。電磁石への通電電流を変化させると、ファラデー素子22に印加される磁界が変化し、それに応じて該ファラデー素子22を通過する光の偏波方向が回転することになる。つまり、通電電流の制御によって通過光の偏波方向を任意の角度変えることができる。
【0017】
偏波方向が任意の角度だけ回転した両光は、光路制御用複屈折素子12に入力し、それぞれ常光は直進し、異常光は屈折してy方向(上方)に分離する。左側を通る光のうち左上方光路を通る光は、偏波制御手段24である1/2波長板26によって偏波方向が90度回転し、左下方光路を通る光は、1/2波長板をバイパスする。右側を通る光のうち右上方光路を通る光も1/2波長板をバイパスするが、右下方光路を通る光は、偏波制御手段24である1/2波長板28によって偏波方向が90度回転する。従って、上方光路の両光は偏波が互いに直交する関係となり、下方光路の両光も偏波が互いに直交する関係となる。そして、合成用複屈折素子14では、x方向で光が合成するため、右側の出力ポート1及び出力ポート2から、それぞれ所定分岐比の分岐光が出力することになる。
【0018】
図4に示すように、可変偏光回転子による偏波の回転角をθとすると、入力光のパワーを1としたときに、出力ポート1に結合する光パワーはcos2θの比で、出力ポート2に結合する光パワーはsin2θの比で出力する。入力光は、このような比率で分岐して出力するため、偏波回転角θの制御によって分岐比の調整が可能となる。
【0019】
図5は、光路制御用複屈折素子12と合成用複屈折素子14との間に挿入する偏波制御手段の他の例を示している。ここで偏波制御手段34は、左側光路(上下共通)に挿入した1/2波長板36と下側光路(左右共通)に挿入した1/2波長板38とを有する構成である。従って、左下方光路では2枚の1/2波長板が重なって配置されることになる。両方の1/2波長板36,38は、同一方向(図6のA及びBに示すように、x軸から45度傾いている方向)の光学軸をもち、例えば水晶からなる。
【0020】
左上方光路及び右下方光路の光は、図1の実施例の場合と同様、偏波方向がそれぞれ1/2波長板36,38により90度回転する。右上方光路の光は、両方の1/2波長板36,38をバイパスするために偏波方向は変化しない。左下方光路の光は、最初の1/2波長板36により90度回転し、次の1/2波長板38により逆に90度回転するため、結局、偏波方向は変化しない。従って、動作としては、図1の実施例の場合と全く同様となる。
【0021】
図7は、本発明に係る可変分岐比光スプリッタの他の実施例を示す説明図であり、各光学部品の配列状況と各光学部品間での偏波状況を示している。この可変分岐比光スプリッタは、分離用複屈折素子と光路制御用複屈折素子との間に配置する偏波回転手段の構成を除けば、基本的には前記図1に示す実施例と同様なので、対応する部分に同一符号を付し、それらについての説明は省略する。
【0022】
ここで偏波回転手段40は、左右両側光路に光学軸が対称となるように並設した水晶からなる2枚の1/2波長板42,44の組み合わせである。図8に示されているように、左側光路の1/2波長板42は光学軸がx軸から22.5度傾いており、右側光路の1/2波長板44は光学軸がx軸から−22.5度傾いている。従って、左側光路の垂直方向の偏波は方位が45度回転し、右側光路の水平方向の偏波は方位が−45度回転して、両光の偏波方向は平行となる。その両光が、次の可変偏光回転子18に入力する。可変偏光回転子18は、−45度から+45度の範囲で偏波方向を回転制御するように構成する。
【0023】
図7に示す実施例では、偏波制御手段24として、対角の位置関係にある光路にそれぞれ1/2波長板26,28を挿入しているが、図5と同様、左右光路の一方と上下光路の一方にそれぞれ1/2波長板を配列した構成でもよい。
【0024】
このような可変分岐比光スプリッタは、例えば複数段カスケード式に接続し、各出力段にフィルタなどを組み込み、それらの出力を結合することで、増幅器の利得を等価させる可変利得等価器を構成するのに利用できる。
【0025】
【発明の効果】
本発明は上記のように構成した可変分岐光スプリッタであるから、入力光を自由に任意の比率で2つの光に分岐して出力することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る可変分岐光スプリッタの一実施例を示す説明図。
【図2】その偏波回転手段と偏波制御手段に用いる1/2波長板の形状と光学軸の説明図。
【図3】この可変分岐比光スプリッタの光路説明図。
【図4】可変偏光回転子による偏波の回転角と分岐比の関係を示す図。
【図5】偏波制御手段の他の例を示す説明図。
【図6】その偏波制御手段に用いる1/2波長板の形状と光学軸の説明図。
【図7】本発明に係る可変分岐光スプリッタの他の実施例を示す説明図。
【図8】その偏波回転手段に用いる1/2波長板の形状と光学軸の説明図。
【符号の説明】
10 分離用複屈折素子
12 光路制御用複屈折素子
14 合成用複屈折素子
16 偏波回転手段
18 可変偏光回転子
24 偏波制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable branching ratio optical splitter having a function of branching input light into two lights at an arbitrary ratio and outputting them. This apparatus is useful, for example, in the field of optical communication and the like for variable branching ratio of light propagating through an optical waveguide or optical fiber.
[0002]
[Prior art]
In fields such as optical communication, there is a case where light (information) propagating through an optical waveguide or an optical fiber is desired to be branched to another path for transmission. In such a case, an optical branching device is used. In the prior art, the optical branching device is manufactured by a branching waveguide or fiber fusion.
[0003]
[Problems to be solved by the invention]
These conventional optical branching units have a simple configuration, but the branching ratio is fixed and cannot be varied. If the input light can be split into two lights at an arbitrary ratio and output, it will open the way to develop optical devices with new functions.
[0004]
An object of the present invention is to provide a variable branching optical splitter that can freely split an input light into two lights at an arbitrary ratio and output them.
[0005]
[Means for Solving the Problems]
The present invention relates to a separation birefringence element that separates light of the same optical path whose polarization direction is orthogonal, an optical path control birefringence element that controls the optical path according to the polarization direction, and the polarization direction is orthogonal Synthetic birefringent elements that synthesize light of different optical paths are arranged in this order with an interval in between, and the polarization direction is parallel from the orthogonal relationship between the separating birefringent element and the optical path control birefringent element. And a polarization rotator for converting the polarization direction of the light into an arbitrary angle, and a diagonal line between the birefringent element for optical path control and the birefringent element for synthesis. The light of the two optical paths having the relationship of (1) is rotated by 90 degrees in the polarization direction, and the light of the other two optical paths is arranged with polarization control means for maintaining the polarization direction, and the polarization direction of the variable polarization rotator is adjusted. Variable branching with adjustable optical branching ratio according to rotation angle control An optical splitter.
[0006]
As the variable polarization rotator, a 90-degree variable Faraday rotator in which a Faraday element and an electromagnet that applies a variable magnetic field to the Faraday element are combined is preferably used.
[0007]
The polarization rotation means may be a linear phase shifter inserted in one side optical path. Alternatively, the polarization rotation means may be composed of a pair of linear phase shifters in which the optical axes inserted in the both-side optical paths are directed in a symmetric direction.
[0008]
The polarization control means can be composed of a linear phaser having optical axes in the same direction inserted into two optical paths having a diagonal relationship that rotates the polarization direction by 90 degrees. Alternatively, the polarization control means may include a linear phase shifter that is inserted in common in one optical path that rotates the polarization direction by 90 degrees and an adjacent optical path, and a diagonal that rotates the polarization direction by 90 degrees. It is also possible to have a configuration in which the other optical path having the above relationship and a linear phase shifter inserted in common in the adjacent optical path are provided so that both linear phase shifters overlap in one optical path.
[0009]
As the birefringent element, a rectangular parallelepiped rutile single crystal is desirable. As the linear phase shifter, for example, a half-wave plate made of quartz can be used.
[0010]
【Example】
FIG. 1 is an explanatory view showing an embodiment of a variable branching ratio optical splitter according to the present invention, showing the arrangement state of optical components and the polarization state between optical components. In addition, the arrow in each optical component has shown the direction of the optical axis, or the direction of Faraday rotation. In order to make the explanation easy to understand, the following coordinate axes are set. The arrangement direction of the optical components is the z direction (the depth direction in the drawing), and the two directions orthogonal to the z direction are the x direction (the horizontal direction in the drawing) and the y direction (the vertical direction in the drawing). The rotation direction is clockwise when viewed in the z direction.
[0011]
Separating birefringence element 10 that separates light in the same optical path whose polarization directions are orthogonal to each other in the x direction. Birefringence for optical path control in which ordinary light travels straight and abnormal light shifts the optical path in the + y direction according to the polarization direction. The element 12 and the combining birefringent element 14 for combining lights in different optical paths having orthogonal polarization directions in the x direction are arranged in the z direction at intervals in this order.
[0012]
The polarization rotation means 16 for converting the polarization direction from the orthogonal relationship to the parallel relationship between the separation birefringence element 10 and the optical path control birefringence element 12 when viewed in the z direction, and the polarization of these lights A variable polarization rotator 18 that rotates the direction by an arbitrary angle is disposed. Here, the polarization rotation means 16 has a configuration in which a half-wave plate 20 made of quartz is inserted only in the right optical path. As shown in FIG. 2A, the half-wave plate 20 has an optical axis inclined at 45 degrees from the x-axis. The variable polarization rotator 18 is a 90-degree variable Faraday rotator in which a Faraday element 22 and an electromagnet (not shown) that applies a variable magnetic field to the Faraday element 22 are combined. The variable polarization rotator 18 is polarized in the range of 0 to 90 degrees. It is configured so that the direction can be rotationally controlled. As the Faraday element 22, for example, a Bi-substituted rare earth iron garnet LPE (liquid phase epitaxial growth) film is suitable.
[0013]
Further, when viewed in the z direction, the light in the two optical paths having a diagonal relationship between the optical path control birefringent element 12 and the synthesizing birefringent element 14 rotates the polarization direction by 90 degrees, and the other 2 Polarization control means 24 for maintaining the polarization direction of light in one optical path is disposed. Here, the polarization control means 24 is inclined 45 degrees from the x-axis as shown in the same direction (shown as B in FIG. 2) inserted in two diagonally connected optical paths (upper left optical path and lower right optical path). Direction) and half-wave plates 26 and 28 having an optical axis. Specifically, it is made of, for example, quartz.
[0014]
FIG. 3 is an explanatory diagram of the optical path of this variable branching ratio optical splitter, in which A represents a side surface of the optical path and B represents a plane. Looking at the z direction, an input port is set at the lower left position in front of the separating birefringent element 10, the output port 1 at the upper right position behind the synthesizing birefringent element 14, and the output port 2 at the lower right position. Set. In this state, if the rotation angle in the polarization direction by the variable polarization rotator 18 is changed, the optical branching ratio to the output port 1 and the output port 2 can be freely changed accordingly.
[0015]
Next, the operation of this variable branching ratio optical splitter will be described in more detail. The light input in the z direction from the input port travels straight through the separation birefringent element 10 and the extraordinary light is refracted and separated in the x direction. Since the light passing through the left optical path bypasses the half-wave plate 20 that is the polarization rotating means 16, the polarization direction does not change. On the other hand, the polarization direction of the light passing through the right optical path is rotated by the half-wave plate 20 which is the polarization rotation means 16. As described above, since the optical axis is inclined 45 degrees from the x-axis, the polarization direction changes from the horizontal direction to the vertical direction. This is because the half-wave plate has the property of converting the polarization direction of the input light symmetrically with respect to its optical axis.
[0016]
Therefore, the polarization direction of the light passing through the left and right optical paths is parallel (vertical direction) and is input to the variable polarization rotator 18. When the energization current to the electromagnet is changed, the magnetic field applied to the Faraday element 22 is changed, and the polarization direction of the light passing through the Faraday element 22 is rotated accordingly. That is, the polarization direction of the passing light can be changed by an arbitrary angle by controlling the energization current.
[0017]
Both lights whose polarization directions have been rotated by an arbitrary angle are input to the optical path control birefringence element 12, where ordinary light travels straight and extraordinary light is refracted and separated in the y direction (upward). Of the light passing through the left side, the light passing through the upper left optical path is rotated by 90 degrees in the polarization direction by the half wave plate 26 which is the polarization control means 24, and the light passing through the lower left optical path is the half wave plate. Bypass. Of the light passing through the right side, the light passing through the upper right optical path also bypasses the half-wave plate, but the light passing through the lower right optical path has a polarization direction of 90 by the half-wave plate 28 which is the polarization control means 24. Rotate degrees. Accordingly, both lights in the upper optical path have a relationship in which the polarizations are orthogonal to each other, and both lights in the lower optical path have a relationship in which the polarizations are orthogonal to each other. Since the combining birefringent element 14 combines light in the x direction, branched light having a predetermined branching ratio is output from the right output port 1 and output port 2 respectively.
[0018]
As shown in FIG. 4, when the rotation angle of the polarization by the variable polarization rotator is θ, when the input light power is 1, the optical power coupled to the output port 1 is output at a ratio of cos 2 θ. The optical power coupled to port 2 is output at a ratio of sin 2 θ. Since the input light is branched and output at such a ratio, the branching ratio can be adjusted by controlling the polarization rotation angle θ.
[0019]
FIG. 5 shows another example of polarization control means inserted between the birefringent element 12 for optical path control and the birefringent element 14 for synthesis. Here, the polarization control means 34 has a configuration including a ½ wavelength plate 36 inserted in the left optical path (upper and lower common) and a ½ wavelength plate 38 inserted in the lower optical path (common in the left and right). Therefore, in the lower left optical path, two half-wave plates are arranged in an overlapping manner. Both half-wave plates 36 and 38 have an optical axis in the same direction (a direction inclined by 45 degrees from the x-axis as shown in FIGS. 6A and 6B), and are made of, for example, quartz.
[0020]
The light in the upper left optical path and the lower right optical path is rotated by 90 degrees in the polarization direction by the half-wave plates 36 and 38, respectively, as in the embodiment of FIG. Since the light in the upper right optical path bypasses both the half-wave plates 36 and 38, the polarization direction does not change. Since the light in the lower left optical path is rotated 90 degrees by the first half-wave plate 36 and rotated 90 degrees by the next half-wave plate 38, the polarization direction does not change after all. Accordingly, the operation is exactly the same as in the embodiment of FIG.
[0021]
FIG. 7 is an explanatory view showing another embodiment of the variable branching ratio optical splitter according to the present invention, showing the arrangement state of optical components and the polarization state between the optical components. This variable branching ratio optical splitter is basically the same as the embodiment shown in FIG. 1 except for the configuration of the polarization rotating means arranged between the separating birefringent element and the optical path controlling birefringent element. Corresponding portions are denoted by the same reference numerals, and description thereof will be omitted.
[0022]
Here, the polarization rotation means 40 is a combination of two half-wave plates 42 and 44 made of quartz arranged in parallel so that the optical axes are symmetrical in the left and right optical paths. As shown in FIG. 8, the optical path of the half-wave plate 42 in the left optical path is inclined 22.5 degrees from the x-axis, and the half-wave plate 44 in the right optical path has the optical axis from the x-axis. -22.5 degrees tilted. Accordingly, the vertical polarization of the left optical path is rotated by 45 degrees, the horizontal polarization of the right optical path is rotated by -45 degrees, and the polarization directions of both lights are parallel. Both the lights are input to the next variable polarization rotator 18. The variable polarization rotator 18 is configured to rotationally control the polarization direction in the range of −45 degrees to +45 degrees.
[0023]
In the embodiment shown in FIG. 7, half-wave plates 26 and 28 are inserted as the polarization control means 24 in the diagonal optical path, respectively. However, as in FIG. A configuration in which half-wave plates are arranged in one of the upper and lower optical paths may be employed.
[0024]
Such a variable branching ratio optical splitter is connected to, for example, a multi-stage cascade system, and a filter or the like is incorporated in each output stage, and their outputs are combined to constitute a variable gain equalizer that equalizes the gain of the amplifier. Can be used for
[0025]
【The invention's effect】
Since the present invention is a variable branching optical splitter configured as described above, the input light can be freely branched into two lights at an arbitrary ratio and output.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a variable branching optical splitter according to the present invention.
FIG. 2 is an explanatory diagram of the shape and optical axis of a half-wave plate used for the polarization rotation means and the polarization control means.
FIG. 3 is an explanatory diagram of an optical path of the variable branching ratio optical splitter.
FIG. 4 is a diagram illustrating a relationship between a rotation angle of polarization by a variable polarization rotator and a branching ratio.
FIG. 5 is an explanatory diagram showing another example of polarization control means.
FIG. 6 is an explanatory diagram of the shape and optical axis of a half-wave plate used for the polarization control means.
FIG. 7 is an explanatory view showing another embodiment of the variable branching optical splitter according to the present invention.
FIG. 8 is an explanatory diagram of the shape and optical axis of a half-wave plate used for the polarization rotation means.
[Explanation of symbols]
10 Birefringence element for separation 12 Birefringence element for optical path control 14 Birefringence element for synthesis 16 Polarization rotation means 18 Variable polarization rotator 24 Polarization control means

Claims (8)

偏波方向が直交関係にある同じ光路の光を分離する分離用複屈折素子、偏波方向に応じて光路を制御する光路制御用複屈折素子、偏波方向が直交関係にある異なる光路の光を合成する合成用複屈折素子を、この順序で間隔をおいて配置し、
分離用複屈折素子と光路制御用複屈折素子との間に、偏波方向を直交関係から平行関係に変換する偏波回転手段と、それらの光の偏波方向を任意の角度回転させる可変偏光回転子とを配置し、
光路制御用複屈折素子と合成用複屈折素子との間に、対角の関係にある2つの光路の光は偏波方向を90度回転し、他の2つの光路の光は偏波方向を維持する偏波制御手段を配置し、
可変偏光回転子による偏波方向の回転角度の制御に応じて光分岐比を自由に調整可能としたことを特徴とする可変分岐比光スプリッタ。
Separation birefringence element that separates light of the same optical path whose polarization direction is orthogonal, light path control birefringence element that controls the optical path according to the polarization direction, light of different optical paths whose polarization direction is orthogonal The birefringent elements for synthesis for synthesizing are arranged at intervals in this order,
Between the birefringence element for separation and the birefringence element for optical path control, polarization rotation means for converting the polarization direction from an orthogonal relationship to a parallel relationship, and variable polarization for rotating the polarization direction of the light by an arbitrary angle Place the rotor and
Between the birefringent element for optical path control and the birefringent element for synthesis, the light of the two optical paths having a diagonal relationship rotates the polarization direction by 90 degrees, and the light of the other two optical paths changes the polarization direction. Place the polarization control means to maintain,
A variable branching ratio optical splitter characterized in that an optical branching ratio can be freely adjusted according to control of a rotation angle in a polarization direction by a variable polarization rotator.
可変偏光回転子が、ファラデー素子と該ファラデー素子に可変磁界を印加する電磁石とを組み合わせた90度可変ファラデー回転子である請求項1記載の可変分岐比光スプリッタ。2. The variable branching ratio optical splitter according to claim 1, wherein the variable polarization rotator is a 90-degree variable Faraday rotator in which a Faraday element and an electromagnet that applies a variable magnetic field to the Faraday element are combined. 偏波回転手段が、片側の光路に挿入した直線位相子からなる請求項1又は2記載の可変分岐比光スプリッタ。3. A variable branching ratio optical splitter according to claim 1 or 2, wherein the polarization rotating means comprises a linear phase shifter inserted in one optical path. 偏波回転手段が、両側の光路に挿入した光学軸が対称方向を向く一対の直線位相子からなる請求項1乃至3のいずれかに記載の可変分岐比光スプリッタ。4. The variable branching ratio optical splitter according to claim 1, wherein the polarization rotating means is composed of a pair of linear phase shifters in which optical axes inserted in optical paths on both sides are directed in a symmetric direction. 偏波制御手段が、偏波方向を90度回転する対角の関係にある2つの光路に挿入した同一方向の光学軸をもつ直線位相子からなる請求項1乃至4のいずれかに記載の可変分岐比光スプリッタ。The variable polarization unit according to any one of claims 1 to 4, wherein the polarization control means comprises a linear phaser having optical axes in the same direction inserted into two optical paths having a diagonal relationship in which the polarization direction is rotated 90 degrees. Splitting ratio optical splitter. 偏波制御手段が、偏波方向を90度回転する対角の関係にある一方の光路とそれに隣接する光路に共通に挿入した直線位相子と、偏波方向を90度回転する対角の関係にある他方の光路とそれに隣接する光路に共通に挿入した直線位相子とを有し、両方の直線位相子が一つの光路で重なるように設置されている請求項1乃至4のいずれかに記載の可変分岐比光スプリッタ。The polarization control means has a diagonal relationship in which the polarization direction is rotated 90 degrees and a linear phase shifter that is inserted in common in one of the optical paths that rotate the polarization direction by 90 degrees and an optical path adjacent to the optical path. 5 and a linear phase shifter inserted in common in the optical path adjacent thereto, and both linear phase shifters are installed so as to overlap in one optical path. Variable splitting ratio optical splitter. 複屈折素子に直方体状のルチル単結晶を用いる請求項1乃至6のいずれかに記載の可変分岐比光スプリッタ。7. The variable branching ratio optical splitter according to claim 1, wherein a rectangular parallelepiped rutile single crystal is used for the birefringent element. 直線位相子に水晶からなる1/2波長板を用いる請求項1乃至7のいずれかに記載の可変分岐比光スプリッタ。8. The variable branching ratio optical splitter according to claim 1, wherein a half-wave plate made of quartz is used as the linear phase shifter.
JP2001182480A 2001-06-15 2001-06-15 Variable splitting ratio optical splitter Expired - Fee Related JP4591940B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001182480A JP4591940B2 (en) 2001-06-15 2001-06-15 Variable splitting ratio optical splitter
US10/173,237 US6798566B2 (en) 2001-06-15 2002-06-13 Variable optical gain equalizer and variable branching ratio beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182480A JP4591940B2 (en) 2001-06-15 2001-06-15 Variable splitting ratio optical splitter

Publications (2)

Publication Number Publication Date
JP2002372696A JP2002372696A (en) 2002-12-26
JP4591940B2 true JP4591940B2 (en) 2010-12-01

Family

ID=19022578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182480A Expired - Fee Related JP4591940B2 (en) 2001-06-15 2001-06-15 Variable splitting ratio optical splitter

Country Status (1)

Country Link
JP (1) JP4591940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707059B2 (en) * 2005-11-07 2011-06-22 Fdk株式会社 Split ratio switching type optical splitter
DE102007046210A1 (en) * 2007-09-27 2009-04-02 Carl Zeiss Meditec Ag Arrangement and method for generating images with extended dynamics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160740A (en) * 1997-12-01 1999-06-18 Yazaki Corp Variable branching ratio beam branching device
JP2000509509A (en) * 1995-08-25 2000-07-25 ラモート ユニバーシティ オーソリティ フォー アプライド リサーチ アンド インダストリアル デベロップメント リミテッド Completely optical switch
JP2002107774A (en) * 2000-10-03 2002-04-10 Fdk Corp Optical switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509509A (en) * 1995-08-25 2000-07-25 ラモート ユニバーシティ オーソリティ フォー アプライド リサーチ アンド インダストリアル デベロップメント リミテッド Completely optical switch
JPH11160740A (en) * 1997-12-01 1999-06-18 Yazaki Corp Variable branching ratio beam branching device
JP2002107774A (en) * 2000-10-03 2002-04-10 Fdk Corp Optical switch

Also Published As

Publication number Publication date
JP2002372696A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP2001505668A (en) Error-tolerant optical route changeover switch
JPH0667053A (en) Polarized wave-nondependency type optical pulse branching circuit and polarized wave-nondependency type optical pulse multiplexing circuit
JP2003035892A (en) Optical shutter
JPH11271678A (en) Optical circulator
EP1061406B1 (en) A polarization independent light switching device based on liquid crystal waveguides
JP4591940B2 (en) Variable splitting ratio optical splitter
US6278547B1 (en) Polarization insensitive faraday attenuator
US6798566B2 (en) Variable optical gain equalizer and variable branching ratio beam splitter
JP2002116421A (en) Optical rotator and optical device using the same
JP4707059B2 (en) Split ratio switching type optical splitter
US3484151A (en) A nonreciprocal optical device employing birefringent elements with rotating birefringent axes
JP2020510886A (en) Method and apparatus for nonreciprocal transmission of a beam of electromagnetic radiation
JP3583515B2 (en) Polarization scrambler device
JP2003140205A (en) Equalized nd distributed type optical branching device
JP4382344B2 (en) Reflective variable magneto-optical device
US7079319B2 (en) Optical signal control device and method for utilizing same
JP2002107670A (en) Optical circulator and optical switch
JP2003084254A (en) Variable light gain equalizer
JP4360599B2 (en) Polarization-dependent optical device
JP2012008225A (en) Variable optical phase unit
JP2003302604A (en) Magnetooptic optical switch
US20030048529A1 (en) Optical circulator
JP2003066395A (en) Variable optical gain equalizer
JP2003255284A (en) Variable optical gain equalizer
JP2002107774A (en) Optical switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees