JP4590680B2 - Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor - Google Patents

Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor Download PDF

Info

Publication number
JP4590680B2
JP4590680B2 JP2000111590A JP2000111590A JP4590680B2 JP 4590680 B2 JP4590680 B2 JP 4590680B2 JP 2000111590 A JP2000111590 A JP 2000111590A JP 2000111590 A JP2000111590 A JP 2000111590A JP 4590680 B2 JP4590680 B2 JP 4590680B2
Authority
JP
Japan
Prior art keywords
anhydride
carbonate
weight
aqueous electrolyte
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000111590A
Other languages
Japanese (ja)
Other versions
JP2001297793A5 (en
JP2001297793A (en
Inventor
裕文 鈴木
寿子 近藤
亨 布施
信一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000111590A priority Critical patent/JP4590680B2/en
Publication of JP2001297793A publication Critical patent/JP2001297793A/en
Publication of JP2001297793A5 publication Critical patent/JP2001297793A5/ja
Application granted granted Critical
Publication of JP4590680B2 publication Critical patent/JP4590680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解液二次電池及びそれに用いる非水系電解液に関する。詳しくは、特定の非水系電解液を用いるところのリチウムマンガン酸化物正極を有する非水系電解液二次電池の改良及びそれに用いる非水系電解液に関する。
本発明の二次電池は、高温雰囲気下においてもサイクル特性及び保存特性に優れている。
【0002】
【従来の技術】
近年の電気製品の軽量化、小型化に伴い、高いエネルギー密度を持つリチウム二次電池の開発が進められている。また、リチウム二次電池の適用分野の拡大に伴い電池特性の改善も要望されている。
金属リチウムを負極とする二次電池は高容量化を達成できる電池として古くから盛んに研究が行われているが、金属リチウムが充放電の繰り返しによりデンドライト状に成長し、最終的には正極に達して、電池内部において短絡が生じてしまうことが実用化を阻む最大の技術的な課題となっている。
【0003】
そこで負極に、例えばコークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵・放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。前記非水系電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。
正極には、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物材料が用いられているが、その中でも資源的に豊富で、安価な材料であるスピネル型構造を有するリチウムマンガン複合酸化物が、注目されている。
【0004】
【発明が解決しようとする課題】
しかしながら、このリチウムマンガン複合酸化物を正極に用いた場合には、初期特性はほぼ満足できるレベルにあるものの、充放電サイクルの進行や長期保存により、正極中のマンガンイオンが電解液中に溶出してゆき、結果として電池特性が低下することが判明している。
特に、高温雰囲気では、サイクル特性や保存特性の低下が急激に進行する問題がある。
本発明は、リチウムマンガン複合酸化物を正極に用いた非水系電解液二次電池において、高温雰囲気下においてもサイクル特性、保存特性の優れた電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、かかる事情に鑑み鋭意検討した結果、リチウムイオンを吸蔵・放出することが可能なリチウムマンガン複合酸化物を主成分とする正極と、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極と、環状カーボネート及び鎖状カーボネートを少なくとも含む混合非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、電解液が特定の化合物を含有し、且つ混合非水溶媒中における前記カーボネートの合計量を限定することにより、高温雰囲気下においても、サイクル特性、保存特性を向上させることができることを見い出し、本発明を完成するに至った。
【0006】
即ち、本発明の要旨は、
1.リチウムイオンを吸蔵・放出することが可能なスピネル構造を有するリチウムマンガン複合酸化物を主成分とする正極と、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極と、環状カーボネート及び鎖状カーボネートを少なくとも含む混合非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、電解液が無水コハク酸、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネンー2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物よりなる群から選ばれる少なくとも1種の環状酸無水物を含有し、混合非水溶媒及び環状酸無水物の合計量に対する環状酸無水物割合が0.01〜10重量%であり、且つ混合非水溶媒の95重量%以上が環状カーボネート及び鎖状カーボネートであることを特徴とする非水系電解液二次電池、
【0007】
2.リチウムイオンを吸蔵・放出することが可能なスピネル構造を有するリチウムマンガン複合酸化物を主成分とする正極と、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極を少なくとも備えた非水系電解液二次電池用の非水系電解液であって、非水系電解液が、環状カーボネート及び鎖状カーボネートを少なくとも含む混合溶媒にリチウム塩を溶解してなり、且つ、無水コハク酸、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネンー2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物よりなる群から選ばれる少なくとも1種の環状酸無水物を含有し、混合非水溶媒及び環状酸無水物の合計量に対する環状酸無水物の割合が0.01〜10重量%であり、更に、混合非水溶媒の95重量%以上が環状カーボネート及び鎖状カーボネートであることを特徴とする非水系電解液、にある。
【0008】
【発明の実施の形態】
本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出することが可能リチウムマンガン複合酸化物を主成分とする正極、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極、及びその95重量%以上が環状カーボネート及び鎖状カーボネートからなる混合非水溶媒にリチウム塩及び該溶媒及び環状酸無水物の合計量の0.01〜10重量%の環状酸無水物を溶解してなる非水系電解液から少なくとも構成される。
【0009】
電解液の混合非水溶媒は、環状カーボネート及び鎖状カーボネートを95重量%以上含み、好ましくは環状カーボネート及び鎖状カーボネートをそれぞれ20重量%以上含むものである。
【0010】
混合非水系溶媒に用いられる環状カーボネートについては、特に限定されるものではないが、アルキレンカーボネート及びアルケニレンカーボネートが好ましい。特にアルキレン基の炭素数が2〜4のアルキレンカーボネートが好適である。このような環状カーボネートの具体例として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、等を挙げることができ、中でもエチレンカーボネート及びプロピレンカーボネートが好ましい。
これらのアルキレン基又はアルケニレン基については、本発明の所期の効果を過度に阻害しない範囲内で置換基を有していてもよい。
【0011】
混合非水溶媒に用いられる鎖状カーボネートについては、特に限定されるものではないが、アルキルカーボネートが好ましく、特にアルキル基の炭素数が1〜4であるアルキルカーボネートが好ましい。このようなアルキルカーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等を挙げることができ、中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。これらのカーボネートのアルキル基については、本発明の所期の効果を過度に阻害しない範囲内で置換基を有していてもよい。
【0012】
環状カーボネートと鎖状カーボネートとの組合わせについては、特に限定されるものではないが、アルキレン基の炭素数が2〜4のアルキレンカーボネートとアルキル基の炭素数が1〜4のジアルキルカーボネートとの組合わせが好ましい。その具体例としては、エチレンカーボネート及び/又はプロピレンカーボネートとジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートから選ばれる少なくとも一種との組合わせを挙げることができる。
【0013】
混合非水溶媒中には、所望により、環状カーボネート及び鎖状カーボネート以外の溶媒を含有してもよいが、その量は5重量%以下である。
カーボネート以外の溶媒としてはγ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、スルホラン、ジエチルスルホン、エチレンサルファイト、ジメチルサルファイト、ジエチルサルファイト、プロパンスルトン等の含硫黄有機溶媒、リン酸トリメチル、リン酸トリエチル等の含燐有機溶媒等が挙げられる。これらの溶媒は二種類以上混合して用いてもよい。
【0014】
本発明で用いられる電解液は、環状酸無水物を含有する。本発明で用いられる環状酸無水物は、環状構造の一部に酸無水物構造を有する化合物であれば特にその種類は限定されない。また、酸無水物の構造を一分子中に複数個有する化合物であってもよい。本発明で用いられる環状酸無水物の具体例としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物等を挙げることができる。中でも好ましいのは、無水コハク酸、無水グルタル酸、無水マレイン酸である。これらの酸無水物は二種以上混合して用いてもよい。
なお、環状酸無水物の含有量は、混合非水溶媒及び環状酸無水物の合計量の0.01〜10重量%であり、好ましくは0.05〜7重量%である。
【0015】
本発明で用いられる電解液は、溶質としてリチウム塩を含有する。リチウム塩としては、電解液の溶質として使用し得るものであれば、特に限定はされないが、その具体例としては、例えばLiClO4 、LiPF6 、LiBF4 から選ばれる無機リチウム塩又はLiCF3 SO3 、LiN(CF3 SO2 2 、LiN(CF3 CF2 SO2 2 、LiN(CF3 SO2 )(C4 9 SO2 )、LiC(CF3 SO2 3 等の含フッ素有機リチウム塩を挙げることができる。これらの溶質は二種類以上混合して用いてもよい。
電解液中のリチウム塩のモル濃度は、0.5〜3.0モル/リットルであることが望ましい。0.5モル/リットル未満もしくは3.0モル/リットル超では、電解液の電気伝導率が低く、電池の性能が低下するため好ましくない。
【0016】
本発明で用いられる正極は、リチウムマンガン複合酸化物(以下、複合酸化物(A)ということがある)を主成分とするものである。特にスピネル構造を有するリチウムマンガン複合酸化物が好ましい。このようなリチウムマンガン複合酸化物としては、そのマンガンサイトの一部を置換したものであることが好ましい。特に典型元素により置換されたものであることが好ましい。このようなマンガンサイトを置換する典型元素としては、Li、B、Na、Mg、Al、Ca、Zn、Ga、Ge等が挙げられる。無論複数の元素でマンガンサイトを置換することも可能である。マンガンサイトの置換元素としては、Li、Mg、Al、Gaが好ましく、特にアルミニウム及び/又はリチウムが好ましい。典型元素の置換量はマンガン2モルの中の0.03モル以上が好ましく、更に好ましくは0.05モル以上、最も好ましくは0.07モル以上である。
【0017】
特に好ましいリチウムマンガン複合酸化物(A)は、一般式
【0018】
【数1】
Li[Mn(2−x)AlyLiz]O4
【0019】
(式中、x、y及びzはそれぞれ0以上の数であり、x=y+zである。但し、yとzは同時に0でない)で表される化合物である。
ここで、yとしては、通常0.5以下、好ましくは0.25以下であり、また通常は0.1以上である。また、zとしては、通常0.1以下、好ましくは0.08以下であり、また通常0.02以上である。yやzが小さすぎると高温特性が悪化することがあり、一方大きすぎると容量が低下する傾向にある。
【0020】
なお、上記において、複合酸化物(A)の酸素原子は不定比性を有していてもよく、また酸素原子の一部がフッ素等のハロゲン元素で置換されていてもよい。
本発明の複合酸化物(A)の比表面積は、好ましくは2m2 /g以下、更に好ましくは1.5m2 /g以下、最も好ましくは1m2 /g以下である。比表面積が大きすぎると、改良効果が薄れる。
【0021】
更に、本発明における正極は、層状構造を有するリチウムニッケル複合酸化物(以下、複合酸化物(B)ということがある)が混合されていると、高温雰囲気下における、サイクル特性、保存特性を向上させることもできることも見い出されている。複合酸化物(B)としては、基本的な組成式LiNiO2 を有するものが一般的である。複合酸化物(A)と同様に、複合酸化物(B)のニッケルの一部が置換されていることが好ましい。置換元素として好ましい元素としては、Al、Fe、Sn、Cr、Cu、Ti、Zn、Co、Mn等の金属元素を挙げることができる。無論複数の元素でニッケルサイトを置換することも可能である。特にはアルミニウム及び/又はコバルトで置換されていることが好ましい。
【0022】
特に好ましい複合酸化物(B)は、一般式
【0023】
【数2】
Li[Ni(1−p)CoqAlr]O2
【0024】
(式中、p、q及びrはそれぞれ0以上の数であり、p=q+rである。但し、qとrは同時に0ではない)で表される化合物である。ここで、q及びrは、それぞれ独立に、通常0.5以下、好ましくは0.25以下であり、また通常は0.1以上である。また、rは、通常0.1以下、好ましくは0.08以下であり、また通常0.02以上である。qやrが小さすぎると高温特性が良くない傾向にあり、一方大きすぎると容量が低下する傾向にある。
【0025】
なお、上記において、複合酸化物(B)の酸素原子は不定比性を有してもよく、また酸素素子の一部がフッ素等のハロゲン元素で置換されていてもよい。
複合酸化物(B)の比表面積は、好ましくは1m2 /g以上、更に好ましくは2m2 /g以上、最も好ましくは3m2 /g以上である。複合酸化物(B)の比表面積が小さいと高温特性改良効果が低い。
【0026】
複合酸化物(A)に対する複合酸化物(B)の添加割合の上限としては、好ましくは60重量%以下、更に好ましくは50重量%以下、最も好ましくは30重量%以下である。また、下限は、好ましくは5重量%以上、更に好ましくは10重量%以上である。リチウムニッケル複合酸化物(B)の混合比率が少なすぎると、高温特性の改善効果が小さくなる傾向にあり、逆に多すぎるとコストアップや安全性の面で問題が生じることがある。
【0027】
また、複合酸化物(A)若しくは(B)、又はこれらの複合体の粒径は通常0.1μm以上、好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、また通常30μm以下、好ましくは10μm以下、更に好ましくは5μm以下である。また、これらの窒素吸着法による比表面積は通常0.3m2 /g以上であり、また通常15m2 /g以下である。粒径が小さすぎたり比表面積が大きいと、電池のサイクル劣化が大きくなったり、安全性に問題が生じたりすることがある。粒径が大きすぎたり、比表面積が小さすぎると、電池の内部抵抗が大きくなり、出力が出しにくくなることがある。
【0028】
正極は、通常、活物質、結着剤及び導電剤とを含有する正極合剤層を集電体上に形成してなる。正極合剤層は、通常、上記構成成分を含有するスラリーを調製し、これを集電体上に塗布・乾燥することにより得ることができる。
正極に使用される結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。
【0029】
正極合剤層に含まれる導電剤としては、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料を挙げることができる。
【0030】
また、スラリー溶媒としては、通常はバインダーを溶解或いは分散する有機溶媒が使用される。その具体例としては、例えば、N−メチルピリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン等を挙げることができる。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。
【0031】
正極用集電体の材質は、アルミニウム、チタン、タンタル等の金属又はその合金が用いられる。これらの中で、特にアルミニウム又はその合金が軽量であるためエネルギー密度の点で好ましい。
【0032】
電池を構成する負極材料としては、リチウムを吸蔵及び放出し得る炭素質材料を含むものであれば特に限定されないが、その具体例としては、例えば様々な熱分解条件での有機物の熱分解物である非晶質炭素材料、人造黒鉛、天然黒鉛等が挙げられる。
非晶質炭素材料については、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.34〜0.38nm、より好ましくは0.34〜0.37nm、特に好ましくは0.34〜0.36nmであるものが好ましい。X線回折で求めた結晶子サイズ(Lc)が15nm以下であることが好ましく、10nm以下がより好ましく、5nm以下であるものが最も好ましい。また、メジアン径は、レーザー回折・散乱法によるメジアン径で、1〜50μm、好ましくは2〜40μm、より好ましくは3〜30μm、更に好ましくは5〜25μmである。真密度は2.1g/cc以下であるのが好ましい。
【0033】
人造黒鉛、天然黒鉛等の黒鉛系材料については、種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人造黒鉛並びに黒鉛化メソフェーズ小球体、黒鉛化メソフェーズピッチ系炭素繊維及び精製天然黒鉛、或いはこれらの黒鉛にピッチを含む種々の表面処理を施した材料が主として使用される。
【0034】
これらの黒鉛材料は学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.34nm、より好ましくは0.335〜0.337nmであるものが好ましい。これら黒鉛材料は、灰分が1重量%以下、より好ましくは0.5重量%以下、最も好ましくは0.1重量%以下で且つ学振法によるX線回折で求めた結晶子サイズ(Lc)が30nm以上であることが好ましい。更に結晶子サイズ(Lc)は、50nm以上の方がより好ましく、100nm以上であるのが最も好ましい。また、黒鉛材料のメジアン径は、レーザー回折・散乱法によるメジアン径で、1〜100μm、好ましくは3〜50μm、より好ましくは5〜40μm、更に好ましくは7〜30μmである。黒鉛材料のBET法比表面積は、0.3〜25.0m2 /gであり、好ましくは0.5〜20.0m2 /g、より好ましくは0.7〜15.0m2 /g、更に好ましくは0.8〜10.0m2 /gである。また、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲にピークPA (ピーク強度IA )及び1350〜1370cm-1の範囲にピークPB (ピーク強度IB )の強度比R=IB /IA が0〜1.2が好ましく、1580〜1620cm-1の範囲のピークの半値幅が26cm-1以下、特に25cm-1以下であるのが好ましい。
【0035】
これらの負極材料を用いて負極を製造する方法については、特に限定されず、上記正極の製造方法に準じて製造することができる。
負極用集電体の材質は、銅、ニッケル、ステンレス等の金属が使用され、これらの中で薄膜に加工しやすいという点とコストの点から銅箔が好ましい。
本発明の電池に使用するセパレータの材質や形状については、特に限定されない。但し、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
【0036】
負極、正極及び非水系電解液を少なくとも有する本発明の電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。
また、電池の形状については特に限定されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が使用可能である。
【0037】
【実施例】
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。
【0038】
(実施例1)
正極活物質として、スピネル型構造を有するリチウムマンガン複合酸化物85重量部にカーボンブラック6重量部、ポリフッ化ビニリデンKF−1000(呉羽化学社製、商品名)9重量部を加え混合し、N−メチル−2−ピロリドンで分散し、スラリー状としたものを正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて正極とした。
負極活物質として、X線回折における格子面(002面)のd値が0.336nm、晶子サイズ(Lc)が、100nm以上(264nm)、灰分が0.04重量%、レーザー回折・散乱法によるメジアン径が17μm、BET法比表面積が8.9m2 /g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲のピークPA (ピーク強度IA )及び1350〜1370cm-1の範囲のピークPB (ピーク強度IB )の強度比R=IB /IA が0.15、1580〜1620cm-1の範囲のピークの半値幅が22.2cm-1である人造黒鉛粉末KS−44(ティムカル社製、商品名)95重量部にポリフッ化ビニリデン5重量部を混合し、N−メチル−2−ピロリドンで分散させスラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて負極とした。
【0039】
電解液については、乾燥アルゴン雰囲気下で十分に乾燥を行った六フッ化リン酸リチウム(LiPF6 )を溶質として用い、エチレンカーボネートとジエチルカーボネートの混合物(35:65重量比)に無水コハク酸を2重量%の割合で溶解し、更にLiPF6 を1モル/リットルの割合で溶解して調製した。
これらの正極、負極、電解液を用いて、正極導電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に電解液を含浸させたセパレーターを介して負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。
【0040】
(比較例1)
エチレンカーボネートとジエチルカーボネートの混合物(35:65重量比)に、LiPF6 を1モル/リットルの割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にしてコイン型電池を作製した。
【0041】
(実施例2)
負極活物質として、人造黒鉛粉末KS−44の代りに、コールタールピッチを不活性雰囲気中1100℃で3時間焼成後、粉砕して得られた、X線回折における格子面(002面)のd値が0.344nm、晶子サイズ(Lc)が、2.39nm、レーザー回折・散乱法によるメジアン径が16μm、真密度が、2.1g/ccである非晶質炭素粉末を使用した以外は実施例1と同様に負極を作製し、コイン型電池を作製した。
【0042】
(比較例2)
エチレンカーボネートとジエチルカーボネートの混合物(35:65重量比)に、LiPF6 を1モル/リットルの割合で溶解して調製した電解液を用いたこと以外は実施例2と同様にしてコイン型電池を作製した。
これらの実施例1、2及び比較例1、2の電池を50℃において、1.0mAの定電流で充電終止電圧4.2V、放電終止電圧3.0Vで充放電試験を行った。
それぞれの電池における放電容量維持率を図1に示す。
図1から明らかなようにこれらの実施例が、50℃と比較的高温下でサイクルを行っても容量維持率が向上し、サイクル特性が優れることが明らかである。
【0043】
【発明の効果】
本発明によれば、リチウムマンガン複合酸化物を正極に用いた非水系電解液二次電池において、高温雰囲気下においても、サイクル特性、保存特性の優れた電池を作製することができる。
【図面の簡単な説明】
【図1】本発明の実施例1、2及び比較例1、2の50℃における充放電サイクル数と放電容量維持率との関係を表した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein. In detail, it is related with the improvement of the nonaqueous electrolyte secondary battery which has a lithium manganese oxide positive electrode using the specific nonaqueous electrolyte, and the nonaqueous electrolyte used for it.
The secondary battery of the present invention is excellent in cycle characteristics and storage characteristics even in a high temperature atmosphere.
[0002]
[Prior art]
With the recent reduction in weight and size of electrical products, development of lithium secondary batteries having a high energy density is in progress. In addition, with the expansion of the application field of lithium secondary batteries, improvement of battery characteristics is also demanded.
Secondary batteries that use metallic lithium as a negative electrode have been actively studied since long ago as batteries that can achieve higher capacities, but metallic lithium grows in a dendrite shape by repeated charge and discharge, and eventually becomes a positive electrode. Achieving a short circuit inside the battery is the biggest technical problem that impedes practical use.
[0003]
Therefore, a nonaqueous electrolyte secondary battery using a carbonaceous material capable of occluding and releasing lithium ions such as coke, artificial graphite, and natural graphite has been proposed for the negative electrode. In the non-aqueous electrolyte secondary battery, since lithium does not exist in a metallic state, dendrite formation is suppressed, and battery life and safety can be improved.
Lithium transition metal composite oxide materials such as lithium cobalt composite oxide, lithium nickel composite oxide, and lithium manganese composite oxide are used for the positive electrode, but they are resource-rich and inexpensive materials. A lithium-manganese composite oxide having a spinel structure has attracted attention.
[0004]
[Problems to be solved by the invention]
However, when this lithium manganese composite oxide is used for the positive electrode, the initial characteristics are almost satisfactory, but manganese ions in the positive electrode elute into the electrolyte due to the progress of charge / discharge cycles and long-term storage. As a result, it has been found that the battery characteristics deteriorate.
In particular, in a high temperature atmosphere, there is a problem that the deterioration of cycle characteristics and storage characteristics proceeds rapidly.
An object of the present invention is to provide a battery having excellent cycle characteristics and storage characteristics even in a high temperature atmosphere in a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the present inventors are able to occlude and release lithium ions, and a positive electrode mainly composed of a lithium manganese composite oxide capable of inserting and extracting lithium ions. In a non-aqueous electrolyte secondary battery comprising at least a negative electrode mainly composed of a carbon material and an electrolyte obtained by dissolving a lithium salt in a mixed non-aqueous solvent containing at least a cyclic carbonate and a chain carbonate, Has been found to be able to improve cycle characteristics and storage characteristics even in a high temperature atmosphere by limiting the total amount of the carbonate in the mixed non-aqueous solvent containing the specific compound, and completed the present invention. It came to do.
[0006]
That is, the gist of the present invention is as follows.
1. A positive electrode mainly composed of a lithium manganese composite oxide having a spinel structure capable of occluding and releasing lithium ions, a negative electrode mainly comprising a carbon material capable of occluding and releasing lithium ions, and a ring In a non-aqueous electrolyte secondary battery comprising at least an electrolyte obtained by dissolving a lithium salt in a mixed non-aqueous solvent containing at least a carbonate and a chain carbonate, the electrolyte is succinic anhydride, glutaric anhydride, citraconic anhydride Acid, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6 Tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenylco Click acid anhydride, 2-phenyl is selected from glutaric anhydride group consisting of compounds containing at least one cyclic acid anhydride, the ratio of cyclic acid anhydride to the total amount of the mixed nonaqueous solvent and a cyclic acid anhydride A non-aqueous electrolyte secondary battery, characterized in that it is 0.01 to 10% by weight, and 95% by weight or more of the mixed non-aqueous solvent is a cyclic carbonate and a chain carbonate,
[0007]
2. At least a positive electrode mainly composed of a lithium manganese composite oxide having a spinel structure capable of occluding and releasing lithium ions and a negative electrode mainly comprising a carbon material capable of occluding and releasing lithium ions. A non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte is obtained by dissolving a lithium salt in a mixed solvent containing at least a cyclic carbonate and a chain carbonate, and succinic anhydride, Glutaric anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3 , 4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, Enirukohaku acid anhydride, 2-phenyl is selected from glutaric anhydride group consisting of compounds containing at least one cyclic acid anhydride, the ratio of cyclic acid anhydride to the total amount of the mixed nonaqueous solvent and a cyclic acid anhydride The nonaqueous electrolytic solution is characterized by being 0.01 to 10% by weight , and further 95% by weight or more of the mixed nonaqueous solvent is a cyclic carbonate and a chain carbonate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The non-aqueous electrolyte secondary battery of the present invention has a positive electrode mainly composed of a lithium manganese composite oxide capable of occluding and releasing lithium ions, and a carbon material capable of occluding and releasing lithium ions as a main component. And a mixed non-aqueous solvent comprising 95% by weight or more of a cyclic carbonate and a chain carbonate in a lithium salt and a total amount of the solvent and the cyclic acid anhydride of 0.01 to 10% by weight of the cyclic acid anhydride At least from a non-aqueous electrolyte solution.
[0009]
The mixed nonaqueous solvent of the electrolytic solution contains 95% by weight or more of cyclic carbonate and chain carbonate, and preferably contains 20% by weight or more of cyclic carbonate and chain carbonate, respectively.
[0010]
The cyclic carbonate used for the mixed non-aqueous solvent is not particularly limited, but alkylene carbonate and alkenylene carbonate are preferable. In particular, alkylene carbonates having 2 to 4 carbon atoms in the alkylene group are preferred. Specific examples of such cyclic carbonates include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, etc. Among them, ethylene carbonate and propylene carbonate are preferable.
About these alkylene groups or alkenylene groups, you may have a substituent within the range which does not inhibit the intended effect of this invention too much.
[0011]
The chain carbonate used for the mixed non-aqueous solvent is not particularly limited, but is preferably an alkyl carbonate, and particularly preferably an alkyl carbonate having 1 to 4 carbon atoms in the alkyl group. Specific examples of such alkyl carbonates include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, etc. Dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred. About the alkyl group of these carbonates, you may have a substituent in the range which does not inhibit the intended effect of this invention too much.
[0012]
The combination of a cyclic carbonate and a chain carbonate is not particularly limited, but a combination of an alkylene carbonate having 2 to 4 carbon atoms in an alkylene group and a dialkyl carbonate having 1 to 4 carbon atoms in an alkyl group. Combination is preferred. Specific examples thereof include a combination of ethylene carbonate and / or propylene carbonate and at least one selected from dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
[0013]
If desired, the mixed non-aqueous solvent may contain a solvent other than the cyclic carbonate and the chain carbonate, but the amount thereof is 5% by weight or less.
Solvents other than carbonate include cyclic esters such as γ-butyrolactone and γ-valerolactone, chain esters such as methyl acetate and methyl propionate, sulfolane, diethyl sulfone, ethylene sulfite, dimethyl sulfite, diethyl sulfite, Examples thereof include sulfur-containing organic solvents such as propane sultone, and phosphorus-containing organic solvents such as trimethyl phosphate and triethyl phosphate. Two or more of these solvents may be mixed and used.
[0014]
The electrolytic solution used in the present invention contains a cyclic acid anhydride. The kind of the cyclic acid anhydride used in the present invention is not particularly limited as long as it is a compound having an acid anhydride structure in a part of the cyclic structure. Further, it may be a compound having a plurality of acid anhydride structures in one molecule. Specific examples of the cyclic acid anhydride used in the present invention include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, Cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenyl Succinic anhydride, 2-phenylglutaric anhydride, etc. can be mentioned. Of these, succinic anhydride, glutaric anhydride, and maleic anhydride are preferable. These acid anhydrides may be used in combination of two or more.
In addition, content of a cyclic acid anhydride is 0.01 to 10 weight% of the total amount of a mixed non-aqueous solvent and a cyclic acid anhydride, Preferably it is 0.05 to 7 weight%.
[0015]
The electrolytic solution used in the present invention contains a lithium salt as a solute. The lithium salt is not particularly limited as long as it can be used as a solute of the electrolytic solution. Specific examples thereof include an inorganic lithium salt selected from LiClO 4 , LiPF 6 , and LiBF 4, or LiCF 3 SO 3. Fluorine-containing organic materials such as LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 A lithium salt can be mentioned. Two or more kinds of these solutes may be mixed and used.
The molar concentration of the lithium salt in the electrolytic solution is desirably 0.5 to 3.0 mol / liter. If it is less than 0.5 mol / liter or more than 3.0 mol / liter, the electric conductivity of the electrolytic solution is low, and the performance of the battery is deteriorated.
[0016]
The positive electrode used in the present invention is mainly composed of a lithium manganese composite oxide (hereinafter sometimes referred to as composite oxide (A)). In particular, lithium manganese composite oxide having a spinel structure is preferable. Such a lithium manganese composite oxide is preferably one in which a part of the manganese site is substituted. In particular, those substituted with typical elements are preferred. Typical elements that substitute for such manganese sites include Li, B, Na, Mg, Al, Ca, Zn, Ga, Ge, and the like. Of course, it is possible to replace the manganese site with a plurality of elements. Li, Mg, Al, and Ga are preferable as manganese site substitution elements, and aluminum and / or lithium are particularly preferable. The substitution amount of the typical element is preferably 0.03 mol or more in 2 mol of manganese, more preferably 0.05 mol or more, and most preferably 0.07 mol or more.
[0017]
Particularly preferred lithium manganese composite oxide (A) is represented by the general formula:
[Expression 1]
Li [Mn (2-x) AlyLiz] O 4
[0019]
(Wherein x, y and z are each a number of 0 or more, and x = y + z, where y and z are not 0 at the same time).
Here, y is usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more. Z is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If y and z are too small, the high temperature characteristics may be deteriorated. On the other hand, if y and z are too large, the capacity tends to decrease.
[0020]
In the above, the oxygen atom of the composite oxide (A) may have nonstoichiometry, and a part of the oxygen atom may be substituted with a halogen element such as fluorine.
The specific surface area of the composite oxide (A) of the present invention is preferably 2 m 2 / g or less, more preferably 1.5 m 2 / g or less, and most preferably 1 m 2 / g or less. If the specific surface area is too large, the improvement effect is diminished.
[0021]
Furthermore, when the positive electrode in the present invention is mixed with a lithium nickel composite oxide having a layered structure (hereinafter sometimes referred to as composite oxide (B)), it improves cycle characteristics and storage characteristics in a high temperature atmosphere. It has also been found that it can be allowed to. As the composite oxide (B), one having a basic composition formula LiNiO 2 is generally used. Similar to the composite oxide (A), it is preferable that a part of nickel in the composite oxide (B) is substituted. Preferable elements for the substitution element include metal elements such as Al, Fe, Sn, Cr, Cu, Ti, Zn, Co, and Mn. Of course, it is also possible to replace nickel sites with a plurality of elements. In particular, it is preferably substituted with aluminum and / or cobalt.
[0022]
Particularly preferred composite oxide (B) is represented by the general formula:
[Expression 2]
Li [Ni (1-p) CoqAlr] O 2
[0024]
(Wherein p, q and r are each a number of 0 or more, and p = q + r, where q and r are not 0 at the same time). Here, q and r are each independently usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more. R is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If q or r is too small, the high temperature characteristics tend to be poor, while if too large, the capacity tends to decrease.
[0025]
In the above, the oxygen atom of the composite oxide (B) may have nonstoichiometry, and a part of the oxygen element may be substituted with a halogen element such as fluorine.
The specific surface area of the composite oxide (B) is preferably 1 m 2 / g or more, more preferably 2 m 2 / g or more, and most preferably 3 m 2 / g or more. When the specific surface area of the composite oxide (B) is small, the effect of improving the high temperature characteristics is low.
[0026]
The upper limit of the ratio of the composite oxide (B) to the composite oxide (A) is preferably 60% by weight or less, more preferably 50% by weight or less, and most preferably 30% by weight or less. The lower limit is preferably 5% by weight or more, more preferably 10% by weight or more. If the mixing ratio of the lithium nickel composite oxide (B) is too small, the effect of improving the high temperature characteristics tends to be small, and conversely if too large, there may be problems in terms of cost increase and safety.
[0027]
The particle size of the composite oxide (A) or (B) or these composites is usually 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and usually 30 μm or less. Preferably it is 10 micrometers or less, More preferably, it is 5 micrometers or less. The specific surface area of these nitrogen adsorption method is usually 0.3 m 2 / g or more, and usually less than 15 m 2 / g. If the particle size is too small or the specific surface area is large, the cycle deterioration of the battery may be increased, or a safety problem may occur. If the particle size is too large or the specific surface area is too small, the internal resistance of the battery may increase and output may be difficult.
[0028]
The positive electrode is usually formed by forming a positive electrode mixture layer containing an active material, a binder and a conductive agent on a current collector. The positive electrode mixture layer can be usually obtained by preparing a slurry containing the above-described constituents and applying and drying the slurry on a current collector.
As the binder used for the positive electrode, for example, polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), Examples thereof include NBR (acrylonitrile-butadiene rubber), fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, and nitrocellulose.
[0029]
Examples of the conductive agent contained in the positive electrode mixture layer include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke.
[0030]
As the slurry solvent, an organic solvent that dissolves or disperses the binder is usually used. Specific examples thereof include N-methylpyridone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N, N-dimethylaminopropylamine, and tetrahydrofuran. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.
[0031]
As the material of the positive electrode current collector, a metal such as aluminum, titanium, or tantalum or an alloy thereof is used. Among these, since aluminum or its alloy is lightweight, it is preferable in terms of energy density.
[0032]
The negative electrode material constituting the battery is not particularly limited as long as it includes a carbonaceous material capable of occluding and releasing lithium, and specific examples thereof include, for example, pyrolysis products of organic matter under various pyrolysis conditions. A certain amorphous carbon material, artificial graphite, natural graphite, etc. are mentioned.
For amorphous carbon materials, the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is 0.34 to 0.38 nm, more preferably 0.34 to 0.37 nm. Particularly preferred is one having a thickness of 0.34 to 0.36 nm. The crystallite size (Lc) determined by X-ray diffraction is preferably 15 nm or less, more preferably 10 nm or less, and most preferably 5 nm or less. The median diameter is 1 to 50 μm, preferably 2 to 40 μm, more preferably 3 to 30 μm, and still more preferably 5 to 25 μm, as a median diameter measured by a laser diffraction / scattering method. The true density is preferably 2.1 g / cc or less.
[0033]
For graphite-based materials such as artificial graphite and natural graphite, artificial graphite produced by high-temperature heat treatment of graphitizable pitch obtained from various raw materials, graphitized mesophase spherules, graphitized mesophase pitch-based carbon fiber and purified natural graphite Alternatively, materials obtained by performing various surface treatments including pitch on these graphites are mainly used.
[0034]
These graphite materials have a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.34 nm, more preferably 0.335 to 0.337 nm, as determined by X-ray diffraction using the Gakushin method. Is preferred. These graphite materials have an ash content of 1% by weight or less, more preferably 0.5% by weight or less, most preferably 0.1% by weight or less, and a crystallite size (Lc) determined by X-ray diffraction by the Gakushin method. It is preferable that it is 30 nm or more. Furthermore, the crystallite size (Lc) is more preferably 50 nm or more, and most preferably 100 nm or more. Further, the median diameter of the graphite material is 1 to 100 μm, preferably 3 to 50 μm, more preferably 5 to 40 μm, and still more preferably 7 to 30 μm as a median diameter by a laser diffraction / scattering method. The BET specific surface area of the graphite material is 0.3-25.0 m 2 / g, preferably 0.5-20.0 m 2 / g, more preferably 0.7-15.0 m 2 / g, preferably from 0.8~10.0m 2 / g. The intensity of the peak P A (peak intensity I A) in a range of 1580~1620Cm -1 in the Raman spectrum analysis using an argon ion laser beam and peak in the range of 1350 -1 P B (peak intensity I B) the ratio R = I B / I a is preferably 0 to 1.2, the half-value width of the peak in the range of 1580~1620Cm -1 is 26cm -1 or less, and particularly preferably between 25 cm -1 or less.
[0035]
The method for producing a negative electrode using these negative electrode materials is not particularly limited, and the negative electrode can be produced according to the method for producing a positive electrode.
The negative electrode current collector is made of a metal such as copper, nickel, and stainless steel. Among these, a copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
The material and shape of the separator used in the battery of the present invention are not particularly limited. However, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
[0036]
The method for producing the battery of the present invention having at least a negative electrode, a positive electrode, and a non-aqueous electrolyte solution is not particularly limited, and can be appropriately selected from commonly employed methods.
In addition, the shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiraled, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like are used. Is possible.
[0037]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.
[0038]
Example 1
As a positive electrode active material, 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride KF-1000 (trade name, manufactured by Kureha Chemical Co., Ltd.) are mixed with 85 parts by weight of lithium manganese composite oxide having a spinel structure, and N— The slurry dispersed in methyl-2-pyrrolidone and applied in a slurry form was uniformly applied on a positive electrode current collector aluminum foil having a thickness of 20 μm, dried, and then punched into a disk shape having a diameter of 12.5 mm to form a positive electrode. .
As the negative electrode active material, the d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 100 nm or more (264 nm), the ash content is 0.04% by weight, by the laser diffraction / scattering method A median diameter of 17 μm, a BET specific surface area of 8.9 m 2 / g, and a peak spectrum P A (peak intensity I A ) in the range of 1580 to 1620 cm −1 and 1350 to 1370 cm − in Raman spectrum analysis using an argon ion laser beam. artificial graphite intensity ratio R = I B / I a of the first range of peak P B (peak intensity I B) is the half width of the peak in the range of 0.15,1580~1620Cm -1 is 22.2Cm -1 5 parts by weight of polyvinylidene fluoride is mixed with 95 parts by weight of powder KS-44 (trade name, manufactured by Timcal), and dispersed with N-methyl-2-pyrrolidone to form a slurry. The resulting product was uniformly applied onto a negative electrode current collector 18 μm thick copper foil, dried, and then punched into a disk shape having a diameter of 12.5 mm to form a negative electrode.
[0039]
For the electrolyte, lithium hexafluorophosphate (LiPF 6 ) that was sufficiently dried under a dry argon atmosphere was used as the solute, and succinic anhydride was added to a mixture of ethylene carbonate and diethyl carbonate (35:65 weight ratio). It was prepared by dissolving at a rate of 2% by weight and further dissolving LiPF 6 at a rate of 1 mol / liter.
Using these positive electrode, negative electrode, and electrolytic solution, the positive electrode was accommodated in a stainless steel can that also serves as a positive electrode conductor, and the negative electrode was placed thereon via a separator impregnated with the electrolytic solution. The can body and a sealing plate that also serves as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery.
[0040]
(Comparative Example 1)
A coin-type battery was manufactured in the same manner as in Example 1 except that an electrolyte prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a mixture of ethylene carbonate and diethyl carbonate (35:65 weight ratio) was used. Produced.
[0041]
(Example 2)
As a negative electrode active material, instead of the artificial graphite powder KS-44, d on the lattice plane (002 plane) in X-ray diffraction obtained by firing coal tar pitch at 1100 ° C. for 3 hours in an inert atmosphere and then crushing. Implementation was performed except that amorphous carbon powder having a value of 0.344 nm, a crystallite size (Lc) of 2.39 nm, a median diameter by laser diffraction / scattering method of 16 μm, and a true density of 2.1 g / cc was used. A negative electrode was produced in the same manner as in Example 1 to produce a coin-type battery.
[0042]
(Comparative Example 2)
A coin-type battery was prepared in the same manner as in Example 2 except that an electrolyte prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a mixture of ethylene carbonate and diethyl carbonate (35:65 weight ratio) was used. Produced.
The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to a charge / discharge test at 50 ° C. with a constant current of 1.0 mA and a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V.
The discharge capacity maintenance rate in each battery is shown in FIG.
As is apparent from FIG. 1, it is clear that these examples have improved capacity retention ratios and excellent cycle characteristics even when cycling at a relatively high temperature of 50 ° C.
[0043]
【The invention's effect】
According to the present invention, in a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode, a battery having excellent cycle characteristics and storage characteristics can be produced even in a high temperature atmosphere.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles at 50 ° C. and the discharge capacity retention rate in Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.

Claims (3)

リチウムイオンを吸蔵・放出することが可能なスピネル構造を有するリチウムマンガン複合酸化物を主成分とする正極と、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極と、環状カーボネート及び鎖状カーボネートを少なくとも含む混合非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池に用いられる非水系電解液であって、無水コハク酸、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネンー2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物よりなる群から選ばれる少なくとも1種の環状酸無水物を含有し、混合非水溶媒及び環状酸無水物の合計量に対する環状酸無水物割合が0.01〜10重量%であり、且つ混合非水溶媒の95重量%以上が環状カーボネート及び鎖状カーボネートであることを特徴とする非水系電解液。A positive electrode mainly composed of a lithium manganese composite oxide having a spinel structure capable of occluding and releasing lithium ions, a negative electrode mainly comprising a carbon material capable of occluding and releasing lithium ions, and a ring A non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery comprising at least an electrolyte obtained by dissolving a lithium salt in a mixed non-aqueous solvent containing at least a carbonate and a chain carbonate, comprising succinic anhydride, Glutaric anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3 , 4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid Things, phenyl succinic anhydride, 2-phenyl contains at least one cyclic acid anhydride selected from glutaric anhydride group consisting of compounds, cyclic acid anhydride to the total amount of the mixed nonaqueous solvent and a cyclic acid anhydride The non-aqueous electrolyte solution is characterized in that the ratio of 0.01 to 10% by weight and 95% by weight or more of the mixed non-aqueous solvent is a cyclic carbonate and a chain carbonate. 混合非水溶媒が環状カーボネート及び鎖状カーボネートをそれぞれ20重量%以上含有し、且つ混合非水溶媒の95重量%以上がこれらのカーボネートである請求項1に記載の非水系電解液。  The non-aqueous electrolyte solution according to claim 1, wherein the mixed non-aqueous solvent contains 20% by weight or more of cyclic carbonate and chain carbonate, respectively, and 95% by weight or more of the mixed non-aqueous solvent is these carbonates. リチウムイオンを吸蔵・放出することが可能なスピネル構造を有するリチウムマンガン複合酸化物を主成分とする正極と、リチウムイオンを吸蔵・放出することが可能な炭素材料を主成分とする負極と、環状カーボネート及び鎖状カーボネートを少なくとも含む混合非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池であって、該電解液が無水コハク酸、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネンー2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物よりなる群から選ばれる少なくとも1種の環状酸無水物を含有し、混合非水溶媒及び環状酸無水物の合計量に対する環状酸無水物割合が0.01〜10重量%であり、且つ混合非水溶媒の95重量%以上が環状カーボネート及び鎖状カーボネートであることを特徴とする非水系電解液二次電池。A positive electrode mainly composed of a lithium manganese composite oxide having a spinel structure capable of occluding and releasing lithium ions, a negative electrode mainly comprising a carbon material capable of occluding and releasing lithium ions, and a ring and at least configured nonaqueous electrolyte secondary batteries from a carbonate and a linear carbonate by dissolving a lithium salt in at least comprising mixing a nonaqueous solvent electrolyte, the electrolyte solution is succinic anhydride, glutaric anhydride Acid, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4 , 5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenyl Haq acid anhydride, 2-phenyl is selected from glutaric anhydride group consisting of compounds containing at least one cyclic acid anhydride, the ratio of cyclic acid anhydride to the total amount of the mixed nonaqueous solvent and a cyclic acid anhydride A non-aqueous electrolyte secondary battery comprising 0.01 to 10% by weight and 95% by weight or more of the mixed non-aqueous solvent is a cyclic carbonate and a chain carbonate.
JP2000111590A 2000-04-13 2000-04-13 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor Expired - Lifetime JP4590680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111590A JP4590680B2 (en) 2000-04-13 2000-04-13 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111590A JP4590680B2 (en) 2000-04-13 2000-04-13 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Publications (3)

Publication Number Publication Date
JP2001297793A JP2001297793A (en) 2001-10-26
JP2001297793A5 JP2001297793A5 (en) 2007-06-07
JP4590680B2 true JP4590680B2 (en) 2010-12-01

Family

ID=18623895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111590A Expired - Lifetime JP4590680B2 (en) 2000-04-13 2000-04-13 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4590680B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707312B2 (en) * 2003-08-29 2011-06-22 三洋電機株式会社 Non-aqueous solvent type secondary battery
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
JP2007220496A (en) * 2006-02-17 2007-08-30 Hitachi Vehicle Energy Ltd Lithium secondary battery containing carboxylic acid anhydrous organic compound in electrolyte
JP2011014476A (en) * 2009-07-06 2011-01-20 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US9871272B2 (en) 2012-12-03 2018-01-16 Nec Corporation Secondary battery
JP7073859B2 (en) * 2018-04-02 2022-05-24 株式会社豊田中央研究所 Method for manufacturing lithium secondary battery and lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582168A (en) * 1991-09-25 1993-04-02 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07122297A (en) * 1993-10-26 1995-05-12 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2001057235A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001057234A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001202992A (en) * 2000-01-21 2001-07-27 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582168A (en) * 1991-09-25 1993-04-02 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07122297A (en) * 1993-10-26 1995-05-12 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2001057235A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001057234A (en) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001202992A (en) * 2000-01-21 2001-07-27 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery

Also Published As

Publication number Publication date
JP2001297793A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
CN113659206B (en) High-compaction lithium ion battery
US20090155694A1 (en) Cathode and lithium battery using the same
JP4815660B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP5239106B2 (en) Non-aqueous electrolyte secondary battery
JP2005071749A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using it
JP2003282138A (en) Nonaqueous electrolyte secondary battery and electrolyte used in it
JP7165913B2 (en) Non-aqueous electrolyte secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2004014134A (en) Nonaqueous electrolyte secondary battery and electrolyte used for it
JPH11233140A (en) Nonaqueous electrolyte secondary battery
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP4590680B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP4204718B2 (en) Non-aqueous electrolyte secondary battery
JP2002319433A (en) Nonaqueous electrolyte secondary cell and nonaqueous electrolytic solution used for the same
JP2000182667A (en) Electrolyte for lithium ion battery
JP2002117830A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP4253921B2 (en) Lithium secondary battery
JP2004103433A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP2004327211A (en) Non-aqueous electrolyte lithium secondary battery, and lithium secondary battery
JP3959927B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor
JP2002324578A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte used for it
JP4710106B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4706088B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term