JP4588065B2 - Tsunami detection system - Google Patents

Tsunami detection system Download PDF

Info

Publication number
JP4588065B2
JP4588065B2 JP2007503540A JP2007503540A JP4588065B2 JP 4588065 B2 JP4588065 B2 JP 4588065B2 JP 2007503540 A JP2007503540 A JP 2007503540A JP 2007503540 A JP2007503540 A JP 2007503540A JP 4588065 B2 JP4588065 B2 JP 4588065B2
Authority
JP
Japan
Prior art keywords
tsunami
floating body
detection system
mooring
judgment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007503540A
Other languages
Japanese (ja)
Other versions
JPWO2006087802A1 (en
Inventor
幸博 寺田
恵二 伊藤
武徳 阿部
孝 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Publication of JPWO2006087802A1 publication Critical patent/JPWO2006087802A1/en
Application granted granted Critical
Publication of JP4588065B2 publication Critical patent/JP4588065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/17Emergency applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、複数の衛星からの電波を用いて津波を計測し得る津波検知システムに関するものである。  The present invention relates to a tsunami detection system capable of measuring a tsunami using radio waves from a plurality of satellites.

近年、測位技術においては、GPS(汎地球測位システム)が用いられており、陸上および海上を問わず、物体の位置を正確に計測し得るようになっている。  In recent years, GPS (Global Positioning System) has been used in positioning technology, and it has become possible to accurately measure the position of an object regardless of land or sea.

ところで、本発明者等は、GPSを用いて、海面の変位を計測する方法について、多くの提案を行っており、その中には、津波を検知するシステムに関するものがあり、以下にこれらの文献を示す。
(1)「GPS津波計の開発」(月刊誌「海洋」号外NO.15 1998)(以下、非特許文献1と称す)。
(2)「Real−time observation of tsunami by RTK−GPS」Earth Planets Space,52,841−845,2000(The Society of Geomagnetism and Earth,Planetary and Space Sciences(SGEPSS)etc.)(以下、非特許文献2と称す)。
(3)「GPS津波計の開発−大船渡市沖実用化実験」(電子情報通信学会論文誌Vol.J84−B NO.12 December pp2227−2235)(2001年12月)(以下、非特許文献3と称す)。
(4)特開平11−63984号公報(以下、特許文献1と称す)。
(5)特開2001−147263号公報(以下、特許文献2と称す)。
(6)特開2001−281323号公報(以下、特許文献3と称す)。
By the way, the present inventors have made many proposals on a method for measuring the displacement of the sea surface using GPS, and some of them are related to a system for detecting a tsunami. Indicates.
(1) “Development of GPS Tsunami Meter” (Monthly Magazine “Ocean” Extra No. 15 1998) (hereinafter referred to as Non-Patent Document 1).
(2) “Real-time observation of tsnamimi by RTK-GPS” Earth Planets Space, 52, 841-845, 2000 2).
(3) “Development of GPS Tsunami Meter-Offshore Funabata City Practical Experiment” (The Institute of Electronics, Information and Communication Engineers Journal Vol.J84-B NO.12 December pp2227-2235) (December 2001) (hereinafter, Non-Patent Document 3) Called).
(4) JP-A-11-63984 (hereinafter referred to as Patent Document 1).
(5) JP 2001-147263 A (hereinafter referred to as Patent Document 2).
(6) JP 2001-281323 A (hereinafter referred to as Patent Document 3).

これらの文献の内、非特許文献1〜非特許文献3、および特許文献1については、リアルタイムキネマティック方式(以下、RTK方式という)による津波検知システムに関するものであるが、特許文献2および特許文献3については、RTK方式とは別な方法にて、RTK方式と同等の測位精度を得ようとする原理に関するものである。  Among these documents, Non-Patent Document 1 to Non-Patent Document 3 and Patent Document 1 relate to a tsunami detection system using a real-time kinematic method (hereinafter referred to as RTK method). No. 3 relates to the principle of obtaining a positioning accuracy equivalent to that of the RTK method by a method different from the RTK method.

そして、津波の検知に際し、RTK方式を用いた上記非特許文献1〜非特許文献3、および特許文献1に記載された構成によると、陸上の基地局(基準局でもある)と、計測用浮体とからなり、またこの計測用浮体については、所定海域の海底に沈められたアンカーと、このアンカーにチェーンなどの索体を介して連結されるとともにウエイトが取り付けられた浮体本体と、この浮体本体に設けられた計測機器とから構成されている。  And in the case of the detection of a tsunami, according to the structure described in the said nonpatent literature 1-a nonpatent literature 3 and the patent document 1 using the RTK system, a land base station (it is also a reference station), a measurement floating body, The floating body for measurement is composed of an anchor that is submerged in the seabed of a predetermined sea area, a floating body that is connected to the anchor via a rope and other chains, and has a weight attached thereto. It consists of a measuring instrument provided.

そして、上記基地局および計測用浮体にはGPS受信機が備えられるとともに、RTK方式により浮体本体の基線ベクトルに対する変位ベクトルが演算されて、計測用浮体の正確な位置がリアルタイムで求められるようにされている。  The base station and the measurement floating body are equipped with a GPS receiver, and the displacement vector with respect to the base line vector of the floating body is calculated by the RTK method so that the accurate position of the measurement floating body is obtained in real time. ing.

また、非特許文献1〜非特許文献3には、津波が発生していない状態での計測結果に基づく報告が開示されており、また特許文献1においては、変位データを判断処理部に入力し、その変位が津波によるものかに否かについて判断する構成が開示されている。  Non-Patent Document 1 to Non-Patent Document 3 disclose reports based on measurement results in a state where no tsunami has occurred. In Patent Document 1, displacement data is input to a determination processing unit. A configuration for determining whether or not the displacement is caused by a tsunami is disclosed.

さらに、上述した文献以外では、沖合いに設置した浮体等の変位を、当該浮体等に備えられたGPS受信機によりRTK方式を用いて計測を行い、基地局に対する相対位置を測定した後、この相対位置の変化を測定し、そして相対位置の変化から波高を求める波高の測定方法が開示されている[例えば、特開平10−185564号公報(以下、特許文献4と称す)参照]。  In addition to the above-mentioned documents, the displacement of a floating body installed offshore is measured using the RTK method with a GPS receiver provided in the floating body, and the relative position with respect to the base station is measured. A method for measuring a wave height by measuring a change in position and obtaining a wave height from the change in relative position has been disclosed [see, for example, Japanese Patent Application Laid-Open No. 10-185564 (hereinafter referred to as Patent Document 4)].

ところで、上記特許文献4においては、波浪を含めた波高の検出だけを行うものであり、また特許文献1についても、変位データを判断処理部へ入力して津波によるものか否かを判断するとしか記載されていないが、本発明者等は、周波数弁別により波浪等の短周期成分の除去を行い、津波成分を含んだ長周期成分を抽出することにより津波の検出に成功している。  By the way, in the above-mentioned patent document 4, only the detection of the wave height including the wave is performed, and also in patent document 1, only displacement data is input to the determination processing unit to determine whether or not it is caused by a tsunami. Although not described, the present inventors have succeeded in detecting a tsunami by removing a short period component such as a wave by frequency discrimination and extracting a long period component including a tsunami component.

しかしながら、これまでは、非特許文献3に示すように、水深50m程度の海域に浮体を設置して実験を行ってきたが、津波は水深が深い海域ほど海面変位が小さく、水深が浅くなるに従い海面変位が大きくなるもので、早期の津波検出のために、沖合いに浮体を設置すると水深が深くなり、津波の検出が難しくなることが予想される。  However, until now, as shown in Non-Patent Document 3, experiments have been conducted with a floating body installed in a sea area with a water depth of about 50 m. However, the tsunami has a lower sea surface displacement and a shallower water depth. As sea level displacement increases, it is expected that if a floating body is installed offshore for early tsunami detection, the water depth will increase and tsunami detection will be difficult.

そこで、本発明は、海面の変位に依存しない津波検知システムを提供することを目的とする。  Then, an object of this invention is to provide the tsunami detection system which does not depend on the displacement of a sea surface.

本発明の津波検知システムは、係留具により海面上に係留された浮体と、この浮体に設けられて複数の衛星からの電波を受信して自らの位置を検出し得る位置計測機と、この位置計測機にて求められた水平位置データに基づき津波の有無を検知し得る津波検知装置とが具備された津波検知システムであって、
上記津波検知装置に、
所定時間おきに上記位置計測機で求められた水平位置データを入力するとともに浮体の係留中心位置に対する当該浮体の現在の計測位置に応じて津波判定領域を設定する津波判定領域設定部と、この津波判定領域設定部にて設定された津波判定領域内に次回における浮体の計測位置が含まれるか否かに基づき津波の有無を判断する津波判断部とが具備されたものである。
The tsunami detection system of the present invention includes a floating body moored on the sea surface by a mooring tool, a position measuring device that is provided on the floating body and that can receive radio waves from a plurality of satellites and detect its own position, A tsunami detection system provided with a tsunami detection device capable of detecting the presence or absence of a tsunami based on horizontal position data obtained by a measuring instrument,
In the above tsunami detection device,
A tsunami determination area setting unit that inputs horizontal position data obtained by the position measuring device at predetermined time intervals and sets a tsunami determination area according to the current measurement position of the floating body with respect to the mooring center position of the floating body, and this tsunami A tsunami determination unit that determines whether or not a tsunami is present based on whether or not the next measurement position of the floating body is included in the tsunami determination region set by the determination region setting unit.

また、本発明に係る他の構成は、上記津波検知システムにおける津波判定領域は、
浮体の係留中心位置を中心とした所定半径の移動限界を示す移動限界線と、
浮体中心から放射状に伸びる複数の直線と上記移動限界線とが交わる各交点と、浮体中心とを結ぶ複数の線分が、それぞれ所定比率で分割された各分割点を結んで得られる判定境界線と
の間の領域とするものである。
Moreover, the other structure which concerns on this invention is the tsunami determination area | region in the said tsunami detection system,
A movement limit line indicating a movement limit of a predetermined radius around the mooring center position of the floating body;
Judgment boundary lines obtained by connecting the respective dividing points obtained by dividing each of the intersection points where the plurality of straight lines extending radially from the center of the floating body and the above-mentioned movement limit line and the center of the floating body are divided at a predetermined ratio, respectively. The area between and.

上記津波検知システムによると、衛星からの電波により浮体の係留中心位置に対する水平相対位置を求め、そして浮体の水平相対位置に応じて設定された津波判定領域内に、浮体が存在するか否かを判断することにより津波の検知を行うようにしたので、例えば深度が深い海域で上下方向での変位を検出しにくい場合であっても、津波を水平方向での移動量だけで、容易に且つ精度良く検知することができる。  According to the above tsunami detection system, the horizontal relative position to the mooring center position of the floating body is obtained by radio waves from the satellite, and whether or not the floating body exists in the tsunami determination area set according to the horizontal relative position of the floating body is determined. Because the tsunami is detected based on the judgment, for example, even when it is difficult to detect the displacement in the vertical direction in deep sea areas, the tsunami can be easily and accurately detected only by the amount of movement in the horizontal direction. It can be detected well.

本発明の実施の形態に係る津波検知システムの概略全体構成を示す斜視図である。1 is a perspective view showing a schematic overall configuration of a tsunami detection system according to an embodiment of the present invention. 同津波検知システムにおける移動局の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the mobile station in the same tsunami detection system. 同津波検知システムにおける基準局の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the reference station in the tsunami detection system. 同基準局に設けられた津波検知装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the tsunami detection apparatus provided in the same reference station. 同津波検知装置の津波判定領域の設定方法を説明する平面図である。It is a top view explaining the setting method of the tsunami determination area | region of the same tsunami detection apparatus. 同津波検知装置の津波判定領域の設定方法を説明する平面図である。It is a top view explaining the setting method of the tsunami determination area | region of the same tsunami detection apparatus. 同津波検知システムでの津波の検知方法を説明するフローチャートである。It is a flowchart explaining the detection method of the tsunami in the same tsunami detection system.

[実施の形態]
以下、本発明の実施の形態に係る津波検知システムを、図1〜図7に基づき説明する。
[Embodiment]
Hereinafter, a tsunami detection system according to an embodiment of the present invention will be described with reference to FIGS.

本実施の形態に係る津波検知システムは、海面上に浮体を浮かべるとともに、この浮体の海面(二次元水平面)での水平移動量(距離および方向も含む)に基づき、津波の有無を検知するものであり、また浮体の水平移動量については、GPS(汎地球測位システム)を利用して相対測位であるリアルタイムキネマティック測位法により計測するものである。  The tsunami detection system according to the present embodiment floats a floating body on the sea surface, and detects the presence or absence of a tsunami based on the amount of horizontal movement (including distance and direction) of the floating body on the sea surface (two-dimensional horizontal plane). The horizontal movement amount of the floating body is measured by a real-time kinematic positioning method that is a relative positioning using a GPS (Global Positioning System).

すなわち、この津波検知システムには、図1に示すように、陸上に固定されて三次元の絶対位置が既知であるとともに複数個(少なくとも4個)のGPS衛星1からの電波を受信して測位データを得る基準局2と、この基準局2から所定距離はなれた海面上(具体的には、津波を計測したい海域)にチェーンなどの係留用索体(係留具)3により係留された浮体4と、この浮体4側に設けられるとともに基準局2同様に複数個のGPS衛星1からの電波を受信して測位データを得る移動局5と、上記両局2,5にて得られた測位データを入力して当該移動局5の現在の水平方向での計測位置(水平位置データであり、言い換えれば、浮体中心の計測位置である)に基づき津波の有無を判断する津波検知装置(図3参照)6とが具備されている。なお、本実施の形態においては、上記津波検知装置6は、基準局2に設けられているものとして説明する。  That is, as shown in FIG. 1, this tsunami detection system is fixed on land, has a known three-dimensional absolute position, and receives radio waves from a plurality (at least four) of GPS satellites 1 for positioning. A reference station 2 from which data is obtained, and a floating body 4 moored by a mooring cable (a mooring tool) 3 such as a chain on the sea surface (specifically, a sea area where a tsunami is to be measured) at a predetermined distance from the reference station 2; The mobile station 5 is provided on the floating body 4 side and receives radio waves from a plurality of GPS satellites 1 as in the reference station 2 to obtain positioning data, and the positioning data obtained at both the stations 2 and 5 are input. A tsunami detection device (see FIG. 3) 6 for determining the presence or absence of a tsunami based on the current horizontal measurement position of the mobile station 5 (horizontal position data, in other words, the measurement position of the floating body center) Is providedIn the present embodiment, the tsunami detection device 6 will be described as being provided in the reference station 2.

上記移動局5には、図2に示すように、GPS衛星1からの電波を受信して測位データを検出し得る移動側GPS受信機(位置計測機)11、並びに当該移動側GPS受信機11で得られた測位データを無線にて送信し得る移動側無線装置(無線送受信機である)12が具備されている。  As shown in FIG. 2, the mobile station 5 includes a mobile GPS receiver (position measuring device) 11 that can receive radio waves from the GPS satellite 1 and detect positioning data, and the mobile GPS receiver 11. The mobile-side radio device (which is a radio transceiver) 12 that can transmit the positioning data obtained in (1) by radio is provided.

また、上記基準局2には、図3に示すように、GPS衛星1からの電波を受信して測位データを検出し得る基準側GPS受信機(位置計測機)21および上記移動側無線装置12にて送信された測位データを受信する基準側無線装置(無線送受信機である)22が具備されており、また上述したように津波検知装置6が配置されている。  Further, as shown in FIG. 3, the reference station 2 includes a reference-side GPS receiver (position measuring device) 21 that can receive radio waves from the GPS satellite 1 and detect positioning data, and the mobile-side wireless device 12. A reference-side wireless device (which is a wireless transceiver) 22 that receives the positioning data transmitted in this manner is provided, and the tsunami detection device 6 is arranged as described above.

上記津波検知装置6においては、上記両GPS受信機11,21で得られた測位データが基準側無線装置22を介しておよび直接に入力されて、これら両測位データに基づきリアルタイムキネマティック測位法(搬送波位相を用いるもので、以下、RTK方式と称す)を利用して基準局2に対する移動局5の少なくとも水平相対位置すなわち浮体4中心の海面上(二次元水平面内)での水平位置を精度良く計測し、この計測位置に基づき津波の有無を検知するものである。  In the tsunami detection device 6, the positioning data obtained by both the GPS receivers 11, 21 are directly input via the reference-side wireless device 22, and a real-time kinematic positioning method ( Using carrier phase, hereinafter referred to as the RTK method), the mobile station 5 at least the horizontal relative position with respect to the reference station 2, that is, the horizontal position on the sea surface (in the two-dimensional horizontal plane) of the floating body 4 is accurately measured. The presence or absence of a tsunami is detected based on this measurement position.

この津波検知装置6には、図4に示すように、両局2,5にて得られた測位データ[例えば、搬送波位相値、衛星と受信機のアンテナ間距離(擬似距離)、衛星の軌道情報、測位システムで採用されている時系データ(GPSタイム)などが含まれている]を入力して、基準局2に対する移動局5の相対位置をRTK方式により演算するとともに、浮体4の係留中心位置(基準局に対する相対位置である)に対する当該浮体4の現在の中心位置すなわち水平相対位置を求める水平位置演算部31と、この水平位置演算部31で求められた水平相対位置および過去に定められた津波判定領域Sを入力して、現在の浮体4の中心位置が津波判定領域S内に存在する(含まれる)か否かを判断し、そして浮体4が津波判定領域S内に存在する場合には、津波であると判断する津波判断部32と、上記水平位置演算部31で求められた水平相対位置を入力するとともに当該水平相対位置と係留中心位置とに基づき将来における判定のための津波判定領域Sを設定する津波判定領域設定部33とが具備されている。  As shown in FIG. 4, the tsunami detection device 6 includes positioning data [for example, carrier phase value, distance between satellite and receiver antenna (pseudorange), satellite orbit, Information, time system data (GPS time) adopted in the positioning system, etc. are input], the relative position of the mobile station 5 with respect to the reference station 2 is calculated by the RTK method, and the mooring center of the floating body 4 The horizontal position calculation unit 31 for obtaining the current center position of the floating body 4 relative to the position (relative to the reference station), that is, the horizontal relative position, the horizontal relative position obtained by the horizontal position calculation unit 31 and the past determined When the tsunami determination area S is input, it is determined whether or not the current center position of the floating body 4 exists (is included) in the tsunami determination area S, and the floating body 4 exists in the tsunami determination area S A tsunami determination unit 32 for determining a tsunami, and a horizontal relative position obtained by the horizontal position calculation unit 31 and a tsunami determination region for future determination based on the horizontal relative position and the mooring center position A tsunami determination area setting unit 33 for setting S is provided.

なお、GPS受信機11,21による浮体4の位置計測は、所定時間ごとに行われており、このため、津波判断部32での津波判定周期についても、この位置計測周期に合わせられている。  In addition, the position measurement of the floating body 4 by the GPS receivers 11 and 21 is performed every predetermined time. For this reason, the tsunami determination period in the tsunami determination unit 32 is also adjusted to this position measurement period.

すなわち、上述の「過去に定められた」とは、前回の位置計測周期(津波判定周期でもある)で求められた浮体4の水平相対位置に基づき定められたことを意味しており、上述の「将来における判定のため」とは、今回の計測で求められた浮体4の水平相対位置に基づき定められた津波判定領域Sは、次回の位置計測周期(津波判定周期でもある)での津波の判定に利用されることを意味している。  That is, “determined in the past” means that it is determined based on the horizontal relative position of the floating body 4 obtained in the previous position measurement cycle (which is also a tsunami determination cycle). “For future determination” means that the tsunami determination region S determined based on the horizontal relative position of the floating body 4 obtained in the current measurement is the tsunami in the next position measurement cycle (also a tsunami determination cycle). It means that it is used for judgment.

ここで、津波判定判領域設定部33における津波判定領域Sの設定方法について説明する。  Here, a method for setting the tsunami determination area S in the tsunami determination area setting unit 33 will be described.

まず、津波判定領域Sを設定する際の基本的な考え方について説明しておく。  First, the basic concept when setting the tsunami determination area S will be described.

浮体4については、上述したように、海底に設置されたアンカー(図示せず)に、チェーンなどの係留用索体3を介して係留されており、このため、図5に示すように、係留用索体3の長さに応じて、海面上では所定半径Rの円内で移動可能となる。なお、この移動可能範囲の外縁を示す境界線を移動限界円(移動限界線)Aと称する。そして、この浮体4の移動限界円Aの海面上での中心位置が係留中心位置Cとなる。勿論、この係留中心位置Cは、アンカーの海底での水平位置に対応するものである。  As described above, the floating body 4 is moored to an anchor (not shown) installed on the seabed via a mooring cable 3 such as a chain. As shown in FIG. Depending on the length of the rope 3, it can move within a circle with a predetermined radius R on the sea surface. A boundary line indicating the outer edge of the movable range is referred to as a movement limit circle (movement limit line) A. The center position of the floating body 4 on the sea surface of the movement limit circle A is the mooring center position C. Of course, the mooring center position C corresponds to the horizontal position of the anchor on the seabed.

上述したように、浮体4は、理論的には移動限界円A内で移動し得るが、実際には、風、海流などの外力(気象・海象条件による力)が作用した場合には、浮体4がその方向に移動して係留中心位置から離れることになり、この離れた方向(外力の作用方向でもある)においては、例えば係留用索体3の重さにより、その反対方向の力が作用するため、移動可能範囲は狭くなるが、その反対方向では、係留中心位置から離れている分だけ余分に移動し得ることになって移動可能範囲が広くなる。したがって、この移動可能範囲を、通常、想定し得る風・海流などの外力を考慮して、浮体4の水平位置に応じた大きさに設定しておき、この移動可能範囲を超えた範囲に浮体4が移動した場合には、過大なエネルギーの波、すなわち津波が作用したと判断することができる。  As described above, the floating body 4 can theoretically move within the movement limit circle A. However, in reality, when an external force such as wind or ocean current (force due to weather / sea conditions) acts, the floating body 4 moves in that direction and moves away from the mooring center position. In this separated direction (which is also the direction in which the external force acts), for example, the force in the opposite direction acts due to the weight of the mooring cord 3. For this reason, the movable range becomes narrow, but in the opposite direction, the movable range can be extended by the distance away from the mooring center position. Therefore, this movable range is usually set to a size corresponding to the horizontal position of the floating body 4 in consideration of external forces such as wind and ocean current that can be assumed, and the floating body is in a range beyond this movable range. When 4 moves, it can be determined that an excessive energy wave, that is, a tsunami has acted.

このような考えに基づき、移動限界円A内で且つ通常に想定し得る外力で移動し得る移動可能範囲を除いた部分を、津波判定領域Sとするものである。例えば、図5においては、通常の外力で移動し得る移動可能範囲の境界を示す半径rの円(以下、判定境界線と称す)Bで表すと、津波判定領域Sは移動限界円Aと判定境界線Bとの間の領域(斜線で示す)となる。  Based on such an idea, a portion within the movement limit circle A and excluding the movable range that can be moved with an external force that can be normally assumed is set as the tsunami determination region S. For example, in FIG. 5, the tsunami determination region S is determined to be the movement limit circle A when represented by a circle of radius r (hereinafter referred to as a determination boundary line) B indicating the boundary of the movable range that can be moved by a normal external force. This is a region (shown by diagonal lines) between the boundary line B.

図5においては、浮体4が係留中心位置Cに位置している場合について説明したが、通常は、風、海流などの外力により、浮体4はいずれかの方向に流されており、係留用索体3の張力と外力とが釣り合っている位置で浮遊している。  Although the case where the floating body 4 is located at the mooring center position C has been described with reference to FIG. 5, the floating body 4 is usually flowed in any direction by an external force such as wind or ocean current. It floats at a position where the tension and the external force of the body 3 are balanced.

以下、このような状態における津波判定領域Sの設定方法を、図6に基づき説明する。  Hereinafter, the setting method of the tsunami determination area | region S in such a state is demonstrated based on FIG.

この場合の津波判定領域Sは、浮体4の係留中心位置Cを中心とした所定半径Rの移動限界円Aと、浮体4の中心Fから放射状に伸びる複数の直線Lと上記移動限界円Aとが交わる各交点Kと浮体中心Fとをそれぞれ結ぶ線分Lが所定比率で分割された複数の分割点M同士を曲線(直線でもよい)で結ぶことにより得られる判定境界線Bと、の間の範囲に設定される。  In this case, the tsunami determination area S includes a movement limit circle A having a predetermined radius R around the mooring center position C of the floating body 4, a plurality of straight lines L extending radially from the center F of the floating body 4, and the movement limit circle A. Between the determination boundary line B obtained by connecting a plurality of division points M obtained by dividing the line segment L connecting each intersection K and the floating body center F at a predetermined ratio with a curve (or a straight line). Is set in the range.

言い換えれば、係留中心位置Cと同じ水平面上に浮体4が存在していると仮定しておき、津波が来たときに次の津波判定周期で移動するであろう距離を線分Lに対する割合(以下、領域設定係数と称し、具体的には、1より小さい正の値である)を用いて、津波判定領域Sを設定したものである。  In other words, it is assumed that the floating body 4 exists on the same horizontal plane as the mooring center position C, and the distance that will move in the next tsunami determination cycle when a tsunami comes is a ratio ( Hereinafter, the tsunami determination area S is set by using an area setting coefficient (specifically, a positive value smaller than 1).

さらに、詳しく説明すれば、津波判定領域Sとは浮体4の現在位置(計測位置)、すなわち係留中心位置Cに対する水平相対位置に基づき定まり、当然に、係留中心位置方向には移動しやすいが、その反対方向には移動しにくいことから、浮体4の中心位置Fから放射状に複数の直線Lを延ばし、これら各直線Lと移動限界円Aとの交点Kと浮体中心Fとを結んだ線分Lに対して上記領域設定係数を乗じて浮体4の移動可能範囲Bを特定し、この移動可能範囲Bの外延と移動限界円Aとの間の範囲(斜線で示す)が津波判定領域Sとされる。  More specifically, the tsunami determination area S is determined based on the current position (measurement position) of the floating body 4, that is, the horizontal relative position with respect to the mooring center position C. Of course, it is easy to move in the mooring center position direction. Since it is difficult to move in the opposite direction, a plurality of straight lines L are radially extended from the center position F of the floating body 4, and a line segment connecting the intersection K of each straight line L and the movement limit circle A and the floating body center F is connected. The movable range B of the floating body 4 is specified by multiplying L by the region setting coefficient, and the range between the outer extension of the movable range B and the movement limit circle A (shown by diagonal lines) is the tsunami determination region S. Is done.

なお、図6に示すように、上記移動可能範囲Bは、浮体4が流されている方向においては、係留中心位置C側に移動しやすいため、当然、係留中心位置Cから離れている側の範囲は狭くなるとともに、その反対側においては広くなる。  As shown in FIG. 6, the movable range B is easy to move toward the mooring center position C in the direction in which the floating body 4 is flowing, and naturally, on the side far from the mooring center position C. The range becomes narrower and wider on the other side.

また、上記領域設定係数は、予め経験、実験などにより定められるもので、その値は、浮体中心Fの全方向における線分Lに対して一定にされるが、風、海流などの外力の状況に応じて、各線分Lについて、段階的に異なる値を用いることもある。  The region setting coefficient is determined in advance by experience, experiment, etc., and the value is constant with respect to the line segment L in all directions of the floating body center F. Depending on, different values for each line segment L may be used in stages.

次に、上記津波検知システムによる津波の検知手順を、図7のフローチャートに基づき説明する。  Next, the tsunami detection procedure by the tsunami detection system will be described based on the flowchart of FIG.

まず、海面に浮遊・係留された浮体4に設けられた移動局4の移動側GPS受信機11にて得られた測位データが移動側および基準側無線装置12,22を介して、基準局2の津波検知装置6に入力され、また基準側GPS受信機21にて得られた測位データも津波検知装置6に入力される。  First, the positioning data obtained by the mobile-side GPS receiver 11 of the mobile station 4 provided on the floating body 4 suspended or moored on the sea surface is transmitted to the reference station 2 via the mobile-side and reference-side radio devices 12 and 22. Positioning data input to the tsunami detection device 6 and obtained by the reference-side GPS receiver 21 is also input to the tsunami detection device 6.

次に、上記津波検知装置6においては、両局2,5からの測位データが水平位置演算部31に入力されて、ここで、RTK方式に基づき、基準局2に対する移動局5の位置、すなわち海面上での係留中心位置Cに対する浮体4の中心位置Fが、所定時間ごとに求められる(ステップ1)。  Next, in the tsunami detection device 6, positioning data from both stations 2 and 5 are input to the horizontal position calculation unit 31, where the position of the mobile station 5 relative to the reference station 2, that is, the sea level, based on the RTK method. The center position F of the floating body 4 with respect to the mooring center position C is obtained every predetermined time (step 1).

そして、この水平位置演算部31で求められた水平相対位置および津波判定領域設定部33で前回の位置計測周期において設定された津波判定領域Sが津波判断部32に入力され、ここで、浮体4の中心位置が津波判定領域S内に存在しているか否かが判断される(ステップ2)。なお、最初の津波判定周期では、予め、初期設定された津波判定領域が用いられる。  Then, the horizontal relative position obtained by the horizontal position calculation unit 31 and the tsunami determination region S set in the previous position measurement cycle by the tsunami determination region setting unit 33 are input to the tsunami determination unit 32, where the floating body 4 It is determined whether or not the center position of is present in the tsunami determination area S (step 2). In the initial tsunami determination cycle, a previously set tsunami determination area is used in advance.

浮体4が津波判定領域S内に存在している場合には、風、海流などにより、浮体4が移動し得る範囲を超えた領域に移動していることになり、この浮体4の移動については、まさしく、津波によるものと判断される。  When the floating body 4 exists in the tsunami determination area S, the floating body 4 has moved to a region beyond the range where the floating body 4 can move due to wind, ocean current, etc. Indeed, it is judged to be due to the tsunami.

勿論、津波であると判断された場合には、その旨が警報として、当該基準局2から例えば防災センターなどに通知される(ステップ3)。  Of course, when it is determined that the event is a tsunami, a notification to that effect is sent from the reference station 2 to, for example, the disaster prevention center (step 3).

一方、津波でないと判断された場合には(津波を検知した場合も含み、要するに、津波検知処理が済むと)、今回の位置計測周期で計測された計測位置が津波判定領域設定部33に入力されて、次回の判定用の津波判定領域Sが設定され(ステップ4)、引き続き、上述した手順が繰り返されて、津波の検知処理が行われる。  On the other hand, when it is determined that it is not a tsunami (including when a tsunami is detected, in other words, after the tsunami detection process is completed), the measurement position measured in the current position measurement cycle is input to the tsunami determination area setting unit 33. Then, the tsunami determination area S for the next determination is set (step 4), and the procedure described above is subsequently repeated to perform tsunami detection processing.

このような津波検知システムによると、陸上に設けられた基準局2および海面上の浮体4に設けられた移動局5の各GPS受信機21,11にて検出された測位データを用いて、相対測位であるリアルタイムキネマティック測位法により、基準局2に対する浮体4の少なくとも水平方向での移動量を精度良く計測し、この移動量から浮体4の係留中心位置に対する水平相対位置を求め、そして浮体4の水平相対位置に応じた津波判定領域Sを設定するとともに、浮体4が津波判定領域S内に存在するか否かを判断するようにしたので、例えば深度が深い海域で上下方向での変位を検出しにくい場合であっても、津波を水平方向での移動量だけで、容易に且つ精度良く検知することができる。  According to such a tsunami detection system, relative positioning is performed using positioning data detected by the GPS receivers 21 and 11 of the reference station 2 provided on land and the mobile station 5 provided on the floating body 4 on the sea surface. With the real-time kinematic positioning method, the amount of movement of the floating body 4 with respect to the reference station 2 in at least the horizontal direction is accurately measured, and the horizontal relative position with respect to the mooring center position of the floating body 4 is obtained from this movement amount. Since the tsunami determination area S corresponding to the relative position is set and it is determined whether or not the floating body 4 exists in the tsunami determination area S, for example, the displacement in the vertical direction is detected in a deep sea area. Even if it is difficult, the tsunami can be detected easily and accurately only by the amount of movement in the horizontal direction.

また、津波判定領域Sを設定する際に、経験または実験に基づく領域設定係数(線分の分割比率)を用いて定めるようにしているので、係留中心位置Cと浮体4の移動限界円Aとが予め分かっていることから、浮体4の水平相対位置(計測位置でもある)を求めるだけで、当該浮体4がどのような位置にあっても、津波判定領域Sを容易に且つ簡単に特定することができる。  In addition, when setting the tsunami determination area S, the area setting coefficient (division ratio of the line segment) based on experience or experiment is used to determine the mooring center position C and the movement limit circle A of the floating body 4. Therefore, the tsunami determination area S can be easily and easily specified regardless of the position of the floating body 4 simply by obtaining the horizontal relative position (which is also a measurement position) of the floating body 4. be able to.

ところで、上記実施の形態においては、津波判定周期を、浮体の位置計測周期に合わせて行うように説明したが、浮体の位置計測周期に合わせる必要はなく、津波判定領域Sの設定は毎計測時に行うが、所定回数nの位置計測ごとに、n回前に設定した津波判定領域Sを用いて津波であるか否かの判断を行うようにしてもよい。このように、津波判定周期の間隔をある程度長くすることにより、突風などの一時的な外乱による誤認識を防止することができる。また、位置計測周期についても、適宜、変更することもできる。例えば、位置計測ごとに、浮体が移動していることが分かった場合には、津波判定周期を短くすることにより、より迅速な津波の検知を行うことができる。  In the above embodiment, the tsunami determination cycle has been described to be performed in accordance with the position measurement cycle of the floating body. However, it is not necessary to match the position measurement cycle of the floating body, and the setting of the tsunami determination region S is performed at every measurement. However, every time the position measurement is performed a predetermined number of times, it may be determined whether or not it is a tsunami using the tsunami determination area S set n times before. In this way, by increasing the interval of the tsunami determination period to some extent, erroneous recognition due to a temporary disturbance such as a gust can be prevented. The position measurement cycle can also be changed as appropriate. For example, when it is found that the floating body is moving for each position measurement, the tsunami can be detected more quickly by shortening the tsunami determination cycle.

また、上記実施の形態においては、係留中心位置に対する浮体の位置により、津波判定領域を演算により求めるように説明したが、例えば浮体がある方向(以下、基準方向と称す)に位置している場合の津波判定領域を係留中心位置からの距離に応じて求めておき、この基準方向での津波判定領域を利用することもできる。  In the above embodiment, the tsunami determination area is calculated by calculation based on the position of the floating body relative to the mooring center position. However, for example, when the floating body is located in a certain direction (hereinafter referred to as a reference direction). It is also possible to obtain a tsunami determination area in accordance with the distance from the mooring center position and use the tsunami determination area in the reference direction.

すなわち、浮体の移動のしやすさは、係留中心位置から見て浮体がどの方位にあっても、係留中心位置に対しては同じである。このため、予め、基準方位を決めておき、この基準方位での浮体の位置に応じて基準津波判定領域を設定しておき、浮体の方位が異なる場合に、係留中心位置からの距離に応じた基準津波判定領域を、基準方位との差分だけ、係留中心位置を中心にして回転させることにより、津波判定領域の設定作業を容易に行うことができる。  That is, the ease of movement of the floating body is the same as the mooring center position regardless of the orientation of the floating body as viewed from the mooring center position. For this reason, a reference azimuth is determined in advance, a reference tsunami determination area is set according to the position of the floating body in this reference azimuth, and when the floating body has a different azimuth, the distance from the mooring center position is determined. By rotating the reference tsunami determination area around the mooring center position by the difference from the reference azimuth, the setting operation of the tsunami determination area can be easily performed.

また、上記実施の形態においては、津波検知装置6を基準局2に設置したものとして説明したが、どこに設置してもよく、システムの管理上、都合のよい場所にすればよい。例えば、基準局2以外の陸上の監視施設などに設置してもよく、この場合には、上記移動局5の移動側GPS受信機11にて得られた測位データおよび基準側GPS受信機21にて得られた測位データは、基準側無線装置22を介して、上記監視施設に送られる。勿論、津波検知装置6を移動局2側に設置することもできる。  In the above embodiment, the tsunami detection device 6 is described as being installed in the reference station 2. However, the tsunami detection device 6 may be installed anywhere, and may be a convenient place in terms of system management. For example, it may be installed in a land-based monitoring facility other than the reference station 2. In this case, the positioning data obtained by the mobile GPS receiver 11 of the mobile station 5 and the reference GPS receiver 21 are used. The obtained positioning data is sent to the monitoring facility via the reference-side wireless device 22. Of course, the tsunami detection device 6 can also be installed on the mobile station 2 side.

また、上記実施の形態においては、浮体4の位置を求めるのに、GPSを用いたRTK方式を用いたが、相対測位方式の一つであるDGPS測位方式、若しくは単独測位方式を用いることもでき、またGPSに限定されるものでもなく、他の衛星測位方法を用いることもできる。  In the above embodiment, the RTK method using GPS is used to determine the position of the floating body 4. However, a DGPS positioning method, which is one of the relative positioning methods, or a single positioning method can also be used. Also, the present invention is not limited to GPS, and other satellite positioning methods can be used.

さらに、上記実施の形態においては、浮体の位置については、基準局に対する相対位置として求めるように説明したが、上述した相対測位方式および単独測位方式を含めて、衛星による測位座標系を用いた絶対位置として扱うこともできる。  Furthermore, in the above-described embodiment, the position of the floating body has been described as being obtained as a relative position with respect to the reference station, but the absolute position using the positioning coordinate system by the satellite including the relative positioning method and the single positioning method described above. Can also be treated as

本発明の津波検知システムによると、海面に係留された浮体の水平位置を衛星を用いて精度良く計測するとともに、この計測位置に基づき、通常の風、海流などの外力により移動可能な範囲の外延を示す判定境界線と浮体の移動限界円との間の領域を、津波判定領域に設定して、浮体がこの津波判定領域内に存在する場合には、津波であると判断するようにしたので、単に、浮体の現在の水平位置を計測するだけで、津波を精度良く検知することができる。特に、大地震により発生した津波による被害の軽減に大きく貢献するものである。  According to the tsunami detection system of the present invention, the horizontal position of a floating body moored on the sea surface is accurately measured using a satellite, and the extension of a range that can be moved by an external force such as normal wind or ocean current is based on this measurement position. Since the area between the judgment boundary line indicating the movement limit circle of the floating body is set as the tsunami judgment area, and the floating body exists in this tsunami judgment area, it is judged that it is a tsunami. The tsunami can be detected with high accuracy simply by measuring the current horizontal position of the floating body. In particular, it greatly contributes to the reduction of damage caused by tsunami caused by a large earthquake.

Claims (2)

係留具により海面上に係留された浮体と、この浮体に設けられて複数の衛星からの電波を受信して自らの位置を検出し得る位置計測機と、この位置計測機にて求められた水平位置データに基づき津波の有無を検知し得る津波検知装置とが具備された津波検知システムであって、
上記津波検知装置に、
所定時間おきに上記位置計測機で求められた水平位置データを入力するとともに浮体の係留中心位置に対する当該浮体の現在の計測位置に応じて津波判定領域を設定する津波判定領域設定部と、この津波判定領域設定部にて設定された津波判定領域内に次回における浮体の計測位置が含まれるか否かに基づき津波の有無を判断する津波判断部とが具備されたことを特徴とする津波検知システム。
A floating body moored on the sea surface by a mooring device, a position measuring device provided on this floating body that can receive radio waves from a plurality of satellites and detect its own position, and a horizontal position obtained by this position measuring device A tsunami detection system comprising a tsunami detection device capable of detecting the presence or absence of a tsunami based on position data,
In the above tsunami detection device,
A tsunami determination area setting unit that inputs horizontal position data obtained by the position measuring device at predetermined time intervals and sets a tsunami determination area according to the current measurement position of the floating body with respect to the mooring center position of the floating body, and this tsunami A tsunami detection system comprising a tsunami judgment unit for judging the presence or absence of a tsunami based on whether or not the next measurement position of a floating body is included in the tsunami judgment region set by the judgment region setting unit .
津波判定領域は、
浮体の係留中心位置を中心とした所定半径の移動限界を示す移動限界線と、
浮体中心から放射状に伸びる複数の直線と上記移動限界線とが交わる各交点と、浮体中心とを結ぶ複数の線分が、それぞれ所定比率で分割された各分割点を結んで得られる判定境界線と
の間の領域であることを特徴とする請求項1に記載の津波検知システム。
The tsunami judgment area is
A movement limit line indicating a movement limit of a predetermined radius around the mooring center position of the floating body;
Judgment boundary lines obtained by connecting the respective dividing points obtained by dividing each of the intersection points where the plurality of straight lines extending radially from the center of the floating body and the above-mentioned movement limit line and the center of the floating body are divided at a predetermined ratio, respectively. The tsunami detection system according to claim 1, wherein the tsunami detection system is a region between and.
JP2007503540A 2005-02-18 2005-02-18 Tsunami detection system Expired - Fee Related JP4588065B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002601 WO2006087802A1 (en) 2005-02-18 2005-02-18 Tsunami detection system

Publications (2)

Publication Number Publication Date
JPWO2006087802A1 JPWO2006087802A1 (en) 2008-07-03
JP4588065B2 true JP4588065B2 (en) 2010-11-24

Family

ID=36916218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503540A Expired - Fee Related JP4588065B2 (en) 2005-02-18 2005-02-18 Tsunami detection system

Country Status (2)

Country Link
JP (1) JP4588065B2 (en)
WO (1) WO2006087802A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229432A (en) * 2008-02-26 2009-10-08 Takehiko Furukawa Seismic sea wave observation system using gps receiver
JP2012203747A (en) * 2011-03-25 2012-10-22 Yasuaki Iwai Display device, drawing program, and disaster prevention system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122860A (en) * 1996-10-17 1998-05-15 Kaijo Corp Tidal-wave meter
JPH1163984A (en) * 1997-08-25 1999-03-05 Teruyuki Kato Tidal wave detecting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122860A (en) * 1996-10-17 1998-05-15 Kaijo Corp Tidal-wave meter
JPH1163984A (en) * 1997-08-25 1999-03-05 Teruyuki Kato Tidal wave detecting system

Also Published As

Publication number Publication date
JPWO2006087802A1 (en) 2008-07-03
WO2006087802A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP3658595B2 (en) GPS wave height / flow direction flow velocity measuring device and GPS wave height / flow direction flow velocity measuring system
JP4134020B2 (en) Tidal level monitoring system, maritime buoy and ground station device for tidal level monitoring system, tidal level monitoring method, tidal level monitoring program
CN108413926A (en) Method for marine wind electric field clump of piles pile foundation underwater topography elevation high-acruracy survey
JPWO2006132003A1 (en) GPS receiver and GPS positioning correction method
JP3803177B2 (en) Tsunami detection system
JP2011149720A (en) Surveying system
CN103213657A (en) Ship draft amount detection system and detection method thereof
CA2585141C (en) Relative positioning method and relative positioning system using satellite
CN107462891B (en) Three-point type deep sea submerged buoy positioning method
KR102583028B1 (en) Marine Weather Observation Equipment Using Satellite Navigation System and Inertial Measurement Device, and Driving Method Thereof
JP4588065B2 (en) Tsunami detection system
JP6951615B2 (en) Sea state information measurement buoy and sea state information measurement device
Roberts et al. GPS measurements on the London Millennium Bridge
JP6241995B2 (en) Diver information acquisition method and diver information acquisition system
JP6212941B2 (en) Measurement sensor, measurement system, and measurement method
EP4056458A1 (en) A method for inspection of catenary anchor lines connected to a floating object
US7450061B2 (en) Relative position measurement system using satellite
Colombo et al. Speeding up the estimation of floated ambiguities for sub-decimeter kinematic positioning at sea
JP4830269B2 (en) Mooring sensor positioning method and apparatus
JP2004317182A (en) Ocean wave measuring instrument and ocean wave measuring method
RU2282217C1 (en) Method of determining comprehensive data on ocean condition
Huang et al. Monitoring High-frequency Ocean signals using low-cost GNSS/IMU buoys
CN102540257A (en) Positioning method of earthquake signal receiving device
US11892294B1 (en) Shallow underwater buoy for geodesy (SUBGEO)
CA2585143C (en) Relative measuring method and relative measuring system using satellite

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees