JP4587633B2 - Thin film forming method and film forming apparatus - Google Patents

Thin film forming method and film forming apparatus Download PDF

Info

Publication number
JP4587633B2
JP4587633B2 JP2002050226A JP2002050226A JP4587633B2 JP 4587633 B2 JP4587633 B2 JP 4587633B2 JP 2002050226 A JP2002050226 A JP 2002050226A JP 2002050226 A JP2002050226 A JP 2002050226A JP 4587633 B2 JP4587633 B2 JP 4587633B2
Authority
JP
Japan
Prior art keywords
temperature
film
processed
raw material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002050226A
Other languages
Japanese (ja)
Other versions
JP2003253450A (en
Inventor
國弼 馬來
和憲 谷
章 岩間
正紀 野田
裕誉 小川
信義 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noda Screen Co Ltd
Original Assignee
Noda Screen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noda Screen Co Ltd filed Critical Noda Screen Co Ltd
Priority to JP2002050226A priority Critical patent/JP4587633B2/en
Publication of JP2003253450A publication Critical patent/JP2003253450A/en
Application granted granted Critical
Publication of JP4587633B2 publication Critical patent/JP4587633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は真空装置を必要とせず、均一で純度の高い薄膜の形成が可能な薄膜形成方法及び成膜装置に関する。
【0002】
【従来の技術】
近年金属酸化物等の薄膜は産業に広く利用されている。例えば酸化インジウム錫(ITO)膜は、液晶ディスプレイ等の透明導電膜として、Cu2O膜、SnO2膜等は薄膜太陽電池として、さらにTiO2膜は光触媒膜として自動車等のミラー、光学レンズ等に使用されている。これら種々の薄膜は、主にPVD、CVD等の気相法により形成されている。気相法による薄膜形成は、真空分子線蒸着、スパッタリング、レーザーアブレーション、イオンプレーティング等真空技術を用いて行われる。
真空中で行う理由としては、薄膜形成を速やかに行うことができること、被膜中に取り込まれる気体分子を少なくできるため純粋な膜を形成できること等が挙げられる。
【0003】
しかしながら、薄膜形成を真空中で行う場合には真空装置が必要となるため製造コストを上昇させる欠点がある。一方、真空状態では保持できない対象についても被膜形成が必要とされる場合がある。
【0004】
このような真空技術の問題を解決するため特開平5-186244号、特開2000-119861号等に、液体原料を超音波振動により霧化させ、霧化した液体材料を加熱した被処理体上に噴霧し、熱分解・酸化反応により膜形成する方法が開示されている。しかし、これらの方法は被処理体上で熱分解・酸化反応を行うため不純物が膜に取り込まれ易く、被処理体上に直接噴霧するため均一な膜が得られ難いという欠点を有する。また、特開2001-335922号に液体原料を超音波を用いて霧化し、搬送ガスを用いて高温炉の内部に搬入し、基板上に結晶薄膜を形成する装置が開示されている。しかし、具体的な成膜条件が開示されておらず、均一で純度の高い膜を形成する上で十分なものとはいえない。
【0005】
このため、金属酸化物等の薄膜をPVD等の真空技術を用いた場合と同等の品質で、かつ大気圧中で簡便に形成する技術が求められている。
【0006】
【発明が解決しようとする課題】
従って本発明の目的は、均一で純度の高い薄膜を大気圧中で簡単に形成する方法及びその成膜装置を提供することである。
【0007】
【課題を解決する手段】
上記目的に鑑み鋭意研究の結果、本発明者らは、超音波振動子により液体原料を霧化させ、これをキャリアガスとともに加熱部と被処理体を裁置する加熱滞留部とに分かれた反応容器に導入し、加熱部内の温度を被処理体の温度よりも高く設定することにより、予め膜原料を熱分解・酸化させ、生成した膜成分微粒子を被処理体に付着させて均一で純度の高い薄膜を大気圧中で容易に得られることを発見し、本発明に想到した。
【0008】
すなわち、被処理体上に薄膜を形成する方法であって、(1) 膜原料を含む液体原料を霧化させ、(2) 生成したエアロゾルをキャリアガスとともに筒状の加熱部に送給し、(3) 前記加熱部内で前記膜原料の熱分解・酸化反応を行った後、(4) 得られた膜成分微粒子を、前記加熱部に連通しており、前記加熱部内の温度より低い温度を有する前記被処理体が裁置されているドーム状の加熱滞留部に送給し、前記加熱滞留部内に拡散させながら前記被処理体上に付着させ、(5) 前記キャリアガスを前記加熱滞留部の外周に均等に設けられた僅かな隙間から均等に排出することを特徴とする。
【0009】
エアロゾルの熱分解・酸化反応を加熱部と加熱滞留部からなる反応容器の加熱部内で行った後、生成した膜成分微粒子を加熱滞留部内に拡散させながら被処理体上に付着させる。その際加熱部内の温度を250〜700℃、被処理体の温度を200〜600℃、及び加熱部内の温度と被処理体の温度の差を20℃以上に設定して行うのが好ましい。
【0011】
液体原料は、有機金属化合物、金属又はケイ素のアルコラート化合物、金属キレート化合物及び金属ハロゲン化合物からなる群から選ばれた少なくとも1種の化合物と溶媒とを含有するのが好ましい。ITO膜を形成する場合には、液体原料はインジウムアセチルアセトナート及び錫アセチルアセトナートとアセチルアセトン、又は塩化インジウム及び塩化錫と水とを含有するのが好ましい。
【0012】
本発明の成膜装置は、被処理体上に薄膜を形成するための成膜装置であって、反応容器と、膜原料を含む液体原料を貯留する超音波振動子を備えた容器と、キャリアガスを供給する導入口と、前記液体原料を霧化してなるエアロゾルを前記キャリアガスとともに前記反応容器に導入する導入管とを有し、前記反応容器は、前記導入管に連結し、前記膜原料の熱分解・酸化反応を実質的に完了させる筒状の加熱部と、前記加熱部に連通し、前記加熱部内の温度より低い温度を有する前記被処理体を裁置するドーム状の加熱滞留部とを有し、前記キャリアガスを排出するための排出口として、前記加熱滞留部の外周に均等に僅かな隙間が設けられていることを特徴とする。
【0013】
【発明の実施の形態】
[1] 成膜装置
図1は本発明の成膜装置の一例を示す。成膜装置は反応容器1と、液体原料容器2と、導入管3とからなり、反応容器1の周囲にはカバー27が取付けられている。反応容器1は加熱部11と加熱滞留部12とから構成され、加熱部11及び加熱滞留部12の外壁にはそれぞれヒータ15,16が設置されている。
【0014】
加熱部11は内部に筒状のチャンバを有し、上部の入口21で導入管3と接続し、下部の出口22で加熱滞留部12と接続している。加熱滞留部12はドーム状の形状を有し、加熱滞留部12内にはガスを拡散させるチャンバが設けられている。チャンバには被処理体を載置するためのホルダ13が備えられ、ホルダ13直下の反応容器1外壁にはヒータ17が設置されている。ホルダ13は回転軸24により回転自在に支持され、回転軸24は回転装置25に接続している。反応容器1は加熱滞留部12において上下に取り外しが可能であり、接合部14の外周に均等に僅かな隙間を形成してキャリアガスの排出口18を設けている。
【0015】
図2は図1に示す加熱滞留部のA−A断面図である。加熱滞留部12内の中央部には被処理体20を載置したホルダ13が備えられ、端部には円環状の接合部14が設けられている。接合部14の円周上にスペーサー26が均等に設けられ、キャリアガスの排出口18を形成している。スペーサーの数、長さ、厚さ等はキャリアガスの排出量に応じて適宜設定することができる。反応容器外へのキャリアガスの流れを均一にするために、スペーサー26の代わりに円環状のハニカム又は多孔体を接合部14に挟んで排出口18を形成してもよい。
【0016】
図3は図1に示す成膜装置の別の態様を示す。この態様では加熱滞留部12内のホルダ13を排出口18より高く配置している。ホルダ13と排出口18の位置は排出されるキャリアガスの流れによりホルダ13上の気流が乱されない高低差を有するのが好ましい。それ以外の部分については図1に示す成膜装置と同様である。
【0017】
反応容器1の内部は石英、ステンレス等原料ガスにより腐食されず、耐熱性に優れた材料で構成されているのが好ましい。ステンレスとしては、例えばSUS304等を用いるのが好ましい。
【0018】
液体原料容器2には膜原料を含む液体原料35が貯留されている。液体原料容器2の上部にキャリアガスの導入口37が設けられ、さらに天井部に導入管3が接続し反応容器1に連通している。導入管3には流量調節用のバルブ31が取付けられ、液体原料容器2の底部には超音波振動子36が備えられている。
【0019】
図4は本発明の参考例である成膜装置を示す。この例では反応容器1の外周部に排出口18を設けず、ホルダ13の回転軸24に沿って排気用の配管41を設けている。配管41は回収装置42に接続し、反応容器1に導入されたキャリアガスを未反応原料等とともに回収装置42に回収する。それ以外の部分は図1に示す成膜装置と同じであるので説明を省略する。
【0020】
[2] 液体原料
(1) 膜原料
本発明の薄膜形成方法に適用できる薄膜は、例えばCo、Cu、Zn、Fe、In、Cr、Ba、Sn、Si、Ti、V、Zr等の酸化物膜、これらの複合酸化物膜等が挙げられる。具体的にはFe2O3、Cr2O3、Al2O3、In2O3、Y2O3、V2O3、VO2、SnO2、TiO2、ZrO2、ITO、Cu2O、BaO等の薄膜が好ましい。これら薄膜を形成するための原料としては、有機金属化合物、金属又はケイ素のアルコラート化合物、金属キレート化合物、金属ハロゲン化合物(フッ化物、塩化物等)等が挙げられ、これら化合物の1種又は2種以上を用いるのが好ましい。
【0021】
(2) 溶媒
膜原料を溶解する溶媒としては、膜原料に対する溶解能が高いことと共に超音波振動によりエアロゾルを発生しやすいことが重要である。具体的にはアルコール(メチルアルコール、エチルアルコール、ブチルアルコール等)、ケトン(アセトン、アセチルアセトン等)、エステル(酢酸エチルエステル等)、芳香族炭化水素(トルエン、キシレン等)等の有機溶媒又は水が好ましい。
【0022】
(3) 調製
液体原料は上記(1)に示す膜原料を溶質とし、上記(2)に示す溶媒に溶解して使用する。エアロゾルを発生させるためには、溶媒と溶質の適切な組合わせを選択することが必要であり、溶質の濃度は0.01〜0.5 M程度の濃厚な方が好ましい。なお、膜原料は完全に溶解している必要はなく、液体原料はゾル液のように膜原料が均一に分散した分散液であってもよい。
【0023】
液体原料の具体例として、ITO、TiO2、Cu2O及びBaO膜の液体原料を以下に示す。ITO膜を形成する場合は、溶媒としてアセチルアセトンを用い、溶質として0.01〜0.5 Mのインジウムアセチルアセトナート及びIn原子に対するSn原子の割合が5〜10重量%となる量の錫アセチルアセトナートを加えて調製するか、あるいは溶媒として水を用い、溶質として0.01〜0.5 Mの塩化インジウム、及びIn原子に対するSn原子の割合が5〜10重量%となる量の塩化錫を加えて調製するのが好ましい。同様にTiO2膜を形成する場合には溶媒としてブチルアルコール、溶質としてチタニウムテトラブトキシドを用い、Cu2O膜を形成する場合には溶媒として水、溶質として銅アセテートを用い、BaO膜を形成する場合には溶媒として水、溶質として硝酸バリウムを用いてそれぞれ調製するのが好ましい。これら膜成分、並びに液体原料に用いる溶媒、溶質及び濃度をまとめて表1に示す。
【0024】
【表1】

Figure 0004587633
注:(1) In原子に対するSn原子の割合(重量%)を表す。
【0025】
[3] 成膜方法
本発明の薄膜形成方法を図1〜4を参照して説明する。まず膜原料を溶媒に溶解して液体原料を調製する。次に調製した液体原料35を液体原料容器2に貯留した後、超音波振動子36を用いて0.5〜10 MHzの超音波振動を付与することによりエアロゾルを発生させる。発生させるエアロゾルの量及びエアロゾルの直径は付与する超音波の振動数により調節することができる。エアロゾルの発生量は所望する熱分解・酸化速度、成膜速度等により適宜調節する。エアロゾルの直径は特に制限はないが、通常1〜10 μmが好ましい。次に液体原料容器2内に導入したキャリアガスにより発生したエアロゾルを導入管3を通して反応容器1に送給する。キャリアガスは少なくとも1種以上のガスを用い、例えば空気、空気と窒素との混合ガス、空気と各種ガスとの混合ガス等を適宜用いることができる。
【0026】
本発明の好ましい態様では、エアロゾルの流量を1〜3ml/分、キャリアガスの流量を1〜30 L/分に設定して送給する。このように設定することにより熱分解・酸化反応及び生成する膜成分微粒子の被処理体への付着を安定して行うことができる。
【0027】
熱分解・酸化反応を行う加熱部11内の温度は形成する薄膜の種類等により適宜設定することができる。加熱部11内に温度勾配を設けてもよく、加熱部11の入口21を低温にし加熱部11の出口22に向けて昇温させる構成にすることもできる。反応容器1に送られたエアロゾルを筒状の加熱部11内に通すことにより、まずエアロゾルの溶媒を蒸発させ、次いで膜原料の熱分解・酸化反応を行う。例えば膜原料が金属塩化物の場合には、熱分解反応により塩素原子が外れるとともに酸化反応により金属酸化物分子又は薄膜成分からなる膜成分微粒子を生成する。
【0028】
本発明の薄膜形成方法は、被処理体20に到達するまでに膜原料を熱分解・酸化し、生成した膜成分微粒子を被処理体20上に堆積させる。このように予め熱分解・酸化反応を行うため、加熱部11内の温度T1と加熱滞留部12内の温度T2とから構成される反応容器1内の温度を被処理体20の温度T3より高く設定することが必要である(T3<T1,T2)。加熱部11内で熱分解・酸化反応を実質的に終了させ、生成した膜成分微粒子を加熱滞留部12内に拡散させ徐々に被処理体20上に薄膜を形成することで、不純物が膜に取り込まれ難く均一な膜を形成することができる。反応容器の加熱部11内の温度T1を加熱滞留部12内の温度T2より高く設定するのが好ましい(T3<T2<T1)。これら各部の温度を加熱部11内壁、加熱滞留部12内壁及びホルダ13上に温度センサー(図示せず)を設けることにより検知し、所定の温度に自動的に制御することが可能である。
【0029】
熱分解・酸化反応を加熱部11内で実質的に終了させるには、加熱部11のチャンバの直径を5〜10 cm、入口21から出口22までの長さを6〜30 cmに設定し、濃度0.01〜0.5 g/Lのエアロゾルを含むキャリアガスを流量1〜30 L/分で加熱部11内に通して熱分解・酸化させるのが好ましい。
【0030】
ITO膜を形成する場合には加熱部11内の温度T1を250〜700 ℃、加熱滞留部12内の温度T2を250〜650℃、被処理体20の温度T3を200〜600 ℃に設定するのが好ましい。加熱部11内の温度T1と被処理体20の温度T3との差は20 ℃以上であるのが好ましい。
【0031】
このように本発明の薄膜形成方法は被処理体20上で熱分解・酸化反応を行うのではなく、反応容器1内で予め熱分解・酸化反応を行い、生成した膜成分微粒子を被処理体20に堆積させて膜形成を行うため不純物が膜内に取り込まれ難く、純度の高い結晶を成長させることが可能となる。
【0032】
生成した膜成分微粒子をホルダ13上の被処理体20に均一に付着させる。その際キャリアガスの流量が多過ぎるとガスの流れにより膜成分微粒子の付着が不均一になる。従って、均一な薄膜を得るためには膜成分微粒子を十分に加熱滞留部12内に拡散させ、膜成分微粒子の濃度を均一にして徐々に被処理体20上に膜形成するのが好ましい。また図2に示すように反応容器に送給されたキャリアガスを未反応膜原料、未付着膜成分微粒子等とともに加熱滞留部12の外周に設けた排出口18から均等に排出する。このようにキャリアガスを均等に排出することにより、加熱滞留部12内のガスの流れが均一になり被処理体20への膜成分微粒子の付着がより均一になる。図3に示すようにホルダ13の高さを排出口18の高さより高く配置することにより、キャリアガスの流れにより被処理体20上で膜成分微粒子の流れが乱されるのを防ぐことができる。さらに被処理体20を回転させながら付着させることにより、被処理体20上の各部位における膜形成を均一にすることができる。その際被処理体20の回転速度が速すぎると却って均一性を損なうため、ホルダ13の回転速度を60〜1400 rpmに設定して行うのが有効である。
【0033】
上記具体例では熱分解・酸化反応に必要な活性化エネルギーをヒータにより加熱して付与するが、これ以外にUV光照射等の光エネルギーにより付与してもよいし、ヒータによる加熱と併用してもよい。また、膜形成を複数の膜原料を用いて逐次的に行い複数の薄膜の多層構造とすることもできる。
【0034】
【実施例】
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
【0035】
実施例1
(1) 液体原料の調製
50 mlのアセチルアセトンにインジウムアセチルアセトナートを0.2 Mになるように加え、次に添加したIn原子に対するSn原子の割合が5重量%になるように錫アセチルアセトナートを加えて液体原料を調製した。
【0036】
(2) ITO膜の作製
図1に示すように調製した液体原料を液体原料容器2に入れ、導入管3の一端を液体原料容器2に接続し、他端を反応容器1に接続した。反応容器1は加熱部11と加熱滞留部12とからなり、ヒータによりそれぞれの内部を620℃に設定した。加熱滞留部12に設置したホルダ13に50mm×50mmのガラス基板(コーニング1737、コーニング社製)を載置しホルダ13を100 rpmで回転させた。次いでホルダ13直下のヒータ17により基板の温度を600℃に設定した。
【0037】
次に液体原料容器2の底部に設けた超音波振動子36により2.4MHzの超音波振動を付与し、エアロゾルを0.1 g/分で発生させた。次いでキャリアガスとして圧縮空気を7L/分の流量で液体原料容器2に導入し、発生したエアロゾルをキャリアガスとともに反応容器1に送給した。反応容器1中で10分間熱分解・酸化及び付着を行い、ITOの薄膜を基板上に形成した。
【0038】
形成した薄膜について以下の評価を行った。X線回折装置SLX-I((株)リガク製)によりX線回折パターンを測定した結果を図5に示す。ピーク全体にITOの特徴を認めるとともに、シャープなピークを観察した。このことから純度の高いITO膜が形成されたことが分かる。分光光度計U-3500((株)日立製作所製)により垂直入射による可視光・近赤外領域の反射・透過スペクトルを測定した結果を図6に示す。反射率(%R)と透過率(%T)から吸収率[100−(%R+%T)]を求めたところ、1000〜2000 nmにおいてITOの特徴的なピークを認めた。四端子法の抵抗率計MCP-T600(三菱化学(株)製)による電気抵抗測定及び接触式段差計(アルバックテクノ(株)製)による膜厚測定を行った。膜厚を500、1000及び6000(Å)にして成膜した場合にそれぞれ抵抗率4×10-4 Ωcm、6×10-4 Ωcm、5×10-4 Ωcmの薄膜が得られた。
【0039】
実施例2
50 mlの水に塩化インジウムを0.2 Mになるように加え、次に添加したIn原子に対するSn原子の割合が5重量%になるように塩化錫を加えて液体原料を調製した以外は実施例1と同様にしてガラス基板上にITO膜を形成した。
【0040】
実施例3
50 mlのブチルアルコールにチタニウムテトラブトキシドを0.2 Mになるように加えて液体原料を調製した以外は実施例1と同様にしてガラス基板上に薄膜を形成し、均一なTiO2膜を得た。
【0041】
実施例4
50 mlの水に銅アセテートを0.04 Mになるように加えて液体原料を調製した以外は実施例1と同様にしてガラス基板上に薄膜を形成し、均一なCu2O膜を得た。
【0042】
実施例5
50 mlの水に硝酸バリウムを0.02 Mになるように加えて液体原料を調製した以外は実施例1と同様にしてガラス基板上に薄膜を形成し、均一なBaO膜を得た。
【0043】
【発明の効果】
上記の通り、本発明の薄膜形成方法は反応容器における筒状の加熱部内の温度を被処理体の温度より高く設定し、加熱部内で予め膜原料を熱分解・酸化した後、生成した膜成分微粒子を被処理体上に付着させて膜形成するとともに、反応容器にドーム状の加熱滞留部を設け加熱滞留部内に膜成分微粒子を拡散させ、反応容器の外周部に均等に設けられた僅かな隙間から均等に排出するからキャリアガスを均等に排出することにより、均一で純度の高い薄膜を形成することが可能である。
【図面の簡単な説明】
【図1】 本発明の成膜装置の一例を示す概略部分断面図である。
【図2】 図1に示す加熱滞留部のA−A断面図である。
【図3】 本発明の成膜装置における排出口とホルダの配置の一例を示す概略部分断面図である。
【図4】 本発明の参考例である成膜装置を示す概略部分断面図である。
【図5】 本発明の実施例で作製したITO膜のX線回折パターンである。
【図6】 本発明の実施例で作製したITO膜の透過率、反射率及び吸収率を示すスペクトルである。
【符号の説明】
1・・・反応容器
2・・・液体原料容器
3・・・導入管
11・・・加熱部
12・・・加熱滞留部
13・・・ホルダ
14・・・接合部
15,16,17・・・ヒータ
18・・・排出口
20・・・被処理体
24・・・回転軸
25・・・回転装置
26・・・スペーサー
27・・・カバー
31,32・・・バルブ
35・・・液体原料
36・・・超音波振動子
41・・・配管
42・・・回収装置
A・・・吸収率
R・・・反射率
T・・・透過率[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film forming method and a film forming apparatus capable of forming a thin film having a uniform and high purity without requiring a vacuum apparatus.
[0002]
[Prior art]
In recent years, thin films such as metal oxides have been widely used in industry. For example, indium tin oxide (ITO) films are used as transparent conductive films for liquid crystal displays, Cu 2 O films, SnO 2 films, etc. as thin film solar cells, and TiO 2 films as photocatalyst films, mirrors for automobiles, optical lenses, etc. Is used. These various thin films are mainly formed by vapor phase methods such as PVD and CVD. Thin film formation by a vapor phase method is performed using vacuum techniques such as vacuum molecular beam deposition, sputtering, laser ablation, and ion plating.
Reasons for carrying out in vacuum include that a thin film can be formed quickly, and that a pure film can be formed because gas molecules taken into the film can be reduced.
[0003]
However, when the thin film is formed in a vacuum, a vacuum apparatus is required, which has a drawback of increasing the manufacturing cost. On the other hand, film formation may be required even for objects that cannot be held in a vacuum state.
[0004]
In order to solve such problems of vacuum technology, Japanese Patent Application Laid-Open No. 5-186244, Japanese Patent Application Laid-Open No. 2000-119861, etc., atomize a liquid raw material by ultrasonic vibration, and heat the atomized liquid material on the object to be processed. And a method of forming a film by thermal decomposition / oxidation reaction is disclosed. However, these methods have the disadvantage that impurities are easily taken into the film because they undergo thermal decomposition / oxidation reaction on the object to be processed, and it is difficult to obtain a uniform film because they are directly sprayed onto the object. Japanese Patent Laid-Open No. 2001-335922 discloses an apparatus for atomizing a liquid raw material using ultrasonic waves, carrying it into a high-temperature furnace using a carrier gas, and forming a crystalline thin film on the substrate. However, specific film forming conditions are not disclosed, and it cannot be said that it is sufficient for forming a uniform and high-purity film.
[0005]
For this reason, there is a need for a technique for easily forming a thin film of metal oxide or the like with a quality equivalent to that when a vacuum technique such as PVD is used and at atmospheric pressure.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method and a film forming apparatus for easily forming a uniform and high purity thin film at atmospheric pressure.
[0007]
[Means for solving the problems]
As a result of diligent research in view of the above object, the present inventors have atomized a liquid raw material with an ultrasonic vibrator , and divided the reaction into a heating part and a heating staying part in which the object to be processed is placed together with a carrier gas. By introducing into the container and setting the temperature in the heating part higher than the temperature of the object to be processed, the film raw material is thermally decomposed and oxidized in advance, and the generated film component fine particles are attached to the object to be processed, and the purity is uniform. The present inventors have found that a thin film having a high thickness can be easily obtained at atmospheric pressure and have arrived at the present invention.
[0008]
That is, a method of forming a thin film on an object to be processed, (1) atomizing a liquid raw material containing a film raw material, (2) sending the generated aerosol together with a carrier gas to a cylindrical heating unit, (3) After the thermal decomposition / oxidation reaction of the film raw material in the heating part, (4) the obtained film component fine particles are communicated with the heating part, and the temperature is lower than the temperature in the heating part. The object to be processed is fed to a dome-shaped heating stay part where the object to be processed is placed, and is adhered to the object to be processed while being diffused in the heat stay part, and (5) the carrier gas is added to the heating stay part. It is characterized in that the liquid is evenly discharged from a slight gap provided evenly on the outer periphery of the.
[0009]
After the thermal decomposition / oxidation reaction of the aerosol is carried out in the heating part of the reaction vessel comprising the heating part and the heating staying part, the generated film component fine particles are adhered to the object to be processed while being diffused in the heating staying part. In that case, it is preferable to set the temperature in the heating part to 250 to 700 ° C., the temperature of the object to be processed to 200 to 600 ° C., and the difference between the temperature in the heating part and the temperature of the object to be processed to 20 ° C. or more.
[0011]
The liquid raw material preferably contains at least one compound selected from the group consisting of an organometallic compound, a metal or silicon alcoholate compound, a metal chelate compound, and a metal halogen compound and a solvent. When forming the ITO film, the liquid raw material preferably contains indium acetylacetonate and tin acetylacetonate and acetylacetone, or indium chloride, tin chloride and water.
[0012]
A film forming apparatus of the present invention is a film forming apparatus for forming a thin film on an object to be processed, and includes a reaction container, a container including an ultrasonic vibrator for storing a liquid raw material containing a film raw material, and a carrier An inlet for supplying a gas; and an introduction pipe for introducing an aerosol obtained by atomizing the liquid raw material into the reaction container together with the carrier gas, the reaction container connected to the introduction pipe, and the film raw material A cylindrical heating section that substantially completes the thermal decomposition / oxidation reaction of the dome, and a dome-shaped heating staying section that communicates with the heating section and places the object to be processed having a temperature lower than the temperature in the heating section. As a discharge port for discharging the carrier gas, a slight gap is evenly provided on the outer periphery of the heating staying portion .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[1] Film Forming Apparatus FIG. 1 shows an example of a film forming apparatus of the present invention. The film forming apparatus includes a reaction vessel 1, a liquid source vessel 2, and an introduction tube 3, and a cover 27 is attached around the reaction vessel 1. The reaction vessel 1 is composed of a heating part 11 and a heating staying part 12, and heaters 15 and 16 are installed on the outer walls of the heating part 11 and the heating staying part 12, respectively.
[0014]
The heating unit 11 has a cylindrical chamber inside, and is connected to the introduction pipe 3 at the upper inlet 21 and connected to the heating retention unit 12 at the lower outlet 22. The heating staying portion 12 has a dome shape, and a chamber for diffusing gas is provided in the heating staying portion 12. The chamber is provided with a holder 13 for placing an object to be processed, and a heater 17 is installed on the outer wall of the reaction vessel 1 immediately below the holder 13. The holder 13 is rotatably supported by a rotating shaft 24, and the rotating shaft 24 is connected to a rotating device 25. The reaction vessel 1 can be removed up and down in the heating staying portion 12, and a slight gap is formed uniformly on the outer periphery of the joining portion 14 to provide a carrier gas discharge port 18.
[0015]
FIG. 2 is a cross-sectional view taken along the line AA of the heat retention portion shown in FIG. A holder 13 on which the object to be processed 20 is placed is provided in the central part of the heating staying part 12, and an annular joining part 14 is provided at the end. Spacers 26 are evenly provided on the circumference of the joint 14 to form a carrier gas outlet 18. The number, length, thickness, etc. of the spacers can be appropriately set according to the discharge amount of the carrier gas. In order to make the flow of the carrier gas outside the reaction vessel uniform, instead of the spacer 26, an annular honeycomb or porous body may be sandwiched between the joints 14 to form the discharge port 18.
[0016]
FIG. 3 shows another embodiment of the film forming apparatus shown in FIG. In this embodiment, the holder 13 in the heating staying part 12 is arranged higher than the discharge port 18. The positions of the holder 13 and the discharge port 18 preferably have a height difference that does not disturb the airflow on the holder 13 due to the flow of the discharged carrier gas. Other parts are the same as those of the film forming apparatus shown in FIG.
[0017]
The interior of the reaction vessel 1 is preferably made of a material that is not corroded by a source gas such as quartz or stainless steel and has excellent heat resistance. As stainless steel, for example, SUS304 is preferably used.
[0018]
The liquid material container 2 stores a liquid material 35 containing a film material. A carrier gas introduction port 37 is provided in the upper part of the liquid source container 2, and an introduction pipe 3 is connected to the ceiling portion to communicate with the reaction container 1. A flow rate adjusting valve 31 is attached to the introduction pipe 3, and an ultrasonic transducer 36 is provided at the bottom of the liquid source container 2.
[0019]
FIG. 4 shows a film forming apparatus which is a reference example of the present invention. In this example, the exhaust port 18 is not provided in the outer peripheral portion of the reaction vessel 1, and the exhaust pipe 41 is provided along the rotation shaft 24 of the holder 13. The pipe 41 is connected to the recovery device 42, and the carrier gas introduced into the reaction vessel 1 is recovered together with unreacted raw materials and the like into the recovery device 42. Since other parts are the same as those of the film forming apparatus shown in FIG.
[0020]
[2] Liquid raw materials
(1) Film raw materials Thin films applicable to the thin film forming method of the present invention include, for example, oxide films such as Co, Cu, Zn, Fe, In, Cr, Ba, Sn, Si, Ti, V, and Zr, and composites thereof. Examples thereof include an oxide film. Specifically, Fe 2 O 3 , Cr 2 O 3 , Al 2 O 3 , In 2 O 3 , Y 2 O 3 , V 2 O 3 , VO 2 , SnO 2 , TiO 2 , ZrO 2 , ITO, Cu 2 Thin films such as O and BaO are preferred. Examples of raw materials for forming these thin films include organometallic compounds, metal or silicon alcoholate compounds, metal chelate compounds, metal halide compounds (fluorides, chlorides, etc.), and one or two of these compounds. It is preferable to use the above.
[0021]
(2) As a solvent for dissolving the solvent film raw material, it is important that the solvent has a high solubility in the film raw material and that aerosol is easily generated by ultrasonic vibration. Specifically, organic solvents such as alcohol (methyl alcohol, ethyl alcohol, butyl alcohol, etc.), ketones (acetone, acetylacetone, etc.), esters (ethyl acetate, etc.), aromatic hydrocarbons (toluene, xylene, etc.) or water preferable.
[0022]
(3) The prepared liquid raw material is used by dissolving the film raw material shown in (1) above in the solvent shown in (2) above. In order to generate an aerosol, it is necessary to select an appropriate combination of solvent and solute, and the concentration of the solute is preferably about 0.01 to 0.5 M. The film material does not need to be completely dissolved, and the liquid material may be a dispersion liquid in which the film material is uniformly dispersed, such as a sol liquid.
[0023]
As specific examples of liquid raw materials, liquid raw materials for ITO, TiO 2 , Cu 2 O, and BaO films are shown below. When forming an ITO film, acetylacetone is used as a solvent, 0.01 to 0.5 M indium acetylacetonate as a solute, and tin acetylacetonate in an amount such that the ratio of Sn atoms to In atoms is 5 to 10% by weight are added. It is preferable to prepare by adding water as a solvent and adding 0.01 to 0.5 M indium chloride as a solute and tin chloride in an amount such that the ratio of Sn atoms to In atoms is 5 to 10% by weight. Similarly, when forming a TiO 2 film, butyl alcohol is used as a solvent and titanium tetrabutoxide is used as a solute. When forming a Cu 2 O film, water is used as a solvent and copper acetate is used as a solute, and a BaO film is formed. In some cases, it is preferable to use water as a solvent and barium nitrate as a solute. These membrane components and the solvents, solutes and concentrations used for the liquid raw material are shown together in Table 1.
[0024]
[Table 1]
Figure 0004587633
Note: (1) Represents the ratio of Sn atom to In atom (wt%).
[0025]
[3] Film Forming Method The thin film forming method of the present invention will be described with reference to FIGS. First, a film raw material is dissolved in a solvent to prepare a liquid raw material. Next, after the prepared liquid raw material 35 is stored in the liquid raw material container 2, aerosol is generated by applying ultrasonic vibration of 0.5 to 10 MHz using the ultrasonic vibrator 36. The amount of aerosol to be generated and the diameter of the aerosol can be adjusted by the frequency of ultrasonic waves to be applied. The amount of aerosol generated is appropriately adjusted according to the desired thermal decomposition / oxidation rate, film formation rate, and the like. The diameter of the aerosol is not particularly limited, but usually 1 to 10 μm is preferable. Next, the aerosol generated by the carrier gas introduced into the liquid raw material container 2 is fed to the reaction container 1 through the introduction pipe 3. As the carrier gas, at least one kind of gas is used. For example, air, a mixed gas of air and nitrogen, a mixed gas of air and various gases, or the like can be appropriately used.
[0026]
In a preferred embodiment of the present invention, the aerosol is supplied at a flow rate of 1 to 3 ml / min and a carrier gas flow rate of 1 to 30 L / min. By setting in this way, the thermal decomposition / oxidation reaction and the generated film component fine particles can be stably attached to the object to be processed.
[0027]
The temperature in the heating unit 11 that performs the thermal decomposition / oxidation reaction can be appropriately set depending on the type of thin film to be formed. A temperature gradient may be provided in the heating unit 11, and the temperature of the inlet 21 of the heating unit 11 may be lowered to increase the temperature toward the outlet 22 of the heating unit 11. By passing the aerosol sent to the reaction vessel 1 through the cylindrical heating unit 11, the solvent of the aerosol is first evaporated, and then the thermal decomposition / oxidation reaction of the film raw material is performed. For example, when the film raw material is a metal chloride, chlorine atoms are removed by a thermal decomposition reaction, and film component fine particles composed of metal oxide molecules or thin film components are generated by an oxidation reaction.
[0028]
In the thin film forming method of the present invention, the film material is pyrolyzed and oxidized before reaching the object 20 to be processed, and the generated film component fine particles are deposited on the object 20 to be processed. In order to perform the thermal decomposition / oxidation reaction in advance as described above, the temperature in the reaction vessel 1 composed of the temperature T 1 in the heating unit 11 and the temperature T 2 in the heating staying unit 12 is set to the temperature T of the workpiece 20. it is necessary to set higher than 3 (T 3 <T 1, T 2). Substantially terminate the thermal decomposition and oxidation reactions in the heating unit 11, the resulting membrane components microparticles by forming a thin film on gradually workpiece 20 is diffused into the heating retention portion 12, impurities in the film A uniform film which is difficult to be taken in can be formed. It is preferable to set the temperature T 1 in the heating part 11 of the reaction vessel to be higher than the temperature T 2 in the heating staying part 12 (T 3 <T 2 <T 1 ). The temperature of each part can be detected by providing a temperature sensor (not shown) on the inner wall of the heating part 11, the inner wall of the heating staying part 12, and the holder 13, and can be automatically controlled to a predetermined temperature.
[0029]
In order to substantially terminate the thermal decomposition / oxidation reaction in the heating unit 11, the diameter of the chamber of the heating unit 11 is set to 5 to 10 cm, and the length from the inlet 21 to the outlet 22 is set to 6 to 30 cm. A carrier gas containing an aerosol having a concentration of 0.01 to 0.5 g / L is preferably pyrolyzed and oxidized by passing it through the heating unit 11 at a flow rate of 1 to 30 L / min.
[0030]
When forming the ITO film, the temperature T 1 in the heating part 11 is 250 to 700 ° C., the temperature T 2 in the heating staying part 12 is 250 to 650 ° C., and the temperature T 3 of the workpiece 20 is 200 to 600 ° C. It is preferable to set to. The difference between the temperature T 1 in the heating unit 11 and the temperature T 3 of the workpiece 20 is preferably 20 ° C. or more.
[0031]
As described above, the thin film forming method of the present invention does not perform the thermal decomposition / oxidation reaction on the object 20 to be processed, but performs the thermal decomposition / oxidation reaction in the reaction vessel 1 in advance, and the generated film component fine particles are processed. Since the film is formed by being deposited on the film 20, impurities are not easily taken into the film, and crystals with high purity can be grown.
[0032]
The generated film component fine particles are uniformly attached to the workpiece 20 on the holder 13. At this time, if the flow rate of the carrier gas is too large, the adhesion of the film component fine particles becomes uneven due to the gas flow. Therefore, in order to obtain a uniform thin film, it is preferable that the film component fine particles are sufficiently diffused in the heating staying portion 12 so that the film component fine particles have a uniform concentration and are gradually formed on the workpiece 20. Further, as shown in FIG. 2, the carrier gas fed to the reaction vessel is equally discharged from the discharge port 18 provided on the outer periphery of the heating staying part 12 together with the unreacted film raw material, the unattached film component fine particles and the like. By discharging the carrier gas evenly in this way, the gas flow in the heating staying portion 12 becomes uniform, and the adhesion of the film component fine particles to the workpiece 20 becomes more uniform. As shown in FIG. 3, by arranging the height of the holder 13 higher than the height of the discharge port 18, it is possible to prevent the flow of the film component fine particles from being disturbed on the workpiece 20 by the flow of the carrier gas. . Further, by attaching the object to be processed 20 while rotating it, film formation at each part on the object to be processed 20 can be made uniform. At that time, if the rotational speed of the workpiece 20 is too fast, the uniformity is impaired, and therefore it is effective to set the rotational speed of the holder 13 to 60 to 1400 rpm.
[0033]
In the above specific example, activation energy necessary for the thermal decomposition / oxidation reaction is applied by heating with a heater, but in addition to this, it may be applied by light energy such as UV light irradiation, or in combination with heating by a heater. Also good. Alternatively, the film formation can be performed sequentially using a plurality of film materials to form a multilayer structure of a plurality of thin films.
[0034]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0035]
Example 1
(1) Preparation of liquid raw materials
Indium acetylacetonate was added to 50 ml of acetylacetone to 0.2 M, and then tin acetylacetonate was added so that the ratio of Sn atoms to the added In atoms was 5% by weight to prepare a liquid raw material.
[0036]
(2) Production of ITO Film The liquid raw material prepared as shown in FIG. 1 was placed in the liquid raw material container 2, one end of the introduction tube 3 was connected to the liquid raw material container 2, and the other end was connected to the reaction container 1. The reaction vessel 1 was composed of a heating part 11 and a heating residence part 12, and the inside of each was set to 620 ° C. by a heater. A 50 mm × 50 mm glass substrate (Corning 1737, manufactured by Corning) was placed on the holder 13 installed in the heating retention section 12, and the holder 13 was rotated at 100 rpm. Next, the temperature of the substrate was set to 600 ° C. by the heater 17 immediately below the holder 13.
[0037]
Next, ultrasonic vibration of 2.4 MHz was applied by the ultrasonic vibrator 36 provided at the bottom of the liquid raw material container 2, and aerosol was generated at 0.1 g / min. Next, compressed air as a carrier gas was introduced into the liquid material container 2 at a flow rate of 7 L / min, and the generated aerosol was fed to the reaction container 1 together with the carrier gas. The reaction vessel 1 was pyrolyzed, oxidized and deposited for 10 minutes to form an ITO thin film on the substrate.
[0038]
The following evaluation was performed about the formed thin film. The result of measuring the X-ray diffraction pattern with an X-ray diffractometer SLX-I (manufactured by Rigaku Corporation) is shown in FIG. The characteristics of ITO were recognized throughout the peak, and a sharp peak was observed. This shows that a high-purity ITO film was formed. FIG. 6 shows the result of measuring the reflection / transmission spectrum in the visible light / near infrared region by normal incidence with a spectrophotometer U-3500 (manufactured by Hitachi, Ltd.). When the absorptance [100 − (% R +% T)] was determined from the reflectance (% R) and transmittance (% T), a characteristic peak of ITO was observed at 1000 to 2000 nm. Electrical resistance measurement using a four-terminal resistivity meter MCP-T600 (manufactured by Mitsubishi Chemical Corporation) and film thickness measurement using a contact-type step gauge (manufactured by ULVAC TECHNO CO., LTD.) Were performed. When the film thickness was 500, 1000, and 6000 (Å), thin films having resistivity of 4 × 10 −4 Ωcm, 6 × 10 −4 Ωcm, and 5 × 10 −4 Ωcm were obtained, respectively.
[0039]
Example 2
Example 1 except that indium chloride was added to 50 ml of water to a concentration of 0.2 M, and then tin chloride was added so that the ratio of Sn atoms to the added In atoms was 5% by weight. In the same manner, an ITO film was formed on a glass substrate.
[0040]
Example 3
A thin film was formed on a glass substrate in the same manner as in Example 1 except that titanium tetrabutoxide was added to 50 ml of butyl alcohol so as to have a concentration of 0.2 M, and a uniform TiO 2 film was obtained.
[0041]
Example 4
A thin film was formed on a glass substrate in the same manner as in Example 1 except that a liquid raw material was prepared by adding copper acetate to 50 ml of water to 0.04 M to obtain a uniform Cu 2 O film.
[0042]
Example 5
A thin film was formed on a glass substrate in the same manner as in Example 1 except that liquid raw material was prepared by adding barium nitrate to 50 ml of water to 0.02 M to obtain a uniform BaO film.
[0043]
【The invention's effect】
As described above, in the thin film forming method of the present invention, the temperature in the cylindrical heating part in the reaction vessel is set higher than the temperature of the object to be processed, and the film material generated after the film raw material is thermally decomposed and oxidized in the heating part in advance. slight to form the fine particles deposited on the processed film, where the reaction vessel to diffuse the membrane component particles in the heating retention portion provided dome-shaped heating retention portion, it is provided uniformly on the outer peripheral portion of the reaction vessel Since the carrier gas is uniformly discharged from the gap, it is possible to form a uniform and high-purity thin film.
[Brief description of the drawings]
FIG. 1 is a schematic partial sectional view showing an example of a film forming apparatus of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of the heat retention portion shown in FIG.
FIG. 3 is a schematic partial cross-sectional view showing an example of the arrangement of discharge ports and holders in the film forming apparatus of the present invention.
FIG. 4 is a schematic partial sectional view showing a film forming apparatus which is a reference example of the present invention.
FIG. 5 is an X-ray diffraction pattern of an ITO film produced in an example of the present invention.
FIG. 6 is a spectrum showing the transmittance, reflectance and absorptance of the ITO film produced in the example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Liquid raw material container 3 ... Introducing pipe
11 ... Heating section
12 ... Heat retention part
13 ... Holder
14 ... Junction
15, 16, 17 ... heater
18 ... Discharge port
20 ... Subject
24 ・ ・ ・ Rotation axis
25 ・ ・ ・ Rotating device
26 ... Spacer
27 ... Cover
31, 32 ... Valve
35 ・ ・ ・ Liquid material
36 ・ ・ ・ Ultrasonic transducer
41 ... Piping
42 ... Recovery device
A ... Absorption rate
R ... Reflectance
T ... Transmittance

Claims (8)

被処理体上に薄膜を形成する方法であって、(1) 膜原料を含む液体原料を霧化させ、(2) 生成したエアロゾルをキャリアガスとともに筒状の加熱部に送給し、(3) 前記加熱部内で前記膜原料の熱分解・酸化反応を行った後、(4) 得られた膜成分微粒子を、前記加熱部に連通しており、前記加熱部内の温度より低い温度を有する前記被処理体が裁置されているドーム状の加熱滞留部に送給し、前記加熱滞留部内に拡散させながら前記被処理体上に付着させ、(5) 前記キャリアガスを前記加熱滞留部の外周に均等に設けられた僅かな隙間から均等に排出することを特徴とする薄膜形成方法。A method of forming a thin film on an object to be processed, comprising: (1) atomizing a liquid raw material containing a film raw material; (2) feeding the generated aerosol together with a carrier gas to a cylindrical heating unit; ) After performing the thermal decomposition and oxidation reaction of the film raw material in the heating unit, (4) the obtained film component fine particles are communicated with the heating unit, and has a temperature lower than the temperature in the heating unit It is fed to a dome-shaped heat retention part where the object to be processed is placed, and adhered to the object to be processed while diffusing in the heat retention part, and (5) the carrier gas is placed on the outer periphery of the heat retention part. A method of forming a thin film, characterized in that the film is discharged evenly from a small gap provided uniformly . 請求項に記載の薄膜形成方法において、前記加熱部内の温度を250〜700℃、前記被処理体の温度を200〜600℃、及び前記加熱部内の温度と前記被処理体の温度の差を20℃以上に設定することを特徴とする薄膜形成方法。2. The thin film forming method according to claim 1 , wherein the temperature in the heating part is 250 to 700 ° C., the temperature of the object to be processed is 200 to 600 ° C., and the difference between the temperature in the heating part and the temperature of the object to be processed is determined. A method for forming a thin film, characterized in that the temperature is set to 20 ° C or higher. 請求項1又は2に記載の薄膜形成方法において、前記被処理体を回転させながら前記膜成分微粒子を付着させることを特徴とする薄膜形成方法。 3. The thin film forming method according to claim 1 or 2, wherein the film component fine particles are adhered while rotating the object to be processed. 請求項1〜3のいずれかに記載の薄膜形成方法において、前記液体原料は、有機金属化合物、金属又はケイ素のアルコラート化合物、金属キレート化合物及び金属ハロゲン化合物からなる群から選ばれた少なくとも1種の化合物と溶媒とを含有することを特徴とする薄膜形成方法。 4. The thin film forming method according to claim 1, wherein the liquid raw material is at least one selected from the group consisting of an organometallic compound, a metal or silicon alcoholate compound, a metal chelate compound, and a metal halogen compound. A thin film forming method comprising a compound and a solvent. 請求項4に記載の薄膜形成方法において、前記液体原料は、インジウムアセチルアセトナート及び錫アセチルアセトナートとアセチルアセトン、又は塩化インジウム及び塩化錫と水とを含有することを特徴とする薄膜形成方法。 5. The thin film forming method according to claim 4, wherein the liquid raw material contains indium acetylacetonate and tin acetylacetonate and acetylacetone, or indium chloride, tin chloride and water. 被処理体上に薄膜を形成するための成膜装置であって、反応容器と、膜原料を含む液体原料を貯留する超音波振動子を備えた容器と、キャリアガスを供給する導入口と、前記液体原料を霧化してなるエアロゾルを前記キャリアガスとともに前記反応容器に導入する導入管とを有し、前記反応容器は、前記導入管に連結し、前記膜原料の熱分解・酸化反応を実質的に完了させる筒状の加熱部と、前記加熱部に連通し、前記加熱部内の温度より低い温度を有する前記被処理体を裁置するドーム状の加熱滞留部とを有し、前記キャリアガスを排出するための排出口として、前記加熱滞留部の外周に均等に僅かな隙間が設けられていることを特徴とする成膜装置。A film forming apparatus for forming a thin film on an object to be processed, a reaction container, a container including an ultrasonic vibrator for storing a liquid raw material including a film raw material, an inlet for supplying a carrier gas, An introduction pipe for introducing the aerosol obtained by atomizing the liquid raw material into the reaction container together with the carrier gas, and the reaction container is connected to the introduction pipe to substantially perform the thermal decomposition / oxidation reaction of the film raw material. A cylindrical heating part to be completed automatically, and a dome-like heating staying part that communicates with the heating part and places the object to be processed having a temperature lower than the temperature in the heating part, and the carrier gas The film forming apparatus is characterized in that a slight gap is provided evenly on the outer periphery of the heat retention portion as a discharge port for discharging the water. 請求項6に記載の成膜装置において、前記加熱部内の温度が250〜700℃であり、前記被処理体の温度が200〜600℃であり、前記加熱部内の温度と前記被処理体の温度の差が20℃以上であることを特徴とする成膜装置。 The film forming apparatus according to claim 6, wherein the temperature in the heating unit is 250 to 700 ° C., the temperature of the object to be processed is 200 to 600 ° C., and the temperature in the heating unit and the temperature of the object to be processed. The film forming apparatus is characterized in that the difference in temperature is 20 ° C. or more. 請求項6又は7に記載の成膜装置において、前記被処理体が回転自在のホルダ上に裁置されていることを特徴とする成膜装置。 8. The film forming apparatus according to claim 6, wherein the object to be processed is placed on a rotatable holder.
JP2002050226A 2002-02-26 2002-02-26 Thin film forming method and film forming apparatus Expired - Fee Related JP4587633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050226A JP4587633B2 (en) 2002-02-26 2002-02-26 Thin film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050226A JP4587633B2 (en) 2002-02-26 2002-02-26 Thin film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2003253450A JP2003253450A (en) 2003-09-10
JP4587633B2 true JP4587633B2 (en) 2010-11-24

Family

ID=28662523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050226A Expired - Fee Related JP4587633B2 (en) 2002-02-26 2002-02-26 Thin film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4587633B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841338B2 (en) * 2005-07-14 2011-12-21 株式会社野田スクリーン Film forming method and apparatus
JP2007144296A (en) * 2005-11-28 2007-06-14 Masaharu Kaneko Thin film formation method and apparatus
KR101515378B1 (en) * 2013-01-07 2015-04-27 주식회사 라이트브릿지 Plasma coating apparatus and deposition system
JP5397794B1 (en) 2013-06-04 2014-01-22 Roca株式会社 Method for producing oxide crystal thin film
JP6233959B2 (en) * 2013-10-10 2017-11-22 株式会社Flosfia Method for producing oxide crystal thin film

Also Published As

Publication number Publication date
JP2003253450A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4727355B2 (en) Deposition method
Verma et al. Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural, morphological and thermal studies
JP4587633B2 (en) Thin film forming method and film forming apparatus
US7259085B2 (en) Method for forming thin film, substrate having thin film formed by the method, and photoelectric conversion device using the substrate
JP2008078113A (en) Device for manufacturing transparent conductive substrate
JP2019060025A (en) Improved radiation shielding for cvd reactor
Warwick et al. Electric fields in the chemical vapour deposition growth of vanadium dioxide thin films
JPS61158877A (en) Manufacture of ceramic porous membrane
Taziwa et al. Fabrication of TiO2 nanoparticles and thin films by ultrasonic spray pyrolysis: design and optimization
JPS6018090B2 (en) Method of forming conductive thin film
JP2011513164A (en) Conductive film formation in glass draw
JP5728119B1 (en) Simultaneous production method of different kinds of nanoparticles
AU609277B2 (en) Producing a layer of transparent conductive zinc oxide
JPH1066878A (en) Photocatalyst body
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP2860505B2 (en) Material deposition equipment
JP2004249157A (en) Photocatalyst and its manufacturing method
JPS62142774A (en) Formation of deposited film
EP2565305B1 (en) Method for producing metal oxide nanofibers
Chen et al. Preparation of Zinc Titanate Thin Films by Low‐Pressure Metalorganic Chemical Vapor Deposition
Shukla et al. Highly transparent, superhydrophilic and high-temperature stable anatase phase TiO2
JP2004285388A (en) Thin film deposition apparatus
JP2005298874A (en) Cvd raw material, vaporization feed method, and film deposition method
JP2006016273A (en) Film deposition system based on spray pyrolysis method
JP2005200737A (en) Method of forming transparent electroconductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080512

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees