JP4587112B2 - Dielectrophoresis apparatus and material separation method - Google Patents

Dielectrophoresis apparatus and material separation method Download PDF

Info

Publication number
JP4587112B2
JP4587112B2 JP2000112337A JP2000112337A JP4587112B2 JP 4587112 B2 JP4587112 B2 JP 4587112B2 JP 2000112337 A JP2000112337 A JP 2000112337A JP 2000112337 A JP2000112337 A JP 2000112337A JP 4587112 B2 JP4587112 B2 JP 4587112B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
electric field
substrate
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000112337A
Other languages
Japanese (ja)
Other versions
JP2001296274A (en
Inventor
正夫 鷲津
智久 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000112337A priority Critical patent/JP4587112B2/en
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to DE60130052T priority patent/DE60130052T2/en
Priority to EP01109169A priority patent/EP1145766B1/en
Priority to CA002343873A priority patent/CA2343873A1/en
Priority to ES01109169T priority patent/ES2288154T3/en
Priority to AT01109169T priority patent/ATE370793T1/en
Priority to EP06008220A priority patent/EP1716926A3/en
Priority to US09/833,566 priority patent/US6875329B2/en
Publication of JP2001296274A publication Critical patent/JP2001296274A/en
Priority to US11/064,828 priority patent/US20050139473A1/en
Priority to US12/588,268 priority patent/US20100126865A1/en
Application granted granted Critical
Publication of JP4587112B2 publication Critical patent/JP4587112B2/en
Priority to US13/067,876 priority patent/US20110259746A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
この発明は、捕集能力を向上させた誘電泳動装置及び物質の分離方法に関する。
【0002】
【従来の技術】
近年、半導体技術の進歩によりフォトリソグラフィー等の微細加工技術によってnmからμm単位での物質加工技術が確立され、現在もその微細加工技術は進歩しつづけている。
【0003】
化学・生化学分野に於いては、この微細加工技術を利用して、生体試料からの分析対象成分の抽出(抽出工程),化学・生化学反応を用いる当該成分の分析(分析工程),並びにそれに続く分離処理(分離工程)及び検出(検出工程)といった一連の化学的・生化学的分析工程の全てを一辺数cm〜数十cmのチップ上に集積化等した極小の分析装置を用いて行う、微細総分析システム〔Micro Total Analysis System(μ-TAS)、Laboratory on a chip〕と呼ばれる新技術が発展しつつある。
【0004】
このμ-TASの手法は、化学的・生化学的分析工程全てを通じて、分析時間の短縮化、使用するサンプル量や化学・生化学反応に必要な試薬量の低減化、分析機器や分析スペースの縮小化に大きく貢献するものと期待されている。
【0005】
特に、μ-TASに於ける分離工程については、テフロン(登録商標)やシリカ等を材料として作製された内径1mm以下のキャピラリー(細管)を分離カラムとして使用して高電界中で物質の持つ電荷の差を利用して分離を行うキャピラリー電気泳動法や、同様のキャピラリーを用いてカラム担体と物質との相互作用の差を利用して分離を行うキャピラリーカラムクロマトグラフィー法が開発されている。
【0006】
しかしながら、キャピラリー電気泳動法は、分離に高電圧が必要であることや、検出領域でのキャピラリー容量が制約されるため検出感度が低いという問題、更には、チップ上のキャピラリーチップでは、分離のためのキャピラリー長に制約があり、高分子の分離に充分なキャピラリー長が得られないため、低分子の物質の分離には適しているが高分子の物質の分離には適さないという問題を有している。また、キャピラリーカラムクロマトグラフィー法は、分離処理の高速化に限界があり、処理時間の短縮化が困難であるという問題を有している。
【0007】
そこで、近年、上記した如き問題を解決する手段の一つとして、物質を不均一な交流電界内に置くと、物質内に正と負の分極が起こり、物質を取り囲む媒質の誘電率が物質よりも大きいと物質は電界の低い方向へ移動し、媒質の誘電率が物質よりも小さいと物質は電界の強い方向へと移動する力が働く現象、いわゆる誘電泳動力〔H.A.Pohl: "Dielectrophoresis", Cambridge Univ. Press(1978)、T.B.Jones: "Electromechanics ofParticles", Cambridge Univ. Press (1995)等〕を利用した分離方法が、注目されている。
【0008】
この分離方法は、(1)誘電泳動力の大きさは、物質(粒子)の大きさ・誘電的性質に依存し、電界傾度に比例するため、微細加工電極を用いれば、電界および電界傾度をきわめて大きくとることができるので、キャピラリー電気泳動のように高電圧を必要とせず、低い印加電圧で高速な分離が期待できる、(2)電界の強い場所が微小領域に極限されるため、電界印加による温度上昇も最小限にとどめることができ、また、高電界場の形成が可能となる、(3)誘電泳動は、電界傾度に比例する力であることからわかるように、印加電圧の極性に依存しないので、交流電界下でも直流同様に力が働く。従って、高周波交流を用いれば水溶液での電極反応(電気分解反応)は抑えられるので、電極自体をチャネル(サンプル流路)中に集積化することが可能となる、(4)キャピラリー電気泳動のように検出部分のチャンバ容量に制約がないことから検出感度の向上も望める、等の点から、現在ではμ-TASに於ける最も適した分離方法と考えられている。
【0009】
【発明が解決しようとする課題】
しかしながら、誘電泳動のμ−TASへの応用を考えた場合、捕集能力を向上させることは、極めて重大なことであり、この点で従来の誘電泳動装置は未だ十分満足すべきものではない。
【0010】
即ち、物質の捕集能力が向上すれば、電極領域での分離が可能となることと、効率よく保持することによって、S/N(シグナル/ノイズ)比の高い分離が実現される。また例えば、特に物質に働く誘電泳動力と流体抗力との相互作用によって分離を行うField-Flow fractionationにおいては、同じ流速でも短い電極領域での分離が可能となるからである。
【0011】
この発明のうち請求項1に記載の発明は、このような点に着目してなされたものであり、誘電泳動電極により形成された不均一電界内に分離すべき物質を含む液体を存在させ、該物質に働く誘電泳動力によって分離を行う装置において、物質の捕集能力を向上させた誘電泳動装置を提供することを目的とする。
【0012】
また、請求項に記載の発明は、物質の分離方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記問題点を解決するため本発明者等は鋭意研究の結果、電極と電極の基板部分を掘削し、該電極よりも低い部位を形成することによって、不均一電界領域が増大することと流体の抗力が低減することから、捕集能力が向上することを想到し、本発明に到達した。
【0014】
しかして、従来、誘電泳動力を利用した分離装置及び方法、特にField-Flow fractionationにおける装置及び方法についての特許及び論文は多数見られるが、「電極よりも低い部位」を形成させることによって物質の捕集能力を向上させる装置及び方法は全く知られていないし、このような発想も全く知られていない。
【0015】
本発明のうち、請求項1記載の発明は、基板上に電極を設けた誘電泳動装置において、物理的又は/及び化学的手段により電極間の基板を掘削して、対向する前記電極間に該電極よりも低い部位を形成して、対向する前記電極間に、不均一電界領域の増加を実現する構造を形成したことを特徴とする。
【0016】
「電極よりも低い部位」を形成することによって、電極間の上方だけでなく下方にも電解が形成されるので不均一電界領域が増加し、更には、例えばField-Flow fractionationに用いた場合には、この部分の流体の流速が落ちるので流体抗力が低減することから、物質の捕集能力が向上する。
ここで、物理的手段とは、例えば適当な刃物等を使用して掘削する方法、例えばシンクロトロン放射光を用いるLIGA(Lithographile Galvanoformung Abformung)法等のことであり、また、化学的手段とは、例えば基板に対するエッチング液を用いて基板を掘削するエッチング等のことである。また、例えば物理的掘削と化学的掘削とを同時に行う、高周波電源によりプラズマとした反応性ガスを用いるエッチング[反応性イオンエッチング:Reactive Ion Etching(RIE)]によっても電極間の基板を掘削することができる。尚、上記した如き手段を適宜組み合わせて基板の掘削を行っても良い。
【0017】
また、請求項に記載の発明は、誘電泳動電極により形成された不均一電界内に、分離すべき物質を含む液体を存在させ、該物質に働く誘電泳動力の差によって分離を行う物質の分離方法において、物理的又は/及び化学的手段により電極間の基板を掘削して、対向する電極間に形成した電極よりも低い部位を形成することにより、不均一電界領域の増加を実現することによって、物質の捕集能力を向上させたことを特徴とする。
【0018】
尚、誘電泳動(Dielectrophoresis,DEP)とは、物質の電導率及び誘電率と媒質の電導率及び誘電率と、印加する周波数との相互作用により、不均一な電界内で中性粒子が移動する現象のことであり、この際に分子に働く力を誘電泳動力と呼ぶ。また、誘電泳動力は、物質が電界の強い方へと移動する正の誘電泳動力と電界の弱い方へと移動する負の誘電泳動力の2種類に分けられる。以下に、分子に正の誘電泳動力が働く場合を例にとり説明する。
【0019】
即ち、電界内に置かれた中性分子には、図1に示すように電界の下流側に正極性の分極電荷+qが、上流側には負極性の分極電荷−qが夫々誘導され、+qには電界Eにより大きさ+qEの力が働き、この部分を電界の上流側へと引く。分子が中性ならば、+qと−qの絶対値は等しく、仮に電界が場所によらず一定であるならば、両者に働く力は釣り合って分子は動かない。しかし、電界が一様でない場合には、強い電界側へ引く力の方が大きくなり、分子は電界の強い側へと駆動されることとなる。
【0020】
上記したように、溶液中の分子は、該分子に生じる誘電泳動力に応じて電界領域内を種々移動するが、例えばField-Flow fractionationにおける分子の運動は、該分子に生じる誘電泳動力Fdの他に、流体抗力(流路内の流れによる抗力)Fvと熱運動による力Fthの3つの要因により支配される。即ち、(1)Fd>>Fv+Fthの場合には、分子は電極に捕集(トラップ)され、(2)Fd<<Fv+Fthの場合には、電界に関わらず、分子は流路内の流れにのって流出する。また、(3)Fd≒Fv+Fthの場合には、分子は電極に吸着・脱着を繰り返しながら下流へと運ばれる結果、本来の流路内の流れよりも遅れて出口に到達する。
【0021】
本発明においては、対向する電極間を深く掘削することによって、電極間の下方にも不均一電界が形成されるから、不均一電界領域が増加することと、この部分の流体の流れが遅くなり、流体の抗力Fvが低減することから、上記(1)の如き条件でFdがより大となり、Fvがより小となるから、捕集率が向上する。また、電極間の下方に形成された電界にトラップされた粒子は、「電極よりも低い部位」に位置することとなるから、流出され難くなる。
【0022】
【発明の実施の形態】
次に、本発明の実施の形態を説明する。
図2は、基板(ガラス基板)1上の凸状物(支柱)2で、長さ方向に間隔付けて電極3を支持した例を示す。
【0023】
対向する電極3,3間には、図2(B)に示すように、断面半円状の「電極よりも低い部位」(連通溝)4が形成され、隣接する連通溝4,4は、図2(A)に示すように、凸状物2以外の部分で連通するようになっている。図3は、本発明の実施例を示すもので、図3(A)は、上記のように凸状物2以外の部分で連通するようになっているが、図3(B)は、電極3を壁体(凸状物)2′で支持し、隣接する溝4′,4′を同壁体2′で隔離して、連通しないようになっている。
【0024】
また、図3(A)、(B)に示す実施例では、凸状物2及び2′以外の部分は「電極3よりも低い部位」(4及び4′)に形成されている。
【0025】
しかしながら、対向する電極3,3間の一部に、凹部(穴)を単独若しくは間隔付けて複数設けても差し支えないが、図3(A)、(B)に示すように、対向する電極の全部若しくは大部分を電極よりも低い部位(4若しくは4′)に形成する方が、捕集能力が向上することから好ましい。
【0026】
対向する電極3,3間の一部に、凹部(穴)を設ける場合は、対向する電極間の最小ギャップ間5に設けるのが好ましい。この部分が電界強度が強いので、この部分に設ければ、捕集能力がより向上するからである。しかしながら、この部分を含んだ全体に形成すれば、分子をトラップする部分が増大するから、更に捕集能力が向上する。
【0027】
溝4の広さ(図3(A)、(B)に示す場合は、電極3,3間の距離と同じ)は、電界強度に大きく影響するが、誘導泳動対象とする物質の大きさによって適宜決定するものであり一概には言えない。その大きさがマイクロメーターサイズの物質では、好ましくはその物質が持つ直径の100倍以下1倍以上、更に好ましくは10倍以下1倍以上の広さとするのが良い。また、タンパク質、遺伝子等の生体分子の場合、例えばペプチド鎖、タンパク質等では、通常10μm以下1nm以上、好ましくは5μm以下1nm以上であり、ヌクレオチド鎖(ポリヌクレオチド、オリゴグクレオチド)等の場合、通常100μm以下1nm以上、好ましくは50μm以下1nm以上とするのが良い。
【0028】
一般には、深いほど分子をトラップする部分が増大し、更には特にField-Flowfractionationの場合には、溝の部分での流速が抑えられ捕集能力(捕集率)が向上する。しかしながら、深すぎると、誘電泳動によって電極上にトラップした分子を測定する必要がある場合、トラップされていた分子が溝部分から放出され難いか、放出されない場合が生じる。従って、溝の深さは、好ましくは溝の広さの10倍以下1/1000倍以上、更に好ましくは1倍以下1/1000倍以上である。
【0029】
溝の深さは、図3(A)に示すような等方性エッチングにより形成すれば、電極幅以上に掘ると電極3を保持している凸状物2が全て削り取られるので、電極3が剥離する。従って、この方法で溝を形成する場合は、溝の深さは、最大電極幅部分の1/2以下となる。
【0030】
図3(B)に示すように、シリコンウェハーの異方性エッチングにより形成する場合は、55度の角度で深さ方向のみにエッチングが進む。従って、この方法でエッチングする場合は、深さ方向の最大距離は、(電極間の距離÷2)×1.42(tan55度)となる。図3(C)に示すように、RIEやLIGA等により形成する場合は、ほぼ垂直にエッチングが進む。従って、これらの方法でエッチングする場合は、溝の深さは、前述した範囲、即ち、好ましくは溝の深さの10倍以下1/1000倍以上、更に好ましくは1倍以下1/1000倍以上である。
【0031】
溝の間隔(=電極自体の幅)は、正の誘電泳動による分離に限定すれば、分離対象によって左右されない。微細加工技術の加工精度から、通常は50μm以下1nm以上、好ましくは10μm以下1nm以上である。
【0032】
図3(A)に示す等方性エッチングは、ガラス基板若しくはプラスチック基板をエッチングすることにより形成される。等方性エッチングは、基板上の壁体2上で電極3を支持し、隣接する溝4,4は同壁体2で隔離されるように形成される場合や、基板上の凸状物2で電極3を支持し、隣接する溝(連通溝)4,4は連通するように形成される場合等、エッチングの程度により種々の形状が形成される。
【0033】
図3(B)に示す異方性エッチングは、シリコン基板をエッチングすることにより形成される。この場合は、基板上の壁体2′上で電極3を支持し、隣接する溝4′,4′は同壁体2′で隔離されるようになっている。図3(C)に示すRIEは、シリコンやSiO基板等をエッチングすることにより形成され、また、LIGAは、ポリマー、セラミック、プラスチック基板等をエッチングすることにより形成される。これらの場合は、基板上の壁体2”上で電極3を支持し、隣接する溝4”,4”は同壁体2”で隔離されるようになっている。
【0034】
図3(A)に示す等方性エッチングでは、一般には、溝又は連通溝4は断面が半円若しくは半楕円形のような形状に形成される。図3(B)に示す異方性エッチングで溝を形成すると、一般には、溝4′は断面略台形を通って最終的に略V字形にエッチングされる。また、図3(C)に示すRIEやLIGA等で溝を形成すると、一般には、ほぼ断面方形にエッチングされる。従って、エッチングの仕方及び「電極より低い部位」の形成の仕方によって、種々の断面形状のものが形成されるが、本発明においては「電極より低い部位」(連通溝、溝、凹部等)の形状は特に限定されない。
【0035】
図3(A)の壁体又は凸状物2は、中央部が括れた形状に形成され、図3(B)の壁体2′は、台形に形成され、また、図3(C)の壁体2”は、方形に形成されているが、壁体又は凸状物2、壁体2′及び壁体2”は、電極3を支持し得るならどのような形状でも良く、特に限定されない。
【0036】
本発明に使用する電極3は、例えばアルミニウム、金等の導電性の材質からなり、その構造は、誘電泳動力、即ち、水平及び垂直方向に不均一電界を生じ得るものであればよく、例えば、インターデジタル形状〔J. Phys. D:Appl. Phys. 258, 81-88,(1992)、Biochim.Biophys. Acta., 964, 221-230,(1988)等〕が挙げられる。
【0037】
より具体的には、図4に示すように、(A)直線状の帯状部6の上下に対向して三角形の外方突出部7aを間隔付けて多数形成した形状、(B)直線状の帯状部6の上下に対向して四角形の外方突出部7bを間隔付けて多数形成した形状、(C)直線状の帯状部6の上下に対向して台形の外方突出部7cを間隔付けて多数形成した形状、(D)上下に正弦波形であり、同正弦波の凸部8と凹部9(凹部9と凸部8)とが上下に対向して直線状に多数連設された形状、(D)上下に鋸歯形であり、同鋸歯の凸部8′と凹部9′(凹部9′と凸部8′)とが上下に対向して直線状に多数連設された形状が好ましい。しかしながら、誘電泳動に使用し得る電極であれば、どのようなものでも使用することが出来、特に限定されない。
【0036】
このような電極は、通常、例えばガラス、プラスチック、石英、シリコン等の非導電性の材質からなる基板上に、それ自体公知の微細加工技術〔Biochim. Biophys. Acta., 964, 221-230等〕を用いて、1対以上の上記した如き形状の電極を櫛歯状に設けることにより作製される。また、対向(隣接)する電極3間の距離は、強電界強度の不均一交流電界を形成し得るものであれば特に限定されず、目的の分子の種類により適宜設定すべきものである。
【0039】
電極3の厚さは、従来と同様で良く、具体的には、通常0.5nm以上、好ましくは0.5nm〜1nm、更に好ましくは1nm〜1000nmである。
【0040】
電極3は、厚さ以外は、従来と同様で良く、電極上への種々の物質の吸着防止のため、有機薄膜を電極にコーティングしても差し支えない。
【0041】
上記本発明の誘電泳動装置を製造するには、誘電泳動電極及び流路のような「電極よりも低い部位」(連通溝4、溝4′、凹部等)以外は、従来と同様に形成すれば良い。
【0042】
「電極よりも低い部位」を形成するには、例えば適当な刃物等を使用して掘削する方法や例えばシンクロトロン放射光を用いるLIGA(Lithographile Galvanoformung Abformung)法等の物理的手段、例えば基板に対するエッチング液を用いて基板を掘削するエッチング等の化学的手段、又は、高周波電源によりプラズマとした反応性ガスを用いるエッチング[反応性イオンエッチング:ReactiveIon Etching(RIE)]等の物理的及び化学的手段、等により電極間の基板を掘削して形成すればよい。尚、上記した如き手段を適宜組み合わせて基板の掘削を行っても良い。
【0043】
エッチング液は、基板の材質に応じて公知のエッチング液を選択すれば良く、また基板の一部に電極よりも低い部分を形成する場合は、掘削したくない部分を適当にマスキングしてエッチングすれば良い。
【0044】
本発明の誘電泳動装置を使用して、本発明の分離方法を実施するには、分離方法自体は従来と同じように行えばよい。
【0045】
即ち、上記した如き電極(電極基板)を用いて形成させた不均一電界内に、分離すべき物質を含む液体、例えば2種以上の物質(分子若しくは粒子)が溶解若しくは懸濁している液体を存在させて、当該物質に働く誘電泳動力の差によって分離すれば良い。
【0046】
一般には、基板上の流路内に水平及び垂直方向に不均一な電界を形成させ、入口から分離すべき物質を含む液体を流して、当該物質に働く誘電泳動力の差によって分離すれば良い。しかしながら、流れを生じさせることなく、電極の特定部分に保持される成分と保持されない成分とに分離しても勿論良い。
【0047】
物質(分子、粒子)に働く誘電泳動力の差によって分離するには、電極の特定部分に保持される分子等と保持されない分子等とに分離したり、より強い誘電泳動力を受ける分子等は弱い誘電泳動力を受ける分子等よりも遅延して移動するため、移動時間に差が生じることを利用して分離したりすれば良い。
【0048】
図5の矢印で示すように、本発明の装置の流路に電極の長さ方向と交差する方向から分離すべき物質を含む液体を流すと、連通溝4の中の流速は流路部分に比べて遅くなり、連通溝4の中に入った分子にかかる流体の抗力Fvを減らすことが出来る。また、電極3,3間に連通溝4を形成したことによって、電界の影響範囲が広くなることと、トラップされた分子がストックされる場所が広がることから、捕集率が向上したものと思われる。
【0049】
本発明の測定方法は、本発明の分離方法を利用する以外は、上記した如きそれ自体公知の方法に準じて実施すればよく、使用される試薬類も、それ自体公知の試薬類の中から適宜選択すればよい。
【0050】
以下に実施例及び参考例を挙げ、本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。
【0051】
【実施例】
参考例 1:誘電泳動電極基板の作製最小ギャップ7μm 、電極ピッチ20μm、電極数2016(1008対)の多段電極列を設計し、それに基づいて、電極作製用のフォトマスクを作製した。
【0052】
即ち、アルミ蒸着したガラス基板にレジストを塗布して、電子ビーム描画装置にて上記設計通りの電極パターンを描画した後、レジストを現像し、アルミをエッチングすることによってフォトマスクを作製した。
【0053】
電極基板の作製は、図解フォトファブリケーション、橋本貴夫著、総合電子出版、(1985)に記載の方法に準じて以下の如く行った。
【0054】
即ち、上記の如くして作製したフォトマスクと、レジストを塗布したアルミ蒸着ガラス基板を密着させたのち、水銀ランプで電極パターンを露光した。露光後の電極用ガラス基板はレジストの現像、アルミ面のエッチングに続き、アルミ面に残ったレジストを除去することによって電極基板を作製した。
【0055】
実施例 1:エッチングにより基板に「電極よりも低い部位」を形成
図6に示すように、参考例1に記載のようにして作製した誘導泳動電極のガラス基板1をエッチングして、基板1の電極3対向部に連通溝4を形成した。
【0056】
エッチング液として、フッ化ナトリウム硫酸(NaF3%、HSO、HO)を使用した。フッ化ナトリウム硫酸は、ガラス、アルミの両方を溶かす性質を有するが、ガラスをエッチングする速度は、アルミをエッチングする速度に比べて非常に早いので、アルミ電極をマスクとしてアルミ電極以外のガラス部分をエッチングすることが出来る。
【0057】
電極のアルミの厚さを40nmとすると、深さ3μm以上エッチングすると、エッチング液を純水で洗浄する時に、電極が水流によって折れ曲がる様子が観察されるが、250nmの厚さで行うと電極が折れ曲がる現象は観察されなかった。
【0058】
上記のようにエッチングして、エッチング時間(sec.)と電極間に形成される連通溝の深さ(μm)との関係を測定した。結果は、図7に示すように、エッチング時間と形成される溝の深さとは、比例関係を示した。尚、溝の深さは、電極をガラス切りで切断し、断面を顕微鏡で観察して測定した。
参考例 2 流路を有する電極基板の作製
不均一電界中に分子を移動させることによる分子の分離を行うため、実施例1で作製した電極基板上にシリコンゴムを用いて流路を作製した。
【0059】
電極上に分子が溶解した溶液を送流するためのシリコンゴム流路は、深さ25μm、幅400μmで、電極基板上の電極が配置されている領域を通るように設計した。
【0060】
作製は、図解フォトファブリケーション、橋本貴夫著、総合電子出版、1985に記載の方法に準じて行った。先ず、ガラス板上に厚さ25μmのシート状ネガレジストを貼り付けた後、流路作製用に設計したフォトマスクを用いて露光した後、ネガレジストの現像を行った。このネガレジスト基板を鋳型として未硬化のシリコンゴムを流し込んだ後、硬化させることによって、電極が配置されている部分に高さ25μmの凹面を持つシリコンゴムを作製した。
【0061】
電極基板とシリコンゴム流路を、電極基板上の電極が配置されている領域にシリコンゴム凹面があうように2液硬化型シリコンゴムで接着し、流路上流部に、溶液注入用のシリンジを差し込み、該電極基板に、電極上を分子が溶解している溶液を送流させる装置を付加した。
【0062】
実施例 2 牛血清アルブミン(BSA)タンパクについての捕集率の測定
実施例1のようにして、深さ2μm又は4μmの連通溝を形成した電極を作製し、参考例2に記載のように流路を形成して、本発明の誘導泳動クロマトグラフィー装置を作製し、下記のようにしてこの装置の捕集率を測定した。尚、比較のため、連通溝を形成しない以外は同様にして作製した誘導泳動クロマトグラフィー装置についても捕集率を測定した。
【0063】
(試料)サンプルとして、FITC標識されたBSA(分子量約65kD)60μg/mlを用いた。
【0064】
(操作)タンパク分子の電極基板や流路への吸着を防止するため、ブロックA(雪印乳業(株)社製)を用いて流路表面をブロッキングした後、FITC標識BSAを誘導泳動クロマトグラフィーに供した。
【0065】
使用したサンプルの平均流速は556μm/sec.であり、電界印加は測定開始から30〜120秒の間に行った。この時の印加する電界強度は、2.14Mv/m、2.5Mv/m、2.86Mv/mの3種類について捕集率を測定した。
【0066】
捕集率の測定は、次式により求めた。
【0067】
捕集率(%)=[(I-Imin)×100]/(I-Iback
式中、Iは、電界印加前の蛍光強度の定常値を表し、Iminは、電界印加中の蛍光強度の最小値を表し、Ibackは、バックグラウンドを表す。
(結果)結果を図8に示す。尚、図8中、−△―は深さ4μm、−□−は深さ2μm、−◇―は深さ0μmの誘導泳動クロマトグラフィー装置を使用した結果を表す。
【0068】
図8の結果から明らかなように、溝の深さが深いほど捕集率(%)が向上し、2.86Mv/mでは、4μmの連通溝を持つ本発明の装置は、持たない従来の装置の捕集率28%と比べて40%であり、捕集率が約43%向上すること、言い換えれば、このように本発明の装置を使用することにより目的物質の捕集能力が著しく向上することが判る。
【0069】
実施例 3:500bpDNAについての捕集率の測定
インターカーレーター蛍光色素YOYO―1(モレキュラープローブ社)で標識した500bpDNAを試料として使用し、実施例2と同様にして、溝の深さ0μm、2μm及び4μmの誘導泳動クロマトグラフィー装置により捕集率(%)を測定した。
【0070】
結果を図9に示す。尚、図9中、−△―は深さ4μm、−□−は深さ2μm、−◇―は深さ0μmの連通溝を有する誘導泳動クロマトグラフィー装置を使用した結果を表す。
【0071】
図9の結果から明らかなように、この場合でも1.5Mv/m以上の電界強度において、深さ4μmの連通溝を形成した本発明の装置は、連通溝を有しない従来の装置より、約20%程度捕集率(%)が向上した。
【0072】
【発明の効果】
以上述べた如く、本発明によれば、物理的又は/及び化学的手段により電極間の基板を掘削して、対向する電極間に電極よりも低い部位を設けるという従来全く行われていなかったことを行うことによって、誘導泳動による物質の分離に極めて重要な役割を有する捕集率が著しく向上するという絶大な効果を奏するものであり、それゆえ極めて画期的な発明である。
【図面の簡単な説明】
【図1】誘電泳動の原理を示す図である。
【図2】「電極よりも低い部位」の例を示す平面図(A)と断面図(B)である。
【図3】等方性エッチング(A)、異方性エッチング(B)、及びRIE若しくはLIGA(C)により形成した本発明の「電極よりも低い部位」の例を示す断面図である。
【図4】本発明に使用する電極の例を示す平面図である。
【図5】本発明の誘導泳動クロマトグラフィー装置の断面図である。
【図6】本発明の方法により基板に「電極よりも低い部位」を形成する例を示す断面図である。
【図7】実施例1で測定したエッチング時間と溝の深さとの関係を示すグラフである。
【図8】本発明の誘導泳動クロマトグラフィー装置と従来の誘導泳動クロマトグラフィー装置を使用して、牛血清アルブミン(BSA)タンパクについて捕集率を測定したグラフである。
【図9】本発明の誘導泳動クロマトグラフィー装置と従来の誘導泳動クロマトグラフィー装置を使用して、500bpDNAについて捕集率を測定したグラフである。
【符号の説明】
1:基板
2:凸状物(支柱)
2′:凸状物(壁体)
3:電極
4:電極よりも低い部位(連通溝)
4′:電極よりも低い部位(溝)
5:電極間の最小ギャップ
[0001]
[Technical field to which the invention belongs]
This invention relates to a method of separating dielectrophoretic equipment and materials with improved collecting capability.
[0002]
[Prior art]
In recent years, due to advances in semiconductor technology, material processing technology in the nm to μm unit has been established by micro processing technology such as photolithography, and the micro processing technology continues to advance even now.
[0003]
In the field of chemistry and biochemistry, using this microfabrication technology, extraction of components to be analyzed from biological samples (extraction process), analysis of the components using chemical and biochemical reactions (analysis process), and Using a minimal analyzer that integrates all of the subsequent chemical and biochemical analysis processes, such as the subsequent separation process (separation process) and detection (detection process), onto a chip of several centimeters to several tens of centimeters. A new technology called Micro Total Analysis System (μ-TAS), Laboratory on a chip, is being developed.
[0004]
This μ-TAS method shortens the analysis time throughout the chemical and biochemical analysis process, reduces the amount of sample used and the amount of reagents necessary for chemical and biochemical reactions, and reduces the amount of analysis equipment and analysis space. It is expected to contribute greatly to downsizing.
[0005]
In particular, for the separation process in μ-TAS, the charge of a substance in a high electric field using a capillary (capillary tube) with an inner diameter of 1 mm or less made of Teflon (registered trademark) or silica as a material. There have been developed capillary electrophoresis methods that perform separation using the difference between them and capillary column chromatography methods that perform separation using the difference in the interaction between the column carrier and the substance using the same capillary.
[0006]
However, capillary electrophoresis requires a high voltage for separation, has a problem that the detection capacity is low because the capillary capacity in the detection region is limited, and furthermore, the capillary chip on the chip is used for separation. The capillary length is limited, and a capillary length sufficient for polymer separation cannot be obtained. Therefore, it is suitable for separation of low-molecular substances, but not suitable for separation of high-molecular substances. ing. Further, the capillary column chromatography method has a problem that it is difficult to shorten the processing time because there is a limit to speeding up the separation process.
[0007]
Therefore, in recent years, as one of the means for solving the above problems, when a substance is placed in a non-uniform AC electric field, positive and negative polarization occurs in the substance, and the dielectric constant of the medium surrounding the substance is higher than that of the substance. Is larger, the substance moves in the direction of low electric field, and if the dielectric constant of the medium is smaller than that of the substance, the phenomenon that the substance moves in the direction of strong electric field works, so-called dielectrophoretic force [HAPohl: "Dielectrophoresis", Cambridge Univ. Press (1978), TB Jones: “Electromechanics of Particles”, Cambridge Univ. Press (1995), etc.] have attracted attention.
[0008]
In this separation method, (1) the magnitude of the dielectrophoretic force depends on the size and dielectric properties of the substance (particle) and is proportional to the electric field gradient. Therefore, if a microfabricated electrode is used, the electric field and electric field gradient are reduced. Because it can be very large, high voltage is not required unlike capillary electrophoresis, and high-speed separation can be expected with low applied voltage. (2) Electric field is applied because the place where the electric field is strong is limited to a minute region. (3) Dielectrophoresis is a force proportional to the gradient of the electric field. As shown in the figure, the polarity of the applied voltage is changed. Because it does not depend, the force works in the same way as DC even under AC electric field. Therefore, since electrode reaction (electrolysis reaction) in an aqueous solution can be suppressed by using high-frequency alternating current, the electrode itself can be integrated in a channel (sample flow path). (4) Like capillary electrophoresis In view of the fact that there is no restriction on the chamber volume of the detection part and that improvement in detection sensitivity can be expected, it is now considered to be the most suitable separation method in μ-TAS.
[0009]
[Problems to be solved by the invention]
However, considering the application of dielectrophoresis to μ-TAS, it is extremely important to improve the collection capability. In this respect, the conventional dielectrophoresis apparatus is not yet satisfactory.
[0010]
That is, if the ability to collect substances is improved, separation at the electrode region becomes possible, and separation with a high S / N (signal / noise) ratio is realized by maintaining it efficiently. Further, for example, in the field-flow fractionation in which the separation is performed by the interaction between the dielectrophoretic force acting on the substance and the fluid drag force, it is possible to perform separation in a short electrode region even at the same flow rate.
[0011]
Of the present invention, the invention described in claim 1 is made by paying attention to such a point, and a liquid containing a substance to be separated is present in a non-uniform electric field formed by a dielectrophoresis electrode. an apparatus for separating the dielectrophoretic force acting on the material shall be the object of the invention to provide a dielectrophoresis apparatus with improved trapping ability of a substance.
[0012]
The invention of claim 3 is intended to provide a method for separating substances.
[0013]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have excavated the electrode and the substrate portion of the electrode to form a portion lower than the electrode, thereby increasing the non-uniform electric field region and the fluid flow. Since the drag is reduced, the inventors have arrived at the present invention by conceiving that the collection ability is improved.
[0014]
In the past, many patents and papers on separation devices and methods using dielectrophoretic force, especially devices and methods in field-flow fractionation, have been found. There is no known device or method for improving the collection ability, and no such idea is known.
[0015]
Among the present inventions, the invention according to claim 1 is a dielectrophoresis apparatus in which an electrode is provided on a substrate, and a substrate between the electrodes is excavated by physical or / and chemical means, and the electrode is disposed between the opposed electrodes. A portion lower than the electrodes is formed, and a structure that realizes an increase in the nonuniform electric field region is formed between the opposing electrodes .
[0016]
By forming a “part lower than the electrode ”, electrolysis is formed not only above but also between the electrodes, resulting in an increase in the non-uniform electric field region. Furthermore, for example, when used for Field-Flow fractionation Since the flow velocity of the fluid in this portion is reduced, the fluid drag is reduced, so that the substance collecting ability is improved .
Here, the physical means is, for example, a method of excavating using an appropriate blade or the like, for example, the LIGA (Lithographile Galvanoformung Abformung) method using synchrotron radiation, and the chemical means is For example, it is etching for excavating a substrate using an etching solution for the substrate. Also, the substrate between the electrodes can be excavated by, for example, reactive ion etching (RIE), which uses a reactive gas that is converted into plasma by a high-frequency power source that simultaneously performs physical and chemical excavation. Can do. The substrate may be excavated by appropriately combining the above-described means.
[0017]
According to a third aspect of the present invention, there is provided a liquid containing a substance to be separated in a non-uniform electric field formed by a dielectrophoresis electrode, and a substance that performs separation by a difference in dielectrophoretic force acting on the substance. In the separation method, the substrate between the electrodes is excavated by physical or / and chemical means to form a portion lower than the electrode formed between the opposing electrodes , thereby realizing an increase in the non-uniform electric field region. Accordingly, it characterized in that to the upper direction of the collecting capability of the material.
[0018]
Dielectrophoresis (DEP) means that neutral particles move in a non-uniform electric field due to the interaction between the electric conductivity and dielectric constant of a substance, the electric conductivity and dielectric constant of a medium, and the applied frequency. This is a phenomenon, and the force acting on molecules at this time is called dielectrophoretic force. In addition, the dielectrophoretic force is classified into two types, that is, a positive dielectrophoretic force in which a substance moves toward a strong electric field and a negative dielectrophoretic force in which a substance moves toward a weak electric field. Hereinafter, a case where a positive dielectrophoretic force acts on a molecule will be described as an example.
[0019]
That is, as shown in FIG. 1, a positive polarity charge + q is induced on the downstream side of the electric field, and a negative polarity charge -q is induced on the upstream side, as shown in FIG. , A force of magnitude + qE acts on the electric field E, and this portion is pulled upstream of the electric field. If the molecule is neutral, the absolute values of + q and -q are equal, and if the electric field is constant regardless of the location, the forces acting on the two are balanced and the molecule does not move. However, when the electric field is not uniform, the force drawn to the strong electric field side becomes larger, and the molecule is driven to the strong electric field side.
[0020]
As described above, molecules in the solution move variously in the electric field region according to the dielectrophoretic force generated in the molecule. For example, the movement of the molecule in the field-flow fractionation is caused by the dielectrophoretic force Fd generated in the molecule. In addition, it is governed by three factors: fluid drag (drag due to flow in the flow path) Fv and force Fth due to thermal motion. (1) In the case of Fd >> Fv + Fth, the molecules are collected (trapped) by the electrode, and (2) In the case of Fd << Fv + Fth, the molecules move in the flow path regardless of the electric field. It flows out. (3) In the case of Fd≈Fv + Fth, the molecules are transported downstream while repeatedly adsorbing and desorbing to the electrode, and as a result, arrive at the outlet later than the flow in the original flow path.
[0021]
In the present invention, by deeply digging between the opposing electrodes, a non-uniform electric field is formed also below the electrodes, so that the non-uniform electric field region increases and the flow of fluid in this part becomes slow. Since the drag Fv of the fluid is reduced, Fd becomes larger and Fv becomes smaller under the condition (1) , so that the collection rate is improved. Further, the particles trapped in the electric field formed below the electrodes are positioned at “a part lower than the electrodes”, and thus are difficult to flow out.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
2, board (a glass substrate) convex particle on 1 (post) 2, shows an example of supporting the electrode 3 with intervals in the longitudinal direction.
[0023]
As shown in FIG. 2B, a semi-circular “part lower than the electrode” (communication groove) 4 is formed between the opposing electrodes 3 and 3, and the adjacent communication grooves 4 and 4 As shown to FIG. 2 (A), it communicates in parts other than the convex-shaped object 2. As shown in FIG. FIG. 3 shows an embodiment of the present invention, and FIG. 3 (A) communicates with portions other than the convex object 2 as described above, but FIG. 3 (B) shows an electrode. 3 is supported by a wall body (convex shape) 2 ', and adjacent grooves 4' and 4 'are isolated by the wall body 2' so as not to communicate with each other.
[0024]
In the embodiment shown in FIGS. 3A and 3B , portions other than the projections 2 and 2 ′ are formed in “parts lower than the electrode 3” (4 and 4 ′).
[0025]
However, a plurality of recesses (holes) may be provided in a part between the opposed electrodes 3 and 3 alone or at intervals, as shown in FIGS. 3A and 3B. It is preferable to form all or most of the portion at a lower portion (4 or 4 ') than the electrode because the collection ability is improved.
[0026]
When providing a recessed part (hole) in a part between the electrodes 3 and 3 which oppose, it is preferable to provide in the minimum gap 5 between the electrodes which oppose. This is because this portion has a high electric field strength, so that the collection ability is further improved by providing this portion. However, if it is formed on the entire surface including this portion, the portion for trapping molecules increases, so that the collection ability is further improved.
[0027]
The width of the groove 4 (in the case shown in FIGS. 3A and 3B , the same as the distance between the electrodes 3 and 3) greatly affects the electric field strength, but it depends on the size of the substance to be subjected to induction electrophoresis. It is determined as appropriate and cannot be generally stated. In the case of a substance having a micrometer size, the size is preferably 100 times or less and 1 or more times the diameter of the substance, more preferably 10 times or less and 1 or more times. In the case of biomolecules such as proteins and genes, for example, peptide chains and proteins are usually 10 μm or less and 1 nm or more, preferably 5 μm or less and 1 nm or more. In the case of nucleotide chains (polynucleotides, oligonucleotides), etc. The thickness is 100 μm or less and 1 nm or more, preferably 50 μm or less and 1 nm or more.
[0028]
In general, as the depth increases, the number of trapped molecules increases. In particular, in the case of field-flow fractionation, the flow velocity at the groove portion is suppressed and the collection capability (collection rate) is improved. However, if it is too deep, if it is necessary to measure molecules trapped on the electrode by dielectrophoresis, the trapped molecules may be difficult to release from the groove portion or may not be released. Therefore, the depth of the groove is preferably 10 times or less and 1/1000 times or more of the width of the groove, more preferably 1 time or less and 1/1000 times or more.
[0029]
If the depth of the groove is formed by isotropic etching as shown in FIG. 3 (A), all the protrusions 2 holding the electrode 3 are scraped away when the electrode 3 is dug beyond the width of the electrode. Peel off. Therefore, when the groove is formed by this method, the depth of the groove is ½ or less of the maximum electrode width portion.
[0030]
As shown in FIG. 3B, when the silicon wafer is formed by anisotropic etching, the etching proceeds only in the depth direction at an angle of 55 degrees. Therefore, when etching is performed by this method, the maximum distance in the depth direction is (distance between electrodes ÷ 2) × 1.42 (tan 55 degrees). As shown in FIG. 3C, in the case of forming by RIE, LIGA, or the like, etching proceeds substantially vertically. Therefore, in the case of etching by these methods, the depth of the groove is in the above-mentioned range, that is, preferably 10 times or less 1/1000 times or more, more preferably 1 time or less 1/1000 times or more of the groove depth. It is.
[0031]
The spacing between the grooves (= width of the electrode itself) is not affected by the separation target if it is limited to separation by positive dielectrophoresis. From the processing accuracy of the fine processing technique, it is usually 50 μm or less and 1 nm or more, preferably 10 μm or less and 1 nm or more.
[0032]
The isotropic etching shown in FIG. 3A is formed by etching a glass substrate or a plastic substrate. In the isotropic etching, the electrode 3 is supported on the wall 2 on the substrate, and the adjacent grooves 4 and 4 are formed so as to be isolated by the wall 2, or the convex 2 on the substrate. When the electrode 3 is supported and the adjacent grooves (communication grooves) 4 and 4 are formed so as to communicate with each other, various shapes are formed depending on the degree of etching.
[0033]
The anisotropic etching shown in FIG. 3B is formed by etching a silicon substrate. In this case, the electrode 3 is supported on the wall 2 'on the substrate, and adjacent grooves 4' and 4 'are separated by the wall 2'. The RIE shown in FIG. 3C is formed by etching a silicon, SiO 2 substrate or the like, and the LIGA is formed by etching a polymer, ceramic, plastic substrate or the like. In these cases, the electrode 3 is supported on the wall 2 ″ on the substrate, and the adjacent grooves 4 ″ and 4 ″ are separated by the wall 2 ″.
[0034]
In the isotropic etching shown in FIG. 3A , in general, the groove or the communication groove 4 is formed in a semicircular or semi-elliptical shape. When a groove is formed by anisotropic etching shown in FIG. 3B, generally, the groove 4 'passes through a substantially trapezoidal cross section and is finally etched into a substantially V shape. In addition, when a groove is formed by RIE, LIGA, or the like shown in FIG. Accordingly, various cross-sectional shapes are formed depending on the etching method and the method of forming the “parts lower than the electrodes”. In the present invention, the “parts lower than the electrodes” (communication grooves, grooves, recesses, etc.) are formed. The shape is not particularly limited.
[0035]
3A is formed in a shape in which the central portion is constricted, and the wall 2 ′ in FIG. 3B is formed in a trapezoidal shape, and in FIG. The wall body 2 ″ is formed in a square shape, but the wall body or convex body 2, the wall body 2 ′ and the wall body 2 ″ may have any shape as long as they can support the electrode 3, and are not particularly limited. .
[0036]
The electrode 3 used in the present invention is made of, for example, a conductive material such as aluminum or gold, and its structure may be any one that can generate a dielectrophoretic force, that is, a non-uniform electric field in the horizontal and vertical directions. And interdigital shapes [J. Phys. D: Appl. Phys. 258, 81-88, (1992), Biochim. Biophys. Acta., 964, 221-230, (1988), etc.].
[0037]
More specifically, as shown in FIG. 4, (A) a shape in which a large number of triangular outward projecting portions 7 a are formed facing each other above and below the linear strip 6, and (B) a linear shape A shape in which a large number of quadrangular outward projecting portions 7b are formed to be opposed to the upper and lower sides of the belt-like portion 6, and (C) a trapezoidal outward projecting portion 7c is spaced to face the upper and lower sides of the linear strip-like portion 6. (D) A shape in which a sine waveform is formed vertically and a plurality of convex portions 8 and concave portions 9 (concave portions 9 and convex portions 8) of the same sine wave are arranged in a straight line so as to face each other in the vertical direction. (D) It is preferably a sawtooth shape in the vertical direction, in which a plurality of convex portions 8 ′ and concave portions 9 ′ (concave portions 9 ′ and convex portions 8 ′) of the same sawtooth are vertically opposed to each other in a straight line. . However, any electrode that can be used for dielectrophoresis can be used and is not particularly limited.
[0036]
Such an electrode is usually formed on a substrate made of a non-conductive material such as glass, plastic, quartz, silicon, etc., on a microfabrication technique known per se [Biochim. Biophys. Acta., 964, 221-230, etc. ] Is used to provide one or more pairs of electrodes having the above-described shape in a comb shape. Further, the distance between the opposing (adjacent) electrodes 3 is not particularly limited as long as it can form a non-uniform alternating electric field having a strong electric field strength, and should be appropriately set depending on the type of the target molecule.
[0039]
The thickness of the electrode 3 may be the same as that of the prior art, and is specifically 0.5 nm or more, preferably 0.5 nm to 1 nm, more preferably 1 nm to 1000 nm.
[0040]
The electrode 3 may be the same as the conventional one except for the thickness, and an organic thin film may be coated on the electrode in order to prevent adsorption of various substances onto the electrode.
[0041]
In order to manufacture the dielectrophoresis device of the present invention, the dielectrophoresis electrode and the flow path other than the “parts lower than the electrodes” (communication grooves 4, grooves 4 ′, recesses, etc.) are formed in the same manner as before. It ’s fine.
[0042]
In order to form the “part lower than the electrode”, physical means such as a method of drilling using an appropriate blade or the like, or a LIGA (Lithographile Galvanoformung Abformung) method using synchrotron radiation, for example, etching on a substrate Chemical and chemical means such as etching for excavating a substrate using a liquid, or physical and chemical means such as etching using a reactive gas made into plasma by a high-frequency power source [Reactive Ion Etching (RIE)], For example, the substrate between the electrodes may be excavated and formed. Incidentally, but it may also be carried out excavation of the substrate appropriately combined such means described above.
[0043]
As the etching solution, a known etching solution may be selected according to the material of the substrate, and when a portion lower than the electrode is formed on a part of the substrate, the portion which is not to be excavated is appropriately masked and etched. It ’s fine.
[0044]
In order to carry out the separation method of the present invention using the dielectrophoresis apparatus of the present invention, the separation method itself may be carried out in the same manner as before.
[0045]
That is, a liquid containing a substance to be separated, for example, a liquid in which two or more kinds of substances (molecules or particles) are dissolved or suspended in a non-uniform electric field formed using an electrode (electrode substrate) as described above. It may be separated by the difference in dielectrophoretic force acting on the substance.
[0046]
In general, a non-uniform electric field is formed in the flow path on the substrate in the horizontal and vertical directions, a liquid containing a substance to be separated is allowed to flow from the inlet, and separation is performed by a difference in dielectrophoretic force acting on the substance. . However, it is of course possible to separate the component held in a specific part of the electrode and the component not held without causing a flow.
[0047]
In order to separate by the difference in dielectrophoretic force acting on substances (molecules, particles), molecules that are held in specific parts of the electrode and molecules that are not held, or molecules that receive stronger dielectrophoretic force Since they move with a delay from molecules or the like that receive a weak dielectrophoretic force, they may be separated by utilizing the difference in movement time.
[0048]
As shown by the arrows in FIG. 5, when a liquid containing a substance to be separated from the direction intersecting the length direction of the electrode is caused to flow through the flow path of the apparatus of the present invention, the flow velocity in the communication groove 4 is flown into the flow path portion. Compared with this, the drag Fv of the fluid applied to the molecules entering the communication groove 4 can be reduced. In addition, the formation of the communication groove 4 between the electrodes 3 and 3 widens the range of influence of the electric field and widens the place where trapped molecules are stocked. It is.
[0049]
The measurement method of the present invention may be carried out according to a method known per se as described above, except that the separation method of the present invention is used, and the reagents used are among the reagents known per se. What is necessary is just to select suitably.
[0050]
The present invention will be described more specifically with reference to examples and reference examples below, but the present invention is not limited to these examples.
[0051]
【Example】
Reference Example 1: Production of Dielectrophoresis Electrode Substrate A multistage electrode array having a minimum gap of 7 μm, an electrode pitch of 20 μm, and the number of electrodes 2016 (1008 pairs) was designed, and based on this, a photomask for producing electrodes was produced.
[0052]
That is, a resist was applied to a glass substrate on which aluminum was vapor-deposited, an electrode pattern as designed was drawn with an electron beam drawing apparatus, the resist was developed, and aluminum was etched to produce a photomask.
[0053]
The electrode substrate was produced as follows according to the method described in Illustrated Photofabrication, Takao Hashimoto, General Electronic Publishing, (1985).
[0054]
That is, after the photomask produced as described above and an aluminum vapor-deposited glass substrate coated with a resist were brought into close contact with each other, the electrode pattern was exposed with a mercury lamp. The electrode glass substrate after the exposure was prepared by developing the resist and etching the aluminum surface, and then removing the resist remaining on the aluminum surface.
[0055]
Example 1: Formation of “part lower than electrode” on substrate by etching As shown in FIG. 6, the glass substrate 1 of the electrophoretic electrode prepared as described in Reference Example 1 was etched, and A communication groove 4 was formed in the electrode 3 facing portion.
[0056]
Sodium fluoride sulfuric acid ( Na 3%, H 2 SO 4 , H 2 O) was used as an etchant. Sodium fluoride sulfuric acid has the property of melting both glass and aluminum, but the etching rate of glass is much faster than the etching rate of aluminum. It can be etched.
[0057]
When the thickness of the aluminum of the electrode is 40 nm, when the depth is etched by 3 μm or more, when the etching solution is washed with pure water, it is observed that the electrode is bent by the water flow, but when the thickness is 250 nm, the electrode is bent. The phenomenon was not observed.
[0058]
Etching was performed as described above, and the relationship between the etching time (sec.) And the depth (μm) of the communication groove formed between the electrodes was measured. As a result, as shown in FIG. 7, the etching time and the depth of the groove to be formed showed a proportional relationship. The depth of the groove was measured by cutting the electrode by glass cutting and observing the cross section with a microscope.
Reference Example 2 Production of Electrode Substrate Having Channels In order to separate molecules by moving molecules in a non-uniform electric field, a channel was produced on the electrode substrate produced in Example 1 using silicon rubber.
[0059]
The silicon rubber flow path for sending a solution in which molecules are dissolved on the electrode is designed to pass through a region on the electrode substrate on which the electrode is arranged, having a depth of 25 μm and a width of 400 μm.
[0060]
The production was performed according to the method described in Illustrated Photofabrication, Takao Hashimoto, General Electronic Publishing, 1985. First, a sheet negative resist having a thickness of 25 μm was pasted on a glass plate, and after exposure using a photomask designed for the production of a flow path, the negative resist was developed. Using this negative resist substrate as a mold, uncured silicon rubber was poured and then cured to produce silicon rubber having a concave surface with a height of 25 μm at the portion where the electrode is disposed.
[0061]
Adhere the electrode substrate and the silicon rubber channel with two-part curable silicone rubber so that the silicon rubber concave surface is in the region where the electrode on the electrode substrate is located, and install a syringe for solution injection on the upstream side of the channel A device for feeding a solution in which molecules are dissolved on the electrode was added to the electrode substrate.
[0062]
Example 2 Measurement of collection rate for bovine serum albumin (BSA) protein As in Example 1, an electrode having a communication groove having a depth of 2 μm or 4 μm was prepared and flowed as described in Reference Example 2. A path was formed to produce the induction electrophoresis chromatography apparatus of the present invention, and the collection rate of this apparatus was measured as follows. For comparison, the collection rate was also measured for an induction electrophoresis chromatography apparatus produced in the same manner except that no communication groove was formed.
[0063]
(Sample) As a sample, FITC-labeled BSA (molecular weight of about 65 kD) 60 μg / ml was used.
[0064]
(Operation) Blocking the surface of the flow path using Block A (manufactured by Snow Brand Milk Products Co., Ltd.) to prevent adsorption of protein molecules to the electrode substrate or flow path, and then subjecting FITC-labeled BSA to induction chromatography Provided.
[0065]
The average flow rate of the sample used was 556 μm / sec. The electric field application was performed within 30 to 120 seconds from the start of measurement. At this time, the collection rate was measured for three types of electric field strength to be applied: 2.14 Mv / m, 2.5 Mv / m, and 2.86 Mv / m.
[0066]
The collection rate was determined by the following formula.
[0067]
Collection rate (%) = [(I 0 -I min ) × 100] / (I 0 -I back )
In the formula, I 0 represents a steady value of fluorescence intensity before application of an electric field, I min represents a minimum value of fluorescence intensity during application of an electric field, and I back represents background.
(Results) The results are shown in FIG. In FIG. 8, -.DELTA.- indicates the result of using a 4 .mu.m depth, -.quadrature.- indicates a depth of 2 .mu.m, and-..
[0068]
As is clear from the results of FIG. 8, the collection rate (%) increases as the depth of the groove increases, and the device of the present invention having a communication groove of 4 μm does not have a conventional groove at 2.86 Mv / m. Compared with the device collection rate of 28%, it is 40%, and the collection rate is improved by about 43%. In other words, the use of the device of the present invention significantly improves the collection capability of the target substance. I know that
[0069]
Example 3: Measurement of collection rate for 500 bp DNA 500 bp DNA labeled with intercalator fluorescent dye YOYO-1 (Molecular Probes) was used as a sample, and the groove depth was 0 μm and 2 μm as in Example 2. And the collection rate (%) was measured with a 4 μm induction electrophoresis chromatography apparatus.
[0070]
The results are shown in FIG. In FIG. 9, −Δ− represents a depth of 4 μm, − □ − represents a depth of 2 μm, and − ◇ − represents a result of using an induction electrophoresis chromatography apparatus having a communication groove having a depth of 0 μm.
[0071]
As is apparent from the results of FIG. 9, even in this case, the device of the present invention in which the communication groove having a depth of 4 μm is formed at an electric field strength of 1.5 Mv / m or more is approximately less than the conventional device having no communication groove. The collection rate (%) was improved by about 20%.
[0072]
【The invention's effect】
As described above, according to the present invention, the conventional method of excavating the substrate between the electrodes by physical or / and chemical means to provide a portion lower than the electrodes between the opposing electrodes has never been performed. By carrying out the above, it has a tremendous effect that the collection rate, which has a very important role in the separation of substances by induction electrophoresis, is remarkably improved, and is therefore an extremely innovative invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing the principle of dielectrophoresis.
FIGS. 2A and 2B are a plan view and a cross-sectional view showing an example of “a portion lower than an electrode” .
FIG. 3 is a cross-sectional view showing an example of a “part lower than an electrode” of the present invention formed by isotropic etching (A), anisotropic etching (B), and RIE or LIGA (C).
FIG. 4 is a plan view showing an example of an electrode used in the present invention.
FIG. 5 is a cross-sectional view of the induction electrophoresis chromatography apparatus of the present invention.
FIG. 6 is a cross-sectional view showing an example in which a “part lower than an electrode” is formed on a substrate by the method of the present invention.
7 is a graph showing the relationship between etching time and groove depth measured in Example 1. FIG.
FIG. 8 is a graph showing the collection rate of bovine serum albumin (BSA) protein measured using the induction electrophoresis chromatography device of the present invention and a conventional induction electrophoresis chromatography device.
FIG. 9 is a graph obtained by measuring the collection rate of 500 bp DNA using the induced electrophoresis chromatography device of the present invention and the conventional induced electrophoresis chromatography device.
[Explanation of symbols]
1: Substrate 2: Convex object (support)
2 ': Convex object (wall)
3: Electrode 4: Lower part than the electrode (communication groove)
4 ′: Lower part (groove) than the electrode
5: Minimum gap between electrodes

Claims (4)

基板上に電極を設けた誘電泳動装置において、物理的又は/及び化学的手段により電極間の基板を掘削して、対向する前記電極間に該電極よりも低い部位を形成して、対向する前記電極間に、不均一電界領域の増加を実現する構造を形成したことを特徴とする誘電泳動装置。In a dielectrophoresis apparatus in which an electrode is provided on a substrate, the substrate between the electrodes is excavated by physical or / and chemical means to form a portion lower than the electrodes between the opposed electrodes, and the opposed electrodes A dielectrophoresis apparatus characterized in that a structure that realizes an increase in a nonuniform electric field region is formed between electrodes. 前記化学的手段が、誘電泳動装置の基板に対するエッチング液を用いるエッチングである請求項に記載の誘電泳動装置The dielectrophoresis apparatus according to claim 1 , wherein the chemical means is etching using an etching solution for a substrate of the dielectrophoresis apparatus . 誘電泳動電極により形成された不均一電界内に、分離すべき物質を含む液体を存在させ、該物質に働く誘電泳動力の差によって分離を行う物質の分離方法において、物理的又は/及び化学的手段により電極間の基板を掘削して、対向する電極間に形成した電極よりも低い部位を形成することにより、不均一電界領域の増加を実現することによって、物質の捕集能力を向上させたことを特徴とする物質の分離方法。In a separation method of a substance in which a liquid containing a substance to be separated is present in a non-uniform electric field formed by a dielectrophoresis electrode and separation is performed by a difference in dielectrophoretic force acting on the substance, physical or / and chemical drilled substrate between the electrodes by means, by forming a lower portion than the opposing electrode formed between the electrodes, by realizing an increase in non-uniform electric field region is the upper direction of the trapping capacity of a substance A method for separating substances characterized by the above. 誘電泳動電極により形成された不均一電界内に、分離すべき物質を含む液体を流し、該物質に働く誘電泳動力と流体抗力の相互作用によって分離を行う物質の分離方法において、物理的又は/及び化学的手段により電極間の基板を掘削し、対向する電極間に形成した電極よりも低い部位を形成することにより、不均一電界領域の増加と流体抗力の低減を実現することによって、物質の捕集能力を向上させる請求項に記載の分離方法。In nonuniform electric field formed by the dielectrophoretic electrode, flowing liquid containing the substance to be separated, in a method of separating materials for separating the interaction of the dielectrophoretic force and the drag force acting on the material, physical or / And by excavating the substrate between the electrodes by chemical means and forming a lower part than the electrode formed between the opposing electrodes, thereby realizing an increase in the non-uniform electric field region and a reduction in fluid drag. The separation method according to claim 3 , wherein the collection ability is improved.
JP2000112337A 2000-04-12 2000-04-13 Dielectrophoresis apparatus and material separation method Expired - Fee Related JP4587112B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000112337A JP4587112B2 (en) 2000-04-13 2000-04-13 Dielectrophoresis apparatus and material separation method
EP01109169A EP1145766B1 (en) 2000-04-13 2001-04-12 Electrode construction for dielectrophoretic apparatus and separation by dielectrophoresis
CA002343873A CA2343873A1 (en) 2000-04-12 2001-04-12 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, methdo for manufacturing the same, and method for separating substances using the elctrode or dielectrophoretic apparatus
ES01109169T ES2288154T3 (en) 2000-04-13 2001-04-12 CONSTRUCTION OF ELECTRODES FOR DIELECTROPHORETIC DEVICE AND SEPARATION BY DIELECTROPHORESIS.
AT01109169T ATE370793T1 (en) 2000-04-13 2001-04-12 ELECTRODE CONSTRUCTION FOR DIELECTROPHORETIC ARRANGEMENT AND DIELECTROPHORETIC SEPARATION
EP06008220A EP1716926A3 (en) 2000-04-13 2001-04-12 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
DE60130052T DE60130052T2 (en) 2000-04-13 2001-04-12 Electrode structure for dielectrophoretic arrangement and dielectrophoretic separation
US09/833,566 US6875329B2 (en) 2000-04-13 2001-04-13 Method for separating substances using a dielectrophoretic apparatus
US11/064,828 US20050139473A1 (en) 2000-04-13 2005-02-25 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
US12/588,268 US20100126865A1 (en) 2000-04-13 2009-10-09 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
US13/067,876 US20110259746A1 (en) 2000-04-13 2011-07-01 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112337A JP4587112B2 (en) 2000-04-13 2000-04-13 Dielectrophoresis apparatus and material separation method

Publications (2)

Publication Number Publication Date
JP2001296274A JP2001296274A (en) 2001-10-26
JP4587112B2 true JP4587112B2 (en) 2010-11-24

Family

ID=18624526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112337A Expired - Fee Related JP4587112B2 (en) 2000-04-12 2000-04-13 Dielectrophoresis apparatus and material separation method

Country Status (1)

Country Link
JP (1) JP4587112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284725B1 (en) * 2011-07-22 2013-07-17 한국항공대학교산학협력단 System for high throughput particle separation using dielectrophoresis and the same method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695431B2 (en) * 2001-08-03 2005-09-14 日本電気株式会社 Separation apparatus and method of manufacturing separation apparatus
JP3811404B2 (en) * 2002-01-10 2006-08-23 独立行政法人科学技術振興機構 Dielectrophoresis filter device and method for removing suspended fine particles by dielectrophoresis
GB0303305D0 (en) * 2003-02-12 2003-03-19 Secr Defence Apparatus for collecting particles
JP2004243238A (en) * 2003-02-14 2004-09-02 National Institute Of Advanced Industrial & Technology Particle sorting method
US20070240495A1 (en) * 2004-05-25 2007-10-18 Shuzo Hirahara Microfluidic Device and Analyzing/Sorting Apparatus Using The Same
KR101395149B1 (en) * 2012-07-20 2014-05-15 부산대학교 산학협력단 Microfluidic channel using ac voltage, and method for detecting using the microfluidic channel
JP6822006B2 (en) * 2016-08-16 2021-01-27 東ソー株式会社 Target particle recovery method and recovery device
KR102060099B1 (en) * 2018-03-23 2019-12-30 한국과학기술연구원 Vertical nano-gap electrodes for dielectrophoresis, method for preparation thereof, method for trapping and separating particles using the same
KR102362856B1 (en) * 2020-08-03 2022-02-15 한국과학기술연구원 Particle collecting device and particle sensing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
JP2001252065A (en) * 2000-03-15 2001-09-18 Tokai Rika Co Ltd Particle-moving/fixing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756677B2 (en) * 1988-05-10 1998-05-25 株式会社アドバンス Particle handling equipment
DE4034697A1 (en) * 1990-10-31 1992-05-14 Fraunhofer Ges Forschung METHOD FOR HANDLING MICROSCOPICALLY SMALL, DIELECTRIC PARTICLES AND DEVICE FOR IMPLEMENTING THE METHOD
DE4143573C2 (en) * 1991-08-19 1996-07-04 Fraunhofer Ges Forschung Device for separating mixtures of microscopic dielectric particles suspended in a liquid or a gel
GB9615775D0 (en) * 1996-07-26 1996-09-04 British Tech Group Apparatus and method for characterising particles using dielectrophoresis
JP3669182B2 (en) * 1998-10-27 2005-07-06 松下電器産業株式会社 Microorganism count measuring apparatus and microorganism count measuring method
GB9916850D0 (en) * 1999-07-20 1999-09-22 Univ Wales Bangor Dielectrophoretic apparatus & method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
JP2001252065A (en) * 2000-03-15 2001-09-18 Tokai Rika Co Ltd Particle-moving/fixing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284725B1 (en) * 2011-07-22 2013-07-17 한국항공대학교산학협력단 System for high throughput particle separation using dielectrophoresis and the same method

Also Published As

Publication number Publication date
JP2001296274A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
EP1145766B1 (en) Electrode construction for dielectrophoretic apparatus and separation by dielectrophoresis
US6790330B2 (en) Systems and methods for cell subpopulation analysis
EP1984723B1 (en) Impedance measurement device for characterizing particles in a micro channel
US6136171A (en) Micromachined electrical field-flow fractionation system
Tegenfeldt et al. Micro-and nanofluidics for DNA analysis
KR100624460B1 (en) A microfluidic device comprising a membrane formed with nano to micro sized pores and method for separating a polarizable material using the same
US8932447B2 (en) Ex-vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles, and biomarkers
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
KR100813254B1 (en) An apparatus for separating a polarizable analyte using dielectrophoresis and a method of separating a polarizable analyte using the same
Johnson et al. Micro free flow electrophoresis
AU2001245558A1 (en) Methods and apparatus for the location and concentration of polar analytes usingan alternating electric field
JP4587112B2 (en) Dielectrophoresis apparatus and material separation method
CN110918139B (en) Microfluidic chip, device containing microfluidic chip and sample concentration method
Wu et al. Label-free multitarget separation of particles and cells under flow using acoustic, electrophoretic, and hydrodynamic forces
US20070267295A1 (en) Apparatus and method for non-contact microfluidic sample manipulation
Li et al. Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip
Bu et al. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device
EP4161698A1 (en) Dielectrophoresis detection device
KR100924514B1 (en) A microelectro­desalting device of protein sample, a lab­on­a­chip comprising said device and an application method thereof
JP4671084B2 (en) Electrode for dielectrophoresis apparatus, method for producing the same, dielectrophoresis apparatus, and method for separating and detecting substance using the electrode
JP4128084B2 (en) Sample characterization method and apparatus
WO2007046871A2 (en) Apparatus and method for non-contact microfluidic sample manipulation
Kikkeri et al. Submicron dielectrophoretic chromatography
Dalir et al. Three-dimensional dielectrophoretic microparticle separator fabricated by ultraviolet-assisted direct-write assembly
Wu In situ nanoparticle focusing within microfluidics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees