JP4585823B2 - Tube and sealing member - Google Patents

Tube and sealing member Download PDF

Info

Publication number
JP4585823B2
JP4585823B2 JP2004277898A JP2004277898A JP4585823B2 JP 4585823 B2 JP4585823 B2 JP 4585823B2 JP 2004277898 A JP2004277898 A JP 2004277898A JP 2004277898 A JP2004277898 A JP 2004277898A JP 4585823 B2 JP4585823 B2 JP 4585823B2
Authority
JP
Japan
Prior art keywords
layer
conductive layer
sealing member
insulating layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004277898A
Other languages
Japanese (ja)
Other versions
JP2006092946A (en
Inventor
卓也 本間
昭男 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp, Harison Toshiba Lighting Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2004277898A priority Critical patent/JP4585823B2/en
Publication of JP2006092946A publication Critical patent/JP2006092946A/en
Application granted granted Critical
Publication of JP4585823B2 publication Critical patent/JP4585823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、機能性傾斜材料からなる封止部材で封止された管球およびこれに用いることのできる封止部材に関する。   The present invention relates to a tube sealed with a sealing member made of a functionally gradient material and a sealing member that can be used for the tube.

ハロゲン電球や高圧放電ランプなどの管球類には、一般にモリブデン箔を封着金属箔として用いて封止する箔封止構造が従来から多用されている。しかしながら、封着金属箔における許容電流値の限界などの理由から、封着金属箔に代えて機能性傾斜材料を用いようとする試みがなされている(例えば、特許文献1参照。)。   For tube bulbs such as halogen bulbs and high-pressure discharge lamps, a foil sealing structure in which molybdenum foil is generally used as a sealing metal foil is generally used. However, an attempt has been made to use a functionally graded material instead of the sealed metal foil for reasons such as the limit of the allowable current value in the sealed metal foil (see, for example, Patent Document 1).

特許文献1に用いられている機能性傾斜材料は、シリカ粉末のみ、およびシリカ粉末とモリブデン粉末の混合比を変えた複数の混合粉末をバインダーとともに筒状のプレス型内にシリカの含有量が順次減少するように投入し、プレスした後焼結して製作されている。そうして、完成した封止部材は、その一端面が導電性側端面であり、対向する他端面が非導電性側端面になっていて、タングステン製の電流導入棒が導電性側の部分で封止部材に気密に封着され、また非導電性側の部分でランプ容器に溶着されている。したがって、非導電性側端面すなわち絶縁層と導電層との間は、導電体の混合比を変えることによって熱膨張率を順次変化させた複数層の緩衝層を介在しており、これにより隣接する層の間の熱膨張率差を小さくして機能性傾斜材料にクラックが発生しないようにしている。   The functionally graded material used in Patent Document 1 includes silica powder alone, and a plurality of mixed powders in which the mixing ratio of silica powder and molybdenum powder is changed, together with a binder, the content of silica in a cylindrical press die sequentially. In order to reduce, it is manufactured by pressing and sintering. Thus, the completed sealing member has one end face which is a conductive side end face, the other end face which is opposite is a non-conductive side end face, and the tungsten current introduction rod is a part on the conductive side. It is hermetically sealed to the sealing member and is welded to the lamp vessel at the non-conductive side portion. Therefore, a plurality of buffer layers whose thermal expansion coefficients are sequentially changed by changing the mixing ratio of the conductors are interposed between the non-conductive side end surfaces, that is, the insulating layer and the conductive layer, thereby adjacent to each other. The difference in the coefficient of thermal expansion between the layers is reduced so that cracks do not occur in the functionally gradient material.

また、物理的性質の異なる第1、第2の材料を混合する混合ステップと、第1、第2の材料の混合体から第1の材料を排出して、単一の層内で第1、第2の材料の存在割合を異ならせる排出ステップとを工程として含むことで、第1、第2の材料の存在割合が単一の層内で変化するようにした複合材料(傾斜材料)の製造方法も知られている(特許文献2参照。)。特許文献2の製造方法によれば、軸方向の中心部にMoリッチな部分と、Moリッチな部分の外側にSiOリッチな部分とを備えて同軸構造になった傾斜材料を得ることができる旨記載されている。また、得られた同軸構造の傾斜材料を用いた封止用キャップを放電灯の発光管の端部に設けた開口に嵌め込むことも記載されている。
特開2001−210279号公報 特開平10−219308号公報
Also, a mixing step of mixing the first and second materials having different physical properties, and discharging the first material from the mixture of the first and second materials, the first, The production of a composite material (gradient material) in which the existence ratio of the first and second materials is changed in a single layer by including as a process a discharge step that makes the existence ratio of the second material different. A method is also known (see Patent Document 2). According to the manufacturing method of Patent Document 2, it is possible to obtain the Mo-rich portion to the central portion in the axial direction, the gradient material became coaxial structure and a SiO 2 rich portion on the outside of the Mo-rich portion It is stated. It is also described that a sealing cap using the obtained inclined material having the coaxial structure is fitted into an opening provided at an end portion of the arc tube of the discharge lamp.
Japanese Patent Laid-Open No. 2001-210279 JP-A-10-219308

ところが、従来の機能性傾斜材料は、互いに隣接する層間の熱膨張率差を小さくしてクッラクが発生するのを回避するために、特許文献1に示すように配合比を順次変えた複数層の緩衝層を介在させた多層構造にしたり、特許文献2に示すように単一層であってもその内部の配合比が連続的に変化させた構造を採用したりする必要があった。このため、封止部材が大きくなったり、製造工程が複雑で製造コストが上昇したりするという問題があった。   However, the conventional functional gradient material has a plurality of layers in which the blending ratio is sequentially changed as shown in Patent Document 1 in order to reduce the difference in thermal expansion coefficient between adjacent layers and avoid the occurrence of cracks. It has been necessary to use a multilayer structure with a buffer layer interposed, or to adopt a structure in which the compounding ratio inside the single layer is continuously changed as shown in Patent Document 2. For this reason, there existed a problem that a sealing member became large or a manufacturing process was complicated and manufacturing cost raised.

また、特許文献2に示すように、多層構造を同軸関係に形成した場合、封止部材の軸方向の全長にわたる部分で封止することができるので、管球の封止が容易になる利点がある。しかしながら、管軸と直交する方向に同軸関係の傾斜構造を形成するために、封止部材の外径が大きくなってしまうという問題がある。このため、従来のこの種封止部材は、小形の管球や封止部を小さくしたい管球には適用することが困難である。   In addition, as shown in Patent Document 2, when the multilayer structure is formed in a coaxial relationship, the sealing member can be sealed at the part extending over the entire length in the axial direction, so that the tube can be easily sealed. is there. However, there is a problem that the outer diameter of the sealing member is increased in order to form an inclined structure having a coaxial relationship in a direction orthogonal to the tube axis. For this reason, it is difficult to apply this type of conventional sealing member to a small tube or a tube for which the sealing portion is desired to be small.

本発明は、気密容器の開口部の封止が容易、かつ、確実であるとともに、封止部材が構造簡単で、小形化できる管球およびこれに用いることのできる封止部材を提供することを目的とする。   It is an object of the present invention to provide a tube that can easily and reliably seal an opening of an airtight container, has a simple structure, and can be miniaturized, and a sealing member that can be used for the tube. Objective.

請求項1に係る発明の管球は、開口部を備えた気密容器と;気密容器と同種の粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料の混合体により構成される導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成していて、絶縁層の部位で気密容器の開口部を封止しているとともに導電層が封装部材に接続する封止部材と;気密容器の内部に封装され、かつ、前記封止部材の導電層を経由して気密容器の外部から給電される封装部材と;を具備していることを特徴としている。 The tube of the invention according to claim 1 is an airtight container having an opening; an insulating layer mainly composed of a powder material of the same type as the airtight container, and directly or indirectly joined to the insulating layer, and the same as the insulating layer It consists of a functionally graded material with a multi-layer structure having a conductive layer composed of a mixture of powder material and conductive metal powder material , the conductive layer and the insulating layer are laminated in a coaxial relationship, and the insulating layer is outside The conductive layer is arranged so as to be positioned on the center side and extends in the axial direction, and is sintered by a discharge plasma sintering method so that the powder particles are densely welded, and the insulating layer and the conductive layer Forming a homogeneous sintered body integrally bonded to each other, and the thickness of the mixed material is 0 when the substances constituting both layers move by diffusion and reach each other in the bonding layer of each layer. forming a diffusion bonding layer .1~10mm There, the sealing member and the conductive layer is connected to FuSo member together seals the opening of the airtight container at the site of the insulating layer; is FuSo inside of the airtight container, and the conductive layer of the sealing member And a sealing member that is powered from the outside of the hermetic container.

次に、本発明における作用について説明する。すなわち、本発明において、止部材は、少なくとも気密容器と同種の粉末材料を主体とする縁層と、絶縁層と同じ粉末材料および導電性金属の粉末材料の混合体により構成される導電層とを有する多層構造の機能性傾斜材料であるとともに、前記粉末粒子間が放電プラズマ焼結法により焼結されて緻密に溶着し、各層の接合部が両層を構成する物質の拡散による移動をして互いに相手方の層内に達した状態となって混在する肉厚が0.1〜10mmの拡散接合層を形成している。縁層と導電層との間に中間層が形成される場合、この中間層が2層または3層以上の多層構造であってもよい。中間層は、熱膨張率差を小さくしたり、強度を向上させたりするために用いることが可能であるが、中間層を用いると、封止部材の直径が大きくなるので、中間層はなるべく薄くするか、省略するのが好ましい。したがって、封装部材は、絶縁層と導電層が直接または間接的に接合して放電プラズマ焼結法により焼結された多層構造の機能性傾斜材料である。絶縁層と導電層の熱膨張率は、明らかに相違しているが、放電プラズマ焼結法により焼結されていることにより前記粉末粒子間が緻密に溶着し、各層間の接合部に隣接する2層を構成する物質の拡散によって上述のように両層を構成する物質が混在する肉厚が0.1〜10mmの拡散接合層が形成されているため、各層は、それらの熱膨張率の明らかな相違を克服して強固に接合する。なお、拡散接合層は、各層に比較して顕著に薄くなっているので、したがって封止部材は、基本的に拡散接合層を無視した多層構造と定義できる。 Next, the operation of the present invention will be described. That is, in the present invention, the sealing member has a insulation layer composed mainly of powder material of at least the airtight container and the like, the conductive layer composed of a mixture of powder material of the same powder material and a conductive metal and insulating layers In addition, the powder particles are sintered by the discharge plasma sintering method and are densely welded, and the joint portion of each layer moves due to diffusion of substances constituting both layers. thickness coexist in a state of reaching the layer of the other party each other is that to form a diffusion bonding layer of 0.1 to 10 mm. If the intermediate layer is formed between the insulation layer and the conductive layer, the intermediate layer may have a multilayer structure of more than two or three layers. The intermediate layer can be used to reduce the difference in coefficient of thermal expansion or improve the strength. However, if the intermediate layer is used, the diameter of the sealing member increases, so the intermediate layer is as thin as possible. Preferably, it is omitted. Therefore, FuSo member, Ru functional gradient material der multilayer structure insulating layer and the conductive layer is sintered by directly or indirectly joined to the discharge plasma sintering method. Although the thermal expansion coefficients of the insulating layer and the conductive layer are clearly different, the powder particles are densely welded by being sintered by the discharge plasma sintering method, and are adjacent to the joint between the layers. Since the diffusion bonding layer having a thickness of 0.1 to 10 mm in which the substances constituting both layers are mixed as described above is formed by the diffusion of the substances constituting the two layers, each layer has a coefficient of thermal expansion thereof. Overcome obvious differences and join firmly. Since the diffusion bonding layer is significantly thinner than each layer, the sealing member can be defined as a multilayer structure basically ignoring the diffusion bonding layer.

また、封止部材は、絶縁層と導電層とを有する多層構造体が軸方向に同軸関係に形成されていて、かつ、絶縁層が外側で、導電層が中心部側に位置しているので、封止部材のほぼ全長にわたって気密容器に封止することができる。また、焼結された導電層を封装部材に対する給電路としている。 In addition, the sealing member has a multilayer structure having an insulating layer and a conductive layer formed in a coaxial relationship in the axial direction, and the insulating layer is outside and the conductive layer is located on the center side. The sealing member can be sealed in an airtight container over almost the entire length. Further, the sintered conductive layer is used as a power feeding path for the sealing member.

封止部材が中心部側に位置する導電層と外側に位置する絶縁層との2層構造で形成されている請求項2に係る発明によれば、所要の封止部長さを確保しながら封止部材の軸方向の寸法を短縮できる。また、前記粉末粒子間が放電プラズマ焼結法により焼結されて緻密に溶着し、各層の接合部が両層を構成する物質の拡散による移動をして互いに相手方の層内に達した状態となって混在する前記所定肉厚の拡散接合層を形成しているため、各層は、それらの熱膨張率の明らかな相違を克服して強固に接合するから、2層構造が可能になり、導電層の直径を所要の大きさにしながら封止部材全体の直径を小さくすることができる。封止部材の直径が小さいと、管球の開口部を小さくするのに効果的である。管球の開口部が小さいということは、その配光特性や外観が良好になったり、封止が容易になったりするので、利点が多い。 According to the invention according to claim 2, the sealing member is formed with a two-layer structure of the conductive layer located on the center side and the insulating layer located on the outside, while ensuring the required sealing portion length. The axial dimension of the stop member can be shortened. Further, the inter-powder particles are sintered by spark plasma sintering method densely welded joints of each layer reaches the layer of the other party mutually by moving that by the diffusion of the material constituting the two layers Since the diffusion bonding layer having the predetermined thickness mixed in the state is formed, the two layers can be formed because each layer is firmly bonded to overcome the obvious difference in their thermal expansion coefficients. The diameter of the whole sealing member can be reduced while keeping the diameter of the conductive layer to a required size. When the diameter of the sealing member is small, it is effective for reducing the opening of the tube. The fact that the opening of the tube is small has many advantages because its light distribution characteristics and appearance become good and sealing becomes easy.

したがって、以上の本発明によれば、封止部材を小形化できる。そのため、材料費も安価になる。   Therefore, according to the present invention described above, the sealing member can be miniaturized. Therefore, the material cost is also low.

さらに、封止部材の導電層に対して、管球の外部から給電部材であるリード部材を挿入したり、管球の内部において管球用封装部材を支持し、かつ、電気的に接続するために管球用封装部材、例えば管球が放電ランプであれば電極を、また白熱電球であれば白熱フィラメントの基端部を、それぞれ直接挿入したり、あるいはこれらの管球用封装部材を支持するための中間部材を挿入したりするのが一般的である。本発明によれば、封止部材が絶縁層と導電層を含む多層構造であるために、2層構造も可能であるから、上述のようにその所与の外径に対して導電層の直径を可及的に大きくすることができるので、上記挿入部材用の挿入孔を形成しやすくなり、その結果封止部材の挿入孔形成に伴うクラック発生の防止を図ることができる。 Further, a lead member as a power supply member is inserted into the conductive layer of the sealing member from the outside of the tube, or the tube sealing member is supported and electrically connected inside the tube. A tube sealing member, for example, an electrode if the tube is a discharge lamp, or a base end of an incandescent filament if it is an incandescent bulb, or directly supporting these tube sealing members. It is common to insert an intermediate member for this purpose. According to the present invention, since the sealing member has a multilayer structure including an insulating layer and a conductive layer, a two-layer structure is also possible. Therefore, as described above, the diameter of the conductive layer with respect to the given outer diameter. Therefore, it is easy to form the insertion hole for the insertion member, and as a result, it is possible to prevent the occurrence of cracks associated with the formation of the insertion hole of the sealing member.

上記封止部材を用いて気密容器の開口部を封止するには、封止部材を開口部に嵌め込んで両者を気密に固着すればよい。絶縁層が酸化ケイ素を主体とする場合であれば、両者を直接加熱処理して溶着すればよい。また、絶縁層が酸化アルミニウムを主体とする場合には、両者間に封着コンパウンドを挟んで加熱処理を行い、封着コンパウンドを加熱溶融し、固化させればよい。絶縁層の部分が封止部材のほぼ全長にわたって形成されているので、所望の封止長を得ることが可能になり、封止作業が容易で、しかも封止が確実になる。また、気密容器の開口部が封止の際に誤って導電層の部分に接合されるようなことをなくせるので、封止の際にクラックが発生しなくなる。   In order to seal the opening of the hermetic container using the sealing member, it is only necessary to fit the sealing member in the opening and fix them in an airtight manner. If the insulating layer is mainly composed of silicon oxide, both may be directly heat-treated and welded. In the case where the insulating layer is mainly made of aluminum oxide, heat treatment may be performed by sandwiching the sealing compound therebetween, and the sealing compound may be heated and melted to be solidified. Since the insulating layer portion is formed over almost the entire length of the sealing member, a desired sealing length can be obtained, sealing work is easy, and sealing is ensured. In addition, since the opening of the hermetic container can be prevented from being accidentally bonded to the conductive layer portion during sealing, cracks do not occur during sealing.

気密容器の内部に封装した管球用封装部材に対する給電は、導電層の部分を介して管球の外部から給電することができる。例えば、上述したようにリード部材を導電層の外部側の端面から挿入したり、導電層のみを封止部材の一端側へいくらか突出させて、その突出部に給電体を巻き付けたり、キャップ状の給電部材で抱持したりすることができる。   Power can be supplied to the tube sealing member sealed inside the airtight container from the outside of the tube via the conductive layer. For example, as described above, the lead member is inserted from the outer end surface of the conductive layer, or only the conductive layer is protruded to one end side of the sealing member, and the power supply body is wound around the protruding portion, or the cap-shaped It can be held by a power supply member.

本発明によれば、上述したように封止部材が2層構造の機能性傾斜材料を主体として構成されているから、封止部材の構造が簡単で、製造工程を簡素化できて安価な管球を得ることができる。   According to the present invention, as described above, since the sealing member is mainly composed of the functionally gradient material having the two-layer structure, the structure of the sealing member is simple, the manufacturing process can be simplified, and the inexpensive pipe You can get a sphere.

本発明および以下の各発明において、管球は、気密容器の内部に封装部材が気密に封装されている電気作動手段である。本発明によれば、各種用途に適応する管球を得ることができる。例えば、照明用管球であれば、ハロゲン電球、高圧放電ランプなどがこれに含まれる。また、非照明用管球であれば、例えば各種電子管などがこれに含まれる。   In the present invention and each of the following inventions, the tube is an electric actuating means in which a sealing member is hermetically sealed inside an airtight container. According to the present invention, a tube suitable for various uses can be obtained. For example, in the case of a lighting tube, this includes a halogen bulb, a high-pressure discharge lamp, and the like. In addition, in the case of a non-illuminating tube, for example, various electron tubes and the like are included.

気密容器は、開口を備えている。気密容器内への封装部材の収納の際に、口を経由させることができる。また、開口は、封止部材によって封止されることにより、気密容器の内部が気密になる。さらに、気密容器は、照明用管球の場合、金属酸化物または金属窒化物を主体として透光性に構成することができる。金属酸化物としては、例えばシリカ(SiO2)、アルミナ(Al2O3)、イットリウム酸化物(YOX)およびイットリウム−アルミニウム−ガーネット(YAG)などを用いることができる。金属窒化物としては、アルミニウム窒化物(AlN)などを用いることができる。以上の各物質は、いずれも透光性および耐熱性を備えた材料であり、多結晶体すなわちセラミックスまたは単結晶として得ることができる。また、非照明用管球の場合、気密容器は、透光性および非透光性のいずれであってもよい。 The airtight container has an opening. Upon receiving the FuSo member into hermetic container, it can be through the apertures. Further, the opening is sealed with a sealing member, so that the inside of the airtight container becomes airtight. Further, in the case of a lighting tube, the hermetic container can be configured to be translucent mainly with metal oxide or metal nitride. As the metal oxide, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), yttrium oxide (YOX), yttrium-aluminum-garnet (YAG), or the like can be used. As the metal nitride, aluminum nitride (AlN) or the like can be used. Each of the above substances is a material having translucency and heat resistance, and can be obtained as a polycrystalline body, that is, a ceramic or a single crystal. In the case of a non-illuminating tube, the hermetic container may be either translucent or non-translucent.

封止部材の絶縁層は、気密容器の材料と同種の粉末材料を主体として構成されている。同様に金属酸化物または金属窒化物を主体として構成されているので、気密容器とほぼ同じ熱膨張率である。これに対して、導電層は、導電体として機能できる程度の導電性を有していて、熱膨張率が絶縁層のそれとは相対的に相違している。また、導電層は、絶縁層を構成するのと同一物質であるところの金属酸化物または金属窒化物の粉末材料と導電性金属の粉末材料との混合体により構成される。この場合、放電プラズマ焼結法で焼結することにより、導電性金属は、導電層の約30質量%以上混合していれば、所要の導電性を示すことが実験により確認されている。しかし、要すれば、導電層は、実質的に導電性金属のみから構成されていてもよい。 The insulating layer of the sealing member is mainly composed of a powder material of the same type as the material of the hermetic container. Similarly, since it is mainly composed of metal oxide or metal nitride, the thermal expansion coefficient is almost the same as that of the hermetic container. On the other hand, the conductive layer has a conductivity sufficient to function as a conductor, and the coefficient of thermal expansion is relatively different from that of the insulating layer. The conductive layer is composed of a mixture of a metal oxide or metal nitride powder material and a conductive metal powder material , which are the same material as the insulating layer. In this case, it has been confirmed by experiments that the conductive metal exhibits the required conductivity when sintered by the discharge plasma sintering method if the conductive metal is mixed in an amount of about 30% by mass or more of the conductive layer. However, if necessary, the conductive layer may be substantially composed only of a conductive metal.

封装部材は、気密容器内に収納されて封止部材の導電層を介して気密容器外部から給電され、気密容器内で所望の電気的動作を行う部材である。例えば、ハロゲン電球の場合、封装部材は白熱フィラメントである。高圧放電ランプの場合、封装部材は放電電極である。   The sealing member is a member that is housed in the hermetic container and is supplied with electric power from the outside of the hermetic container through the conductive layer of the sealing member, and performs a desired electrical operation in the hermetic container. For example, in the case of a halogen bulb, the sealing member is an incandescent filament. In the case of a high pressure discharge lamp, the sealing member is a discharge electrode.

封止部材は、導電層が軸の中心部に位置し、絶縁層が導電層の周りに同軸関係に配設された多層構造、例えば2層構造である。ただし、絶縁層と導電層とを放電プラズマ焼結法により焼結して形成すると前記粉末粒子間が緻密に溶着し、各層の間に両層を構成する物質の拡散による移動をして互いに相手方の層内に達した状態となって混在する相対的に薄い拡散接合層が形成され。この拡散接合層は、その肉厚が一般的には0.1〜10mm、好ましくは0.5〜5mm、最適には1〜3mmの範囲内に形成されてい。しかし、絶縁層および導電層の厚さに対しては相対的に薄い層となっている。そうして、拡散接合層は、その肉厚が目視により確認することができる。 The sealing member has a multilayer structure, for example, a two-layer structure, in which the conductive layer is located at the center of the shaft, and the insulating layer is coaxially disposed around the conductive layer. However, when formed by sintering by spark plasma sintering an insulating layer and a conducting layer, and the movement by the diffusion of substances between the powder particles are densely fused, forming both layers between each layer together relatively thin diffusion bonding layer coexist in a state of reaching the layer of the other party Ru is formed. The diffusion bonding layer is its thickness is generally 0.1 to 10 mm, preferably 0.5 to 5 mm, and most that are formed in the range of 1 to 3 mm. However, it is a relatively thin layer with respect to the thickness of the insulating layer and the conductive layer. Thus, the thickness of the diffusion bonding layer can be visually confirmed.

さらに、本発明に用いる封止部材は、上述のように原料粉末粒子間が緻密に溶着して焼結する電プラズマ焼結法により焼結されている。 Further, the sealing member used in the present invention, the discharge electric plasma sintering method of sintering between the raw material powder particles are densely deposited as described above that have been sintered.

すなわち、放電プラズマ法によって封止部材を焼結することにより、良好な拡散接合層を形成して絶縁層と導電層とを直接的に、または中間層を挟んで間接的に、強固で、確実に、しかも信頼性高く接合した封止部材を得ることができる。放電プラズマ法は、圧縮状態の粉末の粒子間隙に直流パルス状電圧を印加した際に粒子間隙に発生する火花放電のプラズマによる発熱および通電によるジュール熱によって焼結を行わせる方法である。That is, by sintering the sealing member by the discharge plasma method, a good diffusion bonding layer is formed, and the insulating layer and the conductive layer are directly or indirectly sandwiched between the intermediate layer, which is strong and reliable. In addition, a sealing member bonded with high reliability can be obtained. The discharge plasma method is a method in which sintering is performed by the heat generated by plasma of spark discharge generated in the particle gap and the Joule heat generated by energization when a DC pulse voltage is applied to the particle gap of the powder in the compressed state.

放電プラズマ法によれば、圧縮状態の粉末の粒子表面に気化と溶融が生じて、粉末粒子間が緻密に溶着して、絶縁層と導電層が一体に接合した均質な焼結体を得ることができる。また、絶縁層と導電層の焼結が形成される過程で、各層の接合部位において両層を構成する物質の一部が拡散による移動をして互いに相手方の層内に達し、かつ、両層を構成する物質が立体的に絡み合った状態となった所定肉厚の拡散接合層を形成するので、各層との間に熱膨張率の差があるにもかかわらず、強固で、しかも長期間にわたって信頼性の高い接合が得られる。According to the discharge plasma method, vaporization and melting occur on the surface of the compressed powder particles, and the powder particles are densely welded to obtain a homogeneous sintered body in which the insulating layer and the conductive layer are joined together. Can do. In addition, in the process of sintering the insulating layer and the conductive layer, a part of the materials constituting both layers move by diffusion and reach each other in the mating portion of each layer, and both layers Diffusion bonding layer with a predetermined thickness is formed in which the substances constituting the material are intertwined in a three-dimensional manner, so that it is strong and long-term despite the difference in thermal expansion coefficient between each layer. A highly reliable joint is obtained.

請求項2に係る発明の管球は、請求項1記載の管球において、封止部材は、中心部側に位置する導電層と外側に位置する絶縁層との2層構造で形成されていることを特徴としている。     According to a second aspect of the present invention, there is provided the tube according to the first aspect, wherein the sealing member is formed in a two-layer structure of a conductive layer located on the center side and an insulating layer located on the outer side. It is characterized by that.

本発明は、多層構造の中でも特に好適な2層構造を規定している。   The present invention defines a particularly preferred two-layer structure among the multilayer structures.

請求項3に係る発明の管球は、請求項1または2記載の管球において、封止部材は、その導電層の一方の端面が気密容器の内部に露出し、他方の端面が気密容器の外部へ露出しているとともに、前記封装部材が前記導電層の一方の端面から内部に挿入されて固着して支持され、給電部材が導電層の他方の端面から内部に挿入されて固着して支持されていて、封装部材と給電部材が導電層を介して導通していることを特徴としている。 The tube of the invention according to claim 3 is the tube according to claim 1 or 2, wherein one end face of the conductive layer of the sealing member is exposed inside the hermetic container, and the other end face of the hermetic container. In addition to being exposed to the outside, the sealing member is inserted and fixed and supported from one end face of the conductive layer, and the power feeding member is inserted and fixed and supported from the other end face of the conductive layer. The sealing member and the power feeding member are electrically connected through the conductive layer .

上記のように封止部材の導電層の両端面が封止部材の端面に露出していることにより、管球の気密容器の内部にあっては導電層の封装部材に対する導通を、また気密容器の外部にあっては導電層の給電部材に対する導通をとる際に、それぞれ多様な態様を任意所望に応じて適宜選択して採用することが可能になる。例えば、封装部材またはその支持のための中間部材の基端を導電層の気密容器内に露出する端面に溶接したり、圧接したり、導電層の端面からその内部に向かって形成した挿入孔に挿入したりすることができる。同様に、気密容器の外部に露出する導電層の端面に給電部材を溶接、圧接および挿入などを選択的に採用することができる。本発明は、上述の構成のうち、封装部材が封止部材の導電層の一方の端面から内部に挿入され、給電部材が導電層の他方の端面から内部に挿入され、それぞれ固着しているとともに封装部材と給電部材が導電層を介して導通している態様を規定している。 By both end faces of the conductive layers of the sealing member as described above is exposed on the end face of the sealing member, the In the interior of the airtight container of tube conduction for FuSo member of the conductive layers, also airtight container When the conductive layer is electrically connected to the power supply member, various modes can be appropriately selected and adopted as desired according to any desired. For example, the base end of the sealing member or the intermediate member for supporting the sealing member is welded to the end face exposed in the hermetic container of the conductive layer, pressed, or inserted into the insertion hole formed from the end face of the conductive layer toward the inside thereof. Can be inserted. Similarly, welding, pressure welding, insertion, or the like can be selectively employed for the end face of the conductive layer exposed to the outside of the hermetic container. In the present invention, the sealing member is inserted into the inside from one end face of the conductive layer of the sealing member, and the power feeding member is inserted into the inside from the other end face of the conductive layer, and is fixed to each other. It defines a mode in which the sealing member and the power feeding member are conducted through the conductive layer.

また、封止部材の導電層の端面は、絶縁層の端面とほぼ面一になっていてもよいし、絶縁層の端面に対して突出していてもよいし、凹陥していてもよい。突出している場合には、例えば導電層の突出部分を給電部材で抱持することもできる。   Further, the end surface of the conductive layer of the sealing member may be substantially flush with the end surface of the insulating layer, may protrude from the end surface of the insulating layer, or may be recessed. When protruding, for example, the protruding portion of the conductive layer can be held by the power supply member.

さらに、導電層の端面に封装部材や給電部材を挿入するための挿入孔を形成する場合、端面が露出しているので、挿入孔の深さを所望に、しかも正確に設定しやすくなる。   Furthermore, when the insertion hole for inserting the sealing member or the power feeding member is formed on the end face of the conductive layer, the end face is exposed, so that the depth of the insertion hole can be easily and accurately set.

そうして、本発明においては、導電層の端面が気密容器の内部および外部において露出し、封装部材および給電部材導電層の両端面から内部に挿入され、それぞれを固着するとともに封装部材と給電部材が導電層を介して導通していることにより、封止部材を中心として一体化した電極マウントを構成することができる。 Then, in the present invention, the end face of the conductive layer is exposed in the inside and outside of the airtight container, the sealing instrumentation member and the feed member is inserted inside from both end faces of the conductive layer, and FuSo member with fixed respectively by feeding member is conducted through the conductive layer, Ru can configure the electrode mount integrated around the sealing member.

請求項4に係る発明の封止部材は、粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料の混合体により構成される導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成しているとともに導電層が装部材に導通することを特徴としている。 The sealing member of the invention according to claim 4 is an insulating layer mainly composed of a powder material and directly or indirectly joined to the insulating layer, and is composed of a mixture of the same powder material and conductive metal powder material as the insulating layer. It is composed of a functionally graded material with a multilayer structure that has a conductive layer, and is arranged so that the conductive layer and the insulating layer are stacked in a coaxial relationship, and the insulating layer is on the outside and the conductive layer is located on the center side. In addition to extending in the axial direction, it is sintered by the discharge plasma sintering method, and the powder particles are densely welded to form a homogeneous sintered body in which the insulating layer and the conductive layer are joined together. In addition, a diffusion bonding layer having a thickness of 0.1 to 10 mm is formed by mixing the substances constituting both layers at the bonding portion of each layer by diffusion and reaching each other in the mating layer. conductive layer be electrically connected to the sealing instrumentation member with It is characterized in that.

本発明は、請求項1に係る発明の管球に用いることのできる封止部材の構成を規定している。また、本発明の封止部材は、請求項1ないし3に係る発明において説明した構成であることを許容する。しかし、封止部材は、管球以外の部材の封止に用いることを許容する。   The present invention defines the configuration of a sealing member that can be used for the tube of the invention according to claim 1. Further, the sealing member of the present invention is allowed to have the configuration described in the inventions according to claims 1 to 3. However, the sealing member is allowed to be used for sealing members other than the tube.

そうして、本発明においては、封止部材が構造簡単で、小形化できるとともに、気密容器の開口部などの封止が容易、かつ、確実になる。   Thus, in the present invention, the sealing member has a simple structure and can be miniaturized, and the sealing of the opening of the hermetic container is easy and reliable.

請求項5に係る発明の封止部材は、請求項4記載の封止部材において、絶縁層は、酸化ケイ素または酸化アルミニウムを主体としており;導電層は、絶縁層の材料と同様の材料に30質量%以上の割合で混合された耐火性導電金属材料を含んでいる;ことを特徴としている。     The sealing member of the invention according to claim 5 is the sealing member according to claim 4, wherein the insulating layer is mainly composed of silicon oxide or aluminum oxide; the conductive layer is made of the same material as the material of the insulating layer. A refractory conductive metal material mixed in a proportion of mass% or more;

本発明において、導電層は、絶縁層の材料と同様の材料を用いることを規定しているが、これは全く同一の材料ばかりでなく、同一の材料を主体としていればよいという意味である。   In the present invention, the conductive layer stipulates that the same material as that of the insulating layer is used, but this means that not only the same material but also the same material should be used as a main component.

絶縁層が酸化ケイ素を主体とする場合には、石英ガラス製やその他のガラス製の気密容器を封止するのに好適である。また、酸化アルミニウムを主体とする場合には、透光性アルミナセラミックス製の気密容器を封止するのに好適である。   When the insulating layer is mainly composed of silicon oxide, it is suitable for sealing an airtight container made of quartz glass or other glass. Further, when aluminum oxide is mainly used, it is suitable for sealing an airtight container made of translucent alumina ceramics.

耐火性導電金属材料は、気密容器が石英ガラス製の場合には、例えばモリブデン(Mo)やタングステン(W)を単独または適当な割合で混合して用いることができる。また、非酸化性雰囲気中で使用され、かつ、気密容器が透光性アルミナセラミックス製の場合には、ニオブ(Nb)やタンタル(Ta)を用いることもできる。   When the hermetic container is made of quartz glass, for example, molybdenum (Mo) or tungsten (W) can be used alone or mixed at an appropriate ratio. Further, niobium (Nb) or tantalum (Ta) can be used when used in a non-oxidizing atmosphere and the hermetic container is made of translucent alumina ceramics.

そうして、本発明においては、気密容器が石英ガラスなどや透光性アルミナセラミックス製の場合に好適な封止部材を得ることができる。   Thus, in the present invention, a suitable sealing member can be obtained when the hermetic container is made of quartz glass or the like or translucent alumina ceramics.

請求項1の発明によれば、封止部材が、気密容器と同種の粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料を主体とする導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成していて、絶縁層の部位で気密容器の開口部を封止しているとともに導電層が封装部材に接続するので、以下の効果がある。
(1)封止部材の層数が少なくても気密容器の開口部の封止が容易、かつ、確実であるとともに、封止部材が構造簡単で、小形化できる管球を提供することができる。
(2)導電層中の導電性金属粉末の混合比が通常加熱焼結法による場合より低くても良好な導電性が得られる。
(3)封止部材を放電プラズマ焼結法により焼結するので、信頼性の高い接合を備えた封止部材を提供することができる。
According to the invention of claim 1, the sealing member is directly or indirectly joined to the insulating layer mainly composed of the same kind of powder material as that of the airtight container and the insulating layer, and the same powder material and conductive metal as the insulating layer. It is composed of a functionally graded material with a multilayer structure having a conductive layer mainly composed of a powder material, and the conductive layer and the insulating layer are laminated in a coaxial relationship, and the insulating layer is outside and the conductive layer is located on the center side. And a uniform firing in which the insulating layer and the conductive layer are integrally bonded by sintering by a discharge plasma sintering method and densely welding the powder particles. A diffusion bonding layer having a thickness of 0.1 to 10 mm which forms a ligation and is mixed by the substances constituting both layers at the bonding site of each layer moving by diffusion and reaching each other's layer. Formed and airtight container at the part of the insulating layer Since the conductive layer with seals the opening connects to FuSo member, the following effects.
(1) Even when the number of layers of the sealing member is small, it is possible to provide a tube that can easily and reliably seal the opening of the hermetic container, has a simple structure, and can be downsized. .
(2) Good conductivity can be obtained even when the mixing ratio of the conductive metal powder in the conductive layer is lower than that obtained by the normal heat sintering method.
(3) Since the sealing member is sintered by the discharge plasma sintering method, it is possible to provide a sealing member having a highly reliable joint.

請求項2の発明によれば、絶縁層および導電層の2層構造の封止部材を備えた管球を提供することができる。     According to the invention of claim 2, a tube provided with a sealing member having a two-layer structure of an insulating layer and a conductive layer can be provided.

請求項3の発明によれば、導電層の端面が気密容器の内部および外部において露出し、封装部材が前記導電層の一方の端面から内部に挿入されて固着して支持され、給電部材が導電層の他方の端面から内部に挿入されて固着して支持されているとともに、封装部材と給電部材が導電層を介して導通していて、封装部材を中心として一体化した電極マウントを備えた管球を提供することができる。 According to the invention of claim 3, the end face of the conductive layer is exposed inside and outside the hermetic container , the sealing member is inserted into and fixedly supported from one end face of the conductive layer, and the power supply member is electrically conductive. A tube having an electrode mount in which the sealing member and the power supply member are electrically connected through the conductive layer and are integrated with the sealing member as a center , and are inserted and fixedly supported from the other end surface of the layer A sphere can be provided.

請求項4の発明によれば、粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料を主体とする導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成していて、絶縁層の部位で気密容器の開口部を封止しているとともに導電層が封装部材に接続するので、構造簡単で、小形化できるとともに、気密容器の開口部の封止が容易、かつ、確実な封止部材を提供することができる。 According to the invention of claim 4, an insulating layer mainly composed of a powder material and a conductive layer mainly composed of the same powder material as that of the insulating layer and a conductive metal powder material are joined directly or indirectly to the insulating layer. It is composed of a functionally graded material with a multilayer structure, and the conductive layer and the insulating layer are laminated in a coaxial relationship, and the insulating layer is disposed outside and the conductive layer is located on the center side, and extends in the axial direction. And a homogeneous sintered body in which the powder particles are densely welded and the insulating layer and the conductive layer are integrally joined together by sintering by a discharge plasma sintering method , and The material constituting both layers at the bonding site moves by diffusion and reaches the other layer to form a diffusion bonding layer having a thickness of 0.1 to 10 mm, and at the insulating layer site Tomo When sealing the opening portion of the airtight container Since the conductive layer is connected to FuSo member, a simple structure, it is possible to compact, easy sealing of the opening of the airtight container, and can provide a reliable sealing member.

請求項5の発明によれば、請求項4において、気密容器が石英ガラスなどや透光性アルミナセラミックス製の場合に好適であるとともに、導電層中の導電性金属粉末の混合比が30質量%以上であれば所要の導電性を示す封止部材を提供することができる。 According to the invention of claim 5, in claim 4, it is suitable when the hermetic container is made of quartz glass or the like and made of translucent alumina ceramics, and the mixing ratio of the conductive metal powder in the conductive layer is 30% by mass. If it is above, the sealing member which shows required electroconductivity can be provided.

以下、図面を参照して本発明を実施するための形態を説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1ないし図3は、本発明の管球および封止部材を実施するための一形態を示し、図1は管球の正面断面図、図2は封止前の気密容器の正面断面図、図3は封止部材の拡大断面図である。本形態は、本発明を高圧放電ランプに適用した例であり、1は気密容器、2は封止部材、3は封装部材、4は給電部材であり、これらが高圧放電ランプすなわち管球を構成している。     1 to 3 show one embodiment for implementing the tube and the sealing member of the present invention, FIG. 1 is a front sectional view of the tube, FIG. 2 is a front sectional view of an airtight container before sealing, FIG. 3 is an enlarged cross-sectional view of the sealing member. This embodiment is an example in which the present invention is applied to a high-pressure discharge lamp, wherein 1 is an airtight container, 2 is a sealing member, 3 is a sealing member, and 4 is a power supply member, which constitute a high-pressure discharge lamp, that is, a tube. is doing.

気密容器1は、透光性で、かつ、耐火性の物質、例えば石英ガラスや透光性アルミナセラミックスなどからなり、適宜の形状を備えるとともに、開口部1aを備えていて、その内部に後述する封装部材3を気密に収納する。本形態において、気密容器1は、外形がほぼ紡錘形状をなした石英ガラス製で、図2に示すように、その管軸方向の両端に一対の開口部1a、1aが形成されている。また、気密容器1は、その内部にほぼ回転楕円体形状をなした放電空間1bが形成されている。   The airtight container 1 is made of a light-transmitting and fire-resistant material such as quartz glass or light-transmitting alumina ceramics, and has an appropriate shape and an opening 1a, which will be described later. The sealing member 3 is stored in an airtight manner. In this embodiment, the hermetic container 1 is made of quartz glass having a substantially spindle shape, and a pair of openings 1a and 1a are formed at both ends in the tube axis direction as shown in FIG. Further, the airtight container 1 has a discharge space 1b having a substantially spheroid shape formed therein.

封止部材2は、機能性傾斜材料からなる。この機能性傾斜材料は、図3に拡大して示すように、絶縁層2aおよび導電層2bを備えるとともに、各層2a、2bが拡散接合層2cにより接合された基本的には多層構造、好適には2層構造の焼結体からなる。この多層構造焼結体は、後述するように原料粉末の粒界を溶融制御して焼結することができる焼結法として、迅速焼結法に属する放電プラズマ焼結法により形成されている。なお、上記拡散接合層2a3は、絶縁層2aおよび導電層2a2を構成する物質が相互に拡散して移動することによって立体的に絡み合って形成されたものである。   The sealing member 2 is made of a functionally gradient material. As shown in an enlarged view in FIG. 3, this functionally graded material includes an insulating layer 2a and a conductive layer 2b, and basically has a multilayer structure in which each layer 2a, 2b is joined by a diffusion joining layer 2c, preferably Consists of a two-layered sintered body. As will be described later, this multilayer structure sintered body is formed by a discharge plasma sintering method belonging to the rapid sintering method as a sintering method capable of melting and controlling the grain boundaries of the raw material powder. The diffusion bonding layer 2a3 is formed by three-dimensionally intertwining the materials constituting the insulating layer 2a and the conductive layer 2a2 by diffusing and moving with each other.

また、封止部材2は、気密容器1の開口部1aに嵌め込まれて封着することにより、気密容器1を気密に封止している。なお、図1において、開口部1aと封止部材2との間の当初の境界部が点線で示されている。   Further, the sealing member 2 is hermetically sealed by fitting and sealing in the opening 1 a of the hermetic container 1. In FIG. 1, an initial boundary between the opening 1a and the sealing member 2 is indicated by a dotted line.

封止部材2の絶縁層2aは、金属酸化物または金属窒化物を主体として構成されるが、本形態においては気密容器1が石英ガラスからなるので、シリカ(SiO2)を主体として形成されている。これに対して、導電層2bは、導電性金属と金属酸化物の混合を主体として構成されているが、本形態においては導電性金属がモリブデン(Mo)またはタングステン(W)からなり、金属酸化物が絶縁層2aの構成材料と同じ材料であるシリカからなる。導電性金属と金属酸化物の混合比は、導電層2bが所要の低い抵抗値を示すような導電率になるように、導電性金属が30質量%以上の範囲内において所定の割合に選択されている。 The insulating layer 2a of the sealing member 2 is mainly composed of metal oxide or metal nitride, but in this embodiment, the hermetic container 1 is made of quartz glass, so that it is mainly composed of silica (SiO 2 ). Yes. In contrast, the conductive layer 2b is mainly composed of a mixture of a conductive metal and a metal oxide, but in this embodiment, the conductive metal is made of molybdenum (Mo) or tungsten (W), and the metal oxide is oxidized. The material is made of silica which is the same material as the constituent material of the insulating layer 2a. The mixing ratio of the conductive metal and the metal oxide is selected at a predetermined ratio within the range of 30% by mass or more so that the conductive layer 2b has a conductivity that exhibits a required low resistance value. ing.

さらに、封止部材2は、その絶縁層2aと導電層2bの相互の位置が同軸関係になっている。すなわち、導電層2bが中心部側、例えば中心軸の周りに導電層2bが円柱状をなして位置し、外側、例えばその周囲に同軸関係に絶縁層2aが円筒状をなして包囲している。このため、絶縁層2aは、封止部材2の軸方向の全長にわたって導電層2bと同軸関係を形成されている。また、導電層2bは、封止部材2の軸方向の両端面に露出している。   Furthermore, the sealing member 2 has a coaxial relationship between the insulating layer 2a and the conductive layer 2b. That is, the conductive layer 2b is positioned in the center side, for example, around the central axis, and the conductive layer 2b is formed in a columnar shape, and the insulating layer 2a is surrounded in a cylindrical shape on the outer side, for example, around it. . For this reason, the insulating layer 2 a is coaxially formed with the conductive layer 2 b over the entire axial length of the sealing member 2. In addition, the conductive layer 2 b is exposed on both end surfaces of the sealing member 2 in the axial direction.

封装部材3は、タングステン(W)製の棒状体からなる放電電極であり、その基端が封止部材2における導電層2bの一方の端面から内部に挿入され固着して支持されているとともに、導電層2bに導通している。   The sealing member 3 is a discharge electrode made of a rod-shaped body made of tungsten (W), and its base end is inserted and fixedly supported from one end surface of the conductive layer 2b in the sealing member 2, and is supported. It is electrically connected to the conductive layer 2b.

給電部材4は、モリブデン製の棒状体からなるリード部材であり、その先端が封止部材2における導電層2bの他方の端面から内部に挿入され固着して支持されているとともに、導電層2bに導通している。   The power supply member 4 is a lead member made of a molybdenum rod-shaped body, and the tip thereof is inserted and fixedly supported from the other end face of the conductive layer 2b of the sealing member 2 and is supported by the conductive layer 2b. Conducted.

したがって、以上の封止部材2、封装部材3および給電部材4は、封止部材2を中心として一体化されることにより、電極マウントを構成している。   Therefore, the sealing member 2, the sealing member 3, and the power supply member 4 described above constitute an electrode mount by being integrated with the sealing member 2 as the center.

そうして、管球は、高圧放電ランプを構成しており、透光性の気密容器1内の放電空間1b内において、一対の封装部材3、3の放電電極が離間対向し、また放電空間1b内には放電媒体が封入されている。   Thus, the tube constitutes a high-pressure discharge lamp, and the discharge electrodes of the pair of sealing members 3 and 3 are opposed to each other in the discharge space 1b in the light-transmitting hermetic vessel 1, and the discharge space. A discharge medium is enclosed in 1b.

次に、電極マウントを構成する封止部材2を製造するには、まず円柱状をなした導電層2bの出発材料である圧縮成形体を用意する。なお、封装部材3および給電部材4は、導電層2bの上記圧縮成形工程において、それぞれ所定の位置まで導電層2b内に挿入される。さらに、圧縮成形された導電層2bを成形金型内の所定の位置に載置して、その円柱状部分の周囲に絶縁層2a1の材料を入れて導電層2bと一緒に圧縮成形して、放電プラズマ焼結法を用いて焼結する。   Next, in order to manufacture the sealing member 2 constituting the electrode mount, first, a compression molded body that is a starting material of the conductive layer 2b having a columnar shape is prepared. The sealing member 3 and the power supply member 4 are inserted into the conductive layer 2b up to a predetermined position in the compression molding step of the conductive layer 2b. Further, the compression-molded conductive layer 2b is placed at a predetermined position in the molding die, the material of the insulating layer 2a1 is put around the cylindrical portion, and compression-molded together with the conductive layer 2b. Sintering is performed using a discharge plasma sintering method.

さらに詳述すれば、放電プラズマ焼結法による製造は、絶縁層2aを構成するための粉体および導電層2bを構成するための粉体を上記のように焼結型内に同軸状に配置してから、次に両粉体の両端に一対の電極を配置して、上記粉体を加圧しながら一対の電極間に直流パルス電圧を印加する。なお、雰囲気は、数10MPa程度のアルゴン(Ar)または真空にするのがよいが、所望により大気雰囲気とすることもできる。上記加熱・加圧処理を所定時間の間継続することにより、上記粉体が焼結して同軸2層構造の封止部材が得られる。そうして、得られた封止部材2は、その絶縁層2aと導電層2bとの間に拡散接合層2cが形成されるとともに、拡散接合層2cによって絶縁層21と導電層2bとが強固に接合して強固に一体化されている。また、絶縁層21と導電層2bとが、それぞれ緻密な焼結体となる。   More specifically, in the production by the discharge plasma sintering method, the powder for constituting the insulating layer 2a and the powder for constituting the conductive layer 2b are arranged coaxially in the sintering mold as described above. After that, a pair of electrodes are arranged at both ends of both powders, and a DC pulse voltage is applied between the pair of electrodes while pressing the powder. The atmosphere is preferably argon (Ar) of about several tens of MPa or a vacuum, but may be an air atmosphere if desired. By continuing the heating / pressurizing treatment for a predetermined time, the powder is sintered to obtain a sealing member having a coaxial two-layer structure. Thus, in the obtained sealing member 2, the diffusion bonding layer 2c is formed between the insulating layer 2a and the conductive layer 2b, and the insulating layer 21 and the conductive layer 2b are firmly formed by the diffusion bonding layer 2c. Are firmly integrated with each other. Further, the insulating layer 21 and the conductive layer 2b are each a dense sintered body.

また、封装部材3および給電部材4は、焼結による共締めよって導電層2bに強固に固着されるとともに、非常に小さい接触抵抗のもとで導通する。   Further, the sealing member 3 and the power feeding member 4 are firmly fixed to the conductive layer 2b by co-fastening by sintering, and are electrically connected with very small contact resistance.

そうして、封止部材2は、その軸方向のほぼ全長にわたって形成された絶縁層2aの部位で気密容器1の開口部1aに封着することにより、気密容器1を気密に封止している。したがって、気密容器1と封止部材2の絶縁層2a1とは同一物質からなるため、良好な封止が得られる。本形態によれば、2層構造の封止部材3について説明したが、直径の大きさに制約されないのであれば、必要に応じて中間層を用いてもよいことはいうまでもない。   Thus, the sealing member 2 hermetically seals the hermetic container 1 by sealing it to the opening 1a of the hermetic container 1 at the portion of the insulating layer 2a formed over almost the entire length in the axial direction. Yes. Therefore, since the airtight container 1 and the insulating layer 2a1 of the sealing member 2 are made of the same material, good sealing can be obtained. According to this embodiment, the sealing member 3 having a two-layer structure has been described, but it goes without saying that an intermediate layer may be used as needed as long as the diameter is not limited.

以下の構成の本発明による封止部材を用いて封止したハロゲン電球を製作した。   A halogen bulb sealed using the sealing member according to the present invention having the following configuration was manufactured.

絶縁層:SiO2粒子100(質量%)
導電層:SiO2粒子70-Mo粒子30(質量%)
製造方法:プラズマ焼結法

〔比較例〕
以下の構成による軸方向に多層構造とした封止部材を用いて封止した高圧放電ランプを製作した。
Insulating layer: SiO 2 particles 100 (mass%)
Conductive layer: SiO 2 particles 70-Mo particles 30 (mass%)
Manufacturing method: Plasma sintering

[Comparative Example]
A high-pressure discharge lamp sealed with a sealing member having a multilayer structure in the axial direction according to the following configuration was manufactured.

絶縁層:SiO2粒子100(質量%)
緩衝層:第1層SiO2
95-Mo5、第2層SiO280-Mo20、第3層SiO270-Mo30、
第4層SiO260-Mo40(いずれも材料は粒子、割合は質量%)
導電層:SiO2粒子50-Mo粒子50(質量%)
製造方法:通常加熱焼結法

振動試験条件:消灯状態で20〜60〜20Hz(合計6分間)の振動試験を6回実施した。
Insulating layer: SiO 2 particles 100 (mass%)
Buffer layer: first layer SiO 2
95-Mo5, second layer SiO 2 80-Mo20, third layer SiO 2 70-Mo30,
4th layer SiO 2 60-Mo40 (both materials are particles, ratio is mass%)
Conductive layer: SiO 2 particles 50-Mo particles 50 (mass%)
Manufacturing method: Normal heat sintering method

Vibration test conditions: The vibration test at 20 to 60 to 20 Hz (6 minutes in total) was conducted 6 times in the light-off state.

振動試験結果:実施例はクラック発生なし。   Vibration test results: No cracks occurred in the examples.

比較例は層間クラックが発生した。                 In the comparative example, interlayer cracks occurred.

他の実施例として、上記実施例と同様な封止構造を備えた図1に示す高圧放電ランプを製作して同様な試験を実施したが、これについても上記実施例と同様良好な結果を得た。   As another example, a high-pressure discharge lamp shown in FIG. 1 having the same sealing structure as that of the above example was manufactured and a similar test was performed. The same good results as in the above example were obtained. It was.

本発明の管球および封止部材を実施するための一形態を示す管球の正面断面図Front sectional view of a tube showing an embodiment for carrying out the tube and the sealing member of the present invention 同じく封止前の気密容器の正面断面図Front sectional view of the airtight container before sealing 同じく封止部材の拡大断面図Similarly, an enlarged cross-sectional view of the sealing member

1…気密容器、1a…開口部、1b…放電空間、2…封止部材、2a…絶縁層、2c…拡散接合層、3…封装部材、4…給電部材   DESCRIPTION OF SYMBOLS 1 ... Airtight container, 1a ... Opening part, 1b ... Discharge space, 2 ... Sealing member, 2a ... Insulating layer, 2c ... Diffusion joining layer, 3 ... Sealing member, 4 ... Feeding member

Claims (5)

開口部を備えた気密容器と;
気密容器と同種の粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料の混合体により構成される導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成していて、絶縁層の部位で気密容器の開口部を封止しているとともに導電層が封装部材に接続する封止部材と;
気密容器の内部に封装され、かつ、前記封止部材の導電層を経由して気密容器の外部から給電される封装部材と;
を具備していることを特徴とする管球。
An airtight container with an opening;
It has an insulating layer mainly composed of the same kind of powder material as the hermetic container and a conductive layer formed by a mixture of the same powder material as that of the insulating layer and a conductive metal powder material. The conductive layer and the insulating layer are coaxially laminated, and the insulating layer is disposed outside and the conductive layer is located on the center side, and extends in the axial direction. In addition, the powder particles are densely welded by the spark plasma sintering method to form a homogeneous sintered body in which the insulating layer and the conductive layer are integrally joined, and the layers are joined. The material constituting both layers in the part moves by diffusion and reaches the other layer to form a diffusion bonding layer having a thickness of 0.1 to 10 mm, and is airtight at the part of the insulating layer. When the opening of the container is sealed A sealing member which monitor the conductive layer is connected to FuSo member;
A sealing member sealed inside the hermetic container and fed from the outside of the hermetic container via the conductive layer of the sealing member;
A tube characterized by comprising:
封止部材は、中心部側に位置する導電層と外側に位置する絶縁層との2層構造で形成されていることを特徴とする請求項1記載の管球。   The tube according to claim 1, wherein the sealing member is formed of a two-layer structure of a conductive layer located on the center side and an insulating layer located on the outside. 封止部材は、その導電層の一方の端面が気密容器の内部に露出し、他方の端面が気密容器の外部へ露出しているとともに、前記封装部材が前記導電層の一方の端面から内部に挿入されて固着して支持され、給電部材が導電層の他方の端面から内部に挿入されて固着して支持されていて、封装部材と給電部材が導電層を介して導通していることを特徴とする請求項1または2記載の管球。 The sealing member has one end surface of the conductive layer exposed to the inside of the airtight container, the other end surface exposed to the outside of the airtight container, and the sealing member from the one end surface of the conductive layer to the inside. It is inserted and fixed and supported, the power supply member is inserted and fixedly supported from the other end face of the conductive layer, and the sealing member and the power supply member are electrically connected through the conductive layer. The tube according to claim 1 or 2. 粉末材料を主体とする絶縁層およびこの絶縁層に直接または間接的に接合し、絶縁層と同じ粉末材料および導電性金属の粉末材料の混合体により構成される導電層を備えている多層構造の機能性傾斜材料からなり、導電層および絶縁層が同軸関係に積層し、かつ、絶縁層が外側で導電層が中心部側に位置するように配置されて軸方向に延在しているとともに、放電プラズマ焼結法により焼結されて前記粉末粒子間が緻密に溶着して絶縁層と導電層とが一体に接合した均質な焼結体を形成し、かつ、各層の接合部位において両層を構成する物質が拡散による移動をして互いに相手方の層内に達することによって混在する肉厚が0.1〜10mmの拡散接合層を形成しているとともに導電層が装部材に導通することを特徴とする封止部材。 A multilayer structure comprising an insulating layer mainly composed of a powder material and a conductive layer directly or indirectly bonded to the insulating layer and composed of a mixture of the same powder material and conductive metal powder material as the insulating layer Made of a functionally gradient material, the conductive layer and the insulating layer are laminated in a coaxial relationship, and the insulating layer is disposed outside and the conductive layer is positioned on the center side, and extends in the axial direction. Sintered by the discharge plasma sintering method, the powder particles are densely welded to form a homogeneous sintered body in which the insulating layer and the conductive layer are integrally joined, and both layers are bonded at the joining portion of each layer. that the conductive layer with a thickness of configuration substance are mixed by reaching into the layer of the other party mutually by a movement by diffusion form a diffusion bonding layer 0.1~10mm conducts the sealing instrumentation member A sealing member. 絶縁層は、酸化ケイ素または酸化アルミニウムを主体としており;
導電層は、絶縁層の材料と同様の材料に30質量%以上の割合で混合された耐火性導電金属材料を含んでいる;
ことを特徴とする請求項4記載の封止部材。
The insulating layer is mainly composed of silicon oxide or aluminum oxide;
The conductive layer includes a refractory conductive metal material mixed with a material similar to the material of the insulating layer in a proportion of 30% by mass or more;
The sealing member according to claim 4.
JP2004277898A 2004-09-24 2004-09-24 Tube and sealing member Expired - Fee Related JP4585823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277898A JP4585823B2 (en) 2004-09-24 2004-09-24 Tube and sealing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277898A JP4585823B2 (en) 2004-09-24 2004-09-24 Tube and sealing member

Publications (2)

Publication Number Publication Date
JP2006092946A JP2006092946A (en) 2006-04-06
JP4585823B2 true JP4585823B2 (en) 2010-11-24

Family

ID=36233729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277898A Expired - Fee Related JP4585823B2 (en) 2004-09-24 2004-09-24 Tube and sealing member

Country Status (1)

Country Link
JP (1) JP4585823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839089B2 (en) * 2002-12-18 2010-11-23 General Electric Company Hermetical lamp sealing techniques and lamp having uniquely sealed components
JP5569834B2 (en) * 2009-01-30 2014-08-13 独立行政法人日本原子力研究開発機構 Method for producing high density, high purity (n, γ) 99Mo

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032277A1 (en) * 1970-06-25 1971-12-30 Egyesuelt Izzolampa Power supply construction for ceramic discharge lamps
JPS5271695A (en) * 1975-12-09 1977-06-15 Thorn Electrical Ind Ltd Lamp and discharging equipment and material therefor
JPH05198285A (en) * 1991-08-20 1993-08-06 Ngk Insulators Ltd High-pressure discharge lamp and manufacture thereof
JPH05290810A (en) * 1992-04-08 1993-11-05 Toto Ltd Light emitting tube for high luminance electric discharge lamp and manufacture of the same
WO1994001884A1 (en) * 1992-07-09 1994-01-20 Toto Ltd. Structure of sealing part of arc tube and method of manufacturing the same
JPH0877976A (en) * 1994-09-03 1996-03-22 Toto Ltd Terminal structure
JPH08138555A (en) * 1994-11-02 1996-05-31 Toto Ltd Manufacture of inclining functional material and sealing structure of electron tube using inclining functional material
JPH10219308A (en) * 1997-02-13 1998-08-18 Toto Ltd Production of composite material and composite material
JPH1167157A (en) * 1997-06-27 1999-03-09 Osram Sylvania Inc Ceramic envelope device, lamp having ceramic envelope device, and manufacture of ceramic envelope device
JPH11144681A (en) * 1997-11-05 1999-05-28 Toto Ltd Lamp and manufacture thereof
JPH11317199A (en) * 1998-03-05 1999-11-16 Ushio Inc Electric introduction body for vessel and its manufacture
JP2000100387A (en) * 1998-09-18 2000-04-07 Ushio Inc Lamp made of ceramic
JP2000123792A (en) * 1998-10-16 2000-04-28 Ushio Inc Inclined function material, lamp sealing body, their manufacture and lamp
JP2000182566A (en) * 1998-10-09 2000-06-30 Ushio Inc Bulb provided with sealing body of gradient functional material
JP2000311655A (en) * 1999-04-26 2000-11-07 Ushio Inc Electric introduction body for lamp, and lamp
JP2001035445A (en) * 1992-07-09 2001-02-09 Toto Ltd Seal part structure of arc tube
JP2001035444A (en) * 1992-07-09 2001-02-09 Toto Ltd Seal part structure of arc tube
JP2001210279A (en) * 2000-01-25 2001-08-03 Ushio Inc Lamp using sealer of functionally gradient material
JP2002110089A (en) * 2000-09-28 2002-04-12 Toshiba Lighting & Technology Corp Electrode, discharge lamp using it and optical device
JP2002283480A (en) * 2001-03-27 2002-10-03 Toto Ltd Method for producing material of gradient function
JP2002326878A (en) * 2000-07-03 2002-11-12 Ngk Insulators Ltd Joint body and high-pressure discharge lamp
JP2003123646A (en) * 2001-10-17 2003-04-25 Matsushita Electric Ind Co Ltd Manufacturing method of blocking body for sealing arc tube of discharge lamp, blocking body for sealing arc tube, and discharge lamp
JP2003142032A (en) * 2001-10-31 2003-05-16 Toshiba Lighting & Technology Corp Functionally gradient body for bulb, and bulb
JP2003346723A (en) * 2002-05-30 2003-12-05 Toshiba Lighting & Technology Corp Discharge lamp and manufacturing method of the same
JP2004250725A (en) * 2003-02-18 2004-09-09 Kohan Kogyo Kk Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JP2006049269A (en) * 2004-07-07 2006-02-16 Toshiba Lighting & Technology Corp Functionally gradient material for sealing, its manufacturing method and tube

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032277A1 (en) * 1970-06-25 1971-12-30 Egyesuelt Izzolampa Power supply construction for ceramic discharge lamps
JPS5271695A (en) * 1975-12-09 1977-06-15 Thorn Electrical Ind Ltd Lamp and discharging equipment and material therefor
JPH05198285A (en) * 1991-08-20 1993-08-06 Ngk Insulators Ltd High-pressure discharge lamp and manufacture thereof
JPH05290810A (en) * 1992-04-08 1993-11-05 Toto Ltd Light emitting tube for high luminance electric discharge lamp and manufacture of the same
WO1994001884A1 (en) * 1992-07-09 1994-01-20 Toto Ltd. Structure of sealing part of arc tube and method of manufacturing the same
JP2001035445A (en) * 1992-07-09 2001-02-09 Toto Ltd Seal part structure of arc tube
JP2001035444A (en) * 1992-07-09 2001-02-09 Toto Ltd Seal part structure of arc tube
JPH0877976A (en) * 1994-09-03 1996-03-22 Toto Ltd Terminal structure
JPH08138555A (en) * 1994-11-02 1996-05-31 Toto Ltd Manufacture of inclining functional material and sealing structure of electron tube using inclining functional material
JPH10219308A (en) * 1997-02-13 1998-08-18 Toto Ltd Production of composite material and composite material
JPH1167157A (en) * 1997-06-27 1999-03-09 Osram Sylvania Inc Ceramic envelope device, lamp having ceramic envelope device, and manufacture of ceramic envelope device
JPH11144681A (en) * 1997-11-05 1999-05-28 Toto Ltd Lamp and manufacture thereof
JPH11317199A (en) * 1998-03-05 1999-11-16 Ushio Inc Electric introduction body for vessel and its manufacture
JP2000100387A (en) * 1998-09-18 2000-04-07 Ushio Inc Lamp made of ceramic
JP2000182566A (en) * 1998-10-09 2000-06-30 Ushio Inc Bulb provided with sealing body of gradient functional material
JP2000123792A (en) * 1998-10-16 2000-04-28 Ushio Inc Inclined function material, lamp sealing body, their manufacture and lamp
JP2000311655A (en) * 1999-04-26 2000-11-07 Ushio Inc Electric introduction body for lamp, and lamp
JP2001210279A (en) * 2000-01-25 2001-08-03 Ushio Inc Lamp using sealer of functionally gradient material
JP2002326878A (en) * 2000-07-03 2002-11-12 Ngk Insulators Ltd Joint body and high-pressure discharge lamp
JP2002110089A (en) * 2000-09-28 2002-04-12 Toshiba Lighting & Technology Corp Electrode, discharge lamp using it and optical device
JP2002283480A (en) * 2001-03-27 2002-10-03 Toto Ltd Method for producing material of gradient function
JP2003123646A (en) * 2001-10-17 2003-04-25 Matsushita Electric Ind Co Ltd Manufacturing method of blocking body for sealing arc tube of discharge lamp, blocking body for sealing arc tube, and discharge lamp
JP2003142032A (en) * 2001-10-31 2003-05-16 Toshiba Lighting & Technology Corp Functionally gradient body for bulb, and bulb
JP2003346723A (en) * 2002-05-30 2003-12-05 Toshiba Lighting & Technology Corp Discharge lamp and manufacturing method of the same
JP2004250725A (en) * 2003-02-18 2004-09-09 Kohan Kogyo Kk Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JP2006049269A (en) * 2004-07-07 2006-02-16 Toshiba Lighting & Technology Corp Functionally gradient material for sealing, its manufacturing method and tube

Also Published As

Publication number Publication date
JP2006092946A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US5861714A (en) Ceramic envelope device, lamp with such a device, and method of manufacture of such devices
JP2001058882A (en) Junction, high-voltage discharge lamp and its production
WO2000024039A1 (en) Lamp and lamp package made of functionally gradient material
JP4585823B2 (en) Tube and sealing member
JP5021812B2 (en) High pressure discharge lamp
TW201034045A (en) Ceramic discharge lamp and method of manufacturing ceramic discharge lamp
JP4521870B2 (en) Functionally graded material for sealing and tube
JP3438666B2 (en) Ceramic discharge lamp and high pressure discharge lamp
JP3736710B2 (en) Electric introduction for tube
JP2008091142A (en) Functionally gradient material for sealing, manufacturing method therefor, and bulb
JP3119264B2 (en) Tube with a closure made of functionally graded material
JP3780060B2 (en) Functionally gradient material, lamp sealing member, and method for manufacturing the same
JP2007112642A (en) Functionally gradient material, method for producing functionally gradient material and bulb
JP5666001B2 (en) Ceramic lead-in for high-pressure discharge lamps
JP3085300B1 (en) Lamp electrical introducer and lamp
JP3669359B2 (en) Method for producing functionally gradient material
JP2009129636A (en) Functionally gradient material, method for the same, and bulb
JPH06203754A (en) Fixation method of composite electrode to inside of discharge lamp
JP3460537B2 (en) Functionally graded material
JP3985498B2 (en) Inclined functional body for tube and tube
US20090267513A1 (en) High-Pressure Discharge Lamp With Ceramic Discharge Vessel
JP3991109B2 (en) Functionally graded material and tube
JP2009129637A (en) Sealing member, and bulb
JP2002063867A (en) Lead-in body for lamp, and lamp
JP2001236925A (en) Lamp and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees