JP4583562B2 - aircraft - Google Patents

aircraft Download PDF

Info

Publication number
JP4583562B2
JP4583562B2 JP2000241115A JP2000241115A JP4583562B2 JP 4583562 B2 JP4583562 B2 JP 4583562B2 JP 2000241115 A JP2000241115 A JP 2000241115A JP 2000241115 A JP2000241115 A JP 2000241115A JP 4583562 B2 JP4583562 B2 JP 4583562B2
Authority
JP
Japan
Prior art keywords
aircraft
fuselage
aerodynamic
pair
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000241115A
Other languages
Japanese (ja)
Other versions
JP2002053099A (en
Inventor
夫 山▲崎▼哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2000241115A priority Critical patent/JP4583562B2/en
Publication of JP2002053099A publication Critical patent/JP2002053099A/en
Application granted granted Critical
Publication of JP4583562B2 publication Critical patent/JP4583562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、航空機に関し、より詳しくは、機体表面のうち機体後方に向かって細く絞られた部分で境界層が剥離して航空機の空力特性が非線形となることを防止する技術に関する。
【0002】
【従来の技術】
遠心式圧縮機やタービンを採用したジェットエンジンはノズル部分の絞りが大きくなるため、図13に示したように、この種のジェットエンジンを搭載する航空機1においては胴体2の後部をエンジン形状に合わせて絞ることになる。
【0003】
このとき、胴体2の左右両側面2L,2Rの機体前後軸に対する傾斜が所定角度を超えると、境界層剥離3L,3Rが生じる場合がある。
このような境界層剥離3L,3Rは抗力の増加をもたらすばかりでなく、図14中に矢印αで示したように例えば図示右方向に機体に横滑りが生じると気流方向に変化が生じて機体右側2Rにおける境界層が薄くなるため、図14中に矢印βで示したように機体後部を右側に押動する空気力が生じる。
これにより、図15に示したように、航空機の横滑り角に対するヨーイングモーメントの特性が非線形となって好ましくない。
【0004】
全く同様に、機体後部の上下両面に境界層剥離が生じている場合に機体の仰角が変化すると、機体後部を上下いずれかに押動する空気力が生じるため、図16に示したように仰角に対するピッチングモーメントの特性が非線形となって好ましくない。
【0005】
そこで従来、機体後部における絞り込みを緩やかにしたりボルテックスジェネレータを取り付けたりすることによって境界層の剥離を防止し、非線形な空力特性が生じないようにしている。
【0006】
また、水平尾翼や垂直尾翼若しくはベントラルフィン等の安定板の面積を大きくすることにより、境界層の剥離によって生じた非線形な空力特性による安定性の減少を補っている。
【0007】
【発明が解決しようとする課題】
しかしながら、機体後部における気流剥離を防止するべく機体形状の絞り込みを緩やかにすると、機体外形状および内部構造の大幅な変更が必要となるばかりでなく、ベース面積の増加を招いてしまう。
【0008】
また、ボルテックスジェネレータは、境界層の剥離が生じていない箇所に、かつ気流の流れ方向に対して適切な高さおよび角度を有するように設置することが必要であり、機体後部のように局所的な気流方向が一定しない場合には取り付けが困難である。
【0009】
また、水平尾翼や垂直尾翼の面積増加やベントラルフィンの追加は、非線形な空力特性を若干ながらも残存させるばかりでなく、機体構造やアクチュエータ等の装備品の変更を招く。
【0010】
そこで本発明の目的は、上述した従来技術が有する問題点を解消し、機体の外形状や内部構造および装備品の変更を抑制しつつ、境界層剥離に起因する非線形な空力特性が生じないように空力特性が改善された航空機を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の手段は、その胴体の左右両側面の機体幅方向の間隔がその後端側ほど狭くなるように機体後方に向かって細く絞られている航空機であって、平面図で見たときに機体後方に向かって末広がりに延びる左右一対のくさび状の突出部が、前記胴体のうち細く絞られている部分の左右両側面の後端に、機体前後軸に対して左右対称にそれぞれ形成されていることを特徴とする。
なお、前記左右一対の突出部は、前記胴体の左右両側面のうち、機体前後軸と平行に延びる水平面で前記胴体を切断したときに機体前後軸に対して所定角度以上に傾斜し始める位置をその前端として前記左右両側面にそれぞれ形成される。
【0012】
すなわち、機体後方に向かう絞りが大きい機体形状では、境界層が圧力回復に耐えきれずに機体表面から剥離してしまうが、本発明に係る空力特性改善装置を機体表面に取り付けると、局所的に気流が加速されて境界層の剥離が抑制されるので、空力特性が非線形となることを防止することができる。
これにより、航空機の空力特性を改善して機体姿勢にぶれ等が生じない素直な飛行特性を実現することができる。
【0013】
【発明の実施の形態】
以下、本発明の航空機の一実施形態および各参考例について、図1乃至図12を参照して詳細に説明する。
なお、以下の説明においては、前述した従来技術と同一の部分には同一の符号を用いてその説明を省略する。
【0014】
一実施形態
図1および図2に示したように、本実施形態の航空機10の胴体2は、その後端2a側ほど左右両側面2L,2Rの機体幅方向の間隔が狭くなるように機体後方に向かって徐々に絞られている。
これにより、胴体2の左右両側面2L,2Rのうち、機体前後軸CLに対する傾斜角度が特定の角度を超える部分に境界層剥離が生じるおそれがある。
【0015】
そこで、胴体2の左右両側面2L,2Rの後端部分には、境界層剥離を防止する左右一対の空力特性改善装置11L,11Rがそれぞれ突設されている。
これらの空力特性改善装置11L,11Rは、図1乃至図3に示したように、機体後方に向かって末広がりに延びるくさび状の突出部として形成され、その前端が符号Aで、かつ後端が符号Bで示されている。
【0016】
左右一対の空力特性改善装置11L,11Rの前端Aは、図4に示したように機体前後軸CLと平行に延びる水平面で胴体2を切断したときに、胴体2の左右両側面2L,2Rが機体前後軸CLに対して所定角度θ以上の角度で傾斜し始める位置とする。
すなわち、前端Aより機体後方においては、胴体2の左右両側面2L,2Rが機体前後軸CLに対して所定角度θ以上の角度で傾斜する。
なお、所定角度θは、航空機10の機体寸法や飛行高度および飛行速度等の前提条件に基づいて、境界層剥離が予想される条件を算出して求める。
【0017】
左右一対の空力特性改善装置11L,11Rの後端Bは、図5に示したように、これらの空力特性改善装置11L,11Rを設置しない場合に胴体2の左右両側面2L,2R上に発生する境界層の厚みの1/2の値である寸法Tだけ、左右両側面2L,2Rからそれぞれ離間する点を胴体2の後端2aと同一平面上に求めることにより得ることができる。
【0018】
機体前後軸CLと平行に延びる複数の水平面において上述した作業を行い、各水平面毎にA点およびB点求めるとともに、各水平面上においてA点およびB点を直線で結ぶことにより左右一対の空力特性改善装置11L,11Rの側面11aを定める。
そして、このようにして得られた複数のA点同士およびB点同士をそれぞれ滑らかに結ぶことにより、左右一対の空力特性改善装置11L,11Rの前縁および後縁を定めることができる。
すなわち、左右一対の空力特性改善装置11L,11Rの前縁および後縁Bは、航空機10の胴体2の形状に応じて定まる。
なお、簡易な方法として、最も前方に位置するA点を通過する機体前後軸CLに対して垂直な平面と胴体2の左右の両側面2L,2Rとの交線を、左右一対の空力特性改善装置11L,11Rの前縁とすることもできる。
【0019】
左右一対の空力特性改善装置11L,11Rの上下方向の幅は、境界層剥離が予想される領域を覆うように設定するが、空気抵抗の増加を招くため、図6に示したように胴体2の後端2aにおける上下方向寸法H0対して約1/3の値であるH1とすることが好ましい。
【0020】
以上のように左右一対の空力特性改善装置11L,11Rの形状を定めると、それらの側面11aに沿って流れる気流が局所的に加速されるので、境界層の剥離を抑制することができる。
これにより、航空機10の横滑り角と胴体2に生じるヨーイングモーメントとの関係を図7に示したように線形とすることができるから、機体姿勢にぶれ等が生じない素直な飛行特性を実現することができる。
【0021】
また、胴体2の左右両側面2L,2Rに左右一対の空力特性改善装置11L,11Rをそれぞれ装着するだけで良いから、胴体2の外形状や内部構造を大幅に変更することなく航空機10の空力特性を改善することができる。
【0022】
第1参考例
上述した一実施形態の航空機においては、機体後方に向かって末広がりに延びるくさび状の空力特性改善装置を胴体2の左右両側面2L,2Rに設置した。
これに対して、図8に示したように、機体前後軸CLに対して垂直な方向に延びる平板状の左右一対の突出部21L,21Rを、航空機20の胴体2の左右両側面2L,2Rの後端に突設すると、気流の淀み22L,22Rが生じ、上述した一実施形態の航空機と同様の効果を得ることができる。
なお、平板状の左右一対の突出部21L,21Rは、胴体2の左右両側面2L,2Rに対する突出寸法、および上下方向の寸法を、上述した一実施形態の航空機における空力特性改善装置11L,11Rのそれと等しくする。
【0023】
第2参考例
上述した一実施形態および第1参考例においては、航空機の胴体2が幅方向に絞られる場合について説明したが、本発明は、胴体2が機体後方に向かって上下方向に細く絞られる場合にも適用することができる。
【0024】
すなわち、図9および図10に示した航空機30においては、胴体2の左右両側面2L,2Rに沿って、主翼4および水平尾翼5の付け根部分で前後方向に延びる左右一対の張出部6L,6Rが設けられている。
そして、これらの張出部6L,6Rは、その上面6Uおよび下面6Sの上下方向間隔が狭くなるように機体後方に向かって徐々に絞られている。
これにより、左右一対の張出部6L,6Rの上面6Uのうち、機体前後軸CLに対する傾斜角度が特定の角度を超える部分に境界層の剥離が生じるおそれがある。
【0025】
そこで、左右一対の張出部6L,6Rの上面6Uの後端部分に、境界層の剥離を防止する左右一対の空力特性改善装置31L,31Rがそれぞれ突設されている。
これらの空力特性改善装置31L,31Rは、図11に示したように、機体後方に向かって末広がりに延びるくさび状の突出部として形成されているが、その形状は前述した第1実施形態の空力特性改善装置11L,11Rと同様に設定することができる。
これにより、航空機30の仰角と胴体2に生じるピッチングモーメントとの関係を図12に示したように線形とすることができるから、機体姿勢にぶれ等が生じない素直な飛行特性を実現することができる。
【0026】
以上、本発明の航空機の一実施形態および各参考例について詳しく説明したが、本発明は上述した実施形態によって限定されるものではなく、種々の変更が可能であることは言うまでもない。
例えば、上述した一実施形態および各参考例においては、いずれも胴体2若しくは張出部6L,6Rの後端に各空力特性改善装置を配設しているが、境界層剥離の防止が必要な箇所であれば、胴体2若しくは張出部6L,6Rのいずれの部分にも設けることができる。
【0027】
【発明の効果】
以上の説明から明らかなように、本発明の航空機においては、局所的に気流が加速されて境界層の剥離が抑制されるので、空力特性が非線形となることを防止できる。
これにより、航空機の空力特性を改善して機体姿勢にぶれ等が生じない素直な飛行特性を実現することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の航空機を示す平面図。
【図2】 図1に示した航空機の左側面図。
【図3】 図1に示した航空機の機体後部を示す斜視図。
【図4】 空力付加物の形状設定方法を説明する機体後部平面図。
【図5】 空力付加物の形状設定方法を説明する機体後部平面図。
【図6】 図1に示した航空機の後面図。
【図7】 機体の横滑り角とヨーイングモーメントとの関係を示すグラフ図。
【図8】 本発明に係る第1参考例の航空機の機体後部平面図。
【図9】 本発明に係る第2参考例の航空機を示す左側面図。
【図10】 図9に示した航空機の平面図。
【図11】 図9に示した航空機の機体後部を示す斜視図。
【図12】 機体の仰角とピッチングモーメントとの関係を示すグラフ図。
【図13】 従来の航空機の機体後部における空気の流れを模式的に示す平面図。
【図14】 機体が右側に横滑りしたときの機体後部における空気の流れを模式的に示す平面図。
【図15】 従来の航空機において境界層剥離が生じたときの機体の横滑り角とヨーイングモーメントとの関係を示すグラフ図。
【図16】 従来の航空機において境界層剥離が生じたときの機体の仰角とピッチングモーメントとの関係を示すグラフ図。
【符号の説明】
A 空力付加物の前端
B 空力付加物の後端
1 従来の航空機
2 胴体
2L 左側面
2R 右側面
3L,3R 境界層剥離
4 主翼
5 水平尾翼
6L,6R 張出部
6U 上面
6S 下面
10 一実施形態の航空機
11L,11R 突出部(空力特性改善装置)
20 第1参考例の航空機
21L,21R 突出部(空力特性改善装置)
22L,22R 気流の淀み
30 第2参考例の航空機
31L,31R 突出部(空力特性改善装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aircraft, and more particularly relates to a technique to prevent the aerodynamic characteristics of the aircraft boundary layer is peeled off by finely focused portion towards the body rearward of the body surface becomes non-linear.
[0002]
[Prior art]
In a jet engine that employs a centrifugal compressor or turbine, since the nozzle portion has a large aperture, as shown in FIG. 13, in the aircraft 1 equipped with this type of jet engine, the rear part of the fuselage 2 is matched to the engine shape. Will squeeze.
[0003]
At this time, if the inclination of the left and right side surfaces 2L, 2R of the fuselage 2 with respect to the longitudinal axis of the body exceeds a predetermined angle, boundary layer separation 3L, 3R may occur.
Such boundary layer separations 3L and 3R not only increase the drag, but as shown by an arrow α in FIG. 14, for example, if a side slip occurs in the right direction in the figure, the air flow direction changes, and the right side of the body Since the boundary layer in 2R becomes thin, an aerodynamic force is generated that pushes the rear part of the airframe to the right as indicated by an arrow β in FIG.
Thereby, as shown in FIG. 15, the characteristic of the yawing moment with respect to the side slip angle of the aircraft becomes non-linear, which is not preferable.
[0004]
Exactly the same, when boundary layer separation occurs on both the upper and lower sides of the rear part of the aircraft, if the elevation angle of the aircraft changes, an aerodynamic force that pushes the rear part of the aircraft upward or downward will be generated. The characteristic of the pitching moment with respect to the non-linear is not preferable.
[0005]
Therefore, conventionally, the boundary layer is prevented from being peeled off by reducing the narrowing of the rear part of the fuselage or attaching a vortex generator so that nonlinear aerodynamic characteristics do not occur.
[0006]
In addition, by increasing the area of the stabilizer such as the horizontal tail, vertical tail or bentral fin, the reduction in stability due to nonlinear aerodynamic characteristics caused by the separation of the boundary layer is compensated.
[0007]
[Problems to be solved by the invention]
However, if the airframe shape is narrowed down to prevent airflow separation at the rear of the airframe, not only the external shape and internal structure of the airframe will need to be significantly changed, but also the base area will increase.
[0008]
In addition, the vortex generator must be installed where there is no separation of the boundary layer and at an appropriate height and angle with respect to the flow direction of the airflow. If the air flow direction is not constant, it is difficult to install.
[0009]
Further, the increase in the area of the horizontal and vertical tails and the addition of bentar fins not only leave a slight amount of non-linear aerodynamic characteristics, but also changes the equipment structure such as the airframe structure and actuators.
[0010]
Accordingly, an object of the present invention is to eliminate the problems of the above-described conventional technology and prevent nonlinear aerodynamic characteristics due to boundary layer separation while suppressing changes in the outer shape, internal structure, and equipment of the fuselage. It is to provide an aircraft having improved aerodynamic characteristics.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, the means described in claim 1 is an aircraft that is narrowed toward the rear of the fuselage so that the distance between the left and right sides of the fuselage in the fuselage width direction becomes narrower toward the rear end. The pair of left and right wedge-shaped projections extending toward the rear of the fuselage when viewed in plan view are located at the rear ends of both the left and right sides of the narrowed portion of the fuselage, on the longitudinal axis of the fuselage. It is characterized by being formed symmetrically with respect to each other.
The pair of left and right projecting portions has a position at which the left and right side surfaces of the fuselage start to be inclined at a predetermined angle or more with respect to the machine longitudinal axis when the fuselage is cut by a horizontal plane extending in parallel with the machine longitudinal axis. The front end is formed on each of the left and right side surfaces.
[0012]
That is, in the airframe shape with a large throttle toward the rear of the aircraft, the boundary layer cannot withstand pressure recovery and peels off from the aircraft surface, but when the aerodynamic characteristic improvement device according to the present invention is attached to the aircraft surface, Since the air flow is accelerated and the separation of the boundary layer is suppressed, it is possible to prevent the aerodynamic characteristics from becoming nonlinear.
As a result, it is possible to improve the aerodynamic characteristics of the aircraft and realize the straight flight characteristics that do not cause fluctuations in the body posture.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an aircraft of the present invention and each reference example will be described in detail with reference to FIGS.
In the following description, the same reference numerals are used for the same parts as those in the conventional technology described above, and the description thereof is omitted.
[0014]
As shown in FIGS. 1 and 2, the fuselage 2 of the aircraft 10 according to the present embodiment is located rearward so that the distance between the left and right side surfaces 2L and 2R in the fuselage width direction becomes narrower toward the rear end 2a. It is gradually squeezed towards.
As a result, boundary layer separation may occur in portions of the left and right side surfaces 2L, 2R of the fuselage 2 where the inclination angle with respect to the body longitudinal axis CL exceeds a specific angle.
[0015]
Therefore, a pair of left and right aerodynamic characteristic improvement devices 11L and 11R for preventing separation of the boundary layer are provided at the rear end portions of the left and right side surfaces 2L and 2R of the body 2, respectively.
As shown in FIGS. 1 to 3, these aerodynamic characteristic improvement devices 11L and 11R are formed as wedge-shaped protrusions that extend toward the rear of the machine body, and have a front end denoted by A and a rear end. This is indicated by the symbol B.
[0016]
The front end A of the pair of left and right aerodynamic characteristic improvement devices 11L and 11R is such that the left and right side surfaces 2L and 2R of the fuselage 2 are cut when the fuselage 2 is cut by a horizontal plane extending parallel to the longitudinal axis CL as shown in FIG. The position starts to tilt at an angle equal to or greater than a predetermined angle θ with respect to the longitudinal axis CL.
That is, on the rear side of the fuselage from the front end A, the left and right side surfaces 2L, 2R of the fuselage 2 are inclined at an angle of a predetermined angle θ or more with respect to the fuselage longitudinal axis CL.
Note that the predetermined angle θ is obtained by calculating conditions under which boundary layer separation is expected based on the preconditions such as the aircraft dimensions, flight altitude, and flight speed of the aircraft 10.
[0017]
As shown in FIG. 5 , the rear ends B of the pair of left and right aerodynamic characteristic improving devices 11L and 11R are generated on the left and right side surfaces 2L and 2R of the body 2 when these aerodynamic characteristic improving devices 11L and 11R are not installed. It is possible to obtain the points separated from the left and right side surfaces 2L, 2R by the dimension T, which is ½ the thickness of the boundary layer, on the same plane as the rear end 2a of the body 2.
[0018]
A pair of left and right aerodynamic characteristics is obtained by performing the above-described operation on a plurality of horizontal planes extending in parallel with the longitudinal axis CL of the aircraft, and obtaining points A and B for each horizontal plane and connecting points A and B with straight lines on each horizontal plane. A side surface 11a of the improvement devices 11L and 11R is determined.
Then, by smoothly connecting the plurality of points A and B obtained in this way, the front and rear edges of the pair of left and right aerodynamic characteristic improvement devices 11L and 11R can be determined.
That is, the front edge and the rear edge B of the pair of left and right aerodynamic characteristic improvement devices 11L and 11R are determined according to the shape of the fuselage 2 of the aircraft 10.
As a simple method, a pair of left and right aerodynamic characteristics is improved by crossing the plane perpendicular to the aircraft longitudinal axis CL passing through the point A located at the foremost position and the left and right side surfaces 2L, 2R of the fuselage 2. It can also be the leading edge of the devices 11L, 11R.
[0019]
The vertical width of the pair of left and right aerodynamic characteristic improvement devices 11L and 11R is set so as to cover the region where boundary layer separation is expected. However, in order to increase the air resistance, as shown in FIG. It is preferable to set H1 which is a value of about 1/3 with respect to the vertical dimension H0 at the rear end 2a.
[0020]
As described above, when the shapes of the pair of left and right aerodynamic characteristic improvement devices 11L and 11R are determined, the airflow flowing along the side surfaces 11a is locally accelerated, so that separation of the boundary layer can be suppressed.
As a result, the relationship between the skid angle of the aircraft 10 and the yawing moment generated in the fuselage 2 can be made linear as shown in FIG. Can do.
[0021]
In addition, since it is only necessary to attach the pair of left and right aerodynamic characteristic improvement devices 11L and 11R to the left and right side surfaces 2L and 2R of the fuselage 2, the aerodynamics of the aircraft 10 can be achieved without significantly changing the outer shape or internal structure of the fuselage 2. The characteristics can be improved.
[0022]
First Reference Example In the aircraft according to the embodiment described above, wedge-shaped aerodynamic characteristic improvement devices that extend toward the rear of the fuselage are installed on the left and right side surfaces 2L and 2R of the fuselage 2.
On the other hand, as shown in FIG. 8, the pair of left and right protrusions 21L and 21R that extend in a direction perpendicular to the longitudinal axis CL of the aircraft are provided with left and right side surfaces 2L and 2R of the fuselage 2 of the aircraft 20 When projecting at the rear end, air flow stagnation 22L and 22R are generated, and the same effect as that of the aircraft of the above-described embodiment can be obtained.
Note that the pair of left and right protrusions 21L and 21R of the flat plate shape has a protrusion dimension with respect to the left and right side surfaces 2L and 2R of the fuselage 2 and a vertical dimension, and the aerodynamic characteristic improvement devices 11L and 11R in the aircraft of the embodiment described above. Equal to that of
[0023]
Second Reference Example In the above-described embodiment and the first reference example , the case where the fuselage 2 of the aircraft is throttled in the width direction has been described. However, the present invention is narrowed in the vertical direction toward the rear of the fuselage. It can also be applied to
[0024]
That is, in the aircraft 30 shown in FIGS. 9 and 10, a pair of left and right overhanging portions 6 </ b> L extending in the front-rear direction at the base portions of the main wing 4 and the horizontal tail 5 along the left and right side surfaces 2 </ b> L and 2 </ b> R of the fuselage 2. 6R is provided.
And these overhang | projection parts 6L and 6R are gradually squeezed toward the back of an airframe so that the up-down direction space | interval of the upper surface 6U and the lower surface 6S may become narrow.
As a result, the boundary layer may be peeled off at the portion of the upper surface 6U of the pair of left and right overhang portions 6L, 6R where the inclination angle with respect to the body longitudinal axis CL exceeds a specific angle.
[0025]
Therefore, a pair of left and right aerodynamic characteristic improvement devices 31L and 31R for preventing separation of the boundary layer are provided to project from the rear end portions of the upper surface 6U of the pair of left and right overhang portions 6L and 6R.
As shown in FIG. 11, these aerodynamic characteristic improvement devices 31L and 31R are formed as wedge-shaped protrusions extending toward the rear of the machine body, but the shape thereof is the aerodynamics of the first embodiment described above. It can be set similarly to the characteristic improvement devices 11L and 11R.
Thereby, since the relationship between the elevation angle of the aircraft 30 and the pitching moment generated in the fuselage 2 can be made linear as shown in FIG. 12, it is possible to realize a straight flight characteristic that does not cause fluctuations in the attitude of the aircraft. it can.
[0026]
Has been described in detail with an embodiment and the reference example of an aircraft of the present invention, the present invention is not intended to be limited to the embodiments described above, it is needless to say various modifications are possible.
For example, Oite to an embodiment and the reference example described above, both the body 2 or the overhang portion 6L, although disposed each aerodynamic characteristics improved apparatus to the rear end of the 6R, prevention of boundary layer separation If necessary, it can be provided in any part of the body 2 or the overhang portions 6L, 6R.
[0027]
【The invention's effect】
As is clear from the above description, in the aircraft of the present invention, the air flow is locally accelerated and the separation of the boundary layer is suppressed, so that the aerodynamic characteristics can be prevented from becoming nonlinear.
As a result, it is possible to improve the aerodynamic characteristics of the aircraft and realize the straight flight characteristics that do not cause fluctuations in the body posture.
[Brief description of the drawings]
FIG. 1 is a plan view showing an aircraft according to an embodiment of the present invention.
FIG. 2 is a left side view of the aircraft shown in FIG.
FIG. 3 is a perspective view showing a rear part of the aircraft shown in FIG. 1;
FIG. 4 is a rear plan view of the airframe for explaining a method of setting the shape of an aerodynamic addition.
FIG. 5 is a rear plan view of the airframe for explaining a method for setting the shape of an aerodynamic addition.
6 is a rear view of the aircraft shown in FIG. 1. FIG.
FIG. 7 is a graph showing the relationship between the sideslip angle of the aircraft and the yawing moment.
FIG. 8 is a rear plan view of the aircraft body of the first reference example according to the present invention.
FIG. 9 is a left side view showing an aircraft of a second reference example according to the present invention.
10 is a plan view of the aircraft shown in FIG. 9. FIG.
11 is a perspective view showing a rear part of the aircraft shown in FIG. 9;
FIG. 12 is a graph showing the relationship between the elevation angle of the aircraft and the pitching moment.
FIG. 13 is a plan view schematically showing the air flow in the rear part of a conventional aircraft.
FIG. 14 is a plan view schematically showing the air flow in the rear part of the aircraft when the aircraft slides to the right.
FIG. 15 is a graph showing the relationship between the sideslip angle of the airframe and the yawing moment when boundary layer separation occurs in a conventional aircraft.
FIG. 16 is a graph showing the relationship between the elevation angle of the aircraft and the pitching moment when boundary layer separation occurs in a conventional aircraft.
[Explanation of symbols]
A Front end of aerodynamic addition B Rear end of aerodynamic addition 1 Conventional aircraft 2 Fuselage 2L Left side 2R Right side 3L, 3R Boundary layer separation 4 Main wing 5 Horizontal tail 6L, 6R Overhang 6U Upper surface 6S Lower surface 10 One embodiment aircraft 11L, 11R protrusions (aerodynamic characteristic improvement unit)
20 First reference example aircraft 21L, 21R Protrusion (Aerodynamic characteristic improvement device)
22L, 22R Airflow stagnation 30 Aircraft 31L, 31R projecting part of second reference example (aerodynamic characteristic improvement device)

Claims (2)

その胴体の左右両側面の機体幅方向の間隔がその後端側ほど狭くなるように機体後方に向かって細く絞られている航空機であって、
平面図でみたときに機体後方に向かって末広がりに延びる左右一対のくさび状の突出部が、前記胴体のうち細く絞られている部分の左右両側面の後端に、機体前後軸に対して左右対称にそれぞれ形成されていることを特徴とする航空機。
The aircraft is narrowed toward the rear of the fuselage so that the distance between the left and right sides of the fuselage in the fuselage width direction becomes narrower toward the rear end,
When viewed in plan, a pair of left and right wedge-shaped protrusions extending toward the rear of the fuselage are located at the rear ends of both the left and right sides of the narrowed portion of the fuselage. An aircraft characterized by being formed symmetrically.
前記左右一対の突出部は、前記胴体の左右両側面のうち、機体前後軸と平行に延びる水平面で前記胴体を切断したときに機体前後軸に対して所定角度以上に傾斜し始める位置をその前端として前記左右両側面にそれぞれ形成されていることを特徴とする請求項1に記載の航空機。  The pair of left and right protrusions has a front end at a position at which the body starts to be inclined more than a predetermined angle with respect to the longitudinal axis of the fuselage when the fuselage is cut by a horizontal plane extending in parallel with the longitudinal axis of the fuselage on both left and right side surfaces of the fuselage. The aircraft according to claim 1, wherein the aircraft is formed on each of the left and right side surfaces.
JP2000241115A 2000-08-09 2000-08-09 aircraft Expired - Fee Related JP4583562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241115A JP4583562B2 (en) 2000-08-09 2000-08-09 aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000241115A JP4583562B2 (en) 2000-08-09 2000-08-09 aircraft

Publications (2)

Publication Number Publication Date
JP2002053099A JP2002053099A (en) 2002-02-19
JP4583562B2 true JP4583562B2 (en) 2010-11-17

Family

ID=18732353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241115A Expired - Fee Related JP4583562B2 (en) 2000-08-09 2000-08-09 aircraft

Country Status (1)

Country Link
JP (1) JP4583562B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034367B4 (en) 2004-07-16 2013-09-12 Airbus Operations Gmbh Refueling pod of an airplane with a deflector
ES2281866T3 (en) * 2004-07-16 2007-10-01 Airbus Deutschland Gmbh REPLACEMENT GONDOLA FOR AN AIRPLANE WITH A DRUG REPLACEMENT HOSE.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854741C1 (en) * 1998-11-27 2000-05-25 Daimler Chrysler Aerospace Flow modifier for aircraft wing has wedge shaped flow body mounted directly on underside of wing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542868A (en) * 1983-06-06 1985-09-24 Lockheed Corporation Trailing edge device for an airfoil
JPS63207796A (en) * 1987-02-25 1988-08-29 三菱重工業株式会社 Missile with auxiliary booster
JPH0747998A (en) * 1993-08-06 1995-02-21 Mitsubishi Heavy Ind Ltd Helicopter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854741C1 (en) * 1998-11-27 2000-05-25 Daimler Chrysler Aerospace Flow modifier for aircraft wing has wedge shaped flow body mounted directly on underside of wing

Also Published As

Publication number Publication date
JP2002053099A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US8128038B2 (en) High-lift device for an aircraft
US9586677B2 (en) Aircraft wing with system establishing a laminar boundary layer flow
US11242141B2 (en) Method of drag reduction on vehicle with internal rotors
US20100301171A1 (en) Shock bump array
US5037044A (en) Aerodynamic or hydrodynamic surfaces
US8302912B2 (en) Shock bump
JP4583562B2 (en) aircraft
US5178348A (en) Contoured wing/flap assembly and method
US9896193B2 (en) Aerodynamic structure with asymmetrical shock bump
EP0052360B1 (en) Air aspiration device of aircraft-mounted gas-turbine engine
GB2093152A (en) Boundary Layer Control
CN110920863A (en) Wing tip device
US4264043A (en) Stabilizer for aerospace vehicles
EP2091814B1 (en) Establishment of laminar boundary layer flow on an aerofoil body
US4236684A (en) Thrust augmented spin recovery device
JPH06312697A (en) Resistance reducing vertical rudder
JP2942132B2 (en) Rudder with parallel aileron
GB1599633A (en) Aerofoils
JPH01244957A (en) Surface effect plane having end plate
JPS5813397B2 (en) USB-type high-lift device
JP2019077371A (en) High lift wing
Engineer MODERN FIGHTER AIRCRAFT DESIGN FOR HIGH-ANGLE-OF-ATTACK MANEUVERING
WO2000001579A1 (en) Aerofoil having shock control
JPH06191493A (en) Aircraft
JPH011696A (en) aircraft forward wing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees