JP4582888B2 - Package for pressure detection device - Google Patents

Package for pressure detection device Download PDF

Info

Publication number
JP4582888B2
JP4582888B2 JP2000294717A JP2000294717A JP4582888B2 JP 4582888 B2 JP4582888 B2 JP 4582888B2 JP 2000294717 A JP2000294717 A JP 2000294717A JP 2000294717 A JP2000294717 A JP 2000294717A JP 4582888 B2 JP4582888 B2 JP 4582888B2
Authority
JP
Japan
Prior art keywords
electrode
insulating
semiconductor element
capacitance
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000294717A
Other languages
Japanese (ja)
Other versions
JP2002107252A (en
Inventor
浩司 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000294717A priority Critical patent/JP4582888B2/en
Publication of JP2002107252A publication Critical patent/JP2002107252A/en
Application granted granted Critical
Publication of JP4582888B2 publication Critical patent/JP4582888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧力を検出するための圧力検出装置に使用される圧力検出装置用パッケージに関するものである。
【0002】
【従来の技術】
従来、圧力を検出するための圧力検出装置として静電容量型の圧力検出装置が知られている。この静電容量型の圧力検出装置は、例えば図4に断面図で示すように、セラミックス材料や樹脂材料から成る配線基板21上に、静電容量型の感圧素子22と、パッケージ28に収容された演算用の半導体素子29とを備えている。感圧素子22は、例えばセラミックス材料等の電気絶縁材料から成り、上面中央部に静電容量形成用の一方の電極23が被着された凹部を有する絶縁基体24と、この絶縁基体24の上面に絶縁基体24との間に密閉空間を形成するようにして可撓な状態で接合され、下面に静電容量形成用の他方の電極25が被着された絶縁板26と、各静電容量形成用の電極23・25をそれぞれ外部に電気的に接続するための外部リード端子27とから構成されており、外部の圧力に応じて絶縁板26が撓むことにより各静電容量形成用の電極23・25間に形成される静電容量が変化する。そして、この静電容量の変化を演算用の半導体素子29により演算処理することにより外部の圧力を検出することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来の圧力検出装置によると、感圧素子22と半導体素子29とを配線基板21上に個別に実装していることから、圧力検出装置が大型化してしまうとともに圧力検出用の電極23・25と半導体素子29との間の配線が長いものとなり、この長い配線間に不要な静電容量が形成されるため感度が低いという問題点を有していた。
【0004】
そこで、本願出願人は、先に特願2000-178618において、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設され、半導体素子の各電極が電気的に接続される複数の配線導体と、絶縁基体の他方の主面の中央部に被着され、配線導体の一つに電気的に接続された静電容量形成用の第一電極と、絶縁基体の他方の主面に、この主面の中央部との間に密閉空間を形成するように可撓な状態で接合された絶縁板と、この絶縁板の内側主面に第一電極と対向して被着され、配線導体の他の一つに電気的に接続された静電容量形成用の第二電極とを具備する圧力検出装置用パッケージを提案した。
この圧力検出装置用パッケージによると、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体の他方の主面に静電容量形成用の第一電極を設けるとともに、この第一電極と対向する静電容量形成用の第二電極を内側面に有する絶縁板を、絶縁基体の他方の主面との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。なお、この特願2000-178618で提案した圧力検出装置用パッケージにおいては、絶縁基体の他方の主面の外周部にセラミックスや金属から成る枠体を第一電極を取り囲むようにして設けておき、この枠体上に第二電極の外周部を銀−銅ろう等のろう材を介してろう付けすることにより絶縁板が絶縁基体に接合されていた。そして、通常、このようなパッケージにおいては、絶縁基体や絶縁板は、その生産性を考慮してその外周が略四角形状であり、第一電極は略円形に、第二電極は絶縁板の下面全面に形成されていた。枠体もこれに合わせて外周を略四角形状とし、内周を第一電極に合わせた略円形としていた。
【0005】
しかしながら、この圧力検出装置用パッケージによると、外周が略四角形で内周が円形の枠体の上面に外周が略四角形の絶縁板の下面全面に形成した第二電極をろう付けしたことから、ろう付けの幅が絶縁板の各辺の中央部と各角部とで大きく異なり、そのため、枠体上面に絶縁板をろう付けする際に溶融したろう材が絶縁板の各角部に大きく集中してろう材の厚みが不均一となり、その結果、第一電極と第二電極との間に形成される静電容量が大きくばらついてしまい、そのため外部の圧力を正確に検出することが困難であるという問題点を有していた。
【0006】
本発明は、かかる上述の問題点に鑑み完成されたものであり、その目的は、小型でかつ感度が高く、しかも外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の圧力検出装置用パッケージの一態様は、一方の主面に半導体素子が搭載される搭載部を有するとともに他方の主面の中央部に被着された静電容量形成用の第一電極を有し、他方の主面の外周部に第一電極を囲繞するように設けられた、内周が円形で外周が略四角形の枠体を備えた略四角平板状の絶縁基体と、一方の主面に中央部が第一電極に対向するとともに外周部が枠体上にろう付けされた静電容量形成用の略円形の第二電極を有し、絶縁基体との間に密閉空間を形成するように可撓な状態で枠体に取着された略四角平板状の絶縁板と、第二電極のろう付けされた外周部と第二電極の第一電極に対向する中央部との間の表面に被着された枠状の絶縁層とを備えたことを特徴とするものである。
【0008】
本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される搭載部を有する略四角平板状の絶縁基体の他方の主面の中央部に静電容量形成用の第一電極を設けるとともに、この第一電極と対向する静電容量形成用の第二電極を有する略四角平板状の絶縁板を、絶縁基体との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。
さらに、第二電極が略円形であることから、ろう付けの幅が全周にわたり略均一な幅となり、したがって、枠体上面に第二電極をろう付けする際に、ろう材の厚みが略均一となり、その結果、第一電極と第二電極との間に形成される静電容量にばらつきが発生することがない。
【0009】
次に、本発明を添付の図面を基に詳細に説明する。図1は、圧力検出装置用パッケージの参考例を示す断面図であり、図3は、本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図である。図中、1は絶縁基体、2は絶縁板、3は半導体素子である。
【0010】
絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・炭化珪素質焼結体・窒化珪素質焼結体・ガラス−セラミックス等のセラミックス材料から成る略四角平板状の積層体であり、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基体1用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0011】
絶縁基体1は、その下面中央部に半導体素子3を収容するための凹部1aが形成されており、これにより半導体素子3を収容する容器として機能する。そして、この凹部1aの底面中央部が半導体素子3が搭載される搭載部1bとなっており、この搭載部1bに半導体素子3を搭載するとともに凹部1a内に例えばエポキシ樹脂等の樹脂製封止材4を充填することにより半導体素子3が封止される。
なお、この例では半導体素子3は樹脂製封止材4を凹部1a内に充填することにより封止されるが、半導体素子3は絶縁基体1の下面に金属やセラミックスから成る蓋体を凹部1aを塞ぐように接合させることにより封止されてもよい。
【0012】
また、搭載部1bには半導体素子3の各電極と接続される複数のメタライズ配線導体5が導出しており、このメタライズ配線導体5と半導体素子3の各電極を半田バンプ6等の導電性材料から成る導電性接合部材を介して接合することにより半導体素子3の各電極と各メタライズ配線導体5とが電気的に接続されるとともに半導体素子3が搭載部1bに固定される。なお、この例では、半導体素子3の電極とメタライズ配線導体5とは半田バンプ6を介して接続されるが、半導体素子3の電極とメタライズ配線導体5とはボンディングワイヤ等の他の種類の電気的接続手段により接続されてもよい。
【0013】
メタライズ配線導体5は、半導体素子3の各電極を外部電気回路および後述する第一電極7・第二電極9に電気的に接続するための導電路として機能し、その一部は絶縁基体1の外周下面に導出し、別の一部は第一電極7・第二電極9に電気的に接続されている。そして、半導体素子3の各電極をこれらのメタライズ配線導体5に導電性接合材6を介して電気的に接続するとともに半導体素子3を樹脂製封止材4で封止した後、メタライズ配線導体5の絶縁基体1外周下面に導出した部位を外部電気回路基板の配線導体に半田等の導電性接合材を介して接合することにより、内部に収容する半導体素子3が外部電気回路に電気的に接続されることとなる。
【0014】
このようなメタライズ配線導体5は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の内部および表面に所定のパターンに形成される。
なお、メタライズ配線導体5の露出表面には、メタライズ配線導体5が酸化腐食するのを防止するとともにメタライズ配線導体5と半田等の導電性接合材との接合を良好なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0015】
また、絶縁基体1の上面外周部には絶縁基体1と同一材料から成り、外形が絶縁基体1と略同一で内周が円形の高さが0.01〜5mm程度の枠体1cが設けられており、それにより上面中央部に底面が略平坦な円形の凹部1dが形成されている。この凹部1dは、後述するように、絶縁板2との間に密閉空間を形成するためのものであり、この凹部1dの底面には静電容量形成用の第一電極7が被着されている。
【0016】
この第一電極7は、後述する第二電極9とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。そして、この第一電極7にはメタライズ配線導体5の一つ5aが接続されており、それによりこのメタライズ配線導体5aに半導体素子3の電極を半田バンプ6等の導電性接合材を介して接続すると半導体素子3の電極と第一電極7とが電気的に接続されるようになっている。
【0017】
このような第一電極7は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の凹部1d底面に略円形のパターンに形成される。なお、第一電極7の露出表面には、第一電極7が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0018】
また、絶縁基体1の枠体1cの上面にはその略全面にわたり枠状の接合用メタライズ層8が被着されており、この接合用メタライズ層8には、下面に第二電極9を有する絶縁板2がこの第二電極9と接合用メタライズ層8とを銀−銅ろう材等のろう材を介してろう付けすることにより取着されている。なお、この例では、接合用メタライズ層8は枠体1cの略全面にわたり設けたが、内周が枠体1cの内周に略一致するとともに外周縁が略円形や略八角形となるように設けてもよい。
【0019】
この接合用メタライズ層8にはメタライズ配線導体5の一つ5bが接続されており、それによりこのメタライズ配線導体5bに半導体素子3の電極を半田バンプ6等の導電性接合材を介して電気的に接続すると接合用メタライズ層8に接続された第二電極9と半導体素子3の電極とが電気的に接続されるようになっている。
【0020】
接合用メタライズ層8は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の枠体1c上面に枠状の所定のパターンに形成される。なお、接合用メタライズ層8の露出表面には、接合用メタライズ層8が酸化腐食するのを防止するとともに接合用メタライズ層8とろう材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0021】
また、絶縁基体1の上面に取着された絶縁板2は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・炭化珪素質焼結体・ガラス−セラミックス等のセラミックス材料から成る厚みが0.01〜5mmの略四角平板であり、外部の圧力に応じて絶縁基体1側に撓むいわゆる圧力検出用のダイアフラムとして機能する。
【0022】
なお、絶縁板2は、その厚みが0.01mm未満では、その機械的強度が小さいものとなってしまうため、これに大きな外部圧力が印加された場合に破壊されてしまう危険性が大きなものとなり、他方、5mmを超えると、小さな圧力では撓みにくくなり、圧力検出用のダイアフラムとしては不適となってしまう。したがって、絶縁板2の厚みは0.01〜5mmの範囲が好ましい。
【0023】
このような絶縁板2は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することによりセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工や切断加工を施すことにより絶縁板2用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。この場合、絶縁板2は、略四角平板状であることから、セラミックグリーンシートを縦横に切断するだけで絶縁板2用の生セラミック成形体を得ることができるので、その製作が極めて容易であるとともに効率良く製作することができる。
【0024】
また、絶縁板2の下面には図2に下面図で示すように、静電容量形成用の略円形の第二電極9が被着されている。この第二電極9は、前述の第一電極7とともに感圧素子用の静電容量を形成するための電極として機能するとともに絶縁板2を絶縁基体1に接合するための接合用下地金属層として機能する。
【0025】
このような第二電極9は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁板2用のセラミックグリーンシートに略円形のパターンに印刷塗布し、これを絶縁板2用の生セラミック成形体とともに焼成することによって絶縁板2の下面に略円形のパターンに形成される。
【0026】
この第二電極9と接合用メタライズ層8とは銀−銅ろう材等のろう材を介して接合されており、それにより、絶縁基体1上面と絶縁板2下面との間に密閉空間が形成されるとともに接合用メタライズ層8と第二電極9とが電気的に接続される。
【0027】
このとき、第一電極7と第二電極9とは、絶縁基体1と絶縁板2との間に形成された空間を挟んで対向しており、これらの間には、第一電極7や第二電極9の面積および第一電極7と第二電極9との間隔に応じて所定の静電容量が形成される。そして、絶縁板2の上面に外部の圧力が印加されると、その圧力に応じて絶縁板2が絶縁基体1側に撓んで第一電極7と第二電極9との間隔が変わり、それにより第一電極7と第二電極9との間の静電容量が変化するので、外部の圧力の変化を静電容量の変化として感知する感圧素子として機能する。そして、この静電容量の変化を凹部1a内に収容した半導体素子3にメタライズ配線導体5a・5bを介して伝達し、これを半導体素子3で演算処理することによって外部の圧力の大きさを知ることができる。
【0028】
このように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子3が搭載される絶縁基体1の他方の主面に、静電容量形成用の第一電極7を設けるとともにこの第一電極7と対向する静電容量形成用の第二電極9を内側面に有する絶縁板2を絶縁基体1との間に密閉空間を形成するように可撓な状態で接合させたことから、半導体素子3を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型化することができる。また、静電容量形成用の第一電極7および第二電極9を、絶縁基体1に設けたメタライズ配線導体5a・5bを介して半導体素子3に接続することから、第一電極7および第二電極9を短い距離で半導体素子3に接続することができ、その結果、これらのメタライズ配線導体5a・5b間に発生する不要な静電容量を小さなものとして感度の高い圧力検出装置を提供することができる。
【0029】
なお、第一電極7と第二電極9との間隔が1気圧中において0.01mm未満の場合、絶縁板2に大きな圧力が印加された際に、第一電極7と第二電極9とが接触して圧力を検出することができなくなってしまう危険性があり、他方、5mmを超えると、第一電極7と第二電極9との間に形成される静電容量が小さなものとなり、圧力を検出する感度が低いものとなる傾向にある。したがって、第一電極7と第二電極9との間隔は、1気圧中において0.01〜5mmの範囲が好ましい。
【0030】
また、絶縁基体1の枠体1c上に絶縁板2を接合するには、枠体1c上の接合用メタライズ層8および第二電極9の表面に予め1〜10μmの厚みのニッケルめっき層をそれぞれ被着させておくとともに、接合用メタライズ層8と第二電極9との間に厚みが10〜200μm程度の銀−銅ろうから成るろう材箔を挟んで絶縁基体1と絶縁板2とを重ね合わせ、これらを還元雰囲気中、約850℃の温度に加熱してろう材箔を溶融させて接合用メタライズ層8と第二電極9の外周部とをろう付けする方法が採用される。このとき、第二電極9は円形であることから、ろう付けの幅が全周にわたり略一定となり、これを枠体1c上の接合用メタライズ層8にろう付けした際、ろう材が一部分に集中することなく、ろう材の厚みが略均一となる。したがって、本発明の圧力センサ素子収納用パッケージによれば、第一電極7と第二電極9との間に形成される静電容量がばらつくことがない。
【0031】
かくして、上述の圧力検出装置用パッケージによれば、搭載部1bに半導体素子3を搭載するとともに半導体素子3の各電極とメタライズ配線導体5とを電気的に接続し、しかる後、半導体素子3を封止することによって小型でかつ感度が高く、しかも外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置となる。
【0032】
本例の圧力検出装置用パッケージは、図3に断面図で示すように、第二電極9のろう付けされた外周部と第一電極7に対向する中央部との間の表面に略円形の枠状の絶縁層10被着されている。このような絶縁層10を設けることにより第二電極9と接合用メタライズ層8とを接合するろう材が第二電極の中央部に流出することを防止し、それにより第一電極7と第二電極9との間に形成される静電容量のばらつきをさらに小さいものとすることができる。このような絶縁層10は、絶縁板2と実質的に同一の材料で形成すれば良く、絶縁板2用の生セラミック成形体に塗布した第二電極9用のメタライズペーストの表面に絶縁層10用の絶縁ペーストを公知のスクリーン印刷法により所定のパターンに印刷塗布し、これを絶縁板2用の生セラミック成形体および第二電極9用のメタライズペーストとともに焼成することによって形成される。なお、このようなろう材流出防止用の絶縁層10を設ける場合、絶縁層10はその厚みが5μm未満では、枠体1c上面に第二電極9の外周部をろう付けする際、ろう材が第二電極9の中央部に流出することを防止することができなくなるおそれがあり、他方、500μmを超えると、絶縁板2の良好な撓みを阻害するおそれがある。したがって、絶縁層10の厚みは、5〜500μmの範囲が好ましい。また、絶縁層10は、その幅が0.1mm未満では、枠体1c上面に第二電極9の外周部をろう付けする際、ろう材が第二電極の中央部に流出することを防止することができなくなるおそれがある。したがって絶縁層10の幅は、0.1mm以上であることが好ましい。なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である
【0033】
【発明の効果】
以上、説明したように、本発明の圧力検出装置用パッケージの一態様によれば、一方の主面に半導体素子が搭載される搭載部を有する略四角平板状の絶縁基体の他方の主面の中央部に静電容量形成用の第一電極を設けるとともに、この第一電極と対向する静電容量形成用の第二電極を有する略四角平板状の絶縁板を、絶縁基体との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。さらに、第二電極が略円形であることから、ろう付けの幅が全周にわたり略均一な幅となり、したがって、枠体上面に第二電極をろう付けする際に、ろう材の厚みが略均一となり、その結果、第一電極と第二電極との間に形成される静電容量にばらつきが発生することがなく、外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置を提供することができる。さらに、第二電極のろう付けされた外周部と第二電極の第一電極に対向する中央部との間の表面に被着された枠状の絶縁層を備えていることから、第二電極と枠体とを接合するろう材が第二電極の中央部に流出することを防止し、それにより第一電極と第二電極との間に形成される静電容量のばらつきをさらに小さいものとすることができる。
【図面の簡単な説明】
【図1】力検出装置用パッケージの参考例を示す断面図である。
【図2】図1に示す圧力検出装置用パッケージの絶縁板2の下面図である。
【図3】本発明の圧力検出装置用パッケージの実施形態の例を示す断面図である。
【図4】従来の圧力検出装置を示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure detection device package used in a pressure detection device for detecting pressure.
[0002]
[Prior art]
Conventionally, a capacitance type pressure detection device is known as a pressure detection device for detecting pressure. For example, as shown in a cross-sectional view in FIG. 4, the capacitance type pressure detection device is accommodated in a capacitance type pressure sensitive element 22 and a package 28 on a wiring board 21 made of a ceramic material or a resin material. And a semiconductor element 29 for operation. The pressure sensitive element 22 is made of, for example, an electrically insulating material such as a ceramic material, and has an insulating base 24 having a concave portion in which one electrode 23 for forming a capacitance is attached at the center of the upper face, and an upper face of the insulating base 24 And an insulating plate 26 which is joined in a flexible state so as to form a sealed space with the insulating base 24, and the other electrode 25 for forming a capacitance is attached to the lower surface, and each capacitance It is composed of external lead terminals 27 for electrically connecting the forming electrodes 23 and 25 to the outside, and the insulating plate 26 bends in response to external pressure, thereby forming each capacitance. The capacitance formed between the electrodes 23 and 25 changes. Then, the external pressure can be detected by performing arithmetic processing on the change in the electrostatic capacitance by the semiconductor element 29 for arithmetic operation.
[0003]
[Problems to be solved by the invention]
However, according to this conventional pressure detection device, since the pressure sensitive element 22 and the semiconductor element 29 are individually mounted on the wiring board 21, the pressure detection device becomes large and the pressure detection electrode 23 is increased. The wiring between 25 and the semiconductor element 29 becomes long, and an unnecessary electrostatic capacity is formed between the long wiring, so that the sensitivity is low.
[0004]
Therefore, the applicant of the present application previously described in Japanese Patent Application No. 2000-178618, an insulating base having a mounting portion on which a semiconductor element is mounted on one main surface, and the surface of and inside the insulating base, A plurality of wiring conductors to which each electrode is electrically connected, and a first capacitor for forming a capacitance that is attached to the central portion of the other main surface of the insulating base and is electrically connected to one of the wiring conductors. An insulating plate joined in a flexible state so as to form a sealed space between the electrode and the other main surface of the insulating base, and a central portion of the main surface; and an inner main surface of the insulating plate There has been proposed a pressure sensing device package comprising a second electrode for forming a capacitance that is deposited opposite to one electrode and is electrically connected to the other one of the wiring conductors.
According to this pressure detection device package, the first electrode for forming a capacitance is provided on the other main surface of the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. Since the insulating plate having the second electrode for forming the opposing capacitance on the inner surface is joined in a flexible state so as to form a sealed space between the other main surface of the insulating base, A pressure-sensitive element is integrally formed in a package that houses a semiconductor element. As a result, the pressure detection device can be reduced in size, and the wiring for connecting the pressure detection electrode and the semiconductor element can be shortened. Unnecessary capacitance generated between the wirings can be reduced. In the pressure detection device package proposed in Japanese Patent Application No. 2000-178618, a frame body made of ceramic or metal is provided on the outer peripheral portion of the other main surface of the insulating base so as to surround the first electrode. The insulating plate was joined to the insulating substrate by brazing the outer peripheral portion of the second electrode onto the frame through a brazing material such as silver-copper brazing. In general, in such a package, the outer periphery of the insulating base and the insulating plate is substantially square in consideration of productivity, the first electrode is substantially circular, and the second electrode is the lower surface of the insulating plate. It was formed on the entire surface. In accordance with this, the outer periphery of the frame has a substantially square shape, and the inner periphery has a substantially circular shape that matches the first electrode.
[0005]
However, according to this pressure detection device package, the second electrode formed on the entire lower surface of the insulating plate having a substantially rectangular outer periphery and a substantially rectangular inner periphery is brazed to the upper surface of the frame having the outer periphery approximately circular. The width of the brazing differs greatly between the central part and each corner of each side of the insulating plate, so that the brazing material melted when brazing the insulating plate on the upper surface of the frame is concentrated on each corner of the insulating plate. As a result, the thickness of the brazing material becomes non-uniform, and as a result, the capacitance formed between the first electrode and the second electrode varies greatly, so that it is difficult to accurately detect the external pressure. It had the problem that.
[0006]
The present invention has been completed in view of the above-described problems, and an object of the present invention is to provide a pressure detection device that is small in size and high in sensitivity and can accurately detect external pressure without variation. There is.
[0007]
[Means for Solving the Problems]
One aspect of the pressure detection device package of the present invention has a mounting portion on which a semiconductor element is mounted on one main surface, and a first electrode for forming a capacitance deposited on the central portion of the other main surface. It has, provided so as to surround the first electrode to the outer peripheral portion of the other main surface, a substantially rectangular flat plate-like insulating substrate inner circumference periphery at circular with a frame body substantially rectangular, hand A substantially circular second electrode for forming a capacitance whose central portion is opposed to the first electrode and whose outer peripheral portion is brazed on the frame body, and a sealed space is formed between the main body and the insulating substrate. substantially a rectangular flat plate-like insulating plate is attached to the frame in a flexible state to form, with the central portion facing the first electrode of the brazed outer peripheral portion and the second electrode of the second electrode And a frame-like insulating layer deposited on the surface therebetween .
[0008]
According to the pressure detection device package of the present invention, the capacitance forming second electrode is formed at the center of the other main surface of the substantially rectangular flat plate-like insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. One electrode is provided, and a substantially rectangular flat plate-like insulating plate having a second electrode for forming a capacitance facing the first electrode is flexible so as to form a sealed space between the insulating substrate and the insulating substrate. Since the pressure sensitive element is integrally formed in the package that accommodates the semiconductor element, the pressure detecting device can be reduced in size and the pressure detecting electrode and the semiconductor element are connected. By making the wiring short, unnecessary electrostatic capacitance generated between these wirings can be made small.
Further, since the second electrode is substantially circular, the brazing width is substantially uniform over the entire circumference. Therefore, when the second electrode is brazed to the upper surface of the frame, the thickness of the brazing material is substantially uniform. As a result, there is no variation in the capacitance formed between the first electrode and the second electrode.
[0009]
Next, the present invention will be described in detail with reference to the accompanying drawings. Figure 1 is a sectional view showing a reference example of a package for a pressure sensing device, FIG. 3, Ru sectional view showing an example of an embodiment of a package for a pressure detector of the present invention. In the figure, 1 is an insulating substrate, 2 is an insulating plate, and 3 is a semiconductor element.
[0010]
The insulating substrate 1 is a substantially square made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or glass-ceramics. If it is a flat laminate, for example, it is made of an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, and dispersion for ceramic raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide Add and mix the agent to form a slurry, and then form a sheet by using a conventionally known doctor blade method to obtain a plurality of ceramic green sheets. A green ceramic molded body for the insulating substrate 1 is obtained by punching, laminating and cutting, and this green cell is obtained. It is manufactured by firing a mix formed body at a temperature of about 1600 ° C..
[0011]
The insulating base 1 is formed with a recess 1a for accommodating the semiconductor element 3 at the center of the lower surface thereof, thereby functioning as a container for accommodating the semiconductor element 3. The central portion of the bottom surface of the recess 1a is a mounting portion 1b on which the semiconductor element 3 is mounted. The semiconductor element 3 is mounted on the mounting portion 1b and the resin sealing such as an epoxy resin is provided in the recess 1a. The semiconductor element 3 is sealed by filling the material 4.
In this example, the semiconductor element 3 is sealed by filling the recess 1a with a resin sealing material 4. However, the semiconductor element 3 has a lid made of metal or ceramics on the lower surface of the insulating base 1 to form the recess 1a. It may be sealed by bonding so as to block.
[0012]
Further, a plurality of metallized wiring conductors 5 connected to the respective electrodes of the semiconductor element 3 are led out to the mounting portion 1b, and the metalized wiring conductors 5 and the respective electrodes of the semiconductor element 3 are connected to a conductive material such as a solder bump 6. The electrodes of the semiconductor element 3 and the metallized wiring conductors 5 are electrically connected to each other through the conductive bonding member made of the semiconductor element 3 and the semiconductor element 3 is fixed to the mounting portion 1b. In this example, the electrode of the semiconductor element 3 and the metallized wiring conductor 5 are connected via the solder bumps 6. However, the electrode of the semiconductor element 3 and the metalized wiring conductor 5 are connected to other types of electric wires such as bonding wires. It may be connected by a general connection means.
[0013]
The metallized wiring conductor 5 functions as a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit and a first electrode 7 and a second electrode 9 to be described later. It leads to the outer peripheral lower surface, and another part is electrically connected to the first electrode 7 and the second electrode 9. Each electrode of the semiconductor element 3 is electrically connected to these metallized wiring conductors 5 via the conductive bonding material 6 and the semiconductor element 3 is sealed with the resin sealing material 4. The part led out to the lower surface of the outer periphery of the insulating base 1 is joined to the wiring conductor of the external electric circuit board via a conductive bonding material such as solder, so that the semiconductor element 3 accommodated therein is electrically connected to the external electric circuit. Will be.
[0014]
Such a metallized wiring conductor 5 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, dispersant, and the like to metal powder such as tungsten. The metallized paste is printed and applied in a predetermined pattern on a ceramic green sheet for the insulating substrate 1 using a well-known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to thereby form the insulating substrate 1. A predetermined pattern is formed inside and on the surface.
In order to prevent the metallized wiring conductor 5 from being oxidized and corroded on the exposed surface of the metallized wiring conductor 5 and to improve the bonding between the metallized wiring conductor 5 and a conductive bonding material such as solder, If so, a nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited.
[0015]
Further, a frame body 1c made of the same material as that of the insulating substrate 1 and having an outer shape substantially the same as the insulating substrate 1 and a circular inner periphery of about 0.01 to 5 mm is provided on the outer peripheral portion of the upper surface of the insulating substrate 1. As a result, a circular recess 1d having a substantially flat bottom surface is formed at the center of the top surface. As will be described later, the recess 1d is for forming a sealed space with the insulating plate 2, and a first electrode 7 for forming a capacitance is attached to the bottom surface of the recess 1d. Yes.
[0016]
The first electrode 7 is for forming a capacitance for a pressure sensitive element together with a second electrode 9 described later, and is formed in a substantially circular pattern, for example. The first electrode 7 is connected to one of the metallized wiring conductors 5a, whereby the electrode of the semiconductor element 3 is connected to the metallized wiring conductor 5a via a conductive bonding material such as a solder bump 6. Then, the electrode of the semiconductor element 3 and the first electrode 7 are electrically connected.
[0017]
The first electrode 7 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersant to metal powder such as tungsten. The paste is printed and applied to a ceramic green sheet for the insulating substrate 1 by using a conventionally known screen printing method, and this is fired together with a green ceramic molded body for the insulating substrate 1 so that the paste is substantially formed on the bottom surface of the recess 1d. It is formed in a circular pattern. In order to prevent the first electrode 7 from being oxidatively corroded, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied to the exposed surface of the first electrode 7.
[0018]
In addition, a frame-like bonding metallization layer 8 is deposited on the upper surface of the frame 1c of the insulating substrate 1 over substantially the entire surface, and the bonding metallization layer 8 has an insulation having a second electrode 9 on the lower surface. The plate 2 is attached by brazing the second electrode 9 and the joining metallization layer 8 via a brazing material such as a silver-copper brazing material. In this example, the bonding metallization layer 8 is provided over substantially the entire surface of the frame 1c. However, the inner periphery substantially coincides with the inner periphery of the frame 1c and the outer periphery is substantially circular or substantially octagonal. It may be provided.
[0019]
One metal metallization wiring conductor 5b is connected to the metallization layer 8 for bonding, whereby the electrode of the semiconductor element 3 is electrically connected to the metallized wiring conductor 5b via a conductive bonding material such as a solder bump 6. As a result, the second electrode 9 connected to the bonding metallization layer 8 and the electrode of the semiconductor element 3 are electrically connected.
[0020]
The metallization layer 8 for bonding is made of metal powder metallization such as tungsten, molybdenum, copper, and silver. A metallized paste obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersing agent to metal powder such as tungsten. A conventionally known screen printing method is used to print and apply to a ceramic green sheet for the insulating substrate 1, and this is fired together with a green ceramic molded body for the insulating substrate 1, thereby forming a frame shape on the upper surface of the frame 1c of the insulating substrate 1. Are formed in a predetermined pattern. In order to prevent the bonding metallized layer 8 from being oxidatively corroded on the exposed surface of the bonding metallized layer 8 and to strengthen the bonding between the bonding metallized layer 8 and the brazing material, it is usual. For example, a nickel plating layer having a thickness of about 1 to 10 μm is applied.
[0021]
The insulating plate 2 attached to the upper surface of the insulating substrate 1 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon nitride sintered body, or a silicon carbide sintered body. A substantially square flat plate made of a ceramic material such as glass-ceramic and having a thickness of 0.01 to 5 mm, and functions as a so-called pressure detecting diaphragm that bends toward the insulating base 1 in response to an external pressure.
[0022]
In addition, since the mechanical strength of the insulating plate 2 is less than 0.01 mm when the thickness is less, there is a greater risk of being destroyed when a large external pressure is applied thereto. On the other hand, when it exceeds 5 mm, it becomes difficult to bend at a small pressure, and it becomes unsuitable as a diaphragm for pressure detection. Therefore, the thickness of the insulating plate 2 is preferably in the range of 0.01 to 5 mm.
[0023]
If such an insulating plate 2 is made of, for example, an aluminum oxide sintered body, a suitable organic binder, solvent, plasticizer, dispersion for ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. A ceramic green sheet is obtained by adding an agent and mixing it into a mud and forming it into a sheet using the well-known doctor blade method, and then punching or cutting the ceramic green sheet appropriately. The raw ceramic molded body for the insulating plate 2 is obtained by processing, and the raw ceramic molded body is manufactured by firing at a temperature of about 1600 ° C. In this case, since the insulating plate 2 has a substantially rectangular flat plate shape, a green ceramic molded body for the insulating plate 2 can be obtained simply by cutting the ceramic green sheet vertically and horizontally. And it can be manufactured efficiently.
[0024]
Further, as shown in a bottom view in FIG. 2, a substantially circular second electrode 9 for forming a capacitance is attached to the lower surface of the insulating plate 2. The second electrode 9 functions as an electrode for forming a capacitance for a pressure sensitive element together with the first electrode 7 described above, and as a bonding base metal layer for bonding the insulating plate 2 to the insulating substrate 1. Function.
[0025]
The second electrode 9 is made of metal powder metallization such as tungsten, molybdenum, copper, or silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, or dispersant to metal powder such as tungsten. The paste is applied to the ceramic green sheet for the insulating plate 2 in a substantially circular pattern using a well-known screen printing method, and this is fired together with the green ceramic molded body for the insulating plate 2 to form the insulating plate 2. A substantially circular pattern is formed on the lower surface.
[0026]
The second electrode 9 and the bonding metallization layer 8 are bonded via a brazing material such as a silver-copper brazing material, thereby forming a sealed space between the upper surface of the insulating substrate 1 and the lower surface of the insulating plate 2. In addition, the bonding metallized layer 8 and the second electrode 9 are electrically connected.
[0027]
At this time, the first electrode 7 and the second electrode 9 are opposed to each other with a space formed between the insulating base 1 and the insulating plate 2 interposed therebetween. A predetermined capacitance is formed according to the area of the two electrodes 9 and the distance between the first electrode 7 and the second electrode 9. When an external pressure is applied to the upper surface of the insulating plate 2, the insulating plate 2 bends toward the insulating base 1 in accordance with the pressure, and the interval between the first electrode 7 and the second electrode 9 changes. Since the capacitance between the first electrode 7 and the second electrode 9 changes, it functions as a pressure-sensitive element that senses a change in external pressure as a change in capacitance. Then, the change in electrostatic capacity is transmitted to the semiconductor element 3 accommodated in the recess 1a through the metallized wiring conductors 5a and 5b, and this is processed by the semiconductor element 3 so as to know the magnitude of the external pressure. be able to.
[0028]
Thus, according to the package for a pressure detection device of the present invention, the first electrode 7 for forming a capacitance is provided on the other main surface of the insulating base 1 on which the semiconductor element 3 is mounted on one main surface. At the same time, the insulating plate 2 having the second electrode 9 for forming capacitance facing the first electrode 7 on the inner surface is joined in a flexible state so as to form a sealed space between the insulating base 1 and the insulating plate 2. Therefore, the container for housing the semiconductor element 3 and the pressure sensitive element are integrated, and as a result, the pressure detection device can be miniaturized. Further, since the first electrode 7 and the second electrode 9 for forming the capacitance are connected to the semiconductor element 3 through the metallized wiring conductors 5a and 5b provided on the insulating base 1, the first electrode 7 and the second electrode 9 are formed. The electrode 9 can be connected to the semiconductor element 3 at a short distance, and as a result, a highly sensitive pressure detecting device is provided by reducing unnecessary capacitance generated between the metallized wiring conductors 5a and 5b. Can do.
[0029]
In addition, when the space | interval of the 1st electrode 7 and the 2nd electrode 9 is less than 0.01 mm in 1 atmosphere, when a big pressure is applied to the insulating board 2, the 1st electrode 7 and the 2nd electrode 9 will contact. On the other hand, if the pressure exceeds 5 mm, the capacitance formed between the first electrode 7 and the second electrode 9 becomes small, and the pressure is reduced. The detection sensitivity tends to be low. Therefore, the distance between the first electrode 7 and the second electrode 9 is preferably in the range of 0.01 to 5 mm in 1 atmosphere.
[0030]
In addition, in order to join the insulating plate 2 on the frame 1c of the insulating base 1, a nickel plating layer having a thickness of 1 to 10 μm is previously formed on the surfaces of the joining metallization layer 8 and the second electrode 9 on the frame 1c. The insulating substrate 1 and the insulating plate 2 are stacked with a brazing material foil made of a silver-copper brazing having a thickness of about 10 to 200 μm between the metallizing layer 8 for bonding and the second electrode 9. In addition, a method is adopted in which these are heated to a temperature of about 850 ° C. in a reducing atmosphere to melt the brazing material foil and braze the bonding metallized layer 8 and the outer peripheral portion of the second electrode 9. At this time, since the second electrode 9 is circular, the brazing width is substantially constant over the entire circumference, and when this is brazed to the joining metallized layer 8 on the frame 1c, the brazing material is concentrated in a part. Without this, the thickness of the brazing material becomes substantially uniform. Therefore, according to the pressure sensor element storage package of the present invention, the capacitance formed between the first electrode 7 and the second electrode 9 does not vary.
[0031]
Thus, according to the above-described package for the pressure detection device, the semiconductor element 3 is mounted on the mounting portion 1b, and each electrode of the semiconductor element 3 and the metallized wiring conductor 5 are electrically connected. By sealing, the pressure detection device is small and highly sensitive, and can accurately detect external pressure without variation.
[0032]
As shown in the cross-sectional view of FIG. 3, the pressure detection device package of the present example has a substantially circular shape on the surface between the brazed outer peripheral portion of the second electrode 9 and the central portion facing the first electrode 7. frame-shaped insulating layer 10 is deposited. Providing such an insulating layer 10 prevents the brazing material joining the second electrode 9 and the joining metallization layer 8 from flowing out to the center of the second electrode. The variation in capacitance formed between the electrodes 9 can be further reduced. Such an insulating layer 10 may be formed of substantially the same material as the insulating plate 2, and the insulating layer 10 is formed on the surface of the metallized paste for the second electrode 9 applied to the green ceramic molded body for the insulating plate 2. Insulating paste for printing is printed and applied in a predetermined pattern by a known screen printing method, and this is fired together with a green ceramic molded body for insulating plate 2 and a metallized paste for second electrode 9. When the insulating layer 10 for preventing the brazing material outflow is provided, when the insulating layer 10 has a thickness of less than 5 μm, when the outer peripheral portion of the second electrode 9 is brazed to the upper surface of the frame 1c, it has Re emesis it becomes impossible to prevent the flowing out to the central portion of the second electrode 9, while when it exceeds 500 [mu] m, there is a Re emesis to inhibit good deflection of the insulating plate 2. Therefore, the thickness of the insulating layer 10 is preferably in the range of 5 to 500 μm. Further, when the width of the insulating layer 10 is less than 0.1 mm, the brazing material is prevented from flowing out to the central portion of the second electrode when the outer peripheral portion of the second electrode 9 is brazed to the upper surface of the frame 1c. there is a Re morning sickness that can not be. Therefore, the width of the insulating layer 10 is preferably 0.1 mm or more. Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention .
[0033]
【The invention's effect】
As described above, according to one aspect of the pressure detection device package of the present invention, the other main surface of the substantially rectangular flat plate-like insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. A first electrode for forming a capacitance is provided at the center, and a substantially square plate-like insulating plate having a second electrode for forming a capacitance facing the first electrode is sealed between the insulating substrate and the insulating substrate. Since it is joined in a flexible state so as to form a space, the pressure-sensitive element is integrally formed in the package that accommodates the semiconductor element. As a result, the pressure detection device can be miniaturized and the pressure detection It is possible to reduce the unnecessary capacitance generated between these wires by shortening the wires connecting the electrodes for use with the semiconductor elements. Further, since the second electrode is substantially circular, the brazing width is substantially uniform over the entire circumference. Therefore, when the second electrode is brazed to the upper surface of the frame, the thickness of the brazing material is substantially uniform. As a result, it is possible to provide a pressure detection device capable of accurately detecting an external pressure without variation without causing variations in capacitance formed between the first electrode and the second electrode. can do. Further, the second electrode is provided with a frame-like insulating layer deposited on the surface between the brazed outer peripheral portion of the second electrode and the central portion of the second electrode facing the first electrode. The brazing material joining the frame and the frame is prevented from flowing out to the center of the second electrode, thereby further reducing the variation in capacitance formed between the first electrode and the second electrode. can do.
[Brief description of the drawings]
1 is a cross-sectional view showing a reference example of a package for pressure detection device.
FIG. 2 is a bottom view of an insulating plate 2 of the pressure detection device package shown in FIG.
3 is a cross-sectional view showing an example of an embodiment of a package for a pressure detector of the present invention.
FIG. 4 is a cross-sectional view showing a conventional pressure detection device.

Claims (1)

一方の主面に半導体素子が搭載される搭載部を有するとともに他方の主面の中央部に被着された静電容量形成用の第一電極を有し、前記他方の主面の外周部に前記第一電極を囲繞するように設けられた、内周が円形で外周が略四角形の枠体を備えた略四角平板状の絶縁基体と、一方の主面に中央部が前記第一電極に対向するとともに外周部が前記枠体上にろう付けされた静電容量形成用の略円形の第二電極を有し、前記絶縁基体との間に密閉空間を形成するように可撓な状態で前記枠体に取着された略四角平板状の絶縁板と前記第二電極のろう付けされた外周部と前記第二電極の前記第一電極に対向する中央部との間の表面に被着された枠状の絶縁層とを備えたことを特徴とする圧力検出装置用パッケージ。One main surface has a mounting portion on which a semiconductor element is mounted , and has a first electrode for forming a capacitance attached to a central portion of the other main surface, and an outer peripheral portion of the other main surface. the first electrode is provided so as to surround a substantially square flat plate-like insulating substrate inner circumference periphery at circular with a frame body substantially rectangular, hand central part the first electrode on the main surface of the And a substantially circular second electrode for forming a capacitance whose outer peripheral portion is brazed onto the frame body, and is flexible so as to form a sealed space with the insulating base. in substantially a rectangular flat plate-like insulating plate, which is attached to the frame, the surface between said central portion opposite to the first electrode of the second electrode brazed outer peripheral portion and the second electrode of the A package for a pressure detection device, comprising: a frame-shaped insulating layer that is attached.
JP2000294717A 2000-09-27 2000-09-27 Package for pressure detection device Expired - Fee Related JP4582888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294717A JP4582888B2 (en) 2000-09-27 2000-09-27 Package for pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294717A JP4582888B2 (en) 2000-09-27 2000-09-27 Package for pressure detection device

Publications (2)

Publication Number Publication Date
JP2002107252A JP2002107252A (en) 2002-04-10
JP4582888B2 true JP4582888B2 (en) 2010-11-17

Family

ID=18777261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294717A Expired - Fee Related JP4582888B2 (en) 2000-09-27 2000-09-27 Package for pressure detection device

Country Status (1)

Country Link
JP (1) JP4582888B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300609A (en) * 1997-05-01 1998-11-13 Fuji Koki Corp Electrostatic capacitance type pressure sensor
JPH11295176A (en) * 1998-04-14 1999-10-29 Nagano Keiki Co Ltd Differential pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300609A (en) * 1997-05-01 1998-11-13 Fuji Koki Corp Electrostatic capacitance type pressure sensor
JPH11295176A (en) * 1998-04-14 1999-10-29 Nagano Keiki Co Ltd Differential pressure sensor

Also Published As

Publication number Publication date
JP2002107252A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP2001356064A (en) Package for pressure detector
JP2002107254A (en) Package for pressure detector
JP4034988B2 (en) Pressure detection device package and pressure detection device
JP4803917B2 (en) Package for pressure detection device
JP4582888B2 (en) Package for pressure detection device
JP4582889B2 (en) Package for pressure detection device
JP4557405B2 (en) Package for pressure detection device
JP4794073B2 (en) Package for pressure detection device
JP4974424B2 (en) Package for pressure detection device
JP4863569B2 (en) Package for pressure detection device
JP4925522B2 (en) Package for pressure detection device
JP4034995B2 (en) Pressure detection device package and pressure detection device
JP4859280B2 (en) Package for pressure detection device and manufacturing method thereof
JP2006047327A (en) Package for pressure detector, and the pressure detector
JP3716165B2 (en) Pressure detection device package and pressure detection device
JP4794072B2 (en) Package for pressure detection device
JP4127374B2 (en) Pressure detection device package and pressure detection device
JP4637342B2 (en) Package for pressure detection device
JP4557406B2 (en) Package for pressure detection device
JP4789357B2 (en) Package for pressure detection device
JP3850263B2 (en) Pressure detection device package and pressure detection device
JP3878836B2 (en) Package for pressure detection device
JP4034989B2 (en) Pressure detection device package and pressure detection device
JP4713029B2 (en) Package for pressure detection device
JP4223709B2 (en) Method for manufacturing package for pressure detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4582888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees