JP4582504B2 - Axle bearing device and rotational speed detection device using the same - Google Patents

Axle bearing device and rotational speed detection device using the same Download PDF

Info

Publication number
JP4582504B2
JP4582504B2 JP2005224529A JP2005224529A JP4582504B2 JP 4582504 B2 JP4582504 B2 JP 4582504B2 JP 2005224529 A JP2005224529 A JP 2005224529A JP 2005224529 A JP2005224529 A JP 2005224529A JP 4582504 B2 JP4582504 B2 JP 4582504B2
Authority
JP
Japan
Prior art keywords
ring
inner ring
magnetic
axle
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005224529A
Other languages
Japanese (ja)
Other versions
JP2007040388A (en
Inventor
広 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005224529A priority Critical patent/JP4582504B2/en
Publication of JP2007040388A publication Critical patent/JP2007040388A/en
Application granted granted Critical
Publication of JP4582504B2 publication Critical patent/JP4582504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7879Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7896Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members with two or more discrete sealings arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for an axle which can effectively suppress adverse effect on rotation detection accuracy. <P>SOLUTION: The device is equipped with an inner ring 5a whose inner peripheral surface is taken as a mounting surface onto an axle 2 side and which integrally rotates with the axle 2, an outer ring 5b which is employed by being mounted in an automobile side mounting object part 3 so as to disable rotation around the axle 2, a plurality of rolling elements arranged between the inner ring 5a and outer ring 5b, and a magnetism detection object body ring 10 installed on the ring 5a relatively non-rotatively about an axis and composed of a first detection object part 10p and a second detection object part 10s magnetically not equivalent to each other and alternately formed in a peripheral direction. The outer ring 5b is provided with a body part 5Q forming a bearing outside diameter surface 5f and a mounting engagement part 5e to the automobile side mounting object part 3 projected outward from the bearing outside diameter surface 5f with respect to the body part 5Q. The inner ring 5a takes a part including the mounting surface of the magnetism detected body ring as a body layer 5y. The body layer 5y is made of a low magnetic susceptibility material with a low magnetic susceptibility lower than that of a magnetic steel. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

この発明は、車軸用軸受装置及びそれを用いた回転速度検出装置に関する。   The present invention relates to an axle bearing device and a rotational speed detection device using the same.

特開2004−198378号公報JP 2004-198378 A 特開2000−249138号公報JP 2000-249138 A 特開2002−40037号公報JP 2002-40037 A

回転センサは光学式のロータリーエンコーダが広く使用されているが、自動車の足回り系統の回転検知には、汚れ付着等による誤検出を防止するために磁気式の回転センサが使用されることが多い。磁気式の回転センサには種々の方式があるが、検知対象物と共に回転する磁性被検知体に磁気ギャップを介して、磁気ヘッド、磁気抵抗効果素子あるいはホール素子といった磁界検出素子を配置し、磁性被検知体の回転に基づく磁気ギャップ内の磁界変動を測定し、その検出波形を用いて回転角度を算出する方式が、センサ構造が比較的簡便であり精度も高いことから広く使用されている。   Optical rotary encoders are widely used as rotation sensors, but magnetic rotation sensors are often used for detecting rotation of automobile undercarriage systems in order to prevent erroneous detection due to dirt adhesion and the like. . There are various types of magnetic rotation sensors. Magnetic field detection elements such as magnetic heads, magnetoresistive effect elements, or Hall elements are arranged through magnetic gaps on a magnetic object that rotates together with the object to be detected. A method of measuring the magnetic field fluctuation in the magnetic gap based on the rotation of the object to be detected and calculating the rotation angle using the detected waveform is widely used because the sensor structure is relatively simple and accurate.

近年、上記のような磁気式回転センサをアンチロックブレーキシステムやトラクションコントロールシステム等の制御に用いるため、車軸を支持する転がり軸受として、該センサの磁性被検知体リング(例えばパルサーリング)を取り付けた転がり軸受が採用されている(例えば、特許文献1〜3)。この種の転がり軸受では、回転検出対象となる車軸が取り付けられる内輪にパルサーリングを取り付け、非回転の外輪側に磁界検出素子を含んだ検知ユニットを取り付ける構造が一般的である。   In recent years, in order to use the magnetic rotation sensor as described above for control of an anti-lock brake system, a traction control system, etc., a magnetic sensing element ring (for example, a pulsar ring) of the sensor is attached as a rolling bearing for supporting an axle. Rolling bearings are employed (for example, Patent Documents 1 to 3). In this type of rolling bearing, a structure in which a pulsar ring is attached to an inner ring to which an axle that is a rotation detection target is attached, and a detection unit including a magnetic field detection element is attached to the non-rotating outer ring side.

ところで、上記のような磁気式回転センサでは、磁界検出素子が検出する変動磁界の大きさは往々にして小さい。例えば、パルサーリングの場合、薄型の永久磁石リングに対し、極性の異なるアキシャル方向の着磁領域をラジアル方向に交互形成した構造を有する。このようなパルサーリングは、磁石厚さ方向のパーミアンス係数が小さく、例えば等方性フェライトボンド磁石を使用した場合、検出磁界のレベルは数mG程度に過ぎない。従って、このような微弱な磁界をなるべく減衰ないし攪乱させないで測定するためには、パルサーリングの近傍から、漏れ磁束や外部攪乱磁界の発生源となる強磁性材料部品をなるべく排除することが望ましいといえる。例えば、特許文献1,2では、パルサーリングが取り付けられる内輪と外輪との間の環状の隙間を覆うセンサカバーを非磁性材料で構成する技術が開示されている。また、特許文献1では、センサケースやその固定リング、あるいはパルサーリングを保持する芯金の少なくともいずれかを非磁性部材とする構成が開示されている。   By the way, in the magnetic rotation sensor as described above, the magnitude of the variable magnetic field detected by the magnetic field detection element is often small. For example, the pulsar ring has a structure in which magnetized regions in the axial direction having different polarities are alternately formed in the radial direction with respect to a thin permanent magnet ring. Such a pulsar ring has a small permeance coefficient in the magnet thickness direction. For example, when an isotropic ferrite bond magnet is used, the level of the detected magnetic field is only about several mG. Therefore, in order to measure such a weak magnetic field without being attenuated or disturbed as much as possible, it is desirable to eliminate as much as possible the ferromagnetic material parts that are the sources of leakage magnetic flux and external disturbance magnetic field from the vicinity of the pulsar ring. I can say that. For example, Patent Documents 1 and 2 disclose a technique in which a sensor cover that covers an annular gap between an inner ring and an outer ring to which a pulsar ring is attached is made of a nonmagnetic material. Further, Patent Document 1 discloses a configuration in which at least one of a sensor case, a fixing ring thereof, and a core metal holding a pulsar ring is used as a nonmagnetic member.

ところで、車軸用の転がり軸受は、高負荷下での連続使用が前提となるため、その軌道輪(外輪/内輪)は、強度及び耐疲労摩耗性に優れ、かつ加工性も両立できる材料で構成する必要がある。結局のところ、こうした材料は、軸受鋼やその他の合金鋼、あるいは機械構造用炭素鋼など、軸受材料として従来多用されてきた焼入れ可能な磁性鋼材となる。従って、回転センサを複合した軸受構造においては、上記の特許文献のごとく、軌道輪以外の強磁性部品を排除する試みはなされていても、軸受の主要構成部品である軌道輪は、結局のところ磁性材料を主体に構成される状況に変わりはなく、パルサーリングへの影響、特にその取り付け先となる内輪からの影響は避け難い。   By the way, since rolling bearings for axles are premised on continuous use under high loads, the bearing rings (outer rings / inner rings) are made of a material that is both excellent in strength and fatigue wear resistance and compatible with workability. There is a need to. After all, these materials become hardenable magnetic steel materials that have been widely used as bearing materials, such as bearing steels, other alloy steels, or carbon steels for machine structures. Therefore, in a bearing structure combined with a rotation sensor, as described in the above-mentioned patent document, although attempts have been made to eliminate ferromagnetic parts other than the bearing ring, the bearing ring that is the main component of the bearing is, after all, There is no change in the situation mainly composed of magnetic materials, and it is difficult to avoid the influence on the pulsar ring, especially from the inner ring to which it is attached.

軌道輪の場合、熱間鍛造等により所望の形状に成形後、必要な焼入れ処理を行い、さらに、軌道面に研磨加工を施して製造されるが、この研磨加工の際に素材を固定するのにマグネットチャックが使用される。このマグネットチャックは、加工ぶれ等が生じないよう、相当強い磁界を素材に印加するので、素材が強磁性材料である場合、デチャック後にもかなり強い残磁が生ずる。従って、加工後の素材には通常、交流消磁法を用いた脱磁処理が施される。しかし、かなり入念に脱磁を行なっても、形状異方性等に起因した部分的な残磁までは除去しきれないのが通常であり、これが内輪に残留していることによる、パルサーリングへの悪影響は非常に大きい(なお、脱磁を完全に行なうためには、キュリー点以上に素材を加熱して徐冷する熱消磁法がより有効であるが、脱磁加熱時に焼きがなまるので、この方法は本質的に採用不能である)。   In the case of a race ring, it is manufactured by forming it into a desired shape by hot forging, etc., and then performing necessary quenching treatment, and further polishing the raceway surface. The material is fixed during this grinding process. A magnet chuck is used. Since this magnet chuck applies a considerably strong magnetic field to the material so as not to cause processing blurring or the like, if the material is a ferromagnetic material, a considerably strong residual magnetism is generated even after dechucking. Therefore, the processed material is usually subjected to a demagnetization process using an AC demagnetization method. However, even if demagnetization is performed with great care, it is normal that even a partial remanence due to shape anisotropy, etc. cannot be completely removed. The thermal demagnetization method of heating the material above the Curie point and gradually cooling it is more effective for complete demagnetization, but it will burn out during demagnetization heating. This method is essentially unusable).

本発明の課題は、磁性被検知体リングが取り付けられる内輪の残磁により、該磁性被検知体リングによる回転検出精度に悪影響が及ぶことを効果的に抑制できる車軸用軸受装置と、それを用いた回転速度検出装置とを提供することにある。   An object of the present invention is to provide an axle bearing device capable of effectively suppressing adverse effects on rotation detection accuracy caused by the magnetic sensing body ring due to the residual magnetism of the inner ring to which the magnetic sensing body ring is attached, and the use thereof. And providing a rotation speed detecting device.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の車軸用軸受装置は、
内周面が車軸側への取り付け面とされ、車軸と一体的に回転する形で使用される内輪と、内輪の外側に同心的に配置され、車軸周りの回転が不能となるように自動車側取付対象部に取り付けて使用される外輪と、内輪と外輪との間に配置される複数の転動体と、内輪と中心軸線を一致させた位置関係にて、該内輪に対しその軸線周りの相対的な回転が不能となるように取り付けられ、自身の周方向に磁気的に非等価な第一被検知部と第二被検知部とが交互に形成された磁性被検知体リングとを備え、
外輪が、軸受外径面を形成する本体部と、該本体部に対し軸受外径面からラジアル方向外向きに突出する自動車側取付対象部への取付係合部とを有し、それら本体部と取付係合部とが焼入れ可能な磁性鋼材にて一体に鍛造形成される一方、内輪は、磁性被検知体リングの取付先を含む部分を本体層として、該本体層が磁性鋼材よりも磁化率の低い低磁化率材料にて構成され、内輪と外輪は、それぞれ軌道面形成部と該軌道面形成部からアキシャル方向において同じ側にそれぞれ延出する隙間形成部とを有し、それら内輪側隙間形成部と外輪側隙間形成部とがラジアル方向に対して環状の隙間を形成してなり、該内輪側隙間形成部と外輪側隙間形成部との隙間に臨む周面には、内輪側シールリングと外輪側シールリングとが配置され、前記内輪側シールリングと前記外輪側シールリングとのいずれもが、前記磁性鋼材よりも磁化率の低い低磁化率材料で構成されて前記磁性被検知体リングが取り付けられることを特徴とする。
In order to solve the above problems, an axle bearing device according to the present invention includes:
The inner peripheral surface is the mounting surface on the axle side, the inner ring used in a form that rotates integrally with the axle, and the concentric arrangement on the outside of the inner ring, so that rotation around the axle is impossible Relative to the inner ring with respect to the inner ring in a positional relationship in which the outer ring used by being attached to the mounting target part, the plurality of rolling elements arranged between the inner ring and the outer ring, and the inner ring and the central axis coincide with each other. A magnetic detection ring that is attached so that a specific rotation is impossible, and magnetically non-equivalent first detection parts and second detection parts are formed in its circumferential direction,
The outer ring has a main body portion that forms a bearing outer diameter surface, and a mounting engagement portion to the vehicle-side mounting target portion that protrudes radially outward from the bearing outer diameter surface with respect to the main body portion. The inner ring is integrally forged with a hardenable magnetic steel material, while the inner ring is magnetized more than the magnetic steel material, with the body layer being the portion including the attachment destination of the magnetic sensing object ring. The inner ring and the outer ring each have a raceway surface forming portion and a gap forming portion extending from the raceway surface forming portion to the same side in the axial direction, respectively. The gap forming portion and the outer ring side gap forming portion form an annular gap in the radial direction, and the inner ring side seal is formed on the circumferential surface facing the gap between the inner ring side gap forming portion and the outer ring side gap forming portion. It is arranged and the ring and the outer ring side seal ring, the inner ring Any of the seal ring and the outer ring side seal ring than said magnetic steel, characterized in that said magnetic sensing object ring consists of low magnetic susceptibility low magnetic susceptibility material is attached.

また、本発明の回転速度検出装置は、上記本発明の車軸用軸受装置と、磁性被検知体リングとの間に一定の磁気ギャップを形成する形で対向するように外輪に対し車軸周りの回転が不能となるように取り付けられた検知ユニットとを有し、磁気ギャップを第一被検知部と第二被検知部とが交互に通過することに伴う磁気ギャップ内の磁界変動を検出し、車軸の回転速度情報として出力するようにしたことを特徴とする。   Further, the rotational speed detection device of the present invention is configured to rotate around the axle with respect to the outer ring so as to face the axle bearing device of the present invention and a magnetic sensing object ring in a form that forms a certain magnetic gap. Detecting a magnetic field variation in the magnetic gap caused by alternately passing the first detected portion and the second detected portion through the magnetic gap, and the axle. This is characterized in that it is output as rotation speed information.

上記本発明の車軸用軸受装置においては、外輪を焼入れ可能な磁性鋼材で構成しつつ、磁性被検知体リングが取り付けられる内輪については、磁性被検知体リング又はその中継部材の取付表面を含む本体層が少なくとも、外輪を構成する磁性鋼材よりも磁化率の低い低磁化率材料にて構成する。つまり、従来のこの種の軸受装置のように、軌道輪の全てを磁性鋼材で構成するのではなく、磁性被検知体リングが取り付けられる内輪については、これを磁化率の低い材料することで、磁性被検知体リングが取り付けられる内輪の残磁により、該磁性被検知体リングによる回転検出精度に悪影響が及ぶことを効果的に抑制できる。他方、外輪は焼入れ可能な磁性鋼材で構成されるので、その軌道面を含む表層部に少なくとも焼入れ処理を施すことにより、十分な強度及び耐疲労摩耗性を確保でき、また、外輪に一体化される取付係合部(例えば車軸ケースへの取り付けフランジ部)も熱間鍛造等により容易に形成することができる。   In the above-described axle bearing device of the present invention, the outer ring is made of a magnetic steel material that can be hardened, and the inner ring to which the magnetic detection object ring is attached includes a magnetic detection object ring or a main body including the attachment surface of the relay member. The layer is made of at least a low magnetic susceptibility material having a lower magnetic susceptibility than the magnetic steel material constituting the outer ring. In other words, as in the conventional bearing device of this type, not all of the race rings are made of magnetic steel, but the inner ring to which the magnetic sensing element ring is attached is made of a material having a low magnetic susceptibility. The residual magnetism of the inner ring to which the magnetic detection object ring is attached can effectively suppress adverse effects on the rotation detection accuracy of the magnetic detection object ring. On the other hand, since the outer ring is made of a hardenable magnetic steel material, sufficient strength and fatigue wear resistance can be secured by at least quenching the surface layer portion including the raceway surface, and the outer ring is integrated with the outer ring. The attachment engaging portion (for example, the attachment flange portion to the axle case) can be easily formed by hot forging or the like.

なお、磁性被検知体リングの第一被検知部と第二被検知部とが「磁気的に非等価である」とは、各被検知部が磁気ギャップに到来したときの該磁気ギャップ内の磁界発生状態に差をもたらすように、第一被検知部と第二被検知部との間に磁気的構造上の差が付与されていることをいう。   In addition, the first detected part and the second detected part of the magnetic detected body ring are “magnetically non-equivalent” when the detected parts arrive at the magnetic gap. It means that a difference in magnetic structure is given between the first detected part and the second detected part so as to cause a difference in the magnetic field generation state.

磁性被検知体リングは、永久磁石材料にて構成されるとともに、第一被検知部と第二被検知部として着磁極性が互いに異なる第一の着磁部と第二の着磁部とを交互に形成したパルサーリングとすることができる。このようなパルサーリングは、永久磁石リングに多極着磁することで容易に製造できるので安価であり、かつ、極性の異なる着磁部同士の識別も容易であり、回転検出精度が高い利点がある。第一被検知部と第二被検知部とは、この他にも、磁化率や飽和磁化に差異を有する強磁性材料同士の組合せとして構成してもよいし、第一被検知部と第二被検知部との一方を強磁性材料で構成し、他方を非磁性材料で構成する態様も可能である。また、磁性被検知体リングをパーマロイ等の軟磁性材料リングとして構成し、これに磁気ギャップを介してバイアス磁界発生用の磁石を対向させ、磁気的に非等価な第一被検知部と第二被検知部として、上記の軟磁性材料リングに磁気ギャップ長方向に高さが変化する凹部と凸部とを形成することも可能である。   The magnetic sensed object ring is made of a permanent magnet material, and includes a first magnetized part and a second magnetized part having different magnetic polarities as the first sensed part and the second sensed part. Alternately formed pulsar rings. Such a pulsar ring is inexpensive because it can be easily manufactured by magnetizing a permanent magnet ring with multiple poles, and it is easy to distinguish between magnetized parts having different polarities, and has the advantage of high rotation detection accuracy. is there. In addition to this, the first detected part and the second detected part may be configured as a combination of ferromagnetic materials having a difference in magnetic susceptibility and saturation magnetization, or the first detected part and the second detected part. An aspect in which one of the detected parts is made of a ferromagnetic material and the other is made of a nonmagnetic material is also possible. In addition, the magnetic detection object ring is configured as a soft magnetic material ring such as permalloy, and a magnet for generating a bias magnetic field is opposed to the ring through a magnetic gap so that the magnetically non-equivalent first detected part and second As the detected portion, a concave portion and a convex portion whose height changes in the magnetic gap length direction can be formed on the soft magnetic material ring.

次に、内輪の本体層をなす低磁化率材料は、主相(特に断りのない限り、断面観察した時の面積率が最も大きい相として定義する)が非磁性となる金属にて構成することができる。この場合、材料構成相の95質量%以上が非磁性主相となるもの(以下、これを非磁性材料と称する)を用いることが、内輪への残磁レベルをより低減する観点においてより望ましい。本発明において、非磁性とは、反磁性、常磁性及び反強磁性を総称したものである。   Next, the low magnetic susceptibility material forming the main body layer of the inner ring is composed of a metal whose main phase (defined as the phase with the largest area ratio when observed in a cross section unless otherwise specified) is non-magnetic. Can do. In this case, it is more desirable to use a material in which 95% by mass or more of the material constituent phase is a nonmagnetic main phase (hereinafter referred to as a nonmagnetic material) from the viewpoint of further reducing the residual magnetism level in the inner ring. In the present invention, non-magnetic is a general term for diamagnetism, paramagnetism and antiferromagnetism.

本体層をなす低磁化率材料としては、オーステナイト系ステンレス鋼を採用することが望ましい。オーステナイト系ステンレス鋼はFe系材料のため比較的高強度であり、また、Ni含有率が高いので、非磁性相であるオーステナイト相の加工等に対する安定性も高い。代表的な材質としてSUS304、SUS310及びSUS316等の鋼種を例示できる。これらの鋼種は、室温安定相のほぼ100%がオーステナイト主相であるが、強加工材については、強磁性相である加工誘起マルテンサイト相が数%程度まで混入することがある(特にNi含有率が低目に設定されたSUS304など)。また、本発明においては、オーステナイト・フェライト系ステンレス鋼(SUS329J1など)及び析出硬化系ステンレス鋼(SUS630、SUS631など)も、本体層をなす低磁化率材料材料として使用できる。これらの鋼種はNi含有率がSUS304よりはさらに低いので、副相として強磁性相であるフェライト相を室温安定相として含有する。また、低磁化率材料としては、Cu系合金(例えばベリリウム銅)等の非鉄系非磁性材料を使用することもできる。   As the low magnetic susceptibility material forming the main body layer, it is desirable to employ austenitic stainless steel. Since austenitic stainless steel is a Fe-based material, it has a relatively high strength, and since the Ni content is high, the austenitic stainless steel is highly stable against processing of the austenitic phase, which is a nonmagnetic phase. Examples of typical materials include steel types such as SUS304, SUS310, and SUS316. In these steel types, almost 100% of the room temperature stable phase is the austenite main phase, but in the case of strong work materials, the work-induced martensite phase, which is a ferromagnetic phase, may be mixed up to several percent (particularly Ni-containing). SUS304, etc. where the rate was set to low. In the present invention, austenite / ferritic stainless steel (such as SUS329J1) and precipitation hardened stainless steel (such as SUS630 and SUS631) can also be used as the low magnetic susceptibility material forming the main body layer. Since these steel types have a lower Ni content than SUS304, they contain a ferrite phase, which is a ferromagnetic phase, as a secondary phase as a room temperature stable phase. Further, as the low magnetic susceptibility material, a non-ferrous nonmagnetic material such as a Cu alloy (for example, beryllium copper) can be used.

上記例示した金属系の非磁性材料は、ステンレス鋼をはじめ、いずれも周知の軸受材料と比較すれば強度及び耐疲労摩耗性に劣る。そこで、内輪を、転動面形成層と、該転動面形成層に隣接する本体層からなるものとして構成し、本体層を主相が非磁性の金属材料にて構成し、他方、転動面形成層を該金属材料よりも硬質の材料にて構成すると、内輪の残磁を押さえつつ、強度及び耐疲労摩耗性も十分に確保することができる。具体的には、本体層をオーステナイト系ステンレス鋼にて構成し、転動面形成層を焼入れ可能な磁性鋼材にて構成する態様を例示できる。この場合、転動面形成層については、上記磁性鋼材に対し焼きなまし状態で加工を施すことで、所期の転動面形状に簡単に成形できる利点がある。この場合、該転動面形成層として本体層とは別体に加工形成されたものを該本体層に接合することで、上記目的に適合した内輪を簡単に製造することができる。接合方法としては、溶接(例えばプロジェクション溶接)、拡散接合あるいはろう付けを例示できる。しかし、いずれも接合熱処理が高温であり、焼入れ後の転動面形成層を接合しようとすると、その熱履歴によって軟化する(つまり、焼きがなまる)可能性が高い。そこで、焼入れ前の状態(特に、クラッド圧接により仮接合したい場合は、焼きなまし状態がよい)で転動面形成層の接合を先に行い、その後本体層とともに焼入れ処理等の硬化熱処理を行なう方法を採用すると好都合である。なお、転動面形成層の材質によっては、硬化熱処理として炭化物等の析出硬化熱処理を行なってもよい。   The metal-based nonmagnetic materials exemplified above are inferior in strength and fatigue wear resistance as compared with known bearing materials, including stainless steel. Therefore, the inner ring is constituted by a rolling surface forming layer and a main body layer adjacent to the rolling surface forming layer, and the main body layer is made of a metal material whose main phase is non-magnetic, If the surface forming layer is made of a material harder than the metal material, the strength and fatigue wear resistance can be sufficiently secured while suppressing the residual magnetism of the inner ring. Specifically, an embodiment in which the main body layer is made of austenitic stainless steel and the rolling surface forming layer is made of a hardenable magnetic steel material can be exemplified. In this case, there is an advantage that the rolling surface forming layer can be easily formed into the desired rolling surface shape by processing the magnetic steel material in an annealed state. In this case, an inner ring suitable for the above purpose can be easily manufactured by joining the rolling surface forming layer, which is processed and formed separately from the main body layer, to the main body layer. Examples of the joining method include welding (for example, projection welding), diffusion joining, and brazing. However, in any case, the bonding heat treatment is a high temperature, and when the rolling surface forming layer after quenching is to be bonded, there is a high possibility of softening (that is, quenching) due to the thermal history. Therefore, a method of first joining the rolling surface forming layer in a state before quenching (especially, if it is temporarily joined by clad pressure welding, an annealed state), and then performing a hardening heat treatment such as a quenching treatment together with the main body layer. It is convenient to adopt. Depending on the material of the rolling surface forming layer, precipitation hardening heat treatment such as carbide may be performed as the hardening heat treatment.

上記転動面形成層は、具体的には軸受鋼(SUJ1あるいはSUJ2などの高炭素クロム軸受鋼)が好適である。これにより、軌道面の強度及び耐疲労摩耗性を高レベルにて確保することが可能となる。   Specifically, the rolling surface forming layer is preferably a bearing steel (high carbon chromium bearing steel such as SUJ1 or SUJ2). Thereby, it is possible to ensure the strength of the raceway surface and the fatigue wear resistance at a high level.

本体層をなす低磁化率材料は、セラミックで構成することもできる。この場合、転動面も含めた内輪の全体をセラミックにて構成すると製造も容易である。使用するセラミックの材質については特に限定されないが、強度、靭性及び耐疲労磨耗性確保の観点から、窒化珪素質セラミックが特に好適であるが、この他にも炭化珪素質セラミック、ジルコニア質セラミックあるいはアルミナ質セラミックなどを採用することも可能である。なお、本明細書において「X質セラミック」と記載した場合、主相をなすセラミックXの含有率が80質量%以上であるセラミックを意味するものとする。   The low magnetic susceptibility material forming the main body layer can also be composed of ceramic. In this case, if the entire inner ring including the rolling surface is made of ceramic, manufacturing is easy. The material of the ceramic to be used is not particularly limited, but silicon nitride ceramic is particularly suitable from the viewpoint of ensuring strength, toughness and fatigue wear resistance, but silicon carbide ceramic, zirconia ceramic or alumina is also suitable. It is also possible to use quality ceramics. In addition, when it describes as "X quality ceramic" in this specification, it shall mean the ceramic whose content rate of the ceramic X which makes a main phase is 80 mass% or more.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は本発明の一実施形態である車軸用軸受装置5と、それを用いた回転速度検出装置6の一例を断面構造にて示すものである。車軸用軸受装置5は、内周面が車軸2側への取り付け面とされ、車軸2と一体的に回転する形で使用される内輪5aと、内輪5aの外側に同心的に配置され、車軸2の周りの回転が不能となるように自動車側取付対象部3に取り付けて使用される外輪5bと、内輪5aと外輪5bとの間に配置される複数の転動体5cとを有する。また、内輪5aには磁性被検知体リング10が、これと中心軸線Oを一致させた位置関係にて、該内輪5aに対しその軸線周りの相対的な回転が不能となるように取り付けられている。図2に示すように、磁性被検知体リング10は、自身の周方向に磁気的に非等価な第一被検知部10pと第二被検知部10sとが交互に形成されている。他方、図1に示すごとく、外輪5bは、軸受外径面5fを形成する本体部5Qと、該本体部5Qに対し軸受外径面5fからラジアル方向外向きに突出する自動車側取付対象部3への取付係合部5eとを有する。それら本体部5Qと取付係合部5eとが、焼入れ可能な磁性鋼材、本実施形態においては機械構造用炭素鋼(S55C)にて一体に鍛造形成され、その表層部には図示しない高周波焼入部が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an axle bearing device 5 according to an embodiment of the present invention and a rotational speed detection device 6 using the same in a cross-sectional structure. The axle bearing device 5 has an inner peripheral surface as a mounting surface on the axle 2 side, and is disposed concentrically on the outer side of the inner ring 5a and an inner ring 5a that is used so as to rotate integrally with the axle 2. 2 has an outer ring 5b that is used by being attached to the automobile-side attachment target portion 3 so that rotation around the wheel 2 is impossible, and a plurality of rolling elements 5c that are arranged between the inner ring 5a and the outer ring 5b. In addition, a magnetic sensing element ring 10 is attached to the inner ring 5a so that relative rotation about the axis is impossible with respect to the inner ring 5a in a positional relationship in which the center axis O coincides with the ring. Yes. As shown in FIG. 2, the magnetic detection object ring 10 includes first detected parts 10 p and second detected parts 10 s that are magnetically non-equivalent in the circumferential direction thereof alternately. On the other hand, as shown in FIG. 1, the outer ring 5b includes a main body portion 5Q that forms a bearing outer diameter surface 5f, and an automobile-side attachment target portion 3 that protrudes radially outward from the bearing outer diameter surface 5f with respect to the main body portion 5Q. And a mounting engagement portion 5e. The main body portion 5Q and the mounting engagement portion 5e are integrally formed by forging with a hardenable magnetic steel material, in this embodiment carbon steel for machine structure (S55C), and an induction hardening portion (not shown) is formed on the surface layer portion. Is formed.

内輪5aは、磁性被検知体リング10の取付表面を含む部分を本体層5yとして、該本体層5yが、外輪5bをなす磁性鋼材よりも磁化率の低い低磁化率材料にて構成されてなる。具体的には内輪5aは、転動面形成層5xと、該転動面形成層5xに隣接する本体層5yからなる。本体層5yは、主相が非磁性の金属材料、本実施形態ではオーステナイト系ステンレス鋼(例えばSUS304)で構成されている。他方、転動面形成層5xは該金属材料よりも硬質の材料であり、本実施形態では焼入れ可能な磁性鋼材、より具体的には高炭素クロム軸受鋼(例えばSUJ1,SUJ2)や工具鋼(例えばSK5,SK7)にて構成されている。   The inner ring 5a is formed of a low magnetic susceptibility material having a lower magnetic susceptibility than the magnetic steel material forming the outer ring 5b, with the portion including the mounting surface of the magnetic detection object ring 10 as the main body layer 5y. . Specifically, the inner ring 5a includes a rolling surface forming layer 5x and a main body layer 5y adjacent to the rolling surface forming layer 5x. The main body layer 5y is made of a metal material whose main phase is nonmagnetic, in this embodiment, austenitic stainless steel (for example, SUS304). On the other hand, the rolling surface forming layer 5x is a material harder than the metal material. In this embodiment, the hardened magnetic steel material, more specifically, high carbon chrome bearing steel (for example, SUJ1, SUJ2) or tool steel ( For example, SK5, SK7).

回転速度検出装置6は、車軸用軸受装置5と検知ユニット20とを有する。図3に示すように、検知ユニット20は、磁性被検知体リング10との間に一定の磁気ギャップmg(詳細は図3参照)を形成する形で対向するように外輪5bに対し車軸2周りの回転が不能となるように取り付けられている。そして、検知ユニット20は、第一被検知部10pと第二被検知部10sとが交互に通過することに伴う磁気ギャップmg内の磁界変動を検出し、車軸2の回転速度情報として出力する。本実施形態において、磁性被検知体リング10は、永久磁石材料にて構成されるとともに、図2に示すように、第一被検知部10pと第二被検知部10sとして着磁極性が互いに異なる第一の着磁部と第二の着磁部とを交互に形成したパルサーリング10とされている。また、検知ユニット20は、周知のホール素子ICユニットにて構成されている。   The rotational speed detection device 6 includes an axle bearing device 5 and a detection unit 20. As shown in FIG. 3, the detection unit 20 is arranged around the axle 2 with respect to the outer ring 5b so as to face the magnetic detection object ring 10 so as to form a certain magnetic gap mg (see FIG. 3 for details). It is attached so that it cannot be rotated. And the detection unit 20 detects the magnetic field fluctuation | variation in the magnetic gap mg accompanying the 1st to-be-detected part 10p and the 2nd to-be-detected part 10s passing alternately, and outputs it as rotation speed information of the axle shaft 2. In the present embodiment, the magnetic detection object ring 10 is made of a permanent magnet material, and as shown in FIG. 2, the first detected part 10p and the second detected part 10s have different magnetic pole properties. The pulsar ring 10 is formed by alternately forming a first magnetized portion and a second magnetized portion. The detection unit 20 is configured by a well-known Hall element IC unit.

車軸用軸受装置5は、上記のごとく、磁気式回転センサの機能が組み込まれた転がり軸受装置として構成されている。そして、外輪5bを焼入れ可能な磁性鋼材で構成しつつ、パルサーリング10が取り付けられる内輪5aについては、パルサーリング10の取付先となる本体層5yが、非磁性材料であるオーステナイト系ステンレス鋼で構成されている。つまり、従来のこの種の軸受装置のように、軌道輪の全てを磁性鋼材で構成するのではなく、パルサーリング10が取り付けられる内輪5aを非磁性化することにより、内輪5aの残磁がパルサーリング10に及ぼす悪影響を顕著に抑制でき、回転検出精度を向上できる。他方、外輪5bは焼入れ可能な磁性鋼材で構成されるので、その軌道面を含む表層部に少なくとも焼入れ処理を施すことにより、十分な強度及び耐疲労摩耗性を確保でき、また、自動車側取付対象部3への取付係合部5eを熱間鍛造等により容易に形成することができる。   As described above, the axle bearing device 5 is configured as a rolling bearing device in which the function of the magnetic rotation sensor is incorporated. And about the inner ring | wheel 5a to which the pulsar ring 10 is attached, comprising the outer ring | wheel 5b with the hardenable magnetic steel material, the main body layer 5y used as the attachment destination of the pulsar ring 10 is comprised with the austenitic stainless steel which is a nonmagnetic material. Has been. That is, unlike the conventional bearing device of this type, the entire raceway is not made of a magnetic steel material, but the inner ring 5a to which the pulsar ring 10 is attached is made nonmagnetic so that the residual magnetism of the inner ring 5a can be reduced. The adverse effect on the ring 10 can be remarkably suppressed, and the rotation detection accuracy can be improved. On the other hand, since the outer ring 5b is composed of a hardenable magnetic steel material, it is possible to ensure sufficient strength and fatigue wear resistance by applying at least a quenching process to the surface layer portion including the raceway surface. The attachment engaging portion 5e to the portion 3 can be easily formed by hot forging or the like.

以下、さらに詳細に説明する。本実施形態の車軸用軸受装置5は、磁気式回転センサを組み込むことも考慮して、全体構成のコンパクト化を図るため、以下のように構成されている。すなわち、内輪5aと外輪5bに、それぞれ軌道面形成部5am,5bmと、該軌道面形成部5am,5bmからアキシャル方向において同じ側にそれぞれ延出する隙間形成部5ak,5bk(一般には「肩部」と称される)とを形成し、それら内輪側隙間形成部5akと外輪側隙間形成部5bkとをラジアル方向に対向させて環状のセンサ用隙間5Uを形成する。図3に示すように、パルサーリング(磁性被検知体リング)10は、中継部材52を介して内輪5aに結合されており、その中継部材52がセンサ用隙間5U内に配置されている。また、検知ユニット20は、図3に示すように、支持リング40を介して外輪(外輪側隙間形成部5bk)に取り付けられている。検知ユニット20の内輪5aに近い側の端面には補助リング45が取り付けられ、該補助リング45の末端には内輪5aの端面と接する形で補助シール部材43が取り付けられている。   This will be described in more detail below. The axle bearing device 5 of the present embodiment is configured as follows in order to reduce the overall configuration in consideration of incorporating a magnetic rotation sensor. That is, the inner ring 5a and the outer ring 5b are respectively provided with raceway surface forming portions 5am and 5bm, and gap forming portions 5ak and 5bk (generally “shoulder portions” extending from the raceway surface forming portions 5am and 5bm to the same side in the axial direction. And the inner ring side gap forming portion 5ak and the outer ring side gap forming portion 5bk are opposed to each other in the radial direction to form an annular sensor gap 5U. As shown in FIG. 3, the pulsar ring (magnetic sensing object ring) 10 is coupled to the inner ring 5a via a relay member 52, and the relay member 52 is disposed in the sensor gap 5U. As shown in FIG. 3, the detection unit 20 is attached to the outer ring (outer ring side gap forming portion 5 b k) via the support ring 40. An auxiliary ring 45 is attached to the end face of the detection unit 20 near the inner ring 5a, and an auxiliary seal member 43 is attached to the end of the auxiliary ring 45 in contact with the end face of the inner ring 5a.

図1の構造においては、軌道輪(内輪5a,外輪5b)の隙間形成部5ak,5bk側がカバー等で覆われず、外部に露出した構造となっており、軸受の取り付け対象となる自動車が路上の水溜りをはねたり、あるいは洗車に供された場合に、強い水滴の飛散を浴びることがある。図3に示すように、本発明において回転センサ用の部品配置スペースとして使用するセンサ用隙間5Uには、この水滴が軸受内部に侵入することを阻止するためのシール部材60が配置される。すなわち、内輪側隙間形成部5akと外輪側隙間形成部5bkとのセンサ用隙間5Uに臨む周面に、内輪側シールリング52と外輪側シールリング51とが配置され、センサ用隙間5Uから軸受内部に水滴が侵入することを阻止するシール部材60が、内輪側シールリング52と外輪側シールリング51との間に配置されるとともに、パルサーリング(磁性被検知体リング)10は内輪側シールリング52(中継部材)に取り付けられる。内輪5において、内輪側シールリング52の取付表面は前述の本体層5y上に形成されており、該本体層5yが前述の通り、オーステナイト系ステンレス鋼により構成される。   In the structure of FIG. 1, the gap forming portions 5ak and 5bk side of the race rings (the inner ring 5a and the outer ring 5b) are not covered with a cover or the like and are exposed to the outside, and the automobile to which the bearing is attached is on the road When splashed in water or washed in a car, strong water droplets may be splashed. As shown in FIG. 3, a seal member 60 for preventing the water droplets from entering the inside of the bearing is disposed in the sensor gap 5U used as a component placement space for the rotation sensor in the present invention. That is, the inner ring side seal ring 52 and the outer ring side seal ring 51 are arranged on the circumferential surface facing the sensor gap 5U between the inner ring side gap forming portion 5ak and the outer ring side gap forming portion 5bk. A seal member 60 for preventing water droplets from entering the inner ring side seal ring 52 and the outer ring side seal ring 51 is disposed between the inner ring side seal ring 52 and the pulsar ring (magnetic detected object ring) 10. It is attached to (relay member). In the inner ring 5, the mounting surface of the inner ring side seal ring 52 is formed on the main body layer 5y, and the main body layer 5y is made of austenitic stainless steel as described above.

具体的には、外輪側隙間形成部5bkの内周面に、該内周面からラジアル方向内向きに突出する外輪側シール壁部51wを有した外輪側シールリング51が取り付けられている。また、内輪側隙間形成部5akの外周面には、該外周面からラジアル方向外向きに突出する内輪側シール壁部52wを有した内輪側シールリング52が取り付けられている。これらのシールリング51,52はいずれもL字状の断面形態を有している。内輪側シール壁部52wは、外輪側シール壁部51wよりも内輪側隙間形成部5akのアキシャル方向端面に近くなり、かつ外輪側シール壁部51wとの間にアキシャル方向の一定のシール隙間5Yを形成した形で配置され、該シール隙間5Yにシール部材60が配置される。そして、該構造においてパルサーリング(磁性被検知体リング)10は、内輪側シールリング52を中継部材とする形で、内輪側シール壁部52wの内輪側シール壁部52wに面しているのと反対側の壁面に取り付けられている。また、シール部材60は外輪側シールリング51の内面に接着されている。   Specifically, an outer ring side seal ring 51 having an outer ring side seal wall 51w protruding radially inward from the inner peripheral surface is attached to the inner peripheral surface of the outer ring side gap forming portion 5bk. Further, an inner ring side seal ring 52 having an inner ring side seal wall portion 52 w protruding outward in the radial direction from the outer peripheral surface is attached to the outer peripheral surface of the inner ring side gap forming portion 5ak. Both of these seal rings 51 and 52 have an L-shaped cross-sectional shape. The inner ring side seal wall portion 52w is closer to the axial end surface of the inner ring side gap forming portion 5ak than the outer ring side seal wall portion 51w, and has a constant seal gap 5Y in the axial direction between the inner ring side seal wall portion 51w and the outer ring side seal wall portion 51w. The seal member 60 is disposed in the seal gap 5Y. In this structure, the pulsar ring (magnetic detection object ring) 10 faces the inner ring side seal wall portion 52w of the inner ring side seal wall portion 52w with the inner ring side seal ring 52 as a relay member. It is attached to the opposite wall. The seal member 60 is bonded to the inner surface of the outer ring side seal ring 51.

これにより、軸受装置5は、シール部材60と磁性被検知体リング10との双方が組み込まれるにもかかわらず、全体をコンパクトに構成することができる。また、パルサーリング(磁性被検知体リング)10が取り付けられる中継部材が、内輪側シールリング52のシール壁部52wであり、内輪5aと磁性被検知体リング10との距離も非常に近くなるが、内輪5aの該内輪側シール部材60を取り付ける部分を低磁化率材料で構成することで、その残磁の影響を効果的に抑制することができる。内輪側シールリング52と外輪側シールリング51とは、いずれも水滴付着等に対する耐食性が良好な構造材料、たとえばステンレス鋼で構成される。このうち、内輪側シールリング52はパルサーリング10が取り付けられることを考慮して、非磁性材料、例えばオーステナイト系ステンレス鋼で構成される(本実施形態では、外輪側シールリング51もオーステナイト系ステンレス鋼で構成されている)。   Thereby, although the bearing device 5 incorporates both the seal member 60 and the magnetic detection object ring 10, the whole can be configured compactly. In addition, the relay member to which the pulsar ring (magnetic detection object ring) 10 is attached is the seal wall portion 52w of the inner ring side seal ring 52, and the distance between the inner ring 5a and the magnetic detection object ring 10 is very short. By configuring the portion of the inner ring 5a to which the inner ring side seal member 60 is attached with a low magnetic susceptibility material, the effect of the residual magnetism can be effectively suppressed. Both the inner ring side seal ring 52 and the outer ring side seal ring 51 are made of a structural material having good corrosion resistance against water droplet adhesion or the like, for example, stainless steel. Among these, the inner ring side seal ring 52 is made of a non-magnetic material, for example, austenitic stainless steel in consideration of the fact that the pulsar ring 10 is attached (in this embodiment, the outer ring side seal ring 51 is also austenitic stainless steel. Is composed of).

図1に戻り、内輪5aに対しては、上記内輪側隙間形成部5akのアキシャル方向端面側(つまり、車両内側)から車軸2の端部が挿入されるようになっている。この場合、車軸2との干渉が問題になるので、軸受の該隙間側には特許文献1あるいは2のごときカバーを設けることができず、水滴侵入防止用のシール部材60が必須である。この構造は、具体的には、車軸2が駆動軸となる場合に採用される。   Returning to FIG. 1, the end of the axle 2 is inserted into the inner ring 5 a from the axial end surface side of the inner ring side gap forming portion 5 ak (that is, the vehicle inner side). In this case, since interference with the axle 2 becomes a problem, a cover as in Patent Document 1 or 2 cannot be provided on the gap side of the bearing, and a seal member 60 for preventing water droplets from entering is essential. Specifically, this structure is employed when the axle 2 serves as a drive shaft.

なお、内輪5aは、車軸2が相対回転不能に挿通・固定されるハブホイール4の外周面に対し、その車軸2の挿入側端部に固定されている。また、ハブホイール4は、耐久性確保のため、機械構造用炭素鋼などの焼入可能な磁性鋼材で構成される。ハブホイール4は軸受装置5とともにハブユニット1を形成するものであり、図示しない車輪が取り付けられる環状板部4aと、軸心部に駆動車軸2がスプライン嵌合される軸部4bとを備えている。このハブホイール4の軸部4bの外周面に、上記の軸受装置5が外装される。   The inner ring 5a is fixed to the insertion side end of the axle 2 with respect to the outer peripheral surface of the hub wheel 4 through which the axle 2 is inserted and fixed so as not to be relatively rotatable. The hub wheel 4 is made of a hardenable magnetic steel material such as carbon steel for machine structure in order to ensure durability. The hub wheel 4 forms the hub unit 1 together with the bearing device 5, and includes an annular plate portion 4 a to which a wheel (not shown) is attached, and a shaft portion 4 b in which the drive axle 2 is spline-fitted to the shaft center portion. Yes. The bearing device 5 is externally mounted on the outer peripheral surface of the shaft portion 4 b of the hub wheel 4.

本実施形態において軸受装置5は、ハブホイール4の軸部4bの外周面を一方内輪として利用した複列外向きアンギュラ玉軸受からなり、軸部4bの外周に圧入外嵌される単列用の内輪5aと、二列の軌道溝を有する単一の外輪5bと、二列で配設される複数の玉(転動体)5cと、二つの冠形保持器5d,5dとを備えている。なお、外輪5bの外周には、径方向外向きのフランジ(取付係合部)5eが設けられており、このフランジ5eを介してボルト5tにより車軸ケース(自動車側取付対象部)3に固定される。つまり、この軸受装置5は、外輪5bを非回転として内輪5aを回転させる形態で利用される。   In the present embodiment, the bearing device 5 is composed of a double-row outward angular ball bearing that uses the outer peripheral surface of the shaft portion 4b of the hub wheel 4 as one inner ring, and is used for a single row that is press-fitted and fitted to the outer periphery of the shaft portion 4b. An inner ring 5a, a single outer ring 5b having two rows of raceway grooves, a plurality of balls (rolling elements) 5c arranged in two rows, and two crown-shaped cages 5d and 5d are provided. A radially outward flange (mounting engagement portion) 5e is provided on the outer periphery of the outer ring 5b, and is fixed to the axle case (vehicle-side mounting target portion) 3 by a bolt 5t via the flange 5e. The That is, the bearing device 5 is used in a form in which the outer ring 5b is not rotated and the inner ring 5a is rotated.

パルサーリング10は、配置スペースの関係上、ラジアル方向幅よりも厚みの小さい扁平永久磁石リング(着磁方向はリングアキシャル方向である)で構成されている。この扁平永久磁石リングは、水滴付着等に対する特性劣化を生じにくい材質とするために、ハードフェライト系磁石が採用されている。この場合、焼結ハードフェライト磁石を使用することも可能であるが、磁石の加工歩留まりが悪いため高価であり、樹脂結合型フェライト磁石を用いるのがコスト的には有利である。本実施形態では、射出成型を用いた等方性樹脂結合型フェライト磁石を採用している。この種の磁石は薄型リングの製造が容易であり、かつ生産性も高く安価である。しかし、樹脂バインダの含有量が30〜45体積%にも及び、また、等方性であるため残留磁束密度はそれほど高くなく、かつ薄型リングであるためパーミアンス係数も低いので、内輪5aの残磁の影響を特に受けやすい。しかしながら、本発明の適用により該内輪5aの残磁の影響を容易に排除でき、高精度な回転検出が可能となる。   The pulsar ring 10 is composed of a flat permanent magnet ring (the magnetization direction is a ring axial direction) having a thickness smaller than the radial width because of the arrangement space. The flat permanent magnet ring employs a hard ferrite magnet in order to make the material less susceptible to deterioration of characteristics against water droplet adhesion or the like. In this case, it is possible to use a sintered hard ferrite magnet, but it is expensive because the yield of processing of the magnet is poor, and it is advantageous in terms of cost to use a resin-bonded ferrite magnet. In this embodiment, an isotropic resin-bonded ferrite magnet using injection molding is employed. This type of magnet is easy to manufacture a thin ring, has high productivity and is inexpensive. However, since the resin binder content is 30 to 45% by volume and is isotropic, the residual magnetic flux density is not so high, and since it is a thin ring, the permeance coefficient is also low. Especially susceptible to However, by applying the present invention, the influence of the residual magnetism of the inner ring 5a can be easily eliminated, and highly accurate rotation detection becomes possible.

上記構造の内輪5aは例えば次のようにして製造できる。まず、図4の工程1に示すごとく、軸受鋼板材(焼きなまし材)の打抜加工によりリング状の素材5x”を製造し、次にこれにプレス加工を施して、所期の転動面形成層5xの形状に成型する。他方、オーステナイト系ステンレス鋼の型鍛造ないし切削加工により本体層5yを別途製造し、工程2に示すように両者を重ね合わせて工程3の接合処理を行う。接合処理は、転動面形成層5xと本体層5yとを加圧密着させた状態で実施するプロジェクション溶接か、又は拡散熱処理により実施できる。これにより、転動面形成層5xと本体層5yとは、溶接層5s又は熱拡散層5dfにより接合された構造となる。接合が終了後、転動面形成層5xには、硬化熱処理として所定の焼入・焼き戻し処理を行い、さらに転動面を研磨仕上げして内輪5aが完成する。   The inner ring 5a having the above structure can be manufactured as follows, for example. First, as shown in Step 1 of FIG. 4, a ring-shaped material 5x ″ is manufactured by punching a bearing steel plate (annealed material), and then subjected to press working to form a desired rolling surface. On the other hand, the main body layer 5y is separately manufactured by die forging or cutting of austenitic stainless steel, and the two are overlapped as shown in step 2 to perform the bonding process in step 3. Can be performed by projection welding performed in a state in which the rolling surface forming layer 5x and the main body layer 5y are pressed and adhered, or by diffusion heat treatment, whereby the rolling surface forming layer 5x and the main body layer 5y are: After the joining is completed, the rolling surface forming layer 5x is subjected to a predetermined quenching and tempering treatment as a curing heat treatment, and the rolling surface is further polished. Finish and inner ring a is completed.

なお、図5に示すように、リング軸線Oと直交する平面により、内輪5aを本体部(軌道面形成部)5amと内輪側隙間形成部5akとに二分し、前者5amの全体を軸受鋼等の焼入れ可能な磁性鋼材にて構成し、後者5akをオーステナイト系ステンレス鋼等の非磁性金属材料で構成することも可能である。図1のように軌道面形成層5xのみを焼入れ可能な磁性鋼材で選択的に構成する場合と比較して、磁性鋼材の体積は増大するが、本体部5amの加工が簡単であり、また、内輪側隙間形成部5akへの接合も、より容易に行なうことができる。   As shown in FIG. 5, the inner ring 5a is divided into a main body part (track surface forming part) 5am and an inner ring side gap forming part 5ak by a plane orthogonal to the ring axis O, and the whole of the former 5am is made of bearing steel or the like. It is also possible to make the latter 5ak with a nonmagnetic metal material such as austenitic stainless steel. Compared with the case where only the raceway surface forming layer 5x is selectively made of a hardenable magnetic steel material as shown in FIG. 1, the volume of the magnetic steel material is increased, but the processing of the main body 5am is simple, Joining to the inner ring side gap forming portion 5ak can also be performed more easily.

また、上記のような金属製の内輪5aに代え、図6に示すように、その全体がセラミックで構成された内輪105aを用いることもできる。使用するセラミックの材質は例えば窒化珪素質セラミックであるが、これに限定されるものではない。窒化珪素質セラミックは、窒化珪素(Si)を主相として含有し、その残余の成分として焼結助剤成分(及び不可避的な不純物)を含有する。焼結助剤成分は、周期律表の3A,4A,5A、3B(例えばAl(アルミナなど))及び4B(例えばSi(シリカなど))の各族の元素群及びMgから選ばれる少なくとも1種の酸化物であり、酸化物換算で例えば1〜20質量%含有する。なお、3A族の焼結助剤成分としては、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが一般的に用いられる。これらのうちでもY、Tb、Dy、Ho、Er、Tm、Ybの各重希土類元素の酸化物は、窒化珪素質焼結体の強度、靭性及び耐摩耗性を向上させる効果があるので好適に使用される。また、このほかに、マグネシアスピネル、ジルコニア等も焼結助剤として使用が可能である。 Further, instead of the metal inner ring 5a as described above, as shown in FIG. 6, an inner ring 105a made entirely of ceramic can be used. The material of the ceramic used is, for example, silicon nitride ceramic, but is not limited thereto. The silicon nitride ceramic contains silicon nitride (Si 3 N 4 ) as a main phase and a sintering aid component (and inevitable impurities) as the remaining components. The sintering aid component is at least one selected from elements of each group of 3A, 4A, 5A, 3B (for example, Al (alumina)) and 4B (for example, Si (silica)) of the periodic table and Mg. For example, 1 to 20% by mass in terms of oxide is contained. In addition, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are generally used as the 3A group sintering aid component. . Among these, oxides of heavy rare earth elements of Y, Tb, Dy, Ho, Er, Tm, and Yb are preferable because they have the effect of improving the strength, toughness, and wear resistance of the silicon nitride sintered body. used. In addition, magnesia spinel, zirconia and the like can also be used as a sintering aid.

図7は、そのセラミック製の内輪105aの製造工程を模式的に示すものである。まず、セラミック原料粉末を準備する。窒化珪素質セラミックの場合、主原料粉末は窒化珪素粉末(α相を主体とするもの)であり、これに焼結助剤として前述の酸化物粉末を混合する。なお、焼結助剤は、原料配合時において、これら元素の酸化物のほか、焼結により酸化物に転化しうる化合物、例えば炭酸塩や水酸化物等の形で配合してもよい。配合された原料粉末は、金型プレス成型や射出成型等により所期のリング形状のグリーン成形体105gとされる。このグリーン成形体に所定の脱バインダ処理を施し、さらに必要に応じて冷間静水圧プレスを行った後、材質に応じた条件にて焼成を行う。焼成は、常圧又は加圧焼成炉を用いた通常の焼成法のほか、ホットプレスや熱間静水圧プレスを採用することもできる。得られた焼成体は、研磨仕上げすることにより内輪105aが得られる。   FIG. 7 schematically shows a manufacturing process of the ceramic inner ring 105a. First, ceramic raw material powder is prepared. In the case of silicon nitride ceramics, the main raw material powder is silicon nitride powder (mainly α-phase), and the aforementioned oxide powder is mixed as a sintering aid. In addition to the oxides of these elements, the sintering aid may be blended in the form of a compound that can be converted into an oxide by sintering, such as carbonates or hydroxides, at the time of blending the raw materials. The blended raw material powder is formed into a desired ring-shaped green molded body 105g by die press molding or injection molding. The green molded body is subjected to a predetermined binder removal treatment and further subjected to cold isostatic pressing as necessary, and then fired under conditions according to the material. For firing, a normal firing method using a normal pressure or pressure firing furnace, a hot press or a hot isostatic press can be employed. The obtained fired body is polished to obtain an inner ring 105a.

本発明の車軸用軸受装置及びそれを用いた回転速度検出装置の、第一実施形態を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows 1st embodiment of the bearing apparatus for axles of this invention, and a rotational speed detection apparatus using the same. パルサーリングの模式図。Schematic diagram of pulsar ring. 図1の要部を示す断面図。Sectional drawing which shows the principal part of FIG. 第一実施形態に係る内輪の製造工程説明図。Explanatory drawing of the manufacturing process of the inner ring which concerns on 1st embodiment. 図1の車軸用軸受装置及びそれを用いた回転速度検出装置の一変形例を示す断面図。Sectional drawing which shows the modification of the axle shaft bearing apparatus of FIG. 1, and a rotational speed detection apparatus using the same. 本発明の車軸用軸受装置及びそれを用いた回転速度検出装置の、第二実施形態を示す断面図。Sectional drawing which shows 2nd embodiment of the bearing apparatus for axles of this invention, and a rotational speed detection apparatus using the same. 第二実施形態に係る内輪の製造工程説明図。Explanatory drawing of the manufacturing process of the inner ring which concerns on 2nd embodiment.

符号の説明Explanation of symbols

1 ハブユニット
2 車軸
3 自動車側取付対象部
5 車軸用軸受装置
5a,105a 内輪
5am 内輪側軌道面形成部
5ak 内輪側隙間形成部
5y 本体層
5x 軌道面形成層
5bm 外輪側軌道面形成部
5bk 外輪側隙間形成部
5b 外輪
5U センサ用隙間
5e フランジ(取付係合部)
5f 軸受外径面
5Q 本体部
10 パルサーリング(磁性被検知体リング)
10p 第一被検知部
10s 第二被検知部
mg 磁気ギャップ
20 検知ユニット
51 外輪側シールリング
52 内輪側シールリング(中継部材)
60 シール部材
DESCRIPTION OF SYMBOLS 1 Hub unit 2 Axle 3 Car side installation object part 5 Axle bearing device 5a, 105a Inner ring 5am Inner ring side raceway formation part 5ak Inner ring side clearance formation part 5y Main body layer 5x Track surface formation layer 5bm Outer ring side raceway formation part 5bk Outer ring Side clearance forming portion 5b Outer ring 5U Sensor clearance 5e Flange (mounting engagement portion)
5f Bearing outer diameter surface 5Q Body 10 Pulsar ring (Magnetic sensing object ring)
10p First detected part 10s Second detected part mg Magnetic gap 20 Detection unit 51 Outer ring side seal ring 52 Inner ring side seal ring (relay member)
60 Seal member

Claims (11)

内周面が車軸側への取り付け面とされ、前記車軸と一体的に回転する形で使用される内輪と、前記内輪の外側に同心的に配置され、前記車軸周りの回転が不能となるように自動車側取付対象部に取り付けて使用される外輪と、前記内輪と前記外輪との間に配置される複数の転動体と、前記内輪と中心軸線を一致させた位置関係にて、該内輪に対しその軸線周りの相対的な回転が不能となるように取り付けられ、自身の周方向に磁気的に非等価な第一被検知部と第二被検知部とが交互に形成された磁性被検知体リングとを備え、
前記外輪は、軸受外径面を形成する本体部と、該本体部に対し前記軸受外径面からラジアル方向外向きに突出する前記自動車側取付対象部への取付係合部とを有し、それら本体部と取付係合部とが焼入れ可能な磁性鋼材にて一体に鍛造形成される一方、前記内輪は、前記磁性被検知体リングの取付先を含む部分を本体層として、該本体層が前記磁性鋼材よりも磁化率の低い低磁化率材料にて構成され、
前記内輪と前記外輪は、それぞれ軌道面形成部と該軌道面形成部からアキシャル方向において同じ側にそれぞれ延出する隙間形成部とを有し、それら内輪側隙間形成部と外輪側隙間形成部とがラジアル方向に対して環状の隙間を形成してなり、該内輪側隙間形成部と前記外輪側隙間形成部との前記隙間に臨む周面には、内輪側シールリングと外輪側シールリングとが配置され、前記内輪側シールリングと前記外輪側シールリングとのいずれもが、前記磁性鋼材よりも磁化率の低い低磁化率材料で構成されて前記磁性被検知体リングが取り付けられることを特徴とする車軸用軸受装置。
The inner peripheral surface is a mounting surface on the axle side, and is arranged concentrically on the outer side of the inner ring and the inner ring used to rotate integrally with the axle so that rotation around the axle is impossible. The inner ring and the inner ring in a positional relationship in which the inner ring and the central axis coincide with each other, the outer ring used by being attached to the vehicle-side attachment target portion, the plurality of rolling elements disposed between the inner ring and the outer ring, On the other hand, it is attached so that relative rotation around its axis is impossible, and magnetically non-equivalent first and second detected parts are formed alternately in its circumferential direction. With body ring,
The outer ring has a main body portion that forms a bearing outer diameter surface, and a mounting engagement portion to the vehicle-side mounting target portion that protrudes radially outward from the bearing outer diameter surface with respect to the main body portion, While the main body portion and the mounting engagement portion are integrally formed by forging with a hardenable magnetic steel material, the inner ring has a portion including the attachment destination of the magnetic sensing body ring as a main body layer, and the main body layer is It is composed of a low magnetic susceptibility material having a lower magnetic susceptibility than the magnetic steel material,
The inner ring and the outer ring each have a raceway surface forming portion and a gap forming portion extending from the raceway surface forming portion to the same side in the axial direction, and the inner ring side gap forming portion and the outer ring side gap forming portion, Is formed with an annular gap in the radial direction, and an inner ring side seal ring and an outer ring side seal ring are formed on a circumferential surface facing the gap between the inner ring side gap forming portion and the outer ring side gap forming portion. The inner ring side seal ring and the outer ring side seal ring are both made of a low magnetic susceptibility material having a magnetic susceptibility lower than that of the magnetic steel material, and the magnetic sensing object ring is attached thereto. Axle bearing device.
前記磁性被検知体リングは、永久磁石材料にて構成されるとともに前記第一被検知部と前記第二被検知部として、着磁極性が互いに異なる第一の着磁部と第二の着磁部とを交互に形成したパルサーリングである請求項1に記載の車軸用軸受装置。 The magnetic sensing body ring is made of a permanent magnet material, and the first magnetized part and the second magnetized part having different magnetic pole properties as the first sensed part and the second sensed part The axle bearing device according to claim 1, wherein the pulsar ring is formed by alternately forming portions. 前記本体層をなす前記低磁化率材料は主相が非磁性の金属からなる請求項1又は請求項2に記載の車軸用軸受装置。 The axle bearing device according to claim 1 or 2, wherein the low magnetic susceptibility material forming the main body layer is made of a nonmagnetic metal as a main phase. 前記本体層をなす前記低磁化率材料はオーステナイト系ステンレス鋼である請求項3に記載の車軸用軸受装置。 The axle bearing device according to claim 3, wherein the low magnetic susceptibility material forming the main body layer is austenitic stainless steel. 前記内輪は転動面形成層と、該転動面形成層に隣接する前記本体層からなり、該本体層は主相が非磁性の金属からなり、他方、前記転動面形成層が該金属よりも硬質の材料よりなる請求項3又は請求項4に記載の車軸用軸受装置。 The inner ring is composed of a rolling surface forming layer and the main body layer adjacent to the rolling surface forming layer, and the main body layer is made of a nonmagnetic metal in the main phase, while the rolling surface forming layer is made of the metal. The axle bearing device according to claim 3 or 4, which is made of a harder material. 前記本体層がオーステナイト系ステンレス鋼からなり、前記転動面形成層が焼入れ可能な磁性鋼材からなる請求項5に記載の車軸用軸受装置。 The axle bearing device according to claim 5, wherein the main body layer is made of austenitic stainless steel, and the rolling surface forming layer is made of a hardenable magnetic steel material. 前記転動面形成層が軸受鋼からなる請求項5に記載の車軸用軸受装置。 The axle bearing device according to claim 5, wherein the rolling surface forming layer is made of bearing steel. 前記転動面形成層は、前記本体層とは別体に加工形成されたものを該本体層に接合したものである請求項6又は請求項7に記載の車軸用軸受装置。 8. The axle bearing device according to claim 6, wherein the rolling surface forming layer is formed by machining and forming the rolling surface forming layer separately from the main body layer. 前記本体層をなす前記低磁化率材料がセラミックである請求項1又は請求項2に記載の車軸用軸受装置。 The axle bearing device according to claim 1 or 2, wherein the low magnetic susceptibility material forming the main body layer is ceramic. 前記内輪は、前記アキシャル方向端面側から前記車軸の端部が挿入されるようになっている請求項記載の車軸用軸受装置。 The axle bearing device according to claim 9, wherein an end of the axle is inserted into the inner ring from the axial end face side. 請求項1ないし請求項10のいずれか1項に記載の車軸用軸受装置と、前記磁性被検知体リングとの間に一定の磁気ギャップを形成する形で対向するように前記外輪に対し前記車軸周りの回転が不能となるように取り付けられた検知ユニットとを有し、前記検知ユニットは、前記磁気ギャップを前記第一被検知部と第二被検知部とが交互に通過することに伴う前記磁気ギャップ内の磁界変動を検出し、前記車軸の回転速度情報として出力するようにしたことを特徴とする回転速度検出装置。 The axle and the axle bearing apparatus according to any one of claims 1 to 10, relative to the outer ring so as to face in the form of forming a predetermined magnetic gap between the magnetic detection object ring A detection unit attached so that rotation around it is impossible, and the detection unit includes the first detected part and the second detected part alternately passing through the magnetic gap. A rotational speed detecting device, wherein a magnetic field fluctuation in a magnetic gap is detected and output as rotational speed information of the axle.
JP2005224529A 2005-08-02 2005-08-02 Axle bearing device and rotational speed detection device using the same Expired - Fee Related JP4582504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224529A JP4582504B2 (en) 2005-08-02 2005-08-02 Axle bearing device and rotational speed detection device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224529A JP4582504B2 (en) 2005-08-02 2005-08-02 Axle bearing device and rotational speed detection device using the same

Publications (2)

Publication Number Publication Date
JP2007040388A JP2007040388A (en) 2007-02-15
JP4582504B2 true JP4582504B2 (en) 2010-11-17

Family

ID=37798570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224529A Expired - Fee Related JP4582504B2 (en) 2005-08-02 2005-08-02 Axle bearing device and rotational speed detection device using the same

Country Status (1)

Country Link
JP (1) JP4582504B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167710B2 (en) 2007-07-17 2013-03-21 日本精工株式会社 Hub unit bearing
JP2010106889A (en) * 2008-10-28 2010-05-13 Jtekt Corp Hub unit
CN101915273A (en) * 2010-08-13 2010-12-15 新兴铸管股份有限公司 Novel bearing ring material and production process thereof
DE102013209522B3 (en) * 2013-05-23 2014-08-28 Schaeffler Technologies Gmbh & Co. Kg Rolling bearing with speed detection device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146702A (en) * 1983-12-08 1985-08-02 エス ケイ エフ インダストリアル トレーデイング アンド デベロプメントカンパニー ビーブイ Bearing for wheel
JPS63115913A (en) * 1986-11-04 1988-05-20 Hisashi Kobayashi Double row ball bearing made of ceramic
JPH037006U (en) * 1989-06-12 1991-01-23
JPH0321902B2 (en) * 1982-04-20 1991-03-25 Fuji Photo Film Co Ltd
JPH041721U (en) * 1990-04-20 1992-01-08
JP2000130444A (en) * 1998-10-27 2000-05-12 Nsk Ltd Double row rolling bearing unit
JP2001330038A (en) * 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2002206547A (en) * 2001-01-09 2002-07-26 Nsk Ltd Seal ring and bearing unit with seal ring for wheel
JP2002235757A (en) * 2000-05-22 2002-08-23 Koyo Seiko Co Ltd Bearing device for wheel
JP2002250449A (en) * 2001-02-21 2002-09-06 Koyo Seiko Co Ltd Sealing system
JP2003054213A (en) * 2001-08-14 2003-02-26 Nsk Ltd Bearing unit for driving wheel
JP2004036816A (en) * 2002-07-05 2004-02-05 Koyo Seiko Co Ltd Rolling bearing device
JP2004132497A (en) * 2002-10-11 2004-04-30 Koyo Seiko Co Ltd Rolling bearing device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321902B2 (en) * 1982-04-20 1991-03-25 Fuji Photo Film Co Ltd
JPS60146702A (en) * 1983-12-08 1985-08-02 エス ケイ エフ インダストリアル トレーデイング アンド デベロプメントカンパニー ビーブイ Bearing for wheel
JPS63115913A (en) * 1986-11-04 1988-05-20 Hisashi Kobayashi Double row ball bearing made of ceramic
JPH037006U (en) * 1989-06-12 1991-01-23
JPH041721U (en) * 1990-04-20 1992-01-08
JP2000130444A (en) * 1998-10-27 2000-05-12 Nsk Ltd Double row rolling bearing unit
JP2001330038A (en) * 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2002235757A (en) * 2000-05-22 2002-08-23 Koyo Seiko Co Ltd Bearing device for wheel
JP2002206547A (en) * 2001-01-09 2002-07-26 Nsk Ltd Seal ring and bearing unit with seal ring for wheel
JP2002250449A (en) * 2001-02-21 2002-09-06 Koyo Seiko Co Ltd Sealing system
JP2003054213A (en) * 2001-08-14 2003-02-26 Nsk Ltd Bearing unit for driving wheel
JP2004036816A (en) * 2002-07-05 2004-02-05 Koyo Seiko Co Ltd Rolling bearing device
JP2004132497A (en) * 2002-10-11 2004-04-30 Koyo Seiko Co Ltd Rolling bearing device

Also Published As

Publication number Publication date
JP2007040388A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1130362B1 (en) Method of manufacturing a magnetic encoder
WO2006028209A1 (en) Bearing device for wheel, having rotation speed detection device
JP4582504B2 (en) Axle bearing device and rotational speed detection device using the same
JP2011084265A (en) Bearing device for wheel
CN1696706B (en) Magnetic encoder and wheel support bearing assembly utilizing the same
US20100027927A1 (en) Sensor attaching sealing device and vehicle rolling bearing using the same
KR20060037396A (en) Rolling bearing unit with rotating speed-detecting device
JP2016050674A (en) Protection cover and bearing device with the same
JP2022164765A (en) Magnetic encoder and manufacturing method therefor
JP4203961B2 (en) Wheel bearing device with rotation speed detector
WO2017051836A1 (en) Bearing device for vehicle wheel
JP2006177897A (en) Bearing device for wheel with rotation speed detector
WO2015194609A1 (en) Rotary support device
US20230383787A1 (en) Magnetic impulse ring, bearing unit and rotary electrical machine comprising a magnetic impulse ring, and method to obtain a magnetic impulse ring
US7322374B2 (en) Actuator for actuating a lift valve
JP2004340771A (en) Magnetic rubber encoder
WO2008053950A1 (en) Magnetized pulsar ring and rolling bearing unit with sensor equipped therewith
JP2011149836A (en) Bearing device for wheel with rotational speed detection device
CN106568542B (en) Magnetic support structure for torque sensor assembly
JP2006349061A (en) Bearing device with rotational speed detector for wheel
JP2006112454A (en) Bearing device with sensor
JP2006038160A (en) Bearing device for wheel with rotating speed detecting device
JP5242102B2 (en) Wheel bearing device with rotation speed detector
JP6298262B2 (en) Wheel bearing device
JP4573194B2 (en) Wheel bearing device with rotation speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees