JP4582396B2 - Water pump control system - Google Patents

Water pump control system Download PDF

Info

Publication number
JP4582396B2
JP4582396B2 JP2004207991A JP2004207991A JP4582396B2 JP 4582396 B2 JP4582396 B2 JP 4582396B2 JP 2004207991 A JP2004207991 A JP 2004207991A JP 2004207991 A JP2004207991 A JP 2004207991A JP 4582396 B2 JP4582396 B2 JP 4582396B2
Authority
JP
Japan
Prior art keywords
water
water supply
set value
offset
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004207991A
Other languages
Japanese (ja)
Other versions
JP2006029173A (en
Inventor
学 古月
賢一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004207991A priority Critical patent/JP4582396B2/en
Publication of JP2006029173A publication Critical patent/JP2006029173A/en
Application granted granted Critical
Publication of JP4582396B2 publication Critical patent/JP4582396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、熱交換器に送水する送水ポンプの運転を制御する送水ポンプ制御システムに関する。   The present invention relates to a water supply pump control system that controls the operation of a water supply pump that supplies water to a heat exchanger.

図8は特許文献1に開示されている従来の送水ポンプ制御システムの一例を示す機能ブロック図である。一次送水ポンプ1は、戻りヘッダ2からの冷水あるいは温水を冷凍機又はヒータ3を介して第1の送りヘッダ4に送る。   FIG. 8 is a functional block diagram showing an example of a conventional water pump control system disclosed in Patent Document 1. As shown in FIG. The primary water pump 1 sends the cold water or hot water from the return header 2 to the first feed header 4 via the refrigerator or the heater 3.

二次送水ポンプ5は、インバータ6を備え第1の送りヘッダ4から第2の送りヘッダ7に冷水あるいは温水を送る。流量センサ8は、第2の送りヘッダ7から制御二方弁9と熱交換器11を介して戻りヘッダ2に送られる冷水あるいは温水の流量を測定する。   The secondary water pump 5 includes an inverter 6 and sends cold water or hot water from the first feed header 4 to the second feed header 7. The flow sensor 8 measures the flow rate of cold water or hot water sent from the second feed header 7 to the return header 2 via the control two-way valve 9 and the heat exchanger 11.

差圧センサ12は、第2の送りヘッダ7と戻りヘッダ2との冷水あるいは温水の差圧を測定する。台数制御コントローラ21は、流量センサ8と差圧センサ12との測定値から二次送水ポンプ5に最適運転台数となるように運転台数を指令する。   The differential pressure sensor 12 measures the differential pressure of cold water or hot water between the second feed header 7 and the return header 2. The number-of-units controller 21 commands the number of operating units so that the number of operating units becomes the optimal number of operating units for the secondary water pump 5 from the measured values of the flow rate sensor 8 and the differential pressure sensor 12.

以上の構成において、一次送水ポンプ1により製造された冷水あるいは温水は、二次送水ポンプ5により、二次側ユースポイントの熱交換器11へ送水される。熱交換器11の必要熱交換量に応じ、制御二方弁9が制御されることにより、二次側循環水量は変流量となる。   In the above configuration, cold water or hot water produced by the primary water pump 1 is fed by the secondary water pump 5 to the heat exchanger 11 at the secondary use point. By controlling the control two-way valve 9 according to the required heat exchange amount of the heat exchanger 11, the secondary-side circulating water amount becomes a variable flow rate.

この時、流量センサ8により循環水流量を検出し、最適運転台数となる様に、台数制御コントローラ21より、二次送水ポンプ5へ運転指令を出す。同時に、差圧センサ12により第2の送りヘッダ7と戻りヘッダ2との差圧を検出し、予め設定された必要差圧となるように、インバータ6に対し、回転数制御信号を発信する。   At this time, the circulating water flow rate is detected by the flow rate sensor 8, and an operation command is issued from the unit controller 21 to the secondary water pump 5 so that the optimum number of units can be operated. At the same time, the differential pressure sensor 12 detects the differential pressure between the second feed header 7 and the return header 2, and sends a rotation speed control signal to the inverter 6 so that the required differential pressure is set in advance.

この圧力制御の特徴は、流量センサ8の測定信号を基に、外部入力信号あるいはデータ蓄積部のテーブルに基づいてシステム全体の固定抵抗K0と管路定数K1及びK2と摩擦損失水頭計算式による定数nの数値とを選択して送水圧力設定値を演算し、この設定値と差圧センサ12で計測された差圧測定値との偏差をPID演算して前記インバータの回転数を操作している。   This pressure control is characterized by the fixed resistance K0, the line constants K1 and K2, and the constant based on the friction loss head calculation formula based on the external input signal or the table of the data storage unit based on the measurement signal of the flow sensor 8. The numerical value of n is selected to calculate the water supply pressure set value, and the difference between this set value and the differential pressure measured value measured by the differential pressure sensor 12 is PID calculated to manipulate the rotation speed of the inverter. .

図9は、流量Qに対して演算される送水圧力P1の特性曲線図である。入出力演算部221で実行される演算は、次式による。
P1=K0+K1・Q+K2・Q
ここで、P1は二次ポンプの送水圧力、K0はシステム全体の固定抵抗、K1は管路定数、K2は管路定数、Qは二次ポンプの送水流量、nは摩擦損失水頭計算式による定数(通常2)である。
FIG. 9 is a characteristic curve diagram of the water supply pressure P1 calculated with respect to the flow rate Q. The calculation executed by the input / output calculation unit 221 is according to the following equation.
P1 = K0 + K1 · Q + K2 · Q n
Here, P1 is the secondary pump water supply pressure, K0 is the fixed resistance of the entire system, K1 is the pipe constant, K2 is the pipe constant, Q is the secondary pump water supply flow rate, and n is the constant based on the friction loss head calculation formula. (Normally 2).

加圧送水ポンプシステムにおいては、具体的には例えば、空調システムにおいては、冬季は早朝、夏期には午後に負荷のピークが発生する。また、生産機器がある場合には、稼動状態により、負荷変動による冷温水冷却水の流量変化が発生する。   In a pressurized water pump system, specifically, for example, in an air conditioning system, a load peak occurs in the early morning in winter and in the afternoon in summer. In addition, when there is a production device, a change in the flow rate of cold / warm water due to load fluctuation occurs depending on the operating state.

従って、パラメータ(K0,K1,K2,n)は負荷変動、負荷パターンにより、その都度最適値がある。これらパラメータを、外部信号入力31である、例えば、外気温度入力信号、生産機器電力使用量入力信号、又はデータ蓄積部225に蓄積された種々のテーブル、例えば、季節変動テーブル、稼働率変動テーブル、負荷変動テーブル等を選択して取得する。   Accordingly, the parameters (K0, K1, K2, n) have optimum values each time depending on the load fluctuation and load pattern. These parameters are external signal input 31, for example, outside temperature input signal, production equipment power consumption input signal, or various tables stored in the data storage unit 225, such as a seasonal variation table, an operation rate variation table, Select and obtain a load fluctuation table.

このような手法により、外部の環境要因等を考慮して送水流量Qに見合った最適な圧力を算出し、この圧力を目標としてポンプの回転数を操作することで予測した管路抵抗特性で圧力変動運転する場合、この管路抵抗特性は、実際の管路抵抗特性の変動幅よりマージンを取って設定する。   By such a method, the optimum pressure corresponding to the water supply flow rate Q is calculated in consideration of external environmental factors, etc., and the pressure with the pipe resistance characteristic predicted by operating the rotation speed of the pump with this pressure as a target. In the case of fluctuating operation, the pipe resistance characteristic is set with a margin from the fluctuation range of the actual pipe resistance characteristic.

図10は、特性変動幅に対して動作マージンを考慮して設定した管路抵抗特性曲線図であり、変動幅よりやや高めの圧力設定値を演算している。   FIG. 10 is a pipe resistance characteristic curve diagram set in consideration of the operation margin with respect to the characteristic fluctuation range, and calculates a pressure setting value slightly higher than the fluctuation range.

熱交換器に送水する送水ポンプの運転を制御する送水ポンプ制御システムに関連する先行技術文献としては次のようなものがある。   Prior art documents relating to a water pump control system for controlling the operation of a water pump for feeding water to a heat exchanger include the following.

特開2003−106731号公報JP 2003-106731 A

従来システムの圧力設定手法では、次のような問題点がある。
(1)管路抵抗特性の変動幅が予想より大きく、図10の動作マージンを取った特性より上側になってしまった場合には、送水圧力が不足してしまう。このとき、熱交換器に十分な水量の冷温水が送れず、必要な熱交換機能が得られない。
The conventional system pressure setting method has the following problems.
(1) If the fluctuation range of the pipe resistance characteristic is larger than expected and becomes higher than the characteristic with the operation margin shown in FIG. 10, the water supply pressure becomes insufficient. At this time, a sufficient amount of cold / hot water cannot be sent to the heat exchanger, and a necessary heat exchange function cannot be obtained.

(2)ポンプの運転台数が増加又は減少して場合、流量に見合った圧力を出すエネルギー源がデジタル的に増加又は減少してしまうため、送水ポンプに対して新たに回転数指示をしなおす必要が発生する。このため正しい圧力に到達するまで時間がかかり、最適な制御特性が得られない。 (2) When the number of operating pumps increases or decreases, the energy source that produces the pressure corresponding to the flow rate increases or decreases digitally. Therefore, it is necessary to newly indicate the rotation speed to the water pump. Will occur. For this reason, it takes time to reach the correct pressure, and optimal control characteristics cannot be obtained.

(3)管路抵抗特性のセットを切り替える場合、他の制御パラメータ(PID、SV上下限値等)がそのままだと、最適な制御特性が得られない。 (3) When switching the set of pipe resistance characteristics, if other control parameters (PID, SV upper and lower limit values, etc.) remain as they are, optimal control characteristics cannot be obtained.

従って本発明が解決しようとする課題は、管路抵抗特性の変動やポンプの運転台数変動に対して最適な圧力制御特性を与えることができる送水ポンプ制御システムを実現することにある。   Therefore, the problem to be solved by the present invention is to realize a water pump control system capable of providing optimum pressure control characteristics with respect to fluctuations in pipe resistance characteristics and fluctuations in the number of operating pumps.

このような課題を達成するために、本発明の構成は次の通りである。
(1)熱交換器に送水する送水ポンプの送水圧力を送水流量に応じて決まる管路抵抗特性の大きさに応じて圧力調節手段により制御する送水ポンプ制御システムにおいて、
前記熱交換器に送る水の温度と熱交換器から戻ってきた水の温度差となる往還温度差または前記送水ポンプの運転台数情報に基づいて前記圧力調節手段に設定する送水圧力設定値に付加するオフセットを調整する設定値調整手段を設けたことを特徴とする送水ポンプ制御システム。
In order to achieve such an object, the configuration of the present invention is as follows.
(1) In a water supply pump control system that controls the water supply pressure of a water supply pump that supplies water to a heat exchanger by pressure adjusting means according to the magnitude of the pipe resistance characteristic determined according to the water supply flow rate.
Added to the water supply pressure set value set in the pressure adjusting means based on the difference between the temperature of the water sent to the heat exchanger and the return temperature difference which is the temperature difference of the water returned from the heat exchanger or the number of operating pumps. A water supply pump control system comprising a set value adjusting means for adjusting the offset to be performed.

(2)前記設定値調整手段は、前記往還温度差と往還温度差の上限値及び下限値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする(1)に記載の送水ポンプ制御システム。 (2) The set value adjusting means calculates an offset to be added to the water supply pressure set value based on an upper limit value and a lower limit value of the return temperature difference and the return temperature difference. Water pump control system.

(3)前記設定値調整手段は、前記往還温度差と往還温度差の設計値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする(1)に記載の送水ポンプ制御システム。 (3) The water supply pump control according to (1), wherein the set value adjusting means calculates an offset to be added to the water supply pressure set value based on a design value of the return temperature difference and the return temperature difference. system.

)前記設定値調整手段は、前記送水ポンプの運転台数変動に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする()に記載の送水ポンプ制御システム。
( 4 ) The water supply pump control system according to ( 1 ), wherein the set value adjusting means calculates an offset to be added to the water supply pressure set value based on a change in the number of operating water pumps.

)前記設定値調整手段は、前記送水ポンプの運転台数の変動比率値及び感度係数値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする()に記載の送水ポンプ制御システム。
(5) the setting value adjustment means described in (1) to calculate an offset to be added to the water supply pressure setpoint based on the variable ratio values and the sensitivity coefficient value of the number of operating units of the water pump Water pump control system.

)前記設定値調整手段は、前記送水ポンプの運転台数の変動後、指定の時間にわたって前記オフセットを出力するオフセットタイマーを備えたことを特徴とする()又は()に記載の送水ポンプ制御システム。
( 6 ) The water supply unit according to ( 4 ) or ( 5 ), wherein the set value adjusting means includes an offset timer that outputs the offset over a specified time after a change in the number of operating water pumps. Pump control system.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
(1)熱交換器に送る水の温度と熱交換器から戻ってきた水の温度差となる往還温度差に基づいて送水圧力設定値のオフセット又は関数演算の係数を調整することにより、管路抵抗特性の変動やポンプの運転台数変動等の外乱に対して圧力制御特性を向上せしめることが可能となる。
As is apparent from the above description, the present invention has the following effects.
(1) By adjusting the offset of the water supply pressure set value or the coefficient of function calculation based on the difference between the temperature of the water sent to the heat exchanger and the return temperature difference that is the temperature difference of the water returned from the heat exchanger, It is possible to improve the pressure control characteristics against disturbances such as fluctuations in resistance characteristics and fluctuations in the number of operating pumps.

(2)送水ポンプの運転台数の変動又は変動比率値に基づいて送水圧力設定値に付加するオフセットを算出することにより、管路抵抗特性の変動やポンプの運転台数変動等の外乱に対して圧力制御特性を向上せしめることが可能となる。 (2) By calculating the offset added to the water supply pressure set value based on the fluctuation or fluctuation ratio value of the number of water pumps operating, pressure against disturbances such as fluctuations in pipe resistance characteristics and fluctuations in the number of pumps operated Control characteristics can be improved.

以下、本発明を図面により詳細に説明する。図1は本発明を適用した送水ポンプ制御システムの一実施形態を示す機能ブロック図である。図8で説明した従来システムと同一要素には同一符号を付し、説明を省略する。以下、本発明の特徴部につき説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of a water pump control system to which the present invention is applied. The same elements as those in the conventional system described with reference to FIG. Hereinafter, the characteristic part of the present invention will be described.

図1において、13は圧力調節手段であり、圧力センサ12の測定値Pを入力し圧力設定値との偏差をPID演算した出力で二次送水ポンプ5のインバータ6を操作する。14は設定値演算手段であり、流量センサ8の測定値Qを入力し、これを変数として圧力設定値P1を従来システムと同様に次式で演算する。
P1=K0+K1・Q+K2・Q
In FIG. 1, reference numeral 13 denotes a pressure adjusting means, which operates the inverter 6 of the secondary water pump 5 with an output obtained by inputting a measured value P of the pressure sensor 12 and PID-calculating a deviation from the pressure set value. Reference numeral 14 denotes a set value calculating means for inputting the measured value Q of the flow sensor 8, and using this as a variable, the pressure set value P1 is calculated by the following equation as in the conventional system.
P1 = K0 + K1 · Q + K2 · Q n

101は第2の送りヘッダ7の流体温度を測定する第1温度センサであり、T1はその温度測定値である。102は戻りヘッダ2の流体温度を測定する第2温度センサであり、T2はその温度測定値である。   101 is a first temperature sensor for measuring the fluid temperature of the second feed header 7, and T1 is the temperature measurement value. Reference numeral 102 denotes a second temperature sensor for measuring the fluid temperature of the return header 2, and T2 is the temperature measurement value.

点線のブロック200は設定値調整手段であり、設定値演算手段14の圧力設定値P1に付加するオフセットKを算出する。300は乗算手段であり、圧力設定値P1及びオフセットKを入力し、次式により圧力調節手段13の圧力設定値P2を算出する。
P2=(1+K)×P1
A dotted line block 200 is a set value adjusting unit, and calculates an offset K to be added to the pressure set value P1 of the set value calculating unit 14. Reference numeral 300 denotes multiplication means, which inputs the pressure set value P1 and the offset K, and calculates the pressure set value P2 of the pressure adjusting means 13 by the following equation.
P2 = (1 + K) × P1

設定値調整手段200において、201は差分計算手段であり、第1温度センサ101の測定値T1及び第2温度センサ102の測定値T2を入力し、その差である往還温度差ΔTを算出する。   In the set value adjusting means 200, 201 is a difference calculating means, which inputs the measured value T1 of the first temperature sensor 101 and the measured value T2 of the second temperature sensor 102, and calculates the return temperature difference ΔT which is the difference between them.

202は判定値計算手段であり、往還温度差ΔT,温度差上限設定値,温度差下限設定値ΔTLを入力し、次の条件に従って判定値Eを算出する。
|ΔT|>ΔTUであれば、E=1
|ΔT|<ΔTLであれば、E=−1
それ以外では、E=0
A reference value calculation unit 202 inputs the return temperature difference ΔT, the temperature difference upper limit set value, and the temperature difference lower limit set value ΔTL, and calculates the determination value E according to the following conditions.
If | ΔT |> ΔTU, E = 1
If | ΔT | <ΔTL, E = −1
Otherwise, E = 0

203はオフセット算出手段であり、判定値E,オフセット設定値K0,オフセット設定値K1を入力し、次の条件に従ってオフセットKを算出する。
E=1であれば、K=K0
E=−1であれば、K=K1
それ以外では、K=0
Reference numeral 203 denotes an offset calculation means for inputting the determination value E, the offset set value K0, and the offset set value K1, and calculating the offset K according to the following conditions.
If E = 1, K = K0
If E = -1, K = K1
Otherwise, K = 0

往還温度差ΔTは、建物設計時に設定されている。温度差がこれよりも小さすぎる場合には、ポンプの送出圧力が高すぎる場合が多い。この場合、マイナスのオフセットK1を加えて省エネルギーを図る。同様に、温度差が大きすぎる場合、圧力が低すぎる場合がある。この場合、プラスのオフセットK0を加えて、圧力不足を防ぎ、制御特性を向上させる。   The return temperature difference ΔT is set at the time of building design. If the temperature difference is too small, the pump delivery pressure is often too high. In this case, energy is saved by adding a negative offset K1. Similarly, if the temperature difference is too large, the pressure may be too low. In this case, a plus offset K0 is added to prevent insufficient pressure and improve control characteristics.

図2は往還温度差ΔTに基づくオフセット付加の他の実施形態を示す機能ブロック図である。図1との差を説明すれば、判定値計算手段202は、往還温度差ΔT及び温度差の設計値を入力して、判定値Eを次式で算出する。
E=|ΔT|−ΔTS
FIG. 2 is a functional block diagram showing another embodiment of offset addition based on the return temperature difference ΔT. If the difference with FIG. 1 is demonstrated, the judgment value calculation means 202 will input the return temperature difference (DELTA) T and the design value of a temperature difference, and will calculate the judgment value E by following Formula.
E = | ΔT | −ΔTS

オフセット算出手段203は、テーブルを有し、判定値Eの極性及びレベルにより、次の条件に従ってテーブルを参照してオフセットKを算出する。
E<−2であれば、K=−0.2
−2<E<2であれば、K=0
2<Eであれば、K=0.2
The offset calculation means 203 has a table, and calculates the offset K by referring to the table according to the following conditions according to the polarity and level of the determination value E.
If E <−2, then K = −0.2
If -2 <E <2, K = 0
If 2 <E, K = 0.2

この実施形態では、測定された往還温度差ΔTと往還温度差の設計値ΔTSとの比較により、付加されるオフセットを調整することでポンプの送出圧力を適正に調整して制御性を向上させている。   In this embodiment, by comparing the measured return trip temperature difference ΔT with the design value ΔTS of the return trip temperature difference, the added offset is adjusted to properly adjust the pump delivery pressure and improve controllability. Yes.

図3は、往還温度差ΔTに基づくオフセット付加の更に他の実施形態を示す機能ブロック図である。図2の実施時形態では、往還温度差ΔTと往還温度差の設計値ΔTSとの比較により、付加されるオフセットを調整したが、この実施形態ではオフセットではなく、設定値演算手段14で関数演算する係数K0,K1,K2,nのセットを変更し、温度差によって管路抵抗のパターンを変更する。   FIG. 3 is a functional block diagram showing still another embodiment of offset addition based on the return temperature difference ΔT. In the embodiment shown in FIG. 2, the offset to be added is adjusted by comparing the return temperature difference ΔT and the design value ΔTS of the return temperature difference. In this embodiment, the offset is not an offset, and the function calculation is performed by the set value calculation means 14. The set of coefficients K0, K1, K2, and n to be changed is changed, and the pipe resistance pattern is changed depending on the temperature difference.

204は係数算出手段であり、係数K0,K1,K2,nのセットをあらかじめ設定したテーブルを有し、入力した判定値Eの値に基づいてこのテーブルより係数のセットを読み出して設定値演算手段14に渡して管路抵抗のパターンを変更させる。   204 is a coefficient calculation means, which has a table in which a set of coefficients K0, K1, K2, and n is set in advance, reads a set of coefficients from this table based on the value of the input judgment value E, and sets a set value calculation means 14 to change the line resistance pattern.

図4は、送水ポンプの運転台数に基づいて送水圧力設定値に付加するオフセットを算出する設定値調整手段を設けた実施形態を示すブロック図である。21は台数制御コントローラであり、図8の従来システムと同一機能である。   FIG. 4 is a block diagram showing an embodiment provided with a set value adjusting means for calculating an offset to be added to the water supply pressure set value based on the number of operating water pumps. Reference numeral 21 denotes a number control controller having the same function as that of the conventional system of FIG.

400は台数変動検出手段であり、二次送水ポンプ5に設けられたリミットスイッチ手段(図示せず)よりポンプ起動情報を取得し、変動台数信号Mを設置値調整手段200に発信する。   Reference numeral 400 denotes a number fluctuation detecting means, which obtains pump activation information from a limit switch means (not shown) provided in the secondary water pump 5 and transmits a fluctuation number signal M to the installation value adjusting means 200.

205は、設置値調整手段200に設けたオフセット算出手段であり、テーブル手段を備えていて、変動台数信号Mが増加信号であればオフセットKの値として−0.1を、減少信号であればオフセットKの値として+0.2を読み出して乗算手段300に出力する。   Reference numeral 205 denotes offset calculation means provided in the installation value adjustment means 200. The offset calculation means 205 includes a table means. If the variable number signal M is an increase signal, -0.1 is set as an offset K value, and if it is a decrease signal. As a value of the offset K, +0.2 is read and output to the multiplication unit 300.

206はオフセットタイマーであり、送水ポンプの運転台数の変動後、指定の時間にわたってオフセットKを出力する。   Reference numeral 206 denotes an offset timer, which outputs an offset K over a specified time after the number of operating water pumps varies.

図5は、送水ポンプの運転台数に基づいて送水圧力設定値に付加するオフセットを算出する他の実施形態を示す機能ブロック図である。図4の実施形態と比較した特徴点は、設定値調整手段200が、送水ポンプの運転台数の変動比率値及び感度係数値に基づいて前記送水圧力設定値に付加するオフセットを算出する構成にある。   FIG. 5 is a functional block diagram showing another embodiment for calculating an offset to be added to the water supply pressure set value based on the number of operating water pumps. The feature point compared with the embodiment of FIG. 4 is that the set value adjusting means 200 calculates an offset to be added to the water supply pressure set value based on the fluctuation ratio value and sensitivity coefficient value of the number of water pumps in operation. .

設定値調整手段200において、207は変動比率算出手段であり、変動台数信号Mの変動前と変動後の台数変化の比率Rを算出する。208はオフセット算出手段であり、比率Rと設定される感度係数αを入力し、K=α×Rで算出されるオフセットKを乗算手段300に出力する。   In the set value adjusting means 200, reference numeral 207 denotes a fluctuation ratio calculating means, which calculates the ratio R of the number change before and after the change of the variable number signal M. Reference numeral 208 denotes an offset calculation unit that inputs the ratio R and the sensitivity coefficient α that is set, and outputs the offset K calculated by K = α × R to the multiplication unit 300.

オフセットタイマー206の機能は、図4と同様であり送水ポンプの運転台数の変動後、指定の時間にわたってオフセットKを出力する。   The function of the offset timer 206 is the same as that in FIG. 4, and the offset K is output over a specified time after the number of operating water pumps varies.

図4、図5の実施形態では、送水ポンプの台数増加時に、過大な圧力がかかるのを防ぐと共に、ポンプの減段時に圧力不足になるのを防ぐことができる。図4の実施形態では、変動前の台数と変動後の台数を考慮せず、増加ならXX%、減段ならYY%と一律でオフセットを加えていたが、例えば4台が3台に減る場合は、圧力は4/3倍する必要があり、2台が1台に減る場合は、圧力は2/1倍にする必要がある。   In the embodiment of FIGS. 4 and 5, it is possible to prevent an excessive pressure from being applied when the number of water pumps is increased, and to prevent the pressure from becoming insufficient when the pumps are stepped down. In the embodiment of FIG. 4, the number before the change and the number after the change are not taken into account, and the offset is uniformly added to XX% when increasing, and YY% when decreasing, but for example, when 4 units are reduced to 3 units The pressure needs to be 4/3 times, and when 2 units are reduced to 1 unit, the pressure needs to be 2/1 times.

図5の実施形態では、変動前と変動後の台数を使って、変動前台数/変動後台数の比率Rに指定した係数αをかけて、タイマーにより指定した時間だけ、圧力設定値にオフセットKを付加する機能を持たせることで、より高度の制御性を実現している。   In the embodiment of FIG. 5, using the number before and after the change, multiply the ratio R between the number before change / the number after change by the specified coefficient α, and offset K to the pressure set value for the time specified by the timer. A higher level of controllability is achieved by providing a function to add.

図6は、図1乃至図5の設定値調整手段とは異なるパラメータ調整手段500を備えた実施形態を示す機能ブロック図である。従来システムでは、送水ポンプの送水圧力設定値を与える関数の係数K0,K1,K2,nのセットを変更する機能を有していたが、本発明では係数セットを変更する際に、この係数セットに対応した前記圧力調節手段のPID制御パラメータのセットを最適値に調整する機能を追加する。更に、必要に応じて送水ポンプの回転数の上限値SH及び下限値SLのセットを調整する機能を追加する。   FIG. 6 is a functional block diagram showing an embodiment provided with parameter adjustment means 500 different from the set value adjustment means of FIGS. 1 to 5. The conventional system has a function of changing the set of coefficients K0, K1, K2, and n of the function that gives the water pressure setting value of the water pump. In the present invention, this coefficient set is changed when the coefficient set is changed. A function for adjusting the set of PID control parameters of the pressure adjusting means corresponding to the above to an optimum value is added. Furthermore, a function for adjusting the set of the upper limit value SH and the lower limit value SL of the rotation speed of the water pump is added as necessary.

501は、テーブル手段を備えた係数算出手段であり、季節毎に変更される関数の係数セットに追加されてPIDパラメータ及びSH,SLのセットがテーブル化されており、このテーブルからの読み出し情報により、設定値演算手段14の関数演算係数のセット及び圧力調節手段13のPID制御パラメータSH,SLのセットが一括して変更される。図7は、係数算出手段501のテーブル構成図である。   A coefficient calculation unit 501 includes a table unit, and is added to a coefficient set of a function that is changed for each season, and a set of PID parameters and SH and SL are tabulated. By reading information from the table, The set of function calculation coefficients of the set value calculation means 14 and the set of PID control parameters SH and SL of the pressure adjustment means 13 are changed at once. FIG. 7 is a table configuration diagram of the coefficient calculation means 501.

図1乃至図6の実施形態では、圧力センサ12は第2お送りヘッダ7の送水圧力を測定する絶対圧力センサの形態を示したが、従来システムで採用されているように第2送りヘッダ7と戻りヘッダ2間の差圧を測定する差圧センサの形態であっても本発明により得られる効果は同一である。   In the embodiment shown in FIGS. 1 to 6, the pressure sensor 12 is an absolute pressure sensor that measures the water supply pressure of the second feed header 7. Even in the form of a differential pressure sensor that measures the differential pressure between the return headers 2, the effect obtained by the present invention is the same.

本発明を適用した送水ポンプ制御システムの一実施形態を示す機能ブロック図である。It is a functional block diagram showing one embodiment of a water pump control system to which the present invention is applied. 往還温度差に基づくオフセット付加の他の実施形態を示す機能ブロック図である。It is a functional block diagram which shows other embodiment of offset addition based on a return temperature difference. 往還温度差に基づくオフセット付加の更に他の実施形態を示す機能ブロック図である。It is a functional block diagram which shows other embodiment of offset addition based on a return temperature difference. 送水ポンプの運転台数に基づくオフセット付加の実施形態を示すブロック図である。It is a block diagram showing an embodiment of offset addition based on the number of operating water pumps. 送水ポンプの運転台数に基づくオフセット付加の他の実施形態を示すブロック図である。It is a block diagram which shows other embodiment of offset addition based on the driving | running number of water pumps. パラメータ調整手段を備えた実施形態を示す機能ブロック図である。It is a functional block diagram which shows embodiment provided with the parameter adjustment means. パラメータ調整手段における係数算出手段のテーブル構成図である。It is a table block diagram of the coefficient calculation means in a parameter adjustment means. 特許文献1に開示されている従来の送水ポンプ制御システムの一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the conventional water pump control system currently disclosed by patent document 1. FIG. 流量Qに対して演算される送水圧力P1の特性曲線図である。It is a characteristic curve figure of the water supply pressure P1 calculated with respect to the flow volume Q. 特性変動幅に対して動作マージンを考慮して設定した管路抵抗特性曲線図である。It is a pipe resistance characteristic curve diagram set in consideration of an operation margin with respect to the characteristic fluctuation range.

符号の説明Explanation of symbols

1 一次送水ポンプ
2 戻りヘッダ
3 熱源
4 第1の送りヘッダ
5 二次送水ポンプ
6 インバータ
7 第2の送りヘッダ
8 流量センサ
9 制御二方弁
11 熱交換器
12 圧力センサ
13 圧力調節手段
14 設定値演算手段
101 第1温度センサ
102 第2温度センサ
200 設定値調整手段
201 差分計算手段
202 判定値計算手段
203 オフセット算出手段
300 乗算手段
DESCRIPTION OF SYMBOLS 1 Primary water pump 2 Return header 3 Heat source 4 First feed header 5 Secondary water pump 6 Inverter 7 Second feed header 8 Flow rate sensor 9 Control two-way valve 11 Heat exchanger 12 Pressure sensor 13 Pressure adjusting means 14 Set value Calculation means 101 First temperature sensor 102 Second temperature sensor 200 Set value adjustment means 201 Difference calculation means 202 Determination value calculation means 203 Offset calculation means 300 Multiplication means

Claims (6)

熱交換器に送水する送水ポンプの送水圧力を送水流量に応じて決まる管路抵抗特性の大きさに応じて圧力調節手段により制御する送水ポンプ制御システムにおいて、
前記熱交換器に送る水の温度と熱交換器から戻ってきた水の温度差となる往還温度差または前記送水ポンプの運転台数情報に基づいて前記圧力調節手段に設定する送水圧力設定値に付加するオフセットを調整する設定値調整手段を設けたことを特徴とする送水ポンプ制御システム。
In the water supply pump control system that controls the water supply pressure of the water supply pump that supplies water to the heat exchanger by the pressure adjusting means according to the size of the pipe resistance characteristic determined according to the water supply flow rate,
Added to the water supply pressure set value set in the pressure adjusting means based on the difference between the temperature of the water sent to the heat exchanger and the return temperature difference which is the temperature difference of the water returned from the heat exchanger or the number of operating pumps. A water supply pump control system comprising a set value adjusting means for adjusting the offset to be performed.
前記設定値調整手段は、前記往還温度差と往還温度差の上限値及び下限値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする請求項1に記載の送水ポンプ制御システム。 The water supply pump control according to claim 1, wherein the set value adjusting means calculates an offset to be added to the water supply pressure set value based on an upper limit value and a lower limit value of the return temperature difference and the return temperature difference. system. 前記設定値調整手段は、前記往還温度差と往還温度差の設計値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする請求項1に記載の送水ポンプ制御システム。 The water supply pump control system according to claim 1, wherein the set value adjusting unit calculates an offset to be added to the water supply pressure set value based on a design value of the return temperature difference and the return temperature difference. 前記設定値調整手段は、前記送水ポンプの運転台数変動に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする請求項に記載の送水ポンプ制御システム。 The water supply pump control system according to claim 1 , wherein the set value adjusting means calculates an offset to be added to the water supply pressure set value based on a change in the number of operating water pumps. 前記設定値調整手段は、前記送水ポンプの運転台数の変動比率値及び感度係数値に基づいて前記送水圧力設定値に付加するオフセットを算出することを特徴とする請求項に記載の送水ポンプ制御システム。 2. The water pump control according to claim 1 , wherein the set value adjusting means calculates an offset to be added to the water pressure setting value based on a fluctuation ratio value and a sensitivity coefficient value of the number of operating water pumps. system. 前記設定値調整手段は、前記送水ポンプの運転台数の変動後、指定の時間にわたって前記オフセットを出力するオフセットタイマーを備えたことを特徴とする請求項4又は5に記載の送水ポンプ制御システム。 6. The water pump control system according to claim 4, wherein the set value adjusting means includes an offset timer that outputs the offset over a specified time after the number of operating water pumps fluctuates.
JP2004207991A 2004-07-15 2004-07-15 Water pump control system Expired - Fee Related JP4582396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207991A JP4582396B2 (en) 2004-07-15 2004-07-15 Water pump control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207991A JP4582396B2 (en) 2004-07-15 2004-07-15 Water pump control system

Publications (2)

Publication Number Publication Date
JP2006029173A JP2006029173A (en) 2006-02-02
JP4582396B2 true JP4582396B2 (en) 2010-11-17

Family

ID=35895840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207991A Expired - Fee Related JP4582396B2 (en) 2004-07-15 2004-07-15 Water pump control system

Country Status (1)

Country Link
JP (1) JP4582396B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403918B2 (en) * 2008-01-25 2014-01-29 株式会社岡村製作所 Centralized management system for freezing and refrigeration equipment
JP5313848B2 (en) * 2009-11-26 2013-10-09 アズビル株式会社 Water supply pressure control system and method
JP6100172B2 (en) * 2011-12-27 2017-03-22 株式会社荏原製作所 Water supply apparatus and water supply method
US11300302B2 (en) * 2016-10-24 2022-04-12 Mitsubishi Electric Corporation Air conditioner system, air conditioner control device, air conditioner method, and program for control using water circulation and based on indoor latent and sensible heat loads

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225532A (en) * 1985-03-29 1986-10-07 Tokyo Gas Co Ltd Method of controlling number of cool and hot water apparatuses to be started
JPH0875224A (en) * 1994-09-09 1996-03-19 Shinryo Corp Water sending pressure controller
JP2003106731A (en) * 2001-09-28 2003-04-09 Yokogawa Electric Corp Pressure water feed pump system
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225532A (en) * 1985-03-29 1986-10-07 Tokyo Gas Co Ltd Method of controlling number of cool and hot water apparatuses to be started
JPH0875224A (en) * 1994-09-09 1996-03-19 Shinryo Corp Water sending pressure controller
JP2003106731A (en) * 2001-09-28 2003-04-09 Yokogawa Electric Corp Pressure water feed pump system
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device

Also Published As

Publication number Publication date
JP2006029173A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US11162690B2 (en) Controlled hydronic distribution system
US10635120B2 (en) Method for operating and/or monitoring an HVAC system
US8788105B2 (en) Method of automatic hydraulic equalization in a fluid-flow system
EP2641027B1 (en) Device and method for controlling opening of a valve in an hvac system
EP2770398B1 (en) Fluid circuit system with flow rate control device
EP2395289B1 (en) Method to regulate a one-pipe heat supply system
KR20090108889A (en) Automatic controll system and process
US10746415B2 (en) Method for adjusting the setpoint temperature of a heat transfer medium
JP3652974B2 (en) Primary pump heat source variable flow rate system
US10890351B2 (en) Hydronic system and method for operating such hydronic system
JP4582396B2 (en) Water pump control system
CN114576821A (en) Valve control method and system, computer readable storage medium and air conditioning system
GB2495905A (en) Water heating system arranged to heat mains pressure water using a thermal store and a heat exchanger
JP2006266566A (en) Operation control method for two pump system heating source facility
PL206213B1 (en) Method of controlling room temperature
EP3495912B1 (en) Parallel valve control
CN111566412B (en) Method for regulating a circulation pump, circulation pump and heating system
EP3506043B1 (en) Method for controlling a heating or cooling system
WO2012095558A1 (en) !method, heat transfer system, adjustment system and computer program product for controlling a heat transfer system
EP2492602B1 (en) Apparatus and method to optimize the functioning of a boiler to heat water
EP4006655A1 (en) Method and device for finding beneficial parameter settings of a controller for controlling an actuator in a heating or cooling system
EP3525060B1 (en) Flow control module and method for controlling the flow in a hydronic system
JP2808736B2 (en) Water heater control device
JP2005180848A (en) Heat supply system
CN117515824A (en) Reconfigurable feedback control method for demand response of air conditioning system and computer equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4582396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees