JP4582198B2 - 固体撮像装置、撮像装置、固体撮像装置の駆動方法 - Google Patents

固体撮像装置、撮像装置、固体撮像装置の駆動方法 Download PDF

Info

Publication number
JP4582198B2
JP4582198B2 JP2008142336A JP2008142336A JP4582198B2 JP 4582198 B2 JP4582198 B2 JP 4582198B2 JP 2008142336 A JP2008142336 A JP 2008142336A JP 2008142336 A JP2008142336 A JP 2008142336A JP 4582198 B2 JP4582198 B2 JP 4582198B2
Authority
JP
Japan
Prior art keywords
unit
signal
charge
row
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008142336A
Other languages
English (en)
Other versions
JP2009290659A (ja
Inventor
弘幸 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008142336A priority Critical patent/JP4582198B2/ja
Priority to US12/429,700 priority patent/US8253836B2/en
Priority to TW098113796A priority patent/TWI394448B/zh
Priority to KR1020090047650A priority patent/KR101574798B1/ko
Priority to CN2009101427056A priority patent/CN101594491B/zh
Publication of JP2009290659A publication Critical patent/JP2009290659A/ja
Application granted granted Critical
Publication of JP4582198B2 publication Critical patent/JP4582198B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/689Motion occurring during a rolling shutter mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像装置、撮像装置、固体撮像装置の駆動方法に関する。より詳細には、たとえば光や放射線などの外部から入力される電磁波に対して感応性をする複数の単位画素が配列されてなり、単位構成要素によって電気信号に変換された物理量分布を、アドレス制御により任意選択して電気信号として読出可能な、たとえば固体撮像装置などの、物理量分布検知の半導体装置やその他の電子機器に用いて好適な画素駆動技術に関する。
光や放射線などの外部から入力される電磁波に対して感応性をする単位構成要素(たとえば画素)をライン状もしくはマトリクス状に複数個配列してなる物理量分布検知半導体装置が様々な分野で使われている。
たとえば、映像機器の分野では、物理量のうちの光(電磁波の一例)を検知するCCD(Charge Coupled Device )型あるいはMOS(Metal Oxide Semiconductor )やCMOS(Complementary Metal-oxide Semiconductor )型の固体撮像装置が使われている。これらは、単位構成要素(固体撮像装置にあっては画素)によって電気信号に変換された物理量分布を電気信号として読み出す。
また、固体撮像装置の中には、電荷生成部で生成された信号電荷に応じた画素信号を生成する画素信号生成部に増幅用の駆動トランジスタを有する増幅型固体撮像素子(APS;Active Pixel Sensor /ゲインセルともいわれる)構成の画素を備えた増幅型固体撮像装置がある。たとえば、CMOS型固体撮像装置の多くはそのような構成をなしている。
このような増幅型固体撮像装置において画素信号を外部に読み出すには、複数の単位画素が配列されている画素部に対してアドレス制御をし、個々の単位画素からの信号を任意に選択して読み出すようにしている。つまり、増幅型固体撮像装置は、アドレス制御型の固体撮像装置の一例である。
単位画素をマトリクス状に配列したX−Yアドレス型の固体撮像装置では、画素を選択するスイッチング素子や信号電荷を読み出すスイッチング素子などの能動素子としてたとえばMOSトランジスタが用いられている。また、水平走査回路や垂直走査回路にMOSトランジスタが用いられ、スイッチング素子と画素部を一連の構成で製造を行なうことができる利点を有している。
単位画素は、信号電荷を生成する電荷生成部と、電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力するトランジスタを有して構成された信号出力部を備える。たとえば、電荷生成部として光電変換を行なうフォトダイオードを有する。信号出力部は、フォトダイオードで生成された信号電荷を読み出す読出選択用トランジスタ、読み出された信号電荷を画素信号に変換する増幅用トランジスタ、信号電荷をリセットするリセットトランジスタ、読み出す画素を選択する選択用トランジスタを有する。光電変換素子であるフォトダイオードに蓄積された信号電荷(光電子やホール)を画素信号生成部の前記能動素子で増幅し、画像情報として読み出す。
ところで、この種の固体撮像装置では、画素トランジスタが2次元行列状に多数配列されて画素部が構成され、画素ごとあるいはライン(行)ごとに入射光に対応する信号電荷の蓄積が開始され、その蓄積された信号電荷に基づく電流または電圧の信号をアドレス指定によって各画素から順に撮像部から読み出す電子的な露光時間の制御を行なっている。これを広義の電子シャッタ機能という。ここで、MOS(CMOSを含む)型においては、アドレス制御の一例として、1行分を同時にアクセスして行単位で画素信号を画素部から読み出す方式(以下行単位読出方式あるいはカラム読出方式ともいう)が多く用いられている。
なお、X−Yアドレス型の固体撮像装置においても、露光時間を通常の露光時間とは異なる時間に電子的に設定する狭義の電子シャッタ機能の実現のために、たとえば信号電荷の読み出しが行なわれない水平ブランキング期間に、1行分の画素から不要な信号電荷を信号線にリセット(排出)するものもある。
X−Yアドレス型の固体撮像装置においては、電子シャッタのシャッタ速度に対応する露光時間すなわち画素の蓄積時間に相当する時間は、信号電荷の排出時点から信号電荷の読み出し時点までで決まり、画素信号は各面素の露出時間(蓄積フレーム時間)ごとに読み出されるので、蓄積順次読出方式になる。
たとえば、CMOS型の固体撮像装置を用いた場合、一般的には、その基本的な動作方式から、信号を出力した画素はその時点から再び光電変換して得た信号電荷の蓄積を開始する。このため、撮像面の走査タイミングにしたがって蓄積の期間がずれ、つまり走査線ごとに走査する時間だけ蓄積期間がずれ、いわゆるライン露光(Line Exposure )となる。CCD(電荷結合)型とは異なり、同じ期間中に光電変換素子に入射した光を信号電荷として蓄積し、全画素から同時に垂直CCDに読み出すことで蓄積の同時性を満たすグローバル露光(Global Exposure )とはならない。行単位で駆動パルスを供給するので、蓄積同時化読出方式すなわちグローバル露光となるCCD型とは大きく異なり、ライン露光(ローリングシャッタ(Rolling Shutter )もしくはフォーカルプレーン蓄積とも称する)となってしまう。
シャッタ速度が遅くて画素の蓄積時間が充分長く設定されている際には蓄積期間のずれは無視できるが、シャッタ速度が水平走査期間とさして変わらないほど速く設定されると、物体の水平方向の動きとスキャン時点(蓄積期間)の差に起因して、蓄積期間の差がライン方向(行方向;水平走査方向)の時間シェーディング歪みとなって、画像に動き歪みとして現れ問題となってくる。
この問題を解決するには、静止画撮像時にはメカニカルシャッタを併用するか、あるいは電子シャッタ動作を行なったときの各画素の露光蓄積期間が一定となるようにする(同時刻露光する)グローバルシャッタ機能を実現する仕組みが考えられる。
しかしながら、動画撮像時にはメカニカルシャッタを併用する仕組みを採用することは困難である。また、現在考えられている一般的なグローバルシャッタ機能では、信号電荷を電荷蓄積部(フローティングフュージョンなど)に蓄積した後、最大1フレーム間の電荷を保持するため、暗電流ノイズによる特性悪化の問題が生じる。
ライン露光に伴う動き歪みを改善するに当たり、グローバルシャッタによる暗電流ノイズの問題もなくまた動画撮像にも対応できる一手法として、アナログ放送波の映像信号などで採用されているインタレース走査を行なうことが考えられる。たとえば、インターライン転送CCDではフレーム蓄積とフィールド蓄積の2つの駆動手法がある。
フレーム蓄積でのインタレース走査では、奇数フィールド時には奇数行の電荷生成部の信号電荷のみを垂直CCDに転送し、次の偶数フィールド時には偶数行の電荷生成部の信号電荷のみを垂直CCDに転送する。奇数行のみで構成された奇数フィールドと偶数行のみで構成された偶数フィールドでは、各電荷生成部の蓄積時間はフレーム周期分となるので動きの速い被写体を撮像するとフレーム残像が多い画像になる。
これに対して、フィールド蓄積でのインタレース走査では、奇数フィールド時には奇数行と次の偶数行の各電荷生成部の信号電荷を同時に垂直CCDに転送し加算して読み出し、次の偶数フィールド時には加算の組合せを変え、偶数行と次の奇数行の各電荷生成部の信号電荷を同時に垂直CCDに転送し加算して読み出す。電荷生成部の全画素の信号がフィールドごとに読み出される。各フィールドでは、各電荷生成部の蓄積時間はフィールド周期分(つまりフレーム周期の半分)となるので、動きの速い被写体を撮像しても残像が少ない画像になる。よって、CMOS型の固体撮像装置などのX−Yアドレス型の固体撮像装置でも、このインターライン転送CCDでのフィールド蓄積に相当する駆動手法を採ることで、ライン露光に伴う動き歪みを改善することが考えられる。
しかしながら、一般的なCMOS型の固体撮像装置では、インターライン転送CCDでのフィールド蓄積に相当するインタレース走査を行なうことができない。複数行の電荷生成部の信号電荷(2フィールド/1フレームの場合、通常は上・下の画素)を加算する必要があり、また、フィールドにより加算する電荷生成部の組み合わせが異なる。CCD型の固体撮像装置の場合は、加算する電荷生成部の組み合わせが異なっても、垂直CCDにおいて電荷状態での信号加算が可能である。一方、一般的なCMOS型の固体撮像装置では、電荷生成部と画素信号生成部とが1対1であり、電荷状態での信号加算は一般的にできない。
その対策としては、たとえば、信号電荷を保持しておくための画素内メモリを設けることが考えられるが(特許文献1,2参照)、チップ面積が増大するあるいは飽和信号量が少なくなるなどの弊害が発生する。
特開2007−150008号公報 特開平06−334920号公報
たとえば、特許文献1には、フローティングディフュージョンで信号電荷を加算することを可能にする仕組みが提案されている。しかしながら、その構造でインタレース走査を実現させるには、列方向の全てのフローティングディフュージョンを共有する必要があり、フローティングディフュージョンの寄生容量が増大する。それにより、変換効率が著しく低下し、実用的ではない。また、画素アレイ部に電荷格納部をフローティングディフュージョンとは別に設ける構造となっており、その分だけ電荷生成部が小さくなってしまい、飽和信号量の低下を招く。
また、特許文献2には、上・下画素をMOSトランジスタにより繋げて、電荷状態での信号加算を可能にする構造が提案されている。しかしながら、容量も2倍に増えてしまい、電圧は結局平均化されてしまうという欠点がある。
本発明は、上記事情に鑑みてなされたものであり、チップサイズ増大や飽和信号量低下などを招くことなく、ライン露光に伴う画像の動き歪みをインタレース走査により抑制できる仕組みを提供することを目的とする。
本発明は、先ず、信号電荷を生成する電荷生成部および電荷生成部で生成された信号電荷を転送する電荷転送部を具備し電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が2次元マトリクス状に配列されている画素アレイ部を備えるものとする。
そして、電荷生成部のそれぞれに対しては、複数の電荷転送部が設けられているものとする。
加えて、本発明の一態様は、同一の電荷生成部に設けられている複数の電荷転送部については、電荷生成部と反対側がそれぞれ異なる行の信号出力部に接続されているものとする。各電荷生成部は、複数の電荷転送部のそれぞれを介して別行の信号出力部と接続可能になる。
これを、別の観点から見た本発明の他の態様は、各行の信号出力部は、複数の電荷転送部の選択的なオン/オフ動作により、何れか1つの行の電荷生成部からの信号電荷の転送を受ける動作と、信号出力部が属する自行および自行以外の各電荷生成部からの信号電荷の転送を受ける動作とが切替え可能に構成されているものとする。
電荷生成部のそれぞれに対して複数の電荷転送部を設け、各電荷転送部を別行の信号出力部と接続する構成にしておく。こうすることで、複数の電荷転送部の選択的なオン/オフ動作(何れか1つのみがアクティブとなる動作)により、フィールドごとに異なる行位置での組合せによる複数の電荷生成部を対象とした信号電荷の加算を伴うインタレース走査ができるようになる。電荷生成部の全画素の信号電荷をフィールドごとに読み出すインタレース走査ができるようになる。もちろん、一般的なCMOSセンサでの画像取得と同様のプログレッシブ走査もできる。
このような仕組みを適用した固体撮像装置は、ワンチップとして形成された形態であってもよいし、画素アレイ部(撮像部)と、信号処理部または光学系とが纏めてパッケージングされた、撮像機能を有するモジュール状の形態であってもよい。また、固体撮像装置のみではなく、撮像装置にも適用可能である。この場合、撮像装置として、固体撮像装置と同様の効果が得られる。ここで、撮像装置は、たとえば、カメラ(あるいはカメラシステム)や撮像機能を有する携帯機器のことを示す。また「撮像」は、通常のカメラ撮影時の像の撮り込みだけではなく、広義の意味として、指紋検出なども含むものである。
本発明の一態様によれば、電荷生成部のそれぞれに対して複数の電荷転送部を設けており、各電荷生成部が各電荷転送部を介して別行の信号出力部と接続可能になる。このため、アクティブにする電荷転送部をインタレース走査に合わせて選択することで、信号出力部で信号電荷を加算することができる。
電荷生成部の全画素の信号電荷をフィールドごとに読み出すインタレース走査により、ライン露光に伴う画像の動き歪みを抑制できる。また、既存の電荷蓄積部以外に加算用の電荷蓄積部が不要で、チップ面積増大・変換効率低下・飽和信号量低下はなく、信号電荷加算によりS/N比が向上する。
以下、図面を参照して本発明の実施形態について詳細に説明する。各機能要素について実施形態別に区別する際には、A,B,C,…などのように大文字の英語の参照子を付して記載し、特に区別しないで説明する際にはこの参照子を割愛して記載する。図面においても同様である。
なお、以下においては、X−Yアドレス型の固体撮像装置の一例である、CMOS型の固体撮像装置をデバイスとして使用した場合を例に説明する。また、特に断りのない限り、CMOS型の固体撮像装置は、全ての単位画素がNMOS(nチャネル型のMOS)よりなり、信号電荷は負電荷(電子)であるものとして説明する。ただしこれは一例であって、対象となるデバイスはMOS型の固体撮像装置に限らないし、単位画素がPMOS(pチャネル型のMOS)で構成されていてもよいし、信号電荷は正電荷(正孔・ホール)であってもよい。光や放射線などの外部から入力される電磁波に対して感応性をする単位画素をライン状もしくはマトリクス状に複数個配列してなりアドレス制御にて信号を読み出す物理量分布検知用の半導体装置の全てに、後述する全ての実施形態が同様に適用できる。
<固体撮像装置:基本構成>
図1は、本発明に係る固体撮像装置の一実施形態であるCMOS型の固体撮像装置(CMOSイメージセンサ)の基本構成図である。
固体撮像装置1は、複数個の単位画素3が2次元マトリクス状に配列された画素アレイ部10を有する。固体撮像装置1は、たとえばR,G,Bの色フィルタがベイヤー配列とされている色分解(色分離)フィルタを使用することで、画素アレイ部10をカラー撮像対応にすることができる。
図1では、簡単のため行および列の一部を省略して示しているが、現実には、各行や各列には、数十から数千の単位画素3が配置される。後述するように、単位画素3は検知部の一例である受光素子(電荷生成部)としてのフォトダイオードの他にたとえば、電荷転送用やリセット用や増幅用などの3個あるいは4個のトランジスタを有する画素内アンプを有する。単位画素3からは、列ごとに垂直信号線19を介して画素信号電圧Vxが出力される。画素信号電圧Vxは、リセットレベルSrst (P相成分)と信号レベルSsig (D相成分)を含む。
固体撮像装置1はさらに、CDS(Correlated Double Sampling;相関2重サンプリング)処理機能やデジタル変換機能をなすAD変換部250が列並列に設けられているカラムAD変換部26を有する。“列並列”とは、垂直列の垂直信号線19(列信号線の一例)に対して実質的に並列に複数のCDS処理機能部やデジタル変換部(AD変換部)などが設けられていることを意味する。このような読出方式をカラム読出方式と称する。
固体撮像装置1はさらに、駆動制御部7、単位画素3に画素信号読出用の動作電流(読出電流)を供給する読出電流源部24と、カラムAD変換部26にAD変換用の参照信号SLP_ADC を供給する参照信号生成部27と、出力部28を備えている。
駆動制御部7は、画素アレイ部10の信号を順次読み出すための制御回路機能の実現のため水平走査部12(列走査回路)、垂直走査部14(行走査回路)、および通信・タイミング制御部20を備えている。
水平走査部12は、列アドレスや列走査を制御する水平アドレス設定部12aや水平駆動部12bなどを有する。垂直走査部14は、行アドレスや行走査を制御する垂直アドレス設定部14aや垂直駆動部14bなどを有する。水平走査部12や垂直走査部14は、通信・タイミング制御部20から与えられる制御信号CN1,CN2に応答して行・列の選択動作(走査)を開始する。
通信・タイミング制御部20は、端子5aを介して入力されるマスタークロックCLK0に同期したクロックをデバイス内の各部(走査部12,14やカラムAD変換部26)に供給するタイミングジェネレータ(読出アドレス制御装置の一例)の機能ブロックを備える。さらに、端子5aを介して外部の主制御部から供給されるマスタークロックCLK0を受け取り、また端子5bを介して外部の主制御部から供給される動作モードなどを指令するデータを受け取り、さらに固体撮像装置1の情報を含むデータを外部の主制御部に出力する通信インタフェースの機能ブロックを備える。
たとえば、通信・タイミング制御部20は、内部クロックを生成するクロック変換部の機能を持つクロック変換部20aおよび通信機能や各部を制御する機能を持つシステム制御部20bなどを有する。クロック変換部20aは、端子5aを介して入力されるマスタークロックCLK0に基づき、マスタークロックCLK0よりも高速周波数のパルスを生成する逓倍回路を内蔵しており、カウントクロックCKcnt1やカウントクロックCKdac1などの内部クロックを生成する。
出力部28は、水平信号線18上の信号(デジタルデータではあるが小振幅)を検出するセンスアンプ28a(S・A)と、固体撮像装置1と外部とのインタフェース機能をなすインタフェース部28b(IF部)を有する。インタフェース部28bの出力は出力端5cに接続されており、映像データが後段回路に出力される。出力部28はまた、センスアンプ28aとインタフェース部28bとの間に、各種のデジタル演算処理を行なうデジタル演算部を設けてもよい。
単位画素3は、行選択のための行制御線15を介して垂直走査部14と、また垂直信号線19を介してカラムAD変換部26の垂直列ごとに設けられているAD変換部250と、それぞれ接続されている。ここで、行制御線15は垂直走査部14から画素に入る配線全般を示す。
垂直走査部14は、画素アレイ部10の行を選択し、その行に必要なパルスを供給するものである。垂直アドレス設定部14aは、信号を読み出す行(読出し行:選択行や信号出力行とも称する)の他に、電子シャッタ用の行なども選択する。
ここで、本実施形態のCMOS型の固体撮像装置1のように、X−Yアドレス型の撮像装置では各面素の蓄積フレーム時間ごとに読み出される蓄積順次読出方式となり、ここでは行単位で駆動パルスを供給するので、同じ期間中に光電変換素子に入射した光を信号電荷として蓄積し、全画素から同時に垂直CCDに読み出すことで蓄積の同時性を満たす蓄積同時化読出方式すなわちグローバル露光(Global Exposure )となるCCD型とは大きく異なり、行単位での電荷蓄積処理と読出し処理を行なうライン露光(ローリングシャッタ(Rolling Shutter )もしくはフォーカルプレーン蓄積とも称する)となる。
このライン露光方式の電子シャッタ動作としては、ある読出し行がシャッタ動作の行(シャッタ動作行)に設定され単位画素3を構成する光電変換素子(検知部)に対するリセット処理がなされた時点から、その読出し行が読出し動作の行(読出し動作行)に設定され実際に信号電荷を垂直信号線19側に読み出すまでの時間が露光時間となる。
詳細は後述するが、このライン露光方式では、動く被写体の撮像時に、時間シェーディングの歪みが大きいという問題点がある。その対策の一案として、本実施形態では、プログレッシブ走査(Progressive Scan:順次走査)に代えて、インタレース走査(Interlaced Scan :飛越し走査)を行なう。インタレース走査時には、複数の電荷生成部が1つの画素信号生成部を共有する単位画素群2を構成するようにして、それら複数の電荷生成部で生成された信号電荷を画素信号生成部にて加算して処理対象信号をカラムAD変換部26側に読み出すようにする。
AD変換部250におけるAD変換方式としては、回路規模や処理速度(高速化)や分解能などの観点から様々な方式が考えられているが、一例として、参照信号比較型、スロープ積分型、あるいはランプ信号比較型などとも称されるAD変換方式を採用する。参照信号比較型のAD変換に当たっては、変換開始(比較処理の開始)から変換終了(比較処理の終了)までの時間に基づいてカウント動作有効期間を決定し、その期間を示すカウントイネーブル信号ENに基づきアナログの処理対象信号をデジタルデータに変換する。
このため、参照信号生成部27は、DA変換部270(DAC;Digital Analog Converter)を有し、通信・タイミング制御部20からの制御データCN4で示される初期値からカウントクロックCKdac1に同期して、制御データCN4で示される傾き(変化率)の参照信号SLP_ADC を生成する。カウントクロックCKdac1はカウンタ部254用のカウントクロックCKcnt1と同一にしてもよい。
AD変換部250は、比較部252(COMP)と、アップカウントモードとダウンカウントモードを切替可能なカウンタ部254を備える。本例ではさらに、カウンタ部254の後段に、スイッチ部258とデータ記憶部256を備える。比較部252は、参照信号生成部27で生成される参照信号SLP_ADC と、選択行の単位画素3から垂直信号線19(H1,H2,…,Hh)を経由し得られるアナログの画素信号電圧Vxを比較する。カウンタ部254は、比較部252の比較出力Coと一定の関係を持つカウントイネーブル信号ENのアクティブ期間をカウントクロックCKcnt1でカウントし、カウント結果を保持する。
通信・タイミング制御部20から各AD変換部250のカウンタ部254には、カウンタ部254がP相・D相のカウント処理をダウンカウントモードで動作するのかアップカウントモードで動作するのかや、P相のカウント処理における初期値Dini の設定やリセット処理など、その他の制御情報を指示する制御信号CN5が入力されている。
比較部252の一方の入力端子(+)は、他の比較部252の入力端子(+)と共通に、参照信号生成部27で生成される参照信号SLP_ADC が入力され、他方の入力端子(−)には、それぞれ対応する垂直列の垂直信号線19が接続され、画素アレイ部10からの画素信号電圧Vxが個々に入力される。
カウンタ部254のクロック端子CKには、他のカウンタ部254のクロック端子CKと共通に、通信・タイミング制御部20からカウントクロックCKcnt1が入力されている。データ記憶部256を設けない場合、カウンタ部254には、水平走査部12から制御線12cを介して制御パルスが入力される。カウンタ部254は、カウント結果を保持するラッチ機能を有しており、制御線12cを介しての制御パルスによる指示があるまでは、カウンタ出力値を保持する。
本実施形態では、AD変換部250にてCDS処理を完結させておくが、リセットレベルSrst のP相データと信号レベルSsig のD相データを個別に出力部28側に転送し、AD変換部250の後段のデジタル演算部でCDS処理を行なってもよい。本出願人は、AD変換部250にてAD変換とCDS処理を行なう参照信号比較型のAD変換方式を種々提案しており、それらも基本的には各実施形態で採用し得るものである。
水平走査部12や垂直走査部14などの駆動制御部7の各要素は、画素アレイ部10とともに、半導体集積回路製造技術と同様の技術を用いて単結晶シリコンなどの半導体領域に一体的に形成されたいわゆる1チップもの(同一の半導体基板上に設けられているもの)として、本実施形態の固体撮像装置1が構成される。
固体撮像装置1は、このように各部が半導体領域に一体的に形成された1チップとして形成された形態であってもよいし、図示を割愛するが、画素アレイ部10、駆動制御部7、カラムAD変換部26などの各種の信号処理部の他に、撮影レンズ、光学ローパスフィルタ、あるいは赤外光カットフィルタなどの光学系をも含む状態で、これらを纏めてパッケージングされた撮像機能を有するモジュール状の形態としてもよい。
個々のAD変換部250の出力側は、たとえば、カウンタ部254の出力を水平信号線18に接続することができる。あるいは、図示のように、カウンタ部254の後段に、このカウンタ部254の保持したカウント結果を保持するラッチを具備したメモリ装置としてのデータ記憶部256と、カウンタ部254とデータ記憶部256との間に配されたスイッチ部258を備える構成を採ることもできる。スイッチ部258は、垂直列ごとにスイッチSWを有する。
データ記憶部256を備える構成を採る場合、スイッチSWには、他の垂直列のスイッチSWと共通に、通信・タイミング制御部20から、所定のタイミングで、制御パルスとしてのメモリ転送指示パルスCN8が供給される。スイッチ部258の各スイッチSWは、メモリ転送指示パルスCN8が供給されると、対応するカウンタ部254のカウント値をデータ記憶部256に転送する。データ記憶部256は、転送されたカウント値を保持・記憶する。データ記憶部256には、水平走査部12から制御線12cを介して制御パルスが入力される。データ記憶部256は、制御線12cを介しての制御パルスによる指示があるまでは、カウンタ部254から取り込んだカウント値を保持する。
水平走査部12は、カラムAD変換部26の各比較部252とカウンタ部254とが、それぞれが担当する処理を行なうのと並行して、各データ記憶部256が保持していたカウント値を読み出す読出走査部の機能を持つ。データ記憶部256の出力は、水平信号線18に接続されている。水平信号線18は、AD変換部250のビット幅分もしくはその2倍幅分(たとえば相補出力とするとき)の信号線を有し、それぞれの出力線に対応したセンスアンプ28aを有する出力部28に接続される。なお、カウンタ部254、データ記憶部256、スイッチ部258、および水平信号線18はそれぞれ、nビットに対応した構成を採っている。
<露光時間制御機能について>
図2〜図2Bは、一般的なX−Yアドレス型の撮像装置における露光制御(電子シャッタ)機能を説明する図である。図2に示すように、垂直走査部414の垂直アドレス設定部414xは、通常の読出対象の行アドレスφTGを指定する機能の他に、シャッタ対象の単位画素403(シャッタ画素)の行アドレスすなわちシャッタ画素位置を指定するアドレス情報(具体的には駆動パルスとしての転送ゲートパルスTGs)を生成する機能も持っている。
なお、X−Yアドレス型の撮像装置においても、露光時間を通常の露光時間とは異なる時間に電子的に設定する狭義の電子シャッタ機能の実現のために、たとえば信号電荷の読み出しが行なわれない水平ブランキング期間に、1行分の画素から不要な信号電荷を信号線にリセット(排出)するものもある。
ここで、X−Yアドレス型の撮像装置においては、電子シャッタのシャッタ速度に対応する露光時間すなわち画素の蓄積時間に相当する時間は、信号電荷の排出時点から信号電荷の読み出し時点までで決まり、画素信号は各面素の露出時間(蓄積フレーム時間)ごとに読み出されるので、蓄積順次読出方式になる。このため、面内に配置された画素の露出に時間差が発生する。このような読出形式の場合、被写体に動きがあると、画素ごとの光を捉える時間にずれが生じ、1画面内で“動き歪み”が生じる。この点は、電荷結合型の撮像素子では、信号を保持し転送遅延して読み出すので、全画素の露出を同時化できる蓄積同時化読出方式となり、1画面内では“動き歪み”が発生しないのと大きく異なる。
たとえば、カラム読出方式(行単位読出方式)のものでは、水平走査線ごとに走査する時間だけ蓄積期間がずれるため、水平方向の右と左で蓄積時間が行(水平走査線)によって異なってしまうという問題がある。これにより、動きの速い被写体が歪んで撮像される時間シェーディング歪み(動き歪み)の問題が生じる。
すなわち、垂直アドレス設定部414xのシャッタタイミング制御機能要素からはシャッタ対象の行アドレスを指定する駆動パルスφTGsが同一行の全単位画素403に供給されるような配線構成を採用する。これにより、駆動パルスφTGsで指定された行の単位画素403がシャッタ画素として指定される。
固体撮像装置としてCMOS型を用いた場合、一般的には、その基本的な動作方式から、信号を出力した画素はその時点から再び光電変換して得た信号電荷の蓄積を開始する。このため、撮像面の走査タイミングにしたがって蓄積の期間がずれ、つまり走査線ごとに走査する時間だけ蓄積期間がずれ、いわゆるライン露光(Line Exposure )となる。CCD(電荷結合)型とは異なり、同じ期間中に光電変換素子に入射した光を信号電荷として蓄積し、全画素から同時に垂直CCDに読み出すことで蓄積の同時性を満たすグローバル露光(Global Exposure )とはなっていない。
ここで、たとえば、図2に示すように、撮像領域において、読出行nとシャッタ行nsをΔs行だけ離す場合を考える。電子シャッタの指示を受けた行nsの対象列の画素がリセットされてから再び信号電荷の蓄積を開始するので、たとえば撮像面の走査方向が上から下になっている場合、行nと行n+Δsの時間差はフレームレートと走査線数との間で所定の関係を持ち、読出行nとシャッタ行nsの間隔を調整することで、CMOS型の固体撮像装置から読み出される信号の蓄積時間を、ライン周期(1水平走査期間)を調整単位として変えることができる。
従来のCMOSセンサでは、1画面の撮像時には、読出行nやシャッタ行nsを1つとすることで、電子シャッタ制御を行単位で行なうようにする。垂直アドレス設定部414xで設定されたある時点の読出行nに対して、垂直アドレス設定部414xのシャッタタイミング制御機能要素にて、全列(H1,H2,…,Hh)の画素に関して、読出行nを除く何れかの行位置、すなわちΔs行だけ離れた位置(時点)においてシャッタ行nsを設定して画素をリセットする。このリセット動作は、シャッタタイミング以前に光電変換素子に蓄積された電荷を掃き捨てることで実現でき、CMOS型の固体撮像装置の場合、たとえば転送ゲートとリセットゲートをオンさせることで実現できる。
シャッタ行nsの画素が垂直アドレス設定部414xによって次に読出行nに設定されるまでの時間が蓄積時間となる、すなわち読出行nとシャッタ行nsとの時間間隔が蓄積時間となる。こうすることで、結果的には、行単位で蓄積時間を制御できる。通常の蓄積時間(露光時間)設定に際しては、シャッタ行nsに対するアクセスを行なわず、フレームレート分の時間だけ電荷の蓄積が行なわれる。
このように、CMOS型の固体撮像装置が持つライン露光の特質を利用して、電子シャッタ用の駆動パルスφTGsを行単位で、その行の各単位画素403に供給することで、読出行nとシャッタ行n+Δsの時間差を、行単位で各単位画素403に設定することができ、簡単に、行ごとに蓄積時間を制御できる。
ただし、前述のように、X−Yアドレス型の撮像装置では各面素の蓄積フレーム時間ごとに読み出される蓄積順次読出方式となり、ここでは行単位で駆動パルスφTGsを供給するので、蓄積同時化読出方式すなわちグローバル露光となるCCD型とは大きく異なり(図2A(1)参照)、ライン露光(ローリングシャッタ(Rolling Shutter )もしくはフォーカルプレーン蓄積とも称する)となってしまう(図2A(2),(3)参照)。
シャッタ速度が遅くて画素の蓄積時間が充分長く設定されている際には蓄積期間のずれは無視できるが、シャッタ速度が水平走査期間とさして変わらないほど速く設定されると、物体の水平方向の動きとスキャン時点(蓄積期間)の差(図2B(2)参照)に起因して、図2B(3)に示すように、蓄積期間の差がライン方向(行方向;水平走査方向)の時間シェーディング歪みとなって、画像に動き歪みとして現れ問題となってくる。
この問題を解決するには、一案として、インタレース走査を行なうことが考えられる。インタレース走査時には、複数行の画素を加算するが、フィールドにより加算する画素の組み合わせが異なる。CCD型の固体撮像装置の場合は、加算する画素の組み合わせが異なっても、垂直レジスタにおいて電荷状態での信号加算が可能である。一方、一般的なCMOS型の固体撮像装置では、電荷生成部32と画素信号生成部5とが1対1であり、電荷状態での信号加算は一般的にできない。
そこで、本実施形態では、ライン露光による蓄積期間差がライン方向の時間シェーディング歪みとなって画像に動き歪みとして現れる問題を改善することのできる新たな仕組みを採る。
その仕組みのため、先ず、画素アレイ部10は、1つの電荷生成部32に対して複数の読出選択用トランジスタ34が電荷転送部(転送ゲート)として設けられ、それらがそれぞれ異なる行の画素信号生成部5(読出選択用トランジスタ34は除く)つまり信号出力部6に接続されるようにしている。同一の電荷生成部32に設けられている複数の読出選択用トランジスタ34は、選択的にオン/オフ動作が可能であり、信号電荷の転送時には何れか一方のみがアクティブになるように垂直走査部14は制御する。垂直走査部14は、その複数の読出選択用トランジスタ34の行を使い分けて、プログレッシブ走査とインタレース走査の何れにも対応するようになっている。
インタレース走査時には、複数の電荷生成部32が1つの画素信号生成部5を共有する単位画素群2を構成するようにして、それら複数の電荷生成部32で生成された信号電荷を画素信号生成部5にて加算して、加算された結果の処理対象信号を読み出すようにする。この仕組みは、インターライン転送CCDでのフィールド蓄積に相当する駆動手法であり、電荷加算を併用したインタレース走査と称する。後述する各実施形態では「電荷加算を併用した」を割愛して記すこともあるが、各インタレース走査は、全てこの電荷加算を併用したインタレース走査である。
プログレッシブ走査は、1画面(1フレーム)の各垂直走査線(本実施形態では画素信号生成部5や信号出力部6の行)の信号出力部6から処理対象信号を順番に読み出す方式である。インタレース走査は、1画面の各垂直走査線をN本おきに読み出すことにより1画面をN枚の画像(Nフィールド)に分割して読み出す方式、換言すると、走査線本数が1/Nで走査線位置がそれぞれ異なる各画面(フィールド)をN回に分けて読み出す方式である。電荷加算を併用したインタレース走査では、各フィールド画像は垂直解像度がプログレッシブ走査に比べて1/N倍になりまたフィールド間で時間差を持つが、毎秒当たりの画面数がプログレッシブ走査に比べてN倍になり電荷蓄積時間は1/N倍になるので、動く被写体の動きの描写が滑らかになり時間解像度が向上する。ライン露光に伴う時間シェーディング歪みを緩和でき、動画としての動きの滑らかさが劣化しないという利点がある。なお、静止画撮像時にインタレース走査にすることを否定するものではないが、この場合、各フィールド画像は時間差を持つので、動く被写体の場合はブレが発生する。
以下、具体的に説明する。なお、“1フィールド周期”は、撮像面上を2次元走査して画像を読み出す期間(具体的には1垂直走査周期)であり、“1フレーム周期”は、撮像面上の全画素で画像を形成するに要する期間である。全ての行を順に垂直方向に走査する順次走査(プログレッシブ走査)を行なう場合は、“1フィールド周期”が“1フレーム周期”になる。これに対して、一方の垂直走査時には行を間引いて順に垂直方向に走査するとともに、他方の垂直走査時には一方の垂直走査時に間引いた行を補完するように垂直方向に走査する飛越し走査(インタレース走査)を行なう場合は、“Kフィールド”が“1フレーム”になる。“K”は間引きの程度によるもので、通常は、K=2とする。なお、順次走査であるのか飛越し走査であるのかに拘わらず、撮像面上を2次元走査して画像を読み出す1垂直走査周期を、広義の“1フレーム”ということもある。
<画素アレイ部:第1実施形態>
図3は、比較例の画素アレイ部10Zを説明する図である。図4は、第1実施形態の画素アレイ部10Aを説明する図である。
信号電荷を生成するフォトダイオードなどの電荷生成部32が2次元マトリクス状に配置されている。単位画素3は一例として、電荷生成部32の他に、それぞれ異なる機能をなす4個のトランジスタ(読出選択用トランジスタ34、リセットトランジスタ36、垂直選択用トランジスタ40、増幅用トランジスタ42)を基本素子として備える4TR構成のものである。読出選択用トランジスタ34、リセットトランジスタ36、増幅用トランジスタ42はフローティングディフュージョン38とともに画素信号生成部5を構成する。そして、画素信号生成部5と垂直選択用トランジスタ40により、電荷生成部32で生成された信号電荷に対応する画素信号電圧Vxを生成して出力する信号出力部6が構成される。各トランジスタ34,36,40,42を纏めて画素トランジスタとも称する。
転送部を構成する読出選択用トランジスタ34(転送トランジスタ・読出しトランジスタ)のゲートは、同一行の当該ゲートと共通に転送配線54に接続され、転送駆動バッファBF1からの転送信号TRG で駆動される。初期化部を構成するリセットトランジスタ36のゲートは、同一行の当該ゲートと共通にリセット配線56に接続され、リセット駆動バッファBF2からのリセット信号RST で駆動される。垂直選択用トランジスタ40(セレクトトランジスタ)のゲートは、同一行の当該ゲートと共通に垂直選択線58に接続され、選択駆動バッファBF3からの垂直選択信号VSELで駆動される。転送配線54、リセット配線56、および垂直選択線58が、図1の行制御線15である。
各トランジスタはnチャネル型のMOSであり、転送信号TRG 、リセット信号RST 、および垂直選択信号VSELは、一般的には、何れもアクティブH(ハイ;電源電圧レベル)、インアクティブL(ロー:基準レベル)の2値パルスが使用される。電源電圧レベルはたとえば3V程度とする。基準レベルは、たとえば、0.4〜0.7Vあるいは接地レベルの0Vとするが、場合によっては、一部あるいは全部のパルスについては、−1V程度の負電位とすることもある。
フォトダイオードPDなどの受光素子DET で構成される検知部の一例である電荷生成部32は、受光素子DET の一端(アノード側)が低電位側の基準電位Vss(負電位:たとえば−1V程度)に接続され、他端(カソード側)が読出選択用トランジスタ34の入力端(典型的にはソース)に接続されている。なお、基準電位Vssは接地電位GND としてもよい。読出選択用トランジスタ34は、出力端(典型的にはドレイン)がリセットトランジスタ36とフローティングディフュージョン38と増幅用トランジスタ42とが接続される接続ノードに接続される。リセットトランジスタ36は、ソースがフローティングディフュージョン38に、ドレインがリセット電源Vrd(通常は電源Vddと共通にする)にそれぞれ接続される。
垂直選択用トランジスタ40は、一例として、ドレインが増幅用トランジスタ42のソースに、ソースが画素線51にそれぞれ接続され、ゲート(特に垂直選択ゲートSELVという)が垂直選択線58に接続されている。画素線51は、同一列の当該画素線51と共通に垂直信号線19に接続される。増幅用トランジスタ42は、ゲートがフローティングディフュージョン38に接続され、ドレインが電源Vddに、ソースは垂直選択用トランジスタ40を介して画素線51に接続され、さらに垂直信号線19に接続されるようになっている。なおこのような接続構成に限らず、垂直選択用トランジスタ40と増幅用トランジスタ42の配置を逆にして、垂直選択用トランジスタ40は、ドレインが電源Vddに、ソースが増幅用トランジスタ42のドレインに接続され、増幅用トランジスタ42のソースが画素線51に接続されるようにしてもよい。
垂直信号線19は、その一端がカラムAD変換部26側に延在するとともに、図1に示したように、その経路において読出電流源部24が接続される。読出電流制御部24は、その詳細は図示を割愛するが、各垂直列に対して負荷MOSトランジスタを有し、基準電流源部とトランジスタとの間でゲート同士が接続されカレントミラー回路を構成し、垂直信号線19に対し電流源として機能するようになっている。そして、増幅用トランジスタ42との間で、略一定の動作電流(読出電流)が供給されるソースフォロワ構成が採られるようになっている。
ここで、第1実施形態の画素アレイ部10は、単位画素3の内の一部の要素を複数の単位画素3で共有した構成を持つ画素共有構造となっている。画素アレイ部10内の単位画素群2を構成する単位画素3の構成は、通常のCMOSイメージセンサと同様である。ここでは、画素共有構造の一例として、共有対象の画素は、行方向(垂直方向)に2つの単位画素3が共有されて1つの単位画素群2が構成される2画素共有の場合で示す。なお、単位画素3やそれを組み合わせた単位画素群2の構成は一例であり、ここで示すものには限定されない。たとえば、2つの単位画素3で1つ単位画素群2を構成するが、これに限らず、たとえば、3つや4つや8つの単位画素3で1つ単位画素群2を構成してもよい。
回路構成的には、単位画素群2は、2つの電荷生成部32を有し、読出選択用トランジスタ34を除く、リセットトランジスタ36、フローティングディフュージョン38、増幅用トランジスタ42を共有する構成となっている。ただし、図3に示す比較例の画素共有構造とは異なり、図4に示す第1実施形態の画素共有構造では、インタレース走査時には共有対象の電荷生成部32がフィールドごとに切替可能に読出選択用トランジスタ34が設けられている。
すなわち、図3に示す比較例の場合、垂直方向に2画素加算を行なう画素共有構造である。2つの電荷生成部32a,32bに蓄積された各信号電荷Qa,Qbを共通の画素信号生成部5に移送する手段として機能するべく、独立して読出選択用トランジスタ34a,34b、転送配線54a,54b、転送駆動バッファBF1a,BF1bが設けられる。電荷生成部32aと読出選択用トランジスタ34aと画素信号生成部5とで第1の単位画素3aが構成され、電荷生成部32bと読出選択用トランジスタ34bと画素信号生成部5とで第2の単位画素3bが構成されると見ることができる。全体としては、5つのトランジスタで単位画素群2が構成されているが、それぞれの電荷生成部32a,32bから見た場合には、4つのトランジスタで単位画素3が構成された4TR構成である。
一方、図4に示す第1実施形態の場合は、単位画素群2は、各電荷生成部32に対しては、N個(図では上・下に2つ)の読出選択用トランジスタ34U,34Dを有する。読出選択用トランジスタ34Uのゲートは転送配線54Uに接続され転送駆動バッファBF1Uで駆動され、読出選択用トランジスタ34Dのゲートは転送配線54Dに接続され転送駆動バッファBF1Dで駆動される。
同一の電荷生成部32の各読出選択用トランジスタ34U,34Dは、それぞれ異なる行の画素信号生成部5に接続されている。たとえば、2n行(nは1以上の正の整数)の画素信号生成部5_2n(読出選択用トランジスタ34を除く)には、2n行の読出選択用トランジスタ34D_2nと“2n+1”行の読出選択用トランジスタ34U_2n+1が接続されている。“2n−1”の画素信号生成部5_2n_1(読出選択用トランジスタ34を除く)には、“2n−1”の読出選択用トランジスタ34D_2n-1と2n行の読出選択用トランジスタ34U_2nが接続されている。
上・下の電荷生成部32それぞれが、1つのリセットトランジスタ36、フローティングディフュージョン38、垂直選択用トランジスタ40、増幅用トランジスタ42を共有する構造である。加えて、単位画素群2としては、フィールドごとに、読出選択用トランジスタ34U,34Dによる行選択の切替えにより、共有対象の電荷生成部32を切替え可能な構造である。
プログレッシブ走査とインタレース走査のそれぞれに合わせ、アクティブになる読出選択用トランジスタ34U,34Dの行を選択可能になっている。インタレース走査時には読出し対象行の画素信号生成部5と接続されている上・下2つの読出選択用トランジスタ34D,34Uをオンさせることで、フローティングディフュージョン38で2つの電荷生成部32の信号電荷を加算するようになっている。
各2つの電荷生成部32および読出選択用トランジスタ34と画素信号生成部5とで第1の単位画素3が構成され、各2つの電荷生成部32および読出選択用トランジスタ34と画素信号生成部5とで第2の単位画素3が構成されて単位画素群2となる点では比較例と似通っている。しかしながら、比較例の画素共有構造では共有対象の電荷生成部32が決まっている。これに対して、第1実施形態の画素共有構造では、後述するように、インタレース走査時には、読出選択用トランジスタ34U,34Dによる電荷生成部32の切替えにより、奇数フィールドと偶数フィールドで共有対象の電荷生成部32を切替え可能になっていることが大きな相違である。
<インタレース走査:第1実施形態>
図5〜図5Eは、第1実施形態におけるインタレース走査を説明する図である。ここで図5は、インタレース走査における電荷生成部32と画素トランジスタの組合せ(単位画素群2の形成のされ方)を説明する図である。図5Aは、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。図5Bは、インタレース走査時における奇数フィールドの読出しイメージ図である。図5Cは、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。図5Dは、インタレース走査時における偶数フィールドの読出しイメージ図である。図5Eは、インタレース走査により、ライン露光に伴う時間シェーディング歪みが緩和される効果を説明する図である。
第1実施形態の場合のインタレース走査は、1画面の各垂直走査線(本実施形態では画素信号生成部5や信号出力部6の行)を2本おきに読み出すことにより1画面を2枚の画像(偶数フィールドと奇数フィールド)に分割して2回に分けて読み出す方式を採る。
先ず、奇数行(2n−1:nは1以上の正の整数)の各信号出力部6からの画素信号で奇数フィールドを構成する場合について説明する。図5に示すように、“2n−1”行の電荷生成部32_2n-1 と2n行の電荷生成部32_2n が“2n−1”行の画素信号生成部5_2n-1 を共有するように、“2n−1”行の読出選択用トランジスタ34D_2n-1 と2n行の読出選択用トランジスタ34U_2n の組合せで使用される。
この場合、図5Aに示すように、垂直選択用トランジスタ40_2n-1 がアクティブになるとき、読出選択用トランジスタ34D_2n-1 ,34U_2n をともにアクティブになる。これにより、電荷生成部32_2n-1 ,32_2n で生成された各信号電荷がフローティングディフュージョン38_2n-1 で加算され、画素信号生成部5_2n-1 で画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
図5Bに示すように、中央部の画素に着目すると、上側の電荷生成部32_2n-1 と共有しているフローティングディフュージョン38_2n-1 に、読出選択用トランジスタ34U_2n をオンさせることで下側の電荷生成部32_2n から信号電荷を読み出す。そのフローティングディフュージョン38_2n-1 には上側の電荷生成部32_2n-1 からも信号電荷が読み出され、フローティングディフュージョン38_2n-1 で、各信号電荷が加算される。
次に、偶数行(2n:nは1以上の正の整数)の各信号出力部6からの画素信号で偶数フィールドを構成する場合について説明する。図5に示すように、2n行の電荷生成部32_2n と“2n+1”行の電荷生成部32_2n+1 が2n行の画素信号生成部5_2n を共有するように、2n行の読出選択用トランジスタ34D_2n および“2n+1”行の読出選択用トランジスタ34U_2n+1 の組合せで使用される。
この場合、図5Cに示すように、垂直選択用トランジスタ40_2n がアクティブになるとき、読出選択用トランジスタ34D_2n ,34U_2n+1 をともにアクティブになる。これにより、電荷生成部32_2n ,32_2n+1 で生成された各信号電荷がフローティングディフュージョン38_2n で加算され、画素信号生成部5_2n で画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
図5Dに示すように、中央部の画素に着目すると、下側の電荷生成部32_2n+1 と共有しているフローティングディフュージョン38_2n に、読出選択用トランジスタ34D_2n をオンさせることで上側の電荷生成部32_2n から信号電荷を読み出す。そのフローティングディフュージョン38_2n には下側の電荷生成部32_2n+1 からも信号電荷が読み出され、フローティングディフュージョン38_2n で、各信号電荷が加算される。
このように、インタレース走査時には、フィールド(Field )ごとに読出選択用トランジスタ34(読出しゲート)を変えることで、信号電荷を読み出す画素信号生成部5(フローティングディフュージョン38など)を選択する。
1つの電荷生成部32に対して2個の読出選択用トランジスタ34D,34Uを有し、読出選択用トランジスタ34D,34Uの選択的な組合せにより、複数の電荷生成部32が1つの画素信号生成部5(読出選択用トランジスタ34を除くフローティングディフュージョン38など)を共有している。アクティブになる読出選択用トランジスタ34D,34Uの行をインタレース走査に合わせて選択することで、フローティングディフュージョン38において、電荷状態で信号を加算することができる。そのため、信号加算用のメモリを画素部に有する必要がなく、チップ面積を増大させることはない。フローティングディフュージョン38が複数の電荷生成部32、読出選択用トランジスタ34に共有される構造ではあるが、フローティングディフュージョン38の寄生容量の増大は殆どなく、変換効率が著しく低下することもない。
また、メモリ部での信号加算を行なう従来技術に比べて、S/N比はN倍の改善が見込まれる。Nは、加算対象の電荷生成部32の数であり、そのとき、電荷生成部32に対する読出選択用トランジスタ34の数もN個となる。
第1実施形態:S=2倍、N=1倍 ⇒ S/N=2
従来技術 :S=1倍、N=1倍 ⇒ S/N=1
(従来技術のS、Nを1倍とする)
さらに、画素アレイ部10に電荷を一時格納するための電荷格納部をフローティングディフュージョン38以外に別途設ける必要がなく、電荷生成部32のサイズを小さくする必要はないので、飽和信号量の低下を招かない構造となっている。複数の読出選択用トランジスタ34U,34Dを設ける必要はあるものの、画素信号生成部5(信号出力部6)が備える既存の電荷蓄積部(フローティングディフュージョン38)以外に電荷を一時格納するための別の電荷蓄積部を設ける場合に比べると電荷生成部32の狭小化は少なく、飽和信号量の低下は招かない。
その上、フローティングディフュージョン38で信号電荷を加算するので、信号量の増分がそのまま画素信号電圧Vxの増分となり、S/N比も信号量の増分だけ向上(改善)させることができる。
1つの電荷生成部32にN個(前例では2つ)の読出選択用トランジスタ34を有しているので、読出し時および/または電子シャッタ時において、信号電荷を転送する側として使用しない他方の読出選択用トランジスタ34のゲートのインアクティブレベルを通常レベルより深くすることができる。本例の場合、通常のインアクティブレベルが接地レベルであれば負電位にすることができるし、通常のインアクティブレベルが負電位であれば、負電圧レベルをより大きくする(マイナス方向に大きくする)ことができる。このことを、図5B,図5D中には○付きの“−”(マイナス)で示す。その結果、転送方向に対して、効果的な電位勾配をつけることができる。電荷転送に効果的な電位勾配を電荷生成部32内につけることができ、信号電荷を転送する側の読出選択用トランジスタ34の転送効率が向上する。
また、図5E(1−1),(2−1)に示すように、インタレース走査時には、奇数フィールドでは奇数行と次の偶数行の各電荷生成部32の信号電荷を加算して奇数行の信号出力部6(図中の黒丸)から処理対象信号を読み出し、偶数フィールドでは偶数行と次の奇数行の各電荷生成部32の信号電荷を加算して偶数行の信号出力部6(図中の黒丸)から処理対象信号を読み出す。各フィールド画像はインタレース走査により垂直走査線が1本ずつ間引かれた状態になるが、フィールド周期は従来のフレーム周期の半分になる。このため、各フィールドともに時間シェーディング歪み(動き歪み)は従来の半分になり、ライン露光に伴う時間シェーディング歪みが緩和される。図5E(1−2),(2−2)に示すように、各フィールドともに高速で移動している被写体の動き歪みが図2B(3)よりも少なくなっていることが分かる。
ただし、各フィールド画像はフィールド周期分の時間差を持って撮像されているので、2つのフィールド画像を合成して静止画を生成すると、動く被写体の場合はブレが発生する。つまり、インタレース方式の奇偶フィールドを合成して1枚の画像にすると、動きのある被写体では走査線の奇偶でズレた画像となる。動画の場合は、このズレは殆ど問題とならないが静止画の場合は問題となることもある。したがって、静止画撮像時には、プログレッシブ走査によるライン露光に伴う動き歪みとインタレース走査による奇偶ズレとの関係で、何れの方式の画像の方が好ましいかにより、何れの方式で撮像するかを決めればよい。もちろん、静止画撮像時にはメカニカルシャッタを併用したプログレッシブ走査にしてもよい。
<プログレッシブ走査:第1実施形態>
図6は、第1実施形態において、プログレッシブ走査における電荷生成部32と画素トランジスタの組合せを説明する図である。図6Aは、第1実施形態において、プログレッシブ走査の読出し時の信号の流れの第1例を説明する図である。図6Bは、第1実施形態において、プログレッシブ走査の読出し時の信号の流れの第2例を説明する図である。
1つの電荷生成部32に対して複数(前例では2つ)の読出選択用トランジスタ34を有しているので、その読出選択用トランジスタ34として何れの位置のものを使うかで、複数の読出し手法が考えられる。1つの電荷生成部32については2つの読出選択用トランジスタ34U,34Dの何れかが使用されるようにすればよい。たとえば基本的には、図6に示すように、k行(kは正の整数)の電荷生成部32_kおよび読出選択用トランジスタ34D_kとk行の画素信号生成部5_kの組合せで使用する第1例と、“k+1”行(kは正の整数)の電荷生成部32_k+1および読出選択用トランジスタ34U_k+1とk行の画素信号生成部5_kの組合せで使用する第2例とが考えられる。もちろん、読出行ごとに第1例と第2例を切り替えるなどの変形も可能である。
第1例の場合、図6Aに示すように、垂直選択用トランジスタ40_kがアクティブになるとき、読出選択用トランジスタ34D_kをアクティブになる。これにより、電荷生成部32_kで生成された信号電荷がフローティングディフュージョン38_kに読み出され、画素信号生成部5_kで画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
第2例の場合、図6Bに示すように、垂直選択用トランジスタ40_kがアクティブになるとき、読出選択用トランジスタ34U_k+1をアクティブになる。これにより、電荷生成部32_k+1で生成された信号電荷がフローティングディフュージョン38_kに読み出され、画素信号生成部5_kで画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
このように、第1実施形態の画素回路構造では、インタレース走査だけでなく、通常のプログレッシブ走査も可能である。
<画素アレイ部:第2実施形態>
図7は、第2実施形態の画素アレイ部10Bを説明する図である。第2実施形態は、単位画素3を、4TR構成から3TR構成に変形したものである。3TR構成では、4TR構成に対して、垂直選択用トランジスタ40を取り外した構成である。その他の点は、第1実施形態と同様であり、1つの電荷生成部32に対してN個の読出選択用トランジスタ(図では34U,34Dの2個)を有し、アクティブになる読出選択用トランジスタ34U,34Dをプログレッシブ走査とインタレース走査のそれぞれに合わせて行を選択可能になっている。
第1実施形態と同様に、フローティングディフュージョン38は増幅用トランジスタ42のゲートに接続されているので、増幅用トランジスタ42はフローティングディフュージョン38の電位に対応した信号を垂直信号線19に出力する。
リセットトランジスタ36は、リセット配線56が行方向に延びており、ドレイン線59は殆どの画素に共通になっている。このドレイン線59は、ドレイン駆動バッファBF4からの電源電圧により駆動される。リセットトランジスタ36はリセット駆動バッファBF2により駆動され、フローティングディフュージョン38の電位を制御する。ここで、ドレイン線59が行方向に分離されているが、実質的には全行共通の配線となる。
このように、3TR構成の場合、4TR構成の場合とは異なり、増幅用トランジスタ42と直列に接続される垂直選択用トランジスタ40が設けられておらず、画素信号生成部5がそのまま信号出力部6となる。垂直信号線19には多数の画素が接続されているが、画素の選択は、垂直選択用トランジスタ40ではなく、FD電位の制御により行なう。通常は、FD電位をロー(Low)にしている。画素を選択するときは、選択画素のFD電位をハイ(High)にすることで、選択画素の信号を垂直信号線19に読み出す。その後、選択画素のFD電位をローに戻す。この操作は1行分の画素に対して同時に行なわれる。
このようにFD電位を制御するためには、1)選択行FD電位をハイにするときに、ドレイン線59をハイにし、選択行のリセットトランジスタ36を通して、そのFD電位をハイにする、2)選択行FD電位をローに戻すときに、ドレイン線59をローにし、選択行のリセットトランジスタ36を通して、そのFD電位をローにする、という動作を行なう。
一方、各電荷生成部32の信号電荷をフローティングディフュージョン38に読み出す処理は読出選択用トランジスタ34によりなされるので、4TR構成と3TR構成には相違がない。したがって、インタレース走査やプログレッシブ走査における読出選択用トランジスタ34の切替えについて、第1実施形態で説明したことがそのまま適用される。
<画素アレイ部:第3実施形態>
図8は、第3実施形態の画素アレイ部10Cを説明する図である。第3実施形態は、水平方向の複数列分も共有対象とする対応を採ったものである。垂直方向に画素加算を行なわない通常の画素構造に対しては、インタレース走査時に垂直方向に2画素加算を行なうようにするが、それが複数列分存在するので、2行×M列の加算モードへの対応となる。以下では、説明を簡単にするため、M=2の場合で説明する。
第1実施形態と同様に、単位画素群2は、各電荷生成部32に対しては、2つの読出選択用トランジスタ34U,34Dを有する。一方、第1実施形態とは異なり、2列分ずつ1つの画素信号生成部5(読出選択用トランジスタ34は除く)が共有されるようにしている。図示しないが、奇数列と偶数列の各読出選択用トランジスタ34Uのゲートはそれぞれ異なる転送配線54Uに接続され個別の転送駆動バッファBF1Uで駆動され、奇数列と偶数列の各読出選択用トランジスタ34Dのゲートはそれぞれ異なる転送配線54Dに接続され個別の転送駆動バッファBF1Dで駆動される。
同一の電荷生成部32の各読出選択用トランジスタ34U,34Dは、それぞれ異なる行の画素信号生成部5に接続されているが、対となる奇数列と偶数列の各電荷生成部32の各読出選択用トランジスタ34Uもしくは各読出選択用トランジスタ34Dは、それぞれ同一行の画素信号生成部5に接続されている。
これにより、1つのフローティングディフュージョン38を、左斜め上、左斜め下、右斜め上、右斜め下の各電荷生成部32が共有する構造となる。つまり、4つの電荷生成部32それぞれが、1つのリセットトランジスタ36、フローティングディフュージョン38、垂直選択用トランジスタ40、増幅用トランジスタ42を共有する構造である。
第1実施形態と同様に、アクティブになる読出選択用トランジスタ34U,34Dをプログレッシブ走査とインタレース走査のそれぞれに合わせて行を選択可能になっている。インタレース走査時には“2m−1”列目と2m列目(mは1以上の正の整数)の計2列分の各上・下2つの読出選択用トランジスタ34D,34Uをオンさせることで、フローティングディフュージョン38で4つの電荷生成部32の信号電荷を加算するようになっている。上・下の電荷生成部32について、インタレース走査時には、読出選択用トランジスタ34の切替えにより、奇数フィールドと偶数フィールドで共有対象の電荷生成部32を切替え可能になっているのは第1実施形態と同様である。
<インタレース走査:第3実施形態>
図9〜図9Dは、第3実施形態におけるインタレース走査やプログレッシブ走査を説明する図である。ここで、図9は、インタレース走査やプログレッシブ走査における電荷生成部32と画素トランジスタの組合せを説明する図である。図9Aは、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。図9Bは、インタレース走査時における奇数フィールドの読出しイメージ図である。図9Cは、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。図9Dは、インタレース走査時における偶数フィールドの読出しイメージ図である。
先ず、奇数行(2n−1:nは1以上の正の整数)の各信号出力部6からの画素信号で奇数フィールドを構成する場合について説明する。図9(1)に示すように、“2m−1”列目(mは1以上の正の整数)の“2n−1”行の電荷生成部32_2n-1,2m-1および2n行の電荷生成部32_2n,2m-1並びに2m列目の“2n−1”行の電荷生成部32_2n-1,2mおよび2n行の電荷生成部32_2n,2mが奇数行の画素信号生成部5_2n-1,2mを共有するようにする。このため、“2m−1”列目の“2n−1”行の読出選択用トランジスタ34D_2n-1,2m-1および2n行の読出選択用トランジスタ34U_2n,2m-1並びに2m列目の“2n−1”行の読出選択用トランジスタ34D_2n-1,2mおよび2n行の読出選択用トランジスタ34U_2n,2mの組合せで使用される。
この場合、図9Aに示すように、垂直選択用トランジスタ40_2n-1,2mがアクティブになるとき、読出選択用トランジスタ34D_2n-1,2m-1,34U_2n,2m-1,34D_2n-1,2m,34U_2n,2mをともにアクティブになる。これにより、電荷生成部32_2n-1,2m-1,32_2n,2m-1,32_2n-1,2m,32_2n,2mで生成された各信号電荷がフローティングディフュージョン38_2n-1,2mで加算され、画素信号生成部5_2n-1,2mで画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
図9Bに示すように、“2m−1”列目の下から2番目の電荷生成部32_2n,2m-1に着目する。上側の電荷生成部32_2n-1,2m-1、右隣の電荷生成部32_2n,2m、右斜め上の電荷生成部32_2n-1,2mと共有しているフローティングディフュージョン38_2n-1,2mに、読出選択用トランジスタ34U_2n,2m-1をオンさせることで電荷生成部32_2n,2m-1から信号電荷を読み出す。そのフローティングディフュージョン38_2n-1,2mには上側、右隣、右斜め上の電荷生成部32_2n-1,2m-1,32_2n,2m,32_2n-1,2mからも信号電荷が読み出され、フローティングディフュージョン38_2n-1,2mで、各信号電荷が加算される。
次に、偶数行(2n:nは1以上の正の整数)の各信号出力部6からの画素信号で偶数フィールドを構成する場合について説明する。図9(1)に示すように、“2m−1”列目の2n行の電荷生成部32_2n,2m-1および“2n+1”行の電荷生成部32_2n+1,2m-1並びに2m列目の2n行の電荷生成部32_2n,2mおよび“2n+1”行の電荷生成部32_2n+1,2mが偶数行の画素信号生成部5_2n,2mを共有するようにする。このため、“2m−1”列目の2n行の読出選択用トランジスタ34D_2n,2m-1および“2n+1”行の読出選択用トランジスタ34U_2n+1,2m-1並びに2m列目の2n行の読出選択用トランジスタ34D_2n,2mおよび“2n+1”行の読出選択用トランジスタ34U_2n+1,2mの組合せで使用される。
この場合、図9Cに示すように、垂直選択用トランジスタ40_2n,2mがアクティブになるとき、読出選択用トランジスタ34D_2n,2m-1,34U_2n+1,2m-1,34D_2n,2m,34U_2n+1,2mをともにアクティブになる。これにより、電荷生成部32_2n,2m-1,32_2n+1,2m-1,32_2n,2m,32_2n+1,2mで生成された各信号電荷がフローティングディフュージョン38_2n,2mで加算され、画素信号生成部5_2n,2mで画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
図9Dに示すように、“2m−1”列目の下から2番目の電荷生成部32_2n,2m-1に着目する。下側の電荷生成部32_2n+1,2m-1、右隣の電荷生成部32_2n,2m、右斜め下の電荷生成部32_2n+1,2mと共有しているフローティングディフュージョン38_2n,2mに、読出選択用トランジスタ34D_2n,2m-1をオンさせることで電荷生成部32_2n,2m-1から信号電荷を読み出す。そのフローティングディフュージョン38_2n,2mには下側、右隣、右斜め下の電荷生成部32_2n+1,2m-1,32_2n,2m,32_2n+1,2mからも信号電荷が読み出され、フローティングディフュージョン38_2n,2mで、各信号電荷が加算される。
このように、インタレース走査時には、フィールド(Field )ごとに読出選択用トランジスタ34(読出しゲート)を変えることで、2×2加算に対応した第2実施形態でも、信号電荷を読み出す画素信号生成部5(フローティングディフュージョン38など)を選択する。
水平方向にも複数個(前例では2個)の画素を加算するようにしている点で第1実施形態とは異なるが、垂直方向については第1実施形態と同じであり、第1実施形態と同様の効果を享受できる。読出し時および/または電子シャッタ時において、信号電荷を転送する側として使用しない他方の読出選択用トランジスタ34のゲートのインアクティブレベルを通常レベルより深くする点も第1実施形態と同様である。このことを、図9B,図9D中には○付きの“−”(マイナス)で示す。
第3実施形態の画素構造の場合のプログレッシブ走査時の信号の流れについては、図示を割愛するが、第1実施形態と同様である。図9(2)に示すように、k行(kは正の整数)の電荷生成部32_k,2m-1 ,32_k,2m とk行の画素信号生成部5_k,2m の組合せで使用する第1例と、“k+1”行(kは正の整数)の電荷生成部32_k+1,2m-1 ,32_k+1,2m とk行の画素信号生成部5_k,2m の組合せで使用する第2例とが考えられる。もちろん、読出行ごとに第1例と第2例を切り替えるなどの変形も可能である。
<画素アレイ部:第4実施形態>
図10は、第4実施形態の画素アレイ部10Dを説明する図である。第4実施形態は、第1実施形態の画素配列構造を、斜め45度に傾けた構成である。紙面を斜め45度傾けて考えればよく、インタレース走査およびプログレッシブ走査の何れについても、第1実施形態と同様の手法が適用され、同様の効果を享受できる。
図示を割愛するが、その他、たとえばハニカム配列などへも、同様に適用でき、同様の効果を享受できることが推測されるであろう。
<画素アレイ部:第5実施形態>
図11は、第5実施形態の画素アレイ部10Eを説明する図である。第5実施形態の単位画素群2は、各電荷生成部32に対して、3個の読出選択用トランジスタ34U,34M,34Dを有する。同一の電荷生成部32の各読出選択用トランジスタ34U,34M,34Dは、それぞれ異なる行の画素信号生成部5に接続されている。
たとえば、3n行(nは1以上の正の整数)の画素信号生成部5_3n(読出選択用トランジスタ34を除く)には、3n行の読出選択用トランジスタ34M_3nと“3n−1”行の読出選択用トランジスタ34D_3n-1と“3n+1”行の読出選択用トランジスタ34U_3n+1が接続されている。“3n+1”行の画素信号生成部5_3n+1(読出選択用トランジスタ34を除く)には、“3n+1”行の読出選択用トランジスタ34M_3n+1と3n行の読出選択用トランジスタ34D_3nと“3n+2”行の読出選択用トランジスタ34U_3n+2が接続されている。“3n+2”行の画素信号生成部5_3n+2(読出選択用トランジスタ34を除く)には、“3n+2”行の読出選択用トランジスタ34M_3n+2と“3n+1”行の読出選択用トランジスタ34D_3n+1と“3n+3”行の読出選択用トランジスタ34U_3n+3が接続されている。上・中・下の電荷生成部32それぞれが、1つのリセットトランジスタ36、フローティングディフュージョン38、垂直選択用トランジスタ40、増幅用トランジスタ42を共有する構造である。
プログレッシブ走査とインタレース走査のそれぞれに合わせて、アクティブになる読出選択用トランジスタ34U,34M,34Dの行を選択可能になっていることは第1実施形態と同様である。インタレース走査時には読出し対象行の画素信号生成部5と接続されている上・中・下3つの読出選択用トランジスタ34U,34M,34Dをオンさせることで、フローティングディフュージョン38で3つの電荷生成部32の信号電荷を加算するようになっている。
<インタレース走査:第5実施形態>
図12は、第5実施形態において、インタレース走査やプログレッシブ走査における電荷生成部32と画素トランジスタの組合せを説明する図である。図12Aは、第5実施形態において、インタレース走査時における第1フィールド(走査線が3n行目の組合せ)の読出し時の信号の流れを説明する図である。図12Bは、第5実施形態において、インタレース走査時における第2フィールド(走査線が“3n+1”行目の組合せ)の読出し時の信号の流れを説明する図である。図12Cは、第5実施形態において、インタレース走査時における第3フィールド(走査線が“3n+2”行目の組合せ)の読出し時の信号の流れを説明する図である。
第5実施形態の場合のインタレース走査は、1画面の各垂直走査線(本実施形態では画素信号生成部5や信号出力部6の行)を3本おきに読み出すことにより1画面を3枚の画像(第1・第2・第3の各フィールド)に分割して3回に分けて読み出す方式を採る。
先ず、走査線が3n行目の各信号出力部6からの画素信号で第1フィールドを構成する場合について説明する。図12(1)に示すように、“3n−1”行の電荷生成部32_3n-1 と3n行の電荷生成部32_3n と“3n+1”行の電荷生成部32_3n+1 が3n行の画素信号生成部5_3n を共有するように、“3n−1”行の読出選択用トランジスタ34D_3n-1、3n行の読出選択用トランジスタ34M_3n、“3n+1”行の読出選択用トランジスタ34U_3n+1 の組合せで使用される。
この場合、図12Aに示すように、垂直選択用トランジスタ40_3n がアクティブになるとき、読出選択用トランジスタ34D_3n-1,34M_3n,34U_3n+1 をともにアクティブになる。これにより、電荷生成部32_3n-1 ,32_3n ,32_3n+1 で生成された各信号電荷がフローティングディフュージョン38_3n で加算され、画素信号生成部5_3n で画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
次に、走査線が“3n+1”行目の各信号出力部6からの画素信号で第2フィールドを構成する場合について説明する。図12(1)に示すように、3n行の電荷生成部32_3n と“3n+1”行の電荷生成部32_3n+1 と“3n+2”行の電荷生成部32_3n+2 が“3n+1”行の画素信号生成部5_3n+1 を共有するように、3n行の読出選択用トランジスタ34D_3n、“3n+1”行の読出選択用トランジスタ34M_3n+1、“3n+2”行の読出選択用トランジスタ34U_3n+2 の組合せで使用される。
この場合、図12Bに示すように、垂直選択用トランジスタ40_3n+1 がアクティブになるとき、読出選択用トランジスタ34D_3n,34M_3n+1,34U_3n+2 をともにアクティブになる。これにより、電荷生成部32_3n ,32_3n+1 ,32_3n+2 で生成された各信号電荷がフローティングディフュージョン38_3n+1 で加算され、画素信号生成部5_3n+1 で画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
次に、走査線が“3n+2”行目の各信号出力部6からの画素信号で第3フィールドを構成する場合について説明する。図12(1)に示すように、“3n+1”行の電荷生成部32_3n+1 と“3n+2”行の電荷生成部32_3n+2 と“3n+3”行の電荷生成部32_3n+3 が“3n+2”行の画素信号生成部5_3n+2 を共有するように、“3n+1”行の読出選択用トランジスタ34D_3n+1、“3n+2”行の読出選択用トランジスタ34M_3n+2、“3n+3”行の読出選択用トランジスタ34U_3n+3 の組合せで使用される。
この場合、図12Cに示すように、垂直選択用トランジスタ40_3n+2 がアクティブになるとき、読出選択用トランジスタ34D_3n+1,34M_3n+2,34U_3n+3 をともにアクティブになる。これにより、電荷生成部32_3n+1 ,32_3n+2 ,32_3n+3 で生成された各信号電荷がフローティングディフュージョン38_3n+2 で加算され、画素信号生成部5_3n+2 で画素信号電圧Vxに変換された後、垂直信号線19を介してカラムAD変換部26側に送られる。
このように、第5実施形態においても、インタレース走査時には、フィールドごとに読出選択用トランジスタ34(読出しゲート)を変えることで、信号電荷を読み出す画素信号生成部5(フローティングディフュージョン38など)を選択する。1つの電荷生成部32に対して3個の読出選択用トランジスタ34U,34M,34Dを有し、読出選択用トランジスタ34U,34M,34Dの選択的な組合せにより、複数の電荷生成部32が1つの画素信号生成部5(読出選択用トランジスタ34を除くフローティングディフュージョン38など)を共有している。アクティブになる読出選択用トランジスタ34U,34M,34Dの行をインタレース走査に合わせて選択することで、フローティングディフュージョン38において、電荷状態で信号を加算することができる。
垂直方向について、2行分の電荷生成部32の信号電荷を加算して信号出力部6を2行おきに2枚の画像に分けて読み出すのか、3行分の電荷生成部32の信号電荷を加算して信号出力部6を3行おきに3枚の画像に分けて読み出すのかの相違があるが、基本的な仕組みには相違がなく、第1実施形態と同様の効果が得られる。加算対象の電荷生成部32の数が3つであるので、従来技術に対してS/Nは3倍に向上する。読出し時および/または電子シャッタ時において、信号電荷を転送する側として使用しない他方の読出選択用トランジスタ34のゲートのインアクティブレベルを通常レベルより深くする点も第1実施形態と同様である。
第5実施形態の画素構造の場合のプログレッシブ走査時の信号の流れについては、図示を割愛するが、第1実施形態と同様である。図12(2)に示すように、k行(kは正の整数)の電荷生成部32_kおよび読出選択用トランジスタ34M_kとk行の画素信号生成部5_kの組合せで使用する第1例と、“k−1”の電荷生成部32_k-1および読出選択用トランジスタ34D_k-1とk行の画素信号生成部5_kの組合せで使用する第2例と、“k+1”行の電荷生成部32_k+1および読出選択用トランジスタ34U_k+1とk行の画素信号生成部5_kの組合せで使用する第3例とが考えられる。もちろん、読出行ごとに第1例と第2例と第3例を切り替えるなどの変形も可能である。
<画素アレイ部:第6実施形態>
図13は、第6実施形態の画素アレイ部10Fを説明する図である。第6実施形態の単位画素群2は、垂直方向に2画素加算を行なう図3に示した比較例の2画素共有構造に対して、インタレース走査対応を採ったものである。垂直方向に画素加算を行なわない通常の画素構造に対しては、インタレース走査時に垂直方向に2画素加算を行なうようにする。その考え方を発展させて、垂直方向に2画素加算を行なう画素共有構造に対しては、インタレース走査時に垂直方向に4画素加算を行なうようにする。
先ず、2画素共有構造では1つの画素信号生成部5に対して、電荷生成部32aおよび読出選択用トランジスタ34aと、電荷生成部32bおよび読出選択用トランジスタ3434bが設けられている。第6実施形態では、これをベースにして、電荷生成部32aに対して読出選択用トランジスタ34aU,34aDを、電荷生成部32bに対して読出選択用トランジスタ34bU,34bDが設けられる。図では、対となる電荷生成部32a、32bを便宜的に(図の記載のし易さから)横方向にずらして示しているが、それらは同一列のものであるとする。
同一の電荷生成部32aの各読出選択用トランジスタ34aU,34aDは、それぞれ異なる行の画素信号生成部5に接続され、同一の電荷生成部32bの各読出選択用トランジスタ34bU,34bDは、それぞれ異なる行の画素信号生成部5に接続される。一方、対となる電荷生成部32a,32bと対応する読出選択用トランジスタ34aU,34bUは同一行の画素信号生成部5に接続されるし、読出選択用トランジスタ34aD,34bDは同一行の画素信号生成部5に接続される。
したがって、たとえば、2n行(nは1以上の正の整数)の画素信号生成部5_2n(読出選択用トランジスタ34を除く)には、2n行の読出選択用トランジスタ34aD_2n,34bD_2nと“2n+1”行の読出選択用トランジスタ34aU_2n+1,34bU_2n+1が接続されている。“2n−1”の画素信号生成部5_2n_1(読出選択用トランジスタ34を除く)には、“2n−1”の読出選択用トランジスタ34aD_2n-1,34bD_2n-1と2n行の読出選択用トランジスタ34aU_2n,34bU_2nが接続されている。上・下の電荷生成部32a,32bそれぞれが、1つのリセットトランジスタ36、フローティングディフュージョン38、垂直選択用トランジスタ40、増幅用トランジスタ42を共有する構造である。
読出選択用トランジスタ34aU,34bUの対、読出選択用トランジスタ34aD,34bDの対で、プログレッシブ走査とインタレース走査のそれぞれに合わせてアクティブになる読出選択用トランジスタ34aU,34bUや読出選択用トランジスタ34aD,34bDの行を選択可能になっていることは第1実施形態と同様である。インタレース走査時には読出し対象行の画素信号生成部5と接続されている上・下2組の読出選択用トランジスタ34aU,34bU,34aD,34bDをオンさせることで、フローティングディフュージョン38で4つの電荷生成部32の信号電荷を加算するようになっている。
<インタレース走査:第6実施形態>
図14は、第6実施形態において、インタレース走査やプログレッシブ走査における電荷生成部32と画素トランジスタの組合せを説明する図である。図14Aは、第6実施形態において、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。図14Bは、第6実施形態において、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。
第6実施形態の場合のインタレース走査は、1画面の各垂直走査線(本実施形態では画素信号生成部5や信号出力部6の行)を2本おきに読み出すことにより1画面を2枚の画像(偶数フィールドと奇数フィールド)に分割して2回に分けて読み出す方式を採る。詳細な説明は割愛するが、図14から推測されるように、それぞれ1つの電荷生成部32、読出選択用トランジスタ34を有する第1実施形態に対して、それぞれ2つの電荷生成部32a,32b、読出選択用トランジスタ34a,34bに分けたものと考えればよい。読出し時および/または電子シャッタ時において、信号電荷を転送する側として使用しない他方の読出選択用トランジスタ34のゲートのインアクティブレベルを通常レベルより深くする点も第1実施形態と同様である。
第6実施形態の画素構造の場合のプログレッシブ走査時の信号の流れについては、図示を割愛するが、第1実施形態と同様である。図14(2)に示すように、k行(kは正の整数)の電荷生成部32a_kおよび読出選択用トランジスタ34aD_k、電荷生成部32b_kおよび読出選択用トランジスタ34bD_kとk行の画素信号生成部5_kの組合せで使用する第1例と、“k+1”行(kは正の整数)の電荷生成部32a_k+1および読出選択用トランジスタ34aU_k+1、電荷生成部32b_k+1および読出選択用トランジスタ34bU_k+1とk行の画素信号生成部5_kの組合せで使用する第2例とが考えられる。もちろん、読出行ごとに第1例と第2例を切り替えるなどの変形も可能である。
<撮像装置:第7実施形態>
図15は、第7実施形態を説明する図である。第7実施形態は、前述の固体撮像装置1の各実施形態に採用していたインタレース走査とプログレッシブ走査の仕組みを、物理情報取得装置の一例である撮像装置に適用したものである。図15は、その撮像装置8の概略構成図である。
撮像装置としても、インタレース走査とプログレッシブ走査の何れにも対応可能で、たとえば動画撮像時にインタレース走査を行なうことで、動く被写体の動きの描写が滑らかで時間解像度を向上させる仕組みを実現できるようになる。この際、たとえば少なくとも、走査方式に関わる制御は、外部の主制御部において、制御用の指示情報を通信・タイミング制御部20に対するデータ設定で任意に指定できるようにする。
具体的には、撮像装置8は、撮影レンズ802、光学ローパスフィルタ804、色フィルタ群812、画素アレイ部10、駆動制御部7、カラムAD変換部26、参照信号生成部27、カメラ信号処理部810を備えている。図中に点線で示しように、光学ローパスフィルタ804と合わせて、赤外光成分を低減させる赤外光カットフィルタ805を設けることもできる。
さらに、本実施形態では、正電源302や負電源304を有する電源部300を、画素アレイ部10、駆動制御部7、カラムAD変換部26、および参照信号生成部27が形成される半導体領域(半導体チップ)とは別に設けている。
撮影レンズ802は、蛍光灯や太陽光などの照明下にある被写体Zの像を担持する光Lを撮像装置側に導光して結像させる。色フィルタ群812は、たとえばR,G,Bの色フィルタがベイヤー配列とされている。駆動制御部7は、画素アレイ部10を駆動する。読出電流制御部24は、画素アレイ部10から出力される画素信号の動作電流を制御する。カラムAD変換部26は、画素アレイ部10から出力された画素信号に対してCDS処理やAD変換処理などを施す。参照信号生成部27は、カラムAD変換部26に参照信号SLP_ADC を供給する。カメラ信号処理部810は、カラムAD変換部26から出力された撮像信号を処理する。
カラムAD変換部26の後段に設けられたカメラ信号処理部810は、撮像信号処理部820と、撮像装置8の全体を制御する主制御部として機能するカメラ制御部900を有する。撮像信号処理部820は、信号分離部822と、色信号処理部830と、輝度信号処理部840と、エンコーダ部860を有する。
信号分離部822は、色フィルタとして原色フィルタ以外のものが使用されているときにカラムAD変換部26のAD変換機能部から供給されるデジタル撮像信号をR(赤),G(緑),B(青)の原色信号に分離する原色分離機能を具備する。色信号処理部830は、信号分離部822によって分離された原色信号R,G,Bに基づいて色信号Cに関しての信号処理を行なう。輝度信号処理部840は、信号分離部822によって分離された原色信号R,G,Bに基づいて輝度信号Yに関しての信号処理を行なう。エンコーダ部860は、輝度信号Y/色信号Cに基づいて映像信号VDを生成する。
色信号処理部830は、図示を割愛するが、たとえば、ホワイトバランスアンプ、ガンマ補正部、色差マトリクス部などを有する。輝度信号処理部840は、図示を割愛するが、たとえば、高周波輝度信号生成部と、低周波輝度信号生成部と、輝度信号生成部を有する。高周波輝度信号生成部は、信号分離部822の原色分離機能部から供給される原色信号に基づいて比較的周波数が高い成分までをも含む輝度信号YHを生成する。低周波輝度信号生成部は、ホワイトバランスアンプから供給されるホワイトバランスが調整された原色信号に基づいて比較的周波数が低い成分のみを含む輝度信号YLを生成する。輝度信号生成部は、2種類の輝度信号YH,YLに基づいて輝度信号Yを生成しエンコーダ部860に供給する。輝度信号YLは露光制御にも利用される。
エンコーダ部860は、色信号副搬送波に対応するデジタル信号で色差信号R−Y,B−Yをデジタル変調した後、輝度信号処理部840にて生成された輝度信号Yと合成して、デジタル映像信号VD(=Y+S+C;Sは同期信号、Cはクロマ信号)に変換する。エンコーダ部860から出力されたデジタル映像信号VDは、さらに後段の図示を割愛したカメラ信号出力部に供給され、モニター出力や記録メディアへのデータ記録などに供される。この際、必要に応じて、DA変換によってデジタル映像信号VDがアナログ映像信号Vに変換される。
本実施形態のカメラ制御部900は、マイクロプロセッサ(microprocessor)902、読出専用の記憶部であるROM(Read Only Memory)904、RAM(Random Access Memory)906、図示を割愛したその他の周辺部材を有している。マイクロプロセッサ902は、コンピュータが行なう演算と制御の機能を超小型の集積回路に集約させたCPU(Central Processing Unit )を代表例とする電子計算機の中枢をなすものと同様のものである。906は、随時書込みおよび読出しが可能であるとともに揮発性の記憶部の一例である。マイクロプロセッサ902、ROM904、およびRAM906を纏めて、マイクロコンピュータ(microcomputer )とも称する。
カメラ制御部900は、システム全体を制御するものであり、本実施形態では特に、インタレース走査やプログレッシブ走査を制御する機能を持つ。この機能との関係においては、カメラ制御部900は、何れの走査方式にするかの指示情報を駆動制御部7に供給する。ROM904にはカメラ制御部900の制御プログラムなどが格納されているが、特に本例では、カメラ制御部900において、インタレース走査やプログレッシブ走査を制御するためのプログラムが格納されている。RAM906にはカメラ制御部900が各種処理を行なうためのデータなどが格納されている。
また、カメラ制御部900は、メモリカードなどの記録媒体924を挿脱可能に構成し、またインターネットなどの通信網との接続が可能に構成している。たとえば、カメラ制御部900は、マイクロプロセッサ902、ROM904、およびRAM906の他に、メモリ読出部907および通信IF(インタフェース)908を備える。
記録媒体924は、たとえば、マイクロプロセッサ902にソフトウェア処理をさせるためのプログラムデータや、輝度信号処理部840からの輝度系信号に基づく測光データDLの収束範囲や露光制御処理(電子シャッタ制御を含む)のための各種の制御情報の設定値などの様々なデータを登録するなどのために利用される。
メモリ読出部907は、記録媒体924から読み出したデータをRAM906に格納(インストール)する。通信IF908は、インターネットなどの通信網との間の通信データの受け渡しを仲介する。
なお、このような撮像装置8は、駆動制御部7およびカラムAD変換部26を、画素アレイ部10と別体にしてモジュール状のもので示しているが、固体撮像装置1について述べたように、これらが画素アレイ部10と同一の半導体基板上に一体的に形成されたワンチップものの固体撮像装置1を利用してもよいのは言うまでもない。また、図では、画素アレイ部10や駆動制御部7やカラムAD変換部26や参照信号生成部27やカメラ信号処理部810の他に、撮影レンズ802、光学ローパスフィルタ804、あるいは赤外光カットフィルタ805などの光学系をも含む状態で、撮像装置8を示しており、この態様は、これらを纏めてパッケージングされた撮像機能を有するモジュール状の形態とする場合に好適である。
ここで、前述の固体撮像装置1におけるモジュールとの関係においては、図示のように、画素アレイ部10(撮像部)と、AD変換機能や差分(CDS)処理機能を具備したカラムAD変換部26などの画素アレイ部10側と密接に関連した信号処理部(カラムAD変換部26の後段のカメラ信号処理部は除く)が纏めてパッケージングされた状態で撮像機能を有するモジュール状の形態で固体撮像装置1を提供するようにし、そのモジュール状の形態で提供された固体撮像装置1の後段に、残りの信号処理部であるカメラ信号処理部810を設けて撮像装置8の全体を構成するようにしてもよい。
または、図示を割愛するが、画素アレイ部10と撮影レンズ802などの光学系とが纏めてパッケージングされた状態で撮像機能を有するモジュール状の形態で固体撮像装置1を提供するようにし、そのモジュール状の形態で提供された固体撮像装置1に加えて、カメラ信号処理部810をもモジュール内に設けて、撮像装置8の全体を構成するようにしてもよい。また、固体撮像装置1におけるモジュールの形態として、カメラ信号処理部810を含めてもよく、この場合には、事実上、固体撮像装置1と撮像装置8とが同一のものと見なすこともできる。このような撮像装置8は、「撮像」を行なうための、たとえば、カメラや撮像機能を有する携帯機器として提供される。なお、「撮像」は、通常のカメラ撮影時の像の撮り込みだけではなく、広義の意味として、指紋検出なども含むものである。
このような構成の撮像装置8においては、前述の固体撮像装置1の全ての機能を包含して構成されており、前述の固体撮像装置1の基本的な構成および動作と同様とすることができる。特に、動画撮像時にインタレース走査にすることで、動く被写体の動きの描写が滑らかな画像を取得できるし、チップ面積増大・変換効率低下・飽和信号量低下はなく、信号電荷加算によりS/N比が向上する。
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は前記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で前記実施形態に多様な変更または改良を加えることができ、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれる。
また、前記の実施形態は、クレーム(請求項)にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組合せの全てが発明の解決手段に必須であるとは限らない。前述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組合せにより種々の発明を抽出できる。実施形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。
たとえば、前記実施形態では、2フィードや3フィードに分けてのインタレース走査について具体的に示したが、フィールド数は4以上にすることもできる。1つの電荷生成部32に対してN個の読出選択用トランジスタ34を設けて、それらを別行の画素信号生成部5に接続する構成にすればよく、基本的な考え方は前記実施形態と同様である。
また、第6実施形態では、信号出力部6が4つのトランジスタ(34,36,40,42)を有する4TR構成での画素共有へのインタレース走査の適用について説明したが、垂直選択用トランジスタ40を備えない3TR構成の画素についても、第6実施形態で説明したと同様の作用・効果を享受できる。この場合でも、たとえば、2個のフォトダイオード(電荷生成部32)に対してそれぞれ複数の読出選択用トランジスタ34を設けてインタレース走査対応を採るなど、原理的に同じ動作の画素についても同様に第6実施形態の仕組みを適用できる。
カラー画像撮像への適用に当たっては、インターライン転送CCDでのフィールド蓄積に対応したカラーフィルタ配列とすればよい。
前記実施形態では、NMOSより構成されている単位画素で構成されたセンサを一例に説明したが、これに限らず、PMOSよりなる画素のものについても、信号電荷やトランジスタの極性に応じて制御信号の電位関係を反転(電位の正負を逆に)して考えることで、前記実施形態で説明したと同様の作用・効果を享受できる。
すなわち、信号電荷をホールとしたMOS型の固体撮像装置では、少なくとも読出選択用トランジスタ34は前記実施形態とは反対導電型のPMOSトランジスタが用いられる。この場合でも、そのPMOSの読出選択用トランジスタ34を各電荷生成部32について複数個設けそれらを別行の画素信号生成部5・信号出力部6に接続してインタレース走査対応を採ればよい。
単位画素3の構成は、前記実施形態で示した状態において、基板や半導体領域の導電型を全て反対導電型に置き替えた構成とすることができる。この場合にも、信号電荷や制御信号の電位関係を、必要に応じて、反転(電位の正負を逆に)するように変形を加えればよい。
固体撮像装置の一実施形態であるCMOS型の固体撮像装置(CMOSイメージセンサ)の基本構成図である。 X−Yアドレス型の撮像装置における電子シャッタ機能を説明する図(その1)である。 X−Yアドレス型の撮像装置における電子シャッタ機能を説明する図(その2)である。 X−Yアドレス型の撮像装置における電子シャッタ機能を説明する図(その3)である。 比較例の画素アレイ部を説明する図である。 第1実施形態の画素アレイ部を説明する図である。 第1実施形態において、インタレース走査における電荷生成部と画素トランジスタの組合せを説明する図である。 第1実施形態において、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。 第1実施形態において、インタレース走査時における奇数フィールドの読出しイメージ図である。 第1実施形態において、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。 第1実施形態において、インタレース走査時における偶数フィールドの読出しイメージ図である。 インタレース走査により、ライン露光に伴う時間シェーディング歪みが緩和される効果を説明する図である。 第1実施形態において、プログレッシブ走査における電荷生成部と画素トランジスタの組合せを説明する図である。 第1実施形態において、プログレッシブ走査の読出し時の信号の流れの第1例を説明する図である。 第1実施形態において、プログレッシブ走査の読出し時の信号の流れの第2例を説明する図である。 第2実施形態の画素アレイ部を説明する図である。 第3実施形態の画素アレイ部を説明する図である。 第3実施形態において、インタレース走査やプログレッシブ走査における電荷生成部と画素トランジスタの組合せを説明する図である。 第3実施形態において、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。 第3実施形態において、インタレース走査時における奇数フィールドの読出しイメージ図である。 第3実施形態において、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。 第3実施形態において、インタレース走査時における偶数フィールドの読出しイメージ図である。 第4実施形態の画素アレイ部を説明する図である。 第5実施形態の画素アレイ部を説明する図である。 第5実施形態において、インタレース走査やプログレッシブ走査における電荷生成部と画素トランジスタの組合せを説明する図である。 第5実施形態において、インタレース走査時における第1フィールド(走査線が3n行目の組合せ)の読出し時の信号の流れを説明する図である。 第5実施形態において、インタレース走査時における第2フィールド(走査線が“3n+1”行目の組合せ)の読出し時の信号の流れを説明する図である。 第5実施形態において、インタレース走査時における第3フィールド(走査線が“3n+2”行目の組合せ)の読出し時の信号の流れを説明する図である。 第6実施形態の画素アレイ部を説明する図である。 第6実施形態において、インタレース走査やプログレッシブ走査における電荷生成部と画素トランジスタの組合せを説明する図である。 第6実施形態において、インタレース走査時における奇数フィールドの読出し時の信号の流れを説明する図である。 第6実施形態において、インタレース走査時における偶数フィールドの読出し時の信号の流れを説明する図である。 撮像装置(第7実施形態)の概略構成図である。
符号の説明
1…固体撮像装置、10…画素アレイ部、12…水平走査部、14…垂直走査部、15…行制御線、18…水平信号線、19…垂直信号線、2…単位画素群、20…通信・タイミング制御部、24…読出電流制御部、250…AD変換部、252…比較部、254…カウンタ部、256…データ記憶部、258…スイッチ部、26…カラムAD変換部、27…参照信号生成部、270…DA変換部、28…出力部、3…単位画素、32…電荷生成部、34…読出選択用トランジスタ、36…リセットトランジスタ、38…フローティングディフュージョン、40…垂直選択用トランジスタ、42…増幅用トランジスタ、5…画素信号生成部、51…画素線、54…転送配線、56…リセット配線、58…垂直選択線、59…ドレイン線、6…信号出力部、7…駆動制御部、8…撮像装置、900…カメラ制御部(主制御部)

Claims (6)

  1. 信号電荷を生成する電荷生成部および前記電荷生成部で生成された信号電荷を転送する電荷転送部を具備し前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が、2次元マトリクス状に配列されている画素アレイ部を備え、
    前記電荷生成部のそれぞれに対して複数の前記電荷転送部が設けられており、
    前記複数の電荷転送部は、前記電荷生成部と反対側がそれぞれ異なる行の前記信号出力部に接続されており、
    前記複数の前記電荷転送部や前記信号出力部の動作を制御する駆動制御部を備え、
    前記駆動制御部は、1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷生成部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    固体撮像装置。
  2. 信号電荷を生成する電荷生成部および前記電荷生成部で生成された信号電荷を転送する電荷転送部を具備し前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が、2次元マトリクス状に配列されている画素アレイ部を備え、
    前記電荷生成部のそれぞれに対して複数の前記電荷転送部が設けられており、
    各行の前記信号出力部は、何れか1つの行の電荷生成部からの信号電荷の転送を受ける動作と、当該信号出力部が属する自行および自行以外の各電荷生成部からの信号電荷の転送を受ける動作とが切替え可能に構成されており、
    前記複数の前記電荷転送部や前記信号出力部の動作を制御する駆動制御部を備え、
    前記駆動制御部は、1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷生成部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    固体撮像装置。
  3. 信号電荷を生成する電荷生成部および前記電荷生成部で生成された信号電荷を転送する電荷転送部を具備し前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が、2次元マトリクス状に配列されている画素アレイ部と、
    記電荷転送部や前記信号出力部の動作を制御する駆動制御部と、
    前記駆動制御部を制御する主制御部と、
    を備え、
    前記画素アレイ部は、前記電荷生成部のそれぞれに対して複数の前記電荷転送部が設けられており、同一の前記電荷生成部に設けられている前記複数の電荷転送部は、前記電荷生成部と反対側がそれぞれ異なる行の前記信号出力部に接続されており、
    前記駆動制御部は、1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷生成部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    撮像装置。
  4. 信号電荷を生成する電荷生成部および前記電荷生成部で生成された信号電荷を転送する電荷転送部を具備し前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が、2次元マトリクス状に配列されている画素アレイ部と、
    前記電荷転送部や前記信号出力部の動作を制御する駆動制御部と、
    前記駆動制御部を制御する主制御部と、
    を備え、
    前記画素アレイ部は、前記電荷生成部のそれぞれに対して複数の前記電荷転送部が設けられており、各行の前記信号出力部は、何れか1つの行の電荷生成部からの信号電荷の転送を受ける動作と、当該信号出力部が属する自行および自行以外の各電荷生成部からの信号電荷の転送を受ける動作とが切替え可能に構成されており、
    前記駆動制御部は、1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷生成部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    撮像装置。
  5. 電荷生成部で生成された信号電荷を転送する電荷転送部が前記電荷生成部のそれぞれに対して複数設けられ、前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が2次元マトリクス状に配列されている画素アレイ部を備え、前記複数の電荷転送部は、前記電荷生成部と反対側がそれぞれ異なる行の前記信号出力部に接続されている固体撮像装置を使用して画像を取得する際には、
    1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷転送部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、
    さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    固体撮像装置の駆動方法。
  6. 電荷生成部で生成された信号電荷を転送する電荷転送部が前記電荷生成部のそれぞれに対して複数設けられ、前記電荷生成部で生成された信号電荷に対応する処理対象信号を生成して出力する信号出力部を有する単位画素が2次元マトリクス状に配列されている画素アレイ部を備え、各行の前記信号出力部は、何れか1つの行の電荷生成部からの信号電荷の転送を受ける動作と、当該信号出力部が属する自行および自行以外の各電荷生成部からの信号電荷の転送を受ける動作とが切替え可能に構成されている固体撮像装置を使用して画像を取得する際には、
    1画面について、前記信号出力部の行数が1/Nで前記信号出力部の行位置がそれぞれ異なる各フィールド画像でN回に分けて処理対象信号を読み出すインタレース走査を行なうとともに、各フィールドでは行位置が異なるN個の前記電荷転送部で生成された信号電荷を同一行の前記信号出力部に転送しN個分の信号電荷が合成された処理対象信号を生成して出力し、かつフィールド間では前記N個の電荷転送部の行位置の組み合わせが異なるように、前記電荷転送部や前記信号出力部を制御し、
    さらに信号電荷の読出し時や電子シャッタ時において、信号電荷を転送しない側の前記電荷転送部のインアクティブレベルが通常レベルより深くなるように制御する
    固体撮像装置の駆動方法。
JP2008142336A 2008-05-30 2008-05-30 固体撮像装置、撮像装置、固体撮像装置の駆動方法 Expired - Fee Related JP4582198B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008142336A JP4582198B2 (ja) 2008-05-30 2008-05-30 固体撮像装置、撮像装置、固体撮像装置の駆動方法
US12/429,700 US8253836B2 (en) 2008-05-30 2009-04-24 Solid-state imaging device, imaging device and driving method of solid-state imaging device
TW098113796A TWI394448B (zh) 2008-05-30 2009-04-24 固態成像裝置,成像裝置及固態成像裝置之驅動方法
KR1020090047650A KR101574798B1 (ko) 2008-05-30 2009-05-29 고체 촬상 장치, 및 고체 촬상 장치의 구동 방법
CN2009101427056A CN101594491B (zh) 2008-05-30 2009-05-31 固态成像装置、成像装置和固态成像装置的驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142336A JP4582198B2 (ja) 2008-05-30 2008-05-30 固体撮像装置、撮像装置、固体撮像装置の駆動方法

Publications (2)

Publication Number Publication Date
JP2009290659A JP2009290659A (ja) 2009-12-10
JP4582198B2 true JP4582198B2 (ja) 2010-11-17

Family

ID=41379323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142336A Expired - Fee Related JP4582198B2 (ja) 2008-05-30 2008-05-30 固体撮像装置、撮像装置、固体撮像装置の駆動方法

Country Status (5)

Country Link
US (1) US8253836B2 (ja)
JP (1) JP4582198B2 (ja)
KR (1) KR101574798B1 (ja)
CN (1) CN101594491B (ja)
TW (1) TWI394448B (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037720B (zh) 2008-02-08 2013-11-06 谷歌公司 带有使用定时快门的多个图像传感器的全景照相机
KR101080427B1 (ko) * 2009-08-31 2011-11-04 삼성전자주식회사 전자셔터를 이용하여 영상의 동적 범위를 향상시키는 방법 및 그 장치
JP2011124946A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 固体撮像素子およびこれを備えたカメラ
JP5499789B2 (ja) * 2010-03-11 2014-05-21 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器
JP5578915B2 (ja) * 2010-04-01 2014-08-27 キヤノン株式会社 固体撮像装置及びその駆動方法
US8605186B2 (en) * 2010-04-26 2013-12-10 Hitachi Kokusai Electric, Inc. Video format conversion without a flicker for the solid imaging apparatus
EP2408194B1 (fr) * 2010-05-17 2014-12-24 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Capteur d'image en technologie CMOS à forte cadence vidéo
FR2961019B1 (fr) * 2010-06-03 2013-04-12 Commissariat Energie Atomique Capteur d'image lineaire en technologie cmos
US8451354B2 (en) 2010-05-17 2013-05-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives TDI image sensor in CMOS technology with high video capture rate
JP5618624B2 (ja) * 2010-05-25 2014-11-05 富士フイルム株式会社 内視鏡システム
WO2012095582A1 (fr) * 2011-01-10 2012-07-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Capteur d'image lineaire en technologie cmos a compensation d'effet de file
JP5511541B2 (ja) * 2010-06-24 2014-06-04 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP5456644B2 (ja) * 2010-11-17 2014-04-02 本田技研工業株式会社 受光素子及び制御方法
US8294077B2 (en) * 2010-12-17 2012-10-23 Omnivision Technologies, Inc. Image sensor having supplemental capacitive coupling node
JP5773721B2 (ja) * 2011-04-18 2015-09-02 キヤノン株式会社 固体撮像装置の駆動方法
JP5821315B2 (ja) * 2011-06-21 2015-11-24 ソニー株式会社 電子機器、電子機器の駆動方法
JP5915031B2 (ja) * 2011-08-31 2016-05-11 ソニー株式会社 撮像装置および撮像方法、並びに電子機器
JP2013055499A (ja) * 2011-09-02 2013-03-21 Sony Corp 固体撮像素子およびカメラシステム
FR2982418B1 (fr) * 2011-11-04 2014-05-30 E2V Semiconductors Capteur d'image a defilement et sommation numerique multiphase
JP5954983B2 (ja) * 2011-12-21 2016-07-20 キヤノン株式会社 撮像装置及び放射線撮像システム、並びに撮像装置の製造方法
JP5497874B2 (ja) * 2011-12-22 2014-05-21 富士フイルム株式会社 放射線画像検出器、放射線画像撮像装置、及び放射線画像撮像システム
WO2013180078A1 (ja) * 2012-05-30 2013-12-05 富士フイルム株式会社 放射線画撮影装置、放射線画像撮影システム、放射線画撮影方法、及び放射線画撮影プログラム
JP6080411B2 (ja) 2012-07-13 2017-02-15 キヤノン株式会社 撮像装置、撮像装置の駆動方法、および撮像システムの駆動方法。
JP5747238B2 (ja) * 2012-12-07 2015-07-08 関根 弘一 動き検出用固体撮像装置及び動き検出システム
KR102211899B1 (ko) 2013-11-18 2021-02-03 가부시키가이샤 니콘 고체 촬상 소자 및 촬상 장치
JP6677504B2 (ja) * 2015-12-24 2020-04-08 日本放送協会 撮像装置、撮像方法、画像フレーム読出し制御回路および信号処理装置
JP6736329B2 (ja) * 2016-03-31 2020-08-05 キヤノン株式会社 撮像素子
JP7302471B2 (ja) * 2017-03-28 2023-07-04 株式会社ニコン 撮像素子および電子カメラ
JP7059031B2 (ja) * 2018-02-09 2022-04-25 キヤノン株式会社 撮像装置、撮像システム、移動体
WO2019200831A1 (zh) * 2018-04-16 2019-10-24 西安飞芯电子科技有限公司 一种信号分离方法、像素单元、像素阵列
WO2020061740A1 (zh) 2018-09-25 2020-04-02 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备
JP7439772B2 (ja) * 2019-10-25 2024-02-28 株式会社ニコン 撮像素子及び撮像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119874A (ja) * 1989-10-02 1991-05-22 Hitachi Ltd 画素増幅型固体撮像素子
JPH0946596A (ja) * 1995-08-02 1997-02-14 Canon Inc 固体撮像装置と画像撮像装置
JP2000059696A (ja) * 1998-08-05 2000-02-25 Canon Inc 撮像装置及びそれを用いた撮像システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131708A (ja) 1992-10-19 1994-05-13 Matsushita Electric Ind Co Ltd ニッケルスタンパの製造方法
JPH06334920A (ja) * 1993-03-23 1994-12-02 Nippon Hoso Kyokai <Nhk> 固体撮像素子とその駆動方法
JP4971586B2 (ja) * 2004-09-01 2012-07-11 キヤノン株式会社 固体撮像装置
US7911518B2 (en) * 2005-02-01 2011-03-22 Samsung Electronics Co., Ltd. Variable exposure for color image sensor
JP2007150008A (ja) * 2005-11-29 2007-06-14 Nikon Corp 固体撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119874A (ja) * 1989-10-02 1991-05-22 Hitachi Ltd 画素増幅型固体撮像素子
JPH0946596A (ja) * 1995-08-02 1997-02-14 Canon Inc 固体撮像装置と画像撮像装置
JP2000059696A (ja) * 1998-08-05 2000-02-25 Canon Inc 撮像装置及びそれを用いた撮像システム

Also Published As

Publication number Publication date
US8253836B2 (en) 2012-08-28
KR101574798B1 (ko) 2015-12-04
CN101594491A (zh) 2009-12-02
JP2009290659A (ja) 2009-12-10
US20090295971A1 (en) 2009-12-03
TW200952478A (en) 2009-12-16
KR20090125006A (ko) 2009-12-03
TWI394448B (zh) 2013-04-21
CN101594491B (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4582198B2 (ja) 固体撮像装置、撮像装置、固体撮像装置の駆動方法
US8570416B2 (en) Solid-state imaging apparatus with plural readout modes, and electronic equipment
US7256382B2 (en) Solid state imaging device, method of driving solid state imaging device and image pickup apparatus
JP2009049870A (ja) 固体撮像装置、撮像装置
WO2015072575A1 (ja) 固体撮像素子および撮像装置
CN111133750B (zh) 图像传感器和摄像设备
JP6413401B2 (ja) 固体撮像素子
US8319873B2 (en) Solid-state imaging device
JP2007166486A (ja) 固体撮像装置
JP5906596B2 (ja) 撮像装置
WO2013084808A1 (ja) 固体撮像素子およびその駆動方法、カメラシステム
JP5460342B2 (ja) 固体撮像素子および固体撮像素子の駆動方法
JP6825675B2 (ja) 撮像素子及び撮像装置
JP6217338B2 (ja) 固体撮像素子及び撮像装置
JP6702371B2 (ja) 撮像素子及び撮像装置
JP6600375B2 (ja) 固体撮像素子、撮像装置及びその制御方法、プログラム、記憶媒体
JP6213596B2 (ja) 撮像装置
JP7160129B2 (ja) 撮像素子および撮像装置
JP6053321B2 (ja) 固体撮像装置
JP6375613B2 (ja) 固体撮像素子及び撮像装置
JP7156330B2 (ja) 撮像素子及び撮像装置
JP6798532B2 (ja) 撮像素子及び撮像装置
JP6760907B2 (ja) 撮像素子及び撮像装置
JP2021016201A (ja) 固体撮像素子及び撮像装置
JP2015180005A (ja) 固体撮像素子およびその駆動方法、並びに撮像装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4582198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees