JP4581989B2 - Air passage opening and closing device - Google Patents

Air passage opening and closing device Download PDF

Info

Publication number
JP4581989B2
JP4581989B2 JP2005366215A JP2005366215A JP4581989B2 JP 4581989 B2 JP4581989 B2 JP 4581989B2 JP 2005366215 A JP2005366215 A JP 2005366215A JP 2005366215 A JP2005366215 A JP 2005366215A JP 4581989 B2 JP4581989 B2 JP 4581989B2
Authority
JP
Japan
Prior art keywords
thin plate
plate members
opening
air
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005366215A
Other languages
Japanese (ja)
Other versions
JP2007168522A (en
Inventor
卓也 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005366215A priority Critical patent/JP4581989B2/en
Publication of JP2007168522A publication Critical patent/JP2007168522A/en
Application granted granted Critical
Publication of JP4581989B2 publication Critical patent/JP4581989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、複数枚の薄板部材を空気流れ方向に積層することにより構成された積層式ドア手段によりて空気通路を開閉する空気通路開閉装置に関するもので、車両用空調装置に用いて好適なものである。   The present invention relates to an air passage opening and closing device that opens and closes an air passage by a laminated door means formed by laminating a plurality of thin plate members in the air flow direction, and is suitable for use in a vehicle air conditioner. It is.

従来、車両用空調装置における空気通路開閉装置として、特許文献1には、ドア移動方向の中間部に空気通路を開口する開口部を形成する枠形状部を配置し、この枠形状部の前後両側に空気通路を閉塞する可撓性膜状部材を配置したフレキシブルスライドドアを用いた空気通路開閉装置が記載されている。   Conventionally, as an air passage opening and closing device in a vehicle air conditioner, Patent Document 1 arranges a frame-shaped portion that forms an opening that opens an air passage at an intermediate portion in a door movement direction, and both front and rear sides of the frame-shaped portion. Describes an air passage opening and closing device using a flexible slide door in which a flexible membrane member for closing the air passage is disposed.

この特許文献1によると、一般的な回転式板ドアに比較してドアの回転作動空間が不要となり、空気通路開閉装置の体格を小型化できる。
特開2003−72345号公報
According to this patent document 1, the rotation working space of the door is not required as compared with a general rotary plate door, and the size of the air passage opening and closing device can be reduced.
JP 2003-72345 A

しかし、特許文献1のものでは、枠形状部の前後両側に空気通路の開口を全閉できるだけの大きさを有する可撓性膜状部材を配置するので、この前後両側の可撓性膜状部材を収納する収納空間を空調装置のケース内に設定する必要が生じる。従って、この収納空間の設定に伴う体格の大型化という問題点が残っている。   However, in the thing of patent document 1, since the flexible film-shaped member which has a magnitude | size which can fully close the opening of an air passage is arrange | positioned in the front and back both sides of a frame shape part, the flexible film-shaped member of this front and back both sides It is necessary to set a storage space for storing the air conditioner in the case of the air conditioner. Accordingly, there remains a problem that the size of the physique increases with the setting of the storage space.

本発明は上記点に鑑み、可撓性膜状部材の収納空間に相当するスペースが不要となり、体格を小型化できる空気通路開閉装置を提供することを目的とする。   In view of the above-described points, an object of the present invention is to provide an air passage opening and closing device that does not require a space corresponding to a storage space for a flexible membrane member and that can be downsized.

また、本発明は空気通路開閉装置における異音の発生を低減することを他の目的とする。   Another object of the present invention is to reduce the occurrence of abnormal noise in the air passage opening and closing device.

上記目的を達成するため、請求項1、5、7、8、9に記載の発明では、空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備えること(以下基本構成Kという)を特徴としている。
In order to achieve the above object, according to the first, fifth, seventh, eighth, and ninth aspects of the invention, the direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12). And an air passage opening and closing device for opening and closing the air passages (11, 12) by the door means (30),
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). It is characterized by having windward vibration isolation means (21) for generating a reaction force (hereinafter referred to as basic configuration K) .

これによると、複数枚の薄板部材(31〜34)の開口部(31a〜34a)が空気通路(11、12)の開口部と重合することにより空気通路(11、12)を開口することができ、空気通路(11、12)の全開機能を確保できるとともに、複数枚の薄板部材(31〜34)の通路遮蔽部分(31b〜34c)が階段状にずれた状態(図1(a)参照)で積層されることにより空気通路(11、12)の全閉機能を確保できる。   According to this, the air passages (11, 12) can be opened by the openings (31a-34a) of the plurality of thin plate members (31-34) overlapping with the openings of the air passages (11, 12). The air passages (11, 12) can be fully opened, and the passage shielding portions (31b-34c) of the plurality of thin plate members (31-34) are displaced stepwise (see FIG. 1 (a)). ) To ensure the fully closed function of the air passages (11, 12).

従って、複数枚の薄板部材(31〜34)の個々の通路遮蔽部分(31b〜34c)の長さXは空気通路(11、12)のドア移動方向(b)の開口長さ(L0)に比較して大幅に小さい長さに設定できる。そして、この小さい長さXを有する通路遮蔽部分(31b〜34c)を積層してドア手段(30)の収納(図7参照)を行うことができるから、空気通路開閉装置全体の体格を効果的に小型化できる。   Accordingly, the length X of the individual passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) is set to the opening length (L0) in the door movement direction (b) of the air passages (11, 12). The length can be set to a significantly smaller length. And since the passage shielding part (31b-34c) which has this small length X can be laminated | stacked and a door means (30) can be accommodated (refer FIG. 7), the physique of the whole air passage opening / closing apparatus is effective. Can be downsized.

これに加え、請求項1、5、7、8、9に記載の発明では、複数枚の薄板部材(31〜34)の風上側領域に風上側防振手段(21)を備え、この風上側防振手段(21)により複数枚の薄板部材(31〜34)を風下側へ押しつけて、複数枚の薄板部材(31〜34)に弾性反力を発生するようにしているから、この弾性反力によって複数枚の薄板部材(31〜34)にテンションがかかった状態となる。これにより、薄板部材の振動を抑えることができ、複数枚の薄板部材(31〜34)の振動に起因する異音の発生を抑制できる。 In addition to this, in the inventions according to claims 1, 5, 7, 8, and 9 , the windward vibration isolation means (21) is provided in the windward region of the plurality of thin plate members (31 to 34), and the windward side is provided. Since the plurality of thin plate members (31 to 34) are pressed to the leeward side by the vibration isolating means (21), an elastic reaction force is generated on the plurality of thin plate members (31 to 34). The plurality of thin plate members (31 to 34) are tensioned by the force. Thereby, the vibration of a thin plate member can be suppressed and generation | occurrence | production of the abnormal noise resulting from the vibration of a plurality of thin plate members (31-34) can be suppressed.

そして、複数枚の薄板部材(31〜34)にテンションを持たせて防振を行うから、薄板部材自体の剛性を防振のために特別に高める必要がない。そのため、複数枚の薄板部材(31〜34)を風圧による変形が可能な適度の剛性に設定できるので、複数枚の薄板部材相互間および空気通路(11、12)の開口部側シール面との間を風圧により密着させてシール作用を得る、いわゆる自己シール作用を良好に発揮できる。   Further, since vibration is provided by applying tension to the plurality of thin plate members (31 to 34), it is not necessary to increase the rigidity of the thin plate member itself for vibration prevention. Therefore, the plurality of thin plate members (31 to 34) can be set to an appropriate rigidity that can be deformed by wind pressure, so that the plurality of thin plate members and the air passages (11, 12) with the opening side seal surface A so-called self-sealing action can be satisfactorily exhibited in which a gap is brought into close contact with the wind pressure to obtain a sealing action.

請求項1に記載の発明では、前記基本構成Kに加えて、複数枚の薄板部材(31〜34)の風下側領域に、複数枚の薄板部材(31〜34)の風圧による風下側への変形を所定量以内に規制する風下側防振手段(18)を備えることを特徴としている。 In the invention according to claim 1, in addition to the basic configuration K, the leeward side region of the plurality of thin plate members (31 to 34) is moved to the leeward side by the wind pressure of the plurality of thin plate members (31 to 34). It is characterized by obtaining Bei downwind side vibration isolation means (18) for restricting within a predetermined amount of deformation.

ところで、雰囲気温度が上昇して薄板部材(31〜34)の剛性が低下したり、あるいは空気通路への風量が上昇して風圧が上昇すると、薄板部材(31〜34)が風圧を受けて風下側へ膨らむように大きく変形する。この風下側への大きな膨出変形が生じると、薄板部材(31〜34)が風上側防振手段(21)から離れる場合が生じる。   By the way, when the ambient temperature rises and the rigidity of the thin plate members (31 to 34) decreases, or the air pressure to the air passage increases and the wind pressure rises, the thin plate members (31 to 34) receive wind pressure and leeward. Large deformation to bulge to the side. When this large bulging deformation toward the leeward side occurs, the thin plate members (31 to 34) may be separated from the leeward vibration isolation means (21).

この場合には、風上側防振手段(21)の押しつけ力が消滅して薄板部材(31〜34)の弾性反力も消滅するので、薄板部材(31〜34)の振動が発生しやすくなり、その結果、薄板部材(31〜34)から異音が発生しやすくなる。   In this case, since the pressing force of the windward vibration isolating means (21) disappears and the elastic reaction force of the thin plate members (31 to 34) also disappears, vibration of the thin plate members (31 to 34) is likely to occur. As a result, abnormal noise is likely to be generated from the thin plate members (31 to 34).

これに対し、請求項1に記載の発明では、上記風下側防振手段(18)を備えているから、複数枚の薄板部材(31〜34)の風圧による風下側への大変形を規制できるので、薄板部材(31〜34)の風下側への大変形に基づく振動、異音の発生を良好に抑制できる。 On the other hand, in the invention according to claim 1, since the leeward side vibration isolating means (18) is provided, large deformation of the plurality of thin plate members (31 to 34) toward the leeward side due to the wind pressure can be regulated. Therefore, it is possible to satisfactorily suppress the occurrence of vibration and abnormal noise due to large deformation of the thin plate members (31 to 34) toward the leeward side.

請求項2に記載の発明のように、請求項1に記載の空気通路開閉装置において、風上側防振手段(21)および風下側防振手段(18)は、具体的には、ドア手段(30)の移動方向(b)に沿って延びる板状部材で形成することが好ましい。 As in the second aspect of the invention, in the air passage opening and closing device of the first aspect, the windward side vibration isolating means (21) and the leeward side vibration isolating means (18) are specifically door means ( It is preferable to form a plate-like member extending along the moving direction (b) of 30).

このように、両防振手段(21、18)を板状部材で形成すれば、空気通路(11、12)へ向かう空気流れを板状部材の板面と平行に流すことができるので、両防振手段(21、18)による圧損を僅少量に抑制できるとともに、薄板部材(31〜34)を板状部材の延長方向に沿ってスムースに移動させることができる。   In this way, if both the vibration isolating means (21, 18) are formed of plate-like members, the air flow toward the air passages (11, 12) can flow in parallel with the plate surface of the plate-like members. The pressure loss due to the vibration isolating means (21, 18) can be suppressed to a small amount, and the thin plate members (31 to 34) can be smoothly moved along the extending direction of the plate-like member.

また、請求項3に記載の発明のように、請求項1または2に記載の空気通路開閉装置において、空気流れの風圧が低いときには複数枚の薄板部材(31〜34)が風上側防振手段(21)のみに接触し、空気流れの風圧が所定値以上になると、複数枚の薄板部材(31〜34)が風上側防振手段(21)から離れて風下側防振手段(18)のみに接触するようにしてもよい。 Further, as in the invention described in claim 3, in the air passage opening and closing device according to claim 1 or 2, when the wind pressure of the air flow is low, the plurality of thin plate members (31 to 34) are provided on the windward vibration isolation means. When only the wind pressure of the air flow reaches a predetermined value or more, the plurality of thin plate members (31 to 34) are separated from the windward vibration isolating means (21) and only the leeward vibration isolating means (18). You may make it contact .

このようにすれば、薄板部材(31〜34)が空気流れ前後の2つの防振手段(21、18)に同時に接触することがないから、防振手段設置に伴うドア操作力の増大を抑制できる。   In this way, since the thin plate members (31 to 34) do not contact the two vibration isolating means (21, 18) before and after the air flow at the same time, an increase in door operation force due to the installation of the vibration isolating means is suppressed. it can.

また、請求項4に記載の発明のように、請求項1ないし3のいずれか1つに記載の空気通路開閉装置において、風上側防振手段(21)と風下側防振手段(18)を、ドア移動方向(b)と直交する方向において互いにオフセット配置してもよい。 Moreover, in the air passage opening and closing device according to any one of claims 1 to 3, as in the invention described in claim 4, the windward vibration isolating means (21) and the leeward vibration isolating means (18) are provided. Alternatively, they may be offset from each other in a direction orthogonal to the door movement direction (b) .

このオフセット配置を採用すれば、薄板部材(31〜34)を空気流れ前後の2つの防振手段(21、18)にて同位置にて挟み込むということがなくなるので、ドア操作力の増大を抑制できる。   If this offset arrangement is adopted, the thin plate members (31 to 34) are not sandwiched at the same position by the two antivibration means (21, 18) before and after the air flow, thereby suppressing an increase in the door operating force. it can.

請求項5に記載の発明では、前記基本構成Kに加えて、複数枚の薄板部材(31〜34)のうち、少なくとも1つの薄板部材の隅部に押しつけ力を付与する突起部(32f、33f、34f)を設けることを特徴としている。 In the invention according to claim 5, in addition to the basic configuration K, among the plurality of thin plate members (31 to 34), projections (32f, 33f) that apply a pressing force to the corners of at least one thin plate member. , it is characterized in that kick set the 34f).

薄板部材の積層枚数が増えると、外部から振動が加わった際に複数枚の薄板部材相互間で振動によるバタツキ異音が発生しやすくなるが、請求項5に記載の発明では、上記突起部(32f、33f、34f)の設置により複数枚の薄板部材(31〜34)相互間を密着させて、バタツキ異音の発生を防止できる。
請求項5に記載の発明においても、前記基本構成Kによる作用効果を発揮できることは請求項1に記載の発明と同じである。
When the number of laminated thin plate members increases, fluttering noise due to vibration is likely to occur between a plurality of thin plate members when vibration is applied from the outside. However, in the invention according to claim 5, the protrusion ( 32f, 33f, and 34f) can bring the plurality of thin plate members (31 to 34) into close contact with each other to prevent occurrence of fluttering noise.
The invention according to claim 5 is the same as the invention according to claim 1 in that the function and effect of the basic configuration K can be exhibited.

そして、請求項6に記載の発明のように、請求項5に記載の空気通路開閉装置において、複数枚の薄板部材(31〜34)のうち、突起部(32f、33f、34f)の突きだし方向に積層される薄板部材(31〜34)の隅部に、この薄板部材(31〜34)と突起部(32f、33f、34f)との接触を回避する切り欠き部(31g〜33g)を形成してもよい。 And like invention of Claim 6, in the air passage opening / closing apparatus of Claim 5 , the protrusion direction (32f, 33f, 34f) of the protrusions (32f, 33f, 34f) among the plurality of thin plate members (31-34) Cutout portions (31g to 33g) that avoid contact between the thin plate members (31 to 34) and the projecting portions (32f, 33f, and 34f) are formed at the corners of the thin plate members (31 to 34) that are laminated to each other. May be.

この切り欠き部(31g〜33g)により薄板部材(31〜34)と突起部(32f、33f、34f)との接触を回避できるから、突起部(32f、33f、34f)を設置しても、通路遮蔽部分(31b〜34c)を積層して収納する機能に妨げが生じない。   Since the contact between the thin plate members (31-34) and the projections (32f, 33f, 34f) can be avoided by the notches (31g-33g), even if the projections (32f, 33f, 34f) are installed, There is no hindrance to the function of stacking and storing the passage shielding portions (31b to 34c).

請求項7に記載の発明では、前記基本構成Kに加えて、複数枚の薄板部材(31〜34)のうち、少なくとも1つの薄板部材におけるドア移動方向(b)の端部の中央部付近に押しつけ力を付与する突起部(34g)を設けることを特徴としている。
前述したように薄板部材の積層枚数が増えると、外部から振動が加わった際に複数枚の薄板部材相互間で振動によるバタツキ異音が発生しやすくなるが、請求項7に記載の発明では、上記突起部(34g)の設置により複数枚の薄板部材(31〜34)相互間を密着させて、バタツキ異音の発生を防止できる。
また、請求項7記載の発明においても、前記基本構成Kによる作用効果を発揮できることは請求項1、5に記載の発明と同じである。
In the invention according to claim 7, in addition to the basic configuration K, among the plurality of thin plate members (31 to 34), in the vicinity of the central portion of the end portion of the door movement direction (b) in at least one thin plate member. A protrusion (34g) for applying a pressing force is provided .
As described above, when the number of laminated thin plate members increases, flicker noise due to vibration is likely to occur between a plurality of thin plate members when vibration is applied from the outside.In the invention according to claim 7, By providing the projections (34g), the plurality of thin plate members (31 to 34) can be brought into close contact with each other, and occurrence of fluttering noise can be prevented.
Further, in the invention according to claim 7, it is the same as the invention according to claims 1 and 5 that the function and effect of the basic configuration K can be exhibited.

請求項8に記載の発明では、前記基本構成Kに加えて、空気通路(11、12)の開口部周縁の全周に、複数枚の薄板部材(31〜34)側へ突き出すシールリブ(10c)を形成することを特徴としている。 In the invention according to claim 8, in addition to the basic configuration K, the seal rib (10c) protrudes toward the plurality of thin plate members (31 to 34) on the entire periphery of the opening periphery of the air passage (11, 12). It is characterized by forming .

これによると、薄板部材(31〜34)はシールリブ(10c)の頂部に接触して摺動するから、薄板部材(31〜34)の摺動面積を減少してドア操作力を低減できる。   According to this, since the thin plate members (31 to 34) come into contact with the top of the seal rib (10c) and slide, the sliding area of the thin plate members (31 to 34) can be reduced and the door operating force can be reduced.

しかも、シールリブ(10c)の突きだし高さにより薄板部材(31〜34)と空気通路(11、12)側のハウジング壁面との間に隙間S1(後述の図1、12参照)を形成できる。この隙間S1により上記突起部(32f、33f、34f、34g)の突き出し寸法のばらつきを吸収できる。
また、請求項8記載の発明においても、前記基本構成Kによる作用効果を発揮できることは請求項1、5、7に記載の発明と同じである。
そして、請求項9に記載の発明では、前記基本構成Kに加えて、空気通路(11、12)は、空気流れ方向(a)の風下側領域に位置する第1ハウジング(10)により形成され、空気流れ方向(a)の風上側領域には第2ハウジング(20)が配置され、
複数枚の薄板部材(31〜34)は、第1ハウジング(10)と第2ハウジング(20)との間に移動可能に配置され、
風上側防振手段は、第2ハウジング(20)に設けられて複数枚の薄板部材(31〜34)の移動方向に沿って延びる防振リブ(21)であることを特徴としている。
これにより、前記基本構成Kによる作用効果を発揮でき、更には、防振リブ(21)が風上側の第2ハウジング(20)を補強する補強部材としての役割も果たす。
In addition, a gap S1 (see FIGS. 1 and 12 described later) can be formed between the thin plate members (31 to 34) and the housing wall surface on the air passage (11, 12) side by the protruding height of the seal rib (10c). The gap S1 can absorb variations in the protruding dimensions of the protrusions (32f, 33f, 34f, 34g).
The invention according to claim 8 is the same as the invention according to claims 1, 5, and 7 in that the function and effect of the basic structure K can be exhibited.
In the invention described in claim 9, in addition to the basic structure K, the air passages (11, 12) are formed by the first housing (10) located in the leeward region in the air flow direction (a). The second housing (20) is arranged in the windward area in the air flow direction (a),
The plurality of thin plate members (31 to 34) are arranged movably between the first housing (10) and the second housing (20),
The windward vibration isolation means is a vibration isolation rib (21) provided in the second housing (20) and extending along the moving direction of the plurality of thin plate members (31 to 34).
Thereby, the effect by the said basic structure K can be exhibited, and also the anti-vibration rib (21) also serves as a reinforcing member for reinforcing the second housing (20) on the windward side.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
まず最初に、本実施形態による積層スライドドアを用いた空気通路開閉装置の基本構造を図1〜図7に基づいて説明する。図1(a)は本実施形態による積層スライドドアを用いた空気通路開閉装置を示す概略断面図、図1(b)はその平面展開図である。図2は積層スライドドアの連動手段を例示する断面図である。図3は本実施形態による空気通路開閉装置の概略分解斜視図、図4は本実施形態による積層スライドドアのシール機能を説明する概略分解断面図、図5は本実施形態による積層スライドドアの駆動機構部の軸方向断面図、図6は本実施形態による積層スライドドアの作動パターンの説明図、図7は図1(a)の左側通路遮蔽部分の拡大断面図である。
(First embodiment)
First, the basic structure of the air passage opening and closing apparatus using the laminated slide door according to the present embodiment will be described with reference to FIGS. FIG. 1A is a schematic cross-sectional view showing an air passage opening and closing device using a laminated slide door according to the present embodiment, and FIG. FIG. 2 is a cross-sectional view illustrating the interlocking means of the laminated slide door. 3 is a schematic exploded perspective view of the air passage opening and closing apparatus according to the present embodiment, FIG. 4 is a schematic exploded sectional view illustrating a sealing function of the laminated slide door according to the present embodiment, and FIG. 5 is a drive of the laminated slide door according to the present embodiment. FIG. 6 is an explanatory view of an operation pattern of the laminated slide door according to the present embodiment, and FIG. 7 is an enlarged cross-sectional view of the left passage shielding portion of FIG.

本実施形態による空気通路開閉装置は、図3、図4に示すように、大別して、風下側(空気流れ下流側)に位置する樹脂製の第1ハウジング10と、風上側(空気流れ上流側)に位置する樹脂製の第2ハウジング20と、この第1、第2ハウジング10、20内に収納される積層スライドドア30と、この積層スライドドア30を移動させるための駆動力を積層スライドドア30に与える駆動機構40とにより構成される。   As shown in FIGS. 3 and 4, the air passage opening and closing apparatus according to the present embodiment is roughly divided into a resin-made first housing 10 positioned on the leeward side (air flow downstream side), and the windward side (air flow upstream side). 2) the resin-made second housing 20, the first and second housings 10 and 20, and the driving force for moving the stacked sliding door 30. 30 and a drive mechanism 40 applied to 30.

風下側の第1ハウジング10には第1、第2の2つの空気通路11、12が並んで形成されている。本例では、第1、第2空気通路11、12が同一開口面積の矩形状に形成されている。   The first housing 10 on the leeward side is formed with two first and second air passages 11 and 12 side by side. In this example, the first and second air passages 11 and 12 are formed in a rectangular shape having the same opening area.

積層スライドドア30はこの2つの空気通路11、12の並び方向b、換言すると、空気流れ方向aと交差する方向bに移動して空気通路11、12を開閉するもので、以下、積層スライドドア30の具体的構成について詳述する。   The laminated slide door 30 moves in the direction b in which the two air passages 11 and 12 are arranged, in other words, moves in the direction b intersecting the air flow direction a to open and close the air passages 11 and 12. The specific configuration of 30 will be described in detail.

積層スライドドア30は図1(a)に示すように複数枚の薄板部材31〜34を空気流れ方向aに積層して構成されるもので、本例では4枚の薄板部材31〜34を重ね合わせた4層の積層構造になっている。また、本例では各薄板部材31〜34をある程度の弾性を有する樹脂材にて板厚:0.8mm程度の薄板形状に構成している。   As shown in FIG. 1A, the laminated sliding door 30 is configured by laminating a plurality of thin plate members 31 to 34 in the air flow direction a. In this example, the four thin plate members 31 to 34 are stacked. It has a laminated structure of four layers. Moreover, in this example, each thin plate member 31-34 is comprised in the thin plate shape of about 0.8 mm in plate thickness with the resin material which has a certain amount of elasticity.

なお、薄板部材31〜34の具体的材質としては、例えば、ABS樹脂、PET樹脂(ポリエチレンテレフタレート)、ポリプロピレン等が好適である。   In addition, as a specific material of the thin plate members 31 to 34, for example, ABS resin, PET resin (polyethylene terephthalate), polypropylene, and the like are preferable.

各薄板部材31〜34の基本形状は同一である。すなわち、各薄板部材31〜34は、それぞれ矩形状の開口部31a、32a、33a、34aと、各開口部31a〜34aのドア移動方向bの両側に位置する通路遮蔽部分31b、31c、32b、32c、33b、33c、34b、34cとを有する矩形状になっている。   The basic shapes of the thin plate members 31 to 34 are the same. That is, each of the thin plate members 31 to 34 includes rectangular openings 31a, 32a, 33a, and 34a, and passage shielding portions 31b, 31c, and 32b that are located on both sides in the door movement direction b of each of the openings 31a to 34a. It has a rectangular shape having 32c, 33b, 33c, 34b, and 34c.

なお、図示の例では、各薄板部材31〜34のドア移動方向bの外形寸法La1〜La4の方が幅寸法Y1よりも大きい長方形になっているが、これとは逆に各薄板部材31〜34のドア移動方向bの外形寸法La1〜La4よりも幅寸法Y1の方が大きい長方形であってもよい。   In the illustrated example, the outer dimensions La1 to La4 of the thin plate members 31 to 34 in the door movement direction b are larger than the width Y1, but on the contrary, the thin plate members 31 to 31 are arranged. The rectangular shape whose width dimension Y1 is larger than the external dimensions La1 to La4 in the 34 door movement direction b may be used.

しかし、各薄板部材31〜34の大きさは異なっている。すなわち、各薄板部材31〜34の大きさは空気流れの上流側から下流側へ向かって順番に大きくなっている。つまり、複数枚(4枚)の薄板部材31〜34は、空気流れの上流側から下流側へ向かって小さい方から大きい方へと順番に積層されている。   However, the sizes of the thin plate members 31 to 34 are different. That is, the size of each of the thin plate members 31 to 34 increases in order from the upstream side to the downstream side of the air flow. That is, the plural (four) thin plate members 31 to 34 are stacked in order from the smaller side to the larger side from the upstream side to the downstream side of the air flow.

薄板部材31〜34の大きさに関してより具体的に述べると、各開口部31a〜34aのドア移動方向bの長さLb1〜Lb4は、空気流れの上流側薄板部材31から下流側薄板部材32、33、34へと順番に所定量づつ大きくなっている。一方、通路遮蔽部分31b、31c、32b、32c、33b、33c、34b、34cのドア移動方向bの長さXは基本的には同一寸法に設計する。但し、本例では、後述の理由から、この通路遮蔽部分長さXは連動手段をなす突起部31d〜33eの厚さ相当分だけ微少量づつ異なっている。   More specifically, regarding the size of the thin plate members 31 to 34, the lengths Lb1 to Lb4 of the openings 31a to 34a in the door moving direction b are from the upstream thin plate member 31 to the downstream thin plate member 32 of the air flow, 33 and 34 increase in order by a predetermined amount. On the other hand, the length X in the door movement direction b of the passage shielding portions 31b, 31c, 32b, 32c, 33b, 33c, 34b, and 34c is basically designed to have the same dimension. However, in the present example, for the reasons described later, the passage shielding portion length X is slightly different by an amount corresponding to the thickness of the protrusions 31d to 33e constituting the interlocking means.

上記のごとき寸法関係に設定されているため、各薄板部材31〜34のドア移動方向bの外形寸法La1〜La4は、空気流れの上流側薄板部材31から下流側薄板部材32、33、34へと順番に所定量づつ大きくなっている。   Since the dimensional relationship is set as described above, the outer dimensions La1 to La4 of the thin plate members 31 to 34 in the door movement direction b are changed from the upstream thin plate member 31 to the downstream thin plate members 32, 33, and 34 in the air flow. In order, it increases by a predetermined amount.

各薄板部材31〜34の幅寸法(ドア移動方向bと直交方向の寸法)Y1は同一であり、この薄板部材幅寸法Y1は、第1ハウジング10のシール面10aの幅寸法Y2とほぼ同一である。従って、各開口部31a〜34aの幅寸法も同一である。   The width dimension (dimension in the direction orthogonal to the door movement direction b) Y1 of each of the thin plate members 31 to 34 is the same, and this thin plate member width dimension Y1 is substantially the same as the width dimension Y2 of the seal surface 10a of the first housing 10. is there. Therefore, the width dimensions of the openings 31a to 34a are also the same.

ここで、シール面10aは第1ハウジング10のうち第1、第2空気通路11、12の上流開口端の周縁部に形成される壁面であって、このシール面10aは具体的には後述の図3、図4に示すように風下側へ向かって凸となる円弧状に形成されている。   Here, the seal surface 10a is a wall surface formed at the peripheral edge portion of the upstream opening end of the first and second air passages 11 and 12 in the first housing 10, and this seal surface 10a is specifically described later. As shown in FIG. 3 and FIG. 4, it is formed in an arc shape that is convex toward the leeward side.

なお、以下の説明では、各薄板部材31〜34を区分する名称として、空気流れの上流側から下流側へ向かって第1層〜第4層という名称を付す。従って、第1層薄板部材31は最上流部に位置する最小薄板部材であり、第4層薄板部材34は最下流部に位置する最大薄板部材である。   In addition, in the following description, the names of the first layer to the fourth layer are given from the upstream side to the downstream side of the air flow as names for classifying the thin plate members 31 to 34. Accordingly, the first layer thin plate member 31 is the smallest thin plate member located in the most upstream portion, and the fourth layer thin plate member 34 is the largest thin plate member located in the most downstream portion.

第1層薄板部材31の開口部31a、すなわち、最小の開口部31aの開口面積は、第1空気通路11または第2空気通路12を全開できる大きさに設定されている。このため、第1層薄板部材31の開口部31aのドア移動方向bの長さLb1は、第1空気通路11または第2空気通路12のドア移動方向bの長さL0に両通路11、12間の間隔Wを加えた大きさ(Lb1=L0+W)になっている。   The opening 31a of the first layer thin plate member 31, that is, the opening area of the smallest opening 31a is set to a size that allows the first air passage 11 or the second air passage 12 to be fully opened. Therefore, the length Lb1 of the opening 31a of the first layer thin plate member 31 in the door movement direction b is equal to the length L0 of the first air passage 11 or the second air passage 12 in the door movement direction b. It is the size (Lb1 = L0 + W) with the interval W between them added.

ところで、第1層薄板部材31に駆動機構40から駆動力を加えて、第1層薄板部材31をドア移動方向bに移動させるようになっており、この第1層薄板部材31の移動に連動して、第2層〜第4層薄板部材32、33、34を順次連動して移動させるようになっている。   By the way, a driving force is applied to the first layer thin plate member 31 from the drive mechanism 40 to move the first layer thin plate member 31 in the door moving direction b, and interlocked with the movement of the first layer thin plate member 31. The second to fourth layer thin plate members 32, 33, and 34 are sequentially moved in conjunction with each other.

この第1層〜第4層薄板部材31〜34を連動させる連動手段を図2により説明すると、この連動手段は、第1層〜第3層薄板部材31〜33の開口部31a〜33aのドア移動方向bの前後両端部に設けられた突起部31d、31e、32d、32e、33d、33eにより構成される。この突起部31d〜33eは具体的には射出成形にて第1層〜第3層薄板部材31〜33に一体成形できる。   The interlocking means for interlocking the first to fourth layer thin plate members 31 to 34 will be described with reference to FIG. 2. This interlocking means is the door of the openings 31 a to 33 a of the first layer to third layer thin plate members 31 to 33. It is comprised by the projection parts 31d, 31e, 32d, 32e, 33d, 33e provided in the front-back both ends of the moving direction b. Specifically, the protrusions 31d to 33e can be integrally formed with the first to third layer thin plate members 31 to 33 by injection molding.

この突起部31d〜33eは、第1層〜第3層薄板部材31〜33の板面からL字状の曲げ形状にて風下側の薄板部材32〜34の開口部32a〜34aの内側へ突き出すようになっている。   The protrusions 31d to 33e protrude from the plate surfaces of the first layer to third layer thin plate members 31 to 33 to the inside of the openings 32a to 34a of the leeward thin plate members 32 to 34 in an L-shaped bent shape. It is like that.

これにより、図2の状態から第1層薄板部材31がドア移動方向bの右側または左側へ移動して、第1層薄板部材31の突起部31dまたは31eが第2層薄板部材32の開口部32aのドア移動方向bの端面に接触すると、第1層薄板部材31と第2層薄板部材32がドア移動方向bの右側または左側へ一緒に移動することができる。   As a result, the first layer thin plate member 31 moves from the state of FIG. 2 to the right or left side of the door movement direction b, and the protrusion 31d or 31e of the first layer thin plate member 31 is the opening of the second layer thin plate member 32. When contacting the end face of the door moving direction b of 32a, the first layer thin plate member 31 and the second layer thin plate member 32 can move together to the right or left side of the door moving direction b.

同様に、第2層薄板部材32の突起部32dまたは32eが第3層薄板部材33の開口部33aのドア移動方向bの端面に接触すると、第1〜第3層薄板部材31、32、33がドア移動方向bに一緒に移動することができる。   Similarly, when the protruding portion 32d or 32e of the second layer thin plate member 32 comes into contact with the end surface of the opening 33a of the third layer thin plate member 33 in the door movement direction b, the first to third layer thin plate members 31, 32, 33 are arranged. Can move together in the door movement direction b.

そして、第3層薄板部材33の突起部33dまたは33eが第4層薄板部材34の開口部34aのドア移動方向bの端面に接触すると、第1〜第4層薄板部材31、32、33、34がドア移動方向bに一緒に移動することができる。   When the protrusion 33d or 33e of the third layer thin plate member 33 comes into contact with the end surface of the opening 34a of the fourth layer thin plate member 34 in the door movement direction b, the first to fourth layer thin plate members 31, 32, 33, 34 can move together in the door movement direction b.

図6の状態(2)は、第1層薄板部材31の右側突起部31eが第2層薄板部材32の開口部32aのドア移動方向bの右側端面に接触して、第1層、第2層薄板部材31、3がドア移動方向bの右側へ一緒に移動を開始する状態である。   In the state (2) of FIG. 6, the right protrusion 31 e of the first layer thin plate member 31 contacts the right end surface of the opening 32 a of the second layer thin plate member 32 in the door movement direction b, and the first layer, second layer This is a state where the layered thin plate members 31 and 3 start moving together to the right in the door movement direction b.

この図6の状態(2)では、第1層薄板部材31の一端側(図示左側)の通路遮蔽部分31bが第2層薄板部材32の一端側(図示左側)の通路遮蔽部分32bとの間で所定の重合寸法Aを確保するとともに、第1層薄板部材31の一端側(図示左側)の通路遮蔽部分31bにより第2層薄板部材32の開口部32aの一端側(図示左側)の所定領域(斜線部B)を遮蔽したときに、第1層薄板部材31の他端側(図示右側)の先端部が第2層薄板部材32の他端側(図示右側)の先端部と同一位置となる。   In the state (2) of FIG. 6, the passage shielding portion 31b on one end side (the left side in the drawing) of the first layer thin plate member 31 is between the passage shielding portion 32b on the one end side (the left side in the drawing) of the second layer thin plate member 32. And a predetermined area on one end side (the left side in the drawing) of the opening 32a of the second layer thin plate member 32 by the passage shielding portion 31b on the one end side (the left side in the drawing) of the first layer thin plate member 31. When the (shaded portion B) is shielded, the tip of the first layer thin plate member 31 on the other end side (right side in the drawing) is in the same position as the tip of the other layer side of the second layer thin plate member 32 (right side in the drawing). Become.

このような位置関係を満足するように、第1層薄板部材31と第2層薄板部材32のドア移動方向bの外形寸法La1、La2の寸法差および開口部31a、32aの長さLb1、Lb2の寸法差が設定されている。   In order to satisfy such a positional relationship, the difference between the outer dimensions La1 and La2 in the door moving direction b between the first layer thin plate member 31 and the second layer thin plate member 32 and the lengths Lb1 and Lb2 of the openings 31a and 32a. Dimensional difference is set.

図6の状態(3)は、第1層〜第3層薄板部材31〜33がドア移動方向bの右側へ一緒に移動を開始する状態であり、この状態では、第1層〜第3層薄板部材31〜33の右側端部(図1の他端側端部)が同一位置となるように、第1層〜第3層薄板部材31〜33の外形寸法および開口部長さの寸法差が設定されている。   The state (3) in FIG. 6 is a state in which the first to third layer thin plate members 31 to 33 start moving together to the right in the door movement direction b, and in this state, the first layer to the third layer. The dimensional differences between the outer dimensions and the opening lengths of the first to third layer thin plate members 31 to 33 are set so that the right end portions (the other end side end portions in FIG. 1) of the thin plate members 31 to 33 are at the same position. Is set.

図6の状態(4)は、第1層〜第4層薄板部材31〜34がドア移動方向bの右側へ一緒に移動を開始する状態であり、この状態では、第1層〜第4層薄板部材31〜34の右側端部(図1の他端側端部)が同一位置となるように、第1層〜第4層薄板部材31の外形寸法および開口部長さの寸法差が設定されている。   The state (4) in FIG. 6 is a state in which the first to fourth layer thin plate members 31 to 34 start moving together to the right in the door movement direction b, and in this state, the first layer to the fourth layer. The dimensional difference between the outer dimensions and the opening lengths of the first to fourth layer thin plate members 31 is set so that the right end portions (the other end portion in FIG. 1) of the thin plate members 31 to 34 are in the same position. ing.

なお、図6では、ケース10側および薄板部材31〜34側の通路遮蔽部分をわかりやすくするために細点を付している。   In addition, in FIG. 6, in order to make it easy to understand the passage shielding part on the case 10 side and the thin plate members 31 to 34 side, fine dots are given.

図1および図6の状態(1)は薄板部材31〜34により第1空気通路11を全開して第2空気通路12を全閉している状態を示している。この状態では、第2空気通路12は図1(a)に示す通り、薄板部材31〜34の右側通路遮蔽部分31c、32c、33c、34cが階段状にずれた状態で積層されることにより、全閉される。   The state (1) of FIGS. 1 and 6 shows a state in which the first air passage 11 is fully opened and the second air passage 12 is fully closed by the thin plate members 31 to 34. In this state, as shown in FIG. 1A, the second air passage 12 is laminated in a state where the right passage shielding portions 31c, 32c, 33c, 34c of the thin plate members 31 to 34 are shifted in a stepped manner, Fully closed.

ここで、各通路遮蔽部分31c、32c、33c、34c相互間および最下流の通路遮蔽部分34cとハウジング側ケース面10aとの間に所定の重合寸法Aを設定して、第2空気通路12の全閉状態を保証するようにしている。この重合寸法Aは例えば5mm程度である。   Here, a predetermined overlapping dimension A is set between the passage shielding portions 31c, 32c, 33c, 34c and between the downstream-most passage shielding portion 34c and the housing-side case surface 10a, so that the second air passage 12 The fully closed state is guaranteed. The polymerization dimension A is, for example, about 5 mm.

上記した第1層〜第4層薄板部材31〜34の外形寸法La1〜La4の寸法差および各開口部31a〜34aの長さLb1〜Lb2の寸法差は、基本的には、各通路遮蔽部分31b、31c〜34b、34cの長さXと重合寸法Aとの差(X−A)である。   Basically, the dimensional differences of the outer dimensions La1 to La4 of the first to fourth thin plate members 31 to 34 and the dimensional differences of the lengths Lb1 to Lb2 of the openings 31a to 34a are basically the passage shielding portions. This is the difference (X−A) between the length X of 31b, 31c to 34b, 34c and the polymerization dimension A.

但し、本例では、図1および図6(1)に示す第1空気通路11の全開状態において、第1層〜第4層薄板部材31〜34の一端側(左側)先端位置を揃えるため、第1層〜第4層薄板部材31〜34の一端側(左側)通路遮蔽部分31b、32b、33b、34bの長さXを、図1(a)、図7の断面形状部に示すように、突起部31d、32d、33dの板厚t相当分の微小量づつ、第1層通路遮蔽部分31bから第4層通路遮蔽部分34bへと順次小さくしている。   However, in this example, in the fully open state of the first air passage 11 shown in FIG. 1 and FIG. 6 (1), the one end side (left side) tip positions of the first to fourth layer thin plate members 31 to 34 are aligned, The length X of one end side (left side) passage shielding portion 31b, 32b, 33b, 34b of the first to fourth layer thin plate members 31 to 34 is shown in the cross-sectional shape portion of FIG. 1 (a) and FIG. The projections 31d, 32d, and 33d are gradually reduced from the first layer passage shielding portion 31b to the fourth layer passage shielding portion 34b by a minute amount corresponding to the plate thickness t.

同様に、図6(5)に示す第2空気通路12の全開状態において、第1層〜第4層薄板部材31〜34の他端側(右側)先端位置を揃えるため、第1層〜第4層薄板部材31〜34の他端側(右側)通路遮蔽部分31c、32c、33c、34cの長さXを突起部31e、32e、33eの板厚t相当分の微小量づつ、第1層通路遮蔽部分31cから第4層通路遮蔽部分34cへと順次小さくしている。突起部31d〜33eの板厚tは、駆動力を確実に伝達するため、本例では、薄板部材31〜34の板厚よりも大きい寸法、例えば1.5mm程度に設定している。   Similarly, in the fully open state of the second air passage 12 shown in FIG. 6 (5), the first layer to the fourth layer are arranged in order to align the tip positions of the other layer side (right side) of the first to fourth layer thin plate members 31 to 34. The length of the other end side (right side) passage shielding portions 31c, 32c, 33c, and 34c of the four-layer thin plate members 31 to 34 is set to the first layer by a minute amount corresponding to the plate thickness t of the protruding portions 31e, 32e, and 33e. The passage shielding portion 31c is sequentially reduced from the fourth layer passage shielding portion 34c. In this example, the plate thickness t of the protrusions 31d to 33e is set to be larger than the plate thickness of the thin plate members 31 to 34, for example, about 1.5 mm, in order to reliably transmit the driving force.

このように、第1層〜第4層薄板部材31〜34の通路遮蔽部分長さXが微小量づつ異なっているので、上記寸法差(X−A)も実際には各薄板部材31〜34ごとに微小量づつ異なる。   Thus, since the passage shielding portion lengths X of the first to fourth layer thin plate members 31 to 34 are different by a minute amount, the dimensional difference (X-A) is also actually different from each of the thin plate members 31 to 34. Every minute differs by a minute amount.

ところで、第1ハウジング10のシール面10aのうち、第1、第2空気通路11、12の中間部(間隔Wの部分)には、第1〜第4層薄板部材31〜34の各開口部31a〜34aの内側方向へ突き出す突出シール面10b(図1参照)が形成されている。この突出シール面10bは、図1(a)に示すように第1層薄板部材31の突起部31d、31eが接触する位置まで突き出している。   By the way, each opening part of the 1st-4th layer thin plate members 31-34 is in the intermediate part (part of the space | interval W) of the 1st, 2nd air passages 11 and 12 among the sealing surfaces 10a of the 1st housing 10. FIG. A protruding sealing surface 10b (see FIG. 1) is formed to protrude inward of 31a to 34a. As shown in FIG. 1A, the protruding seal surface 10b protrudes to a position where the projections 31d and 31e of the first layer thin plate member 31 are in contact with each other.

図1(a)の例では、突出シール面10bの先端部が第1層薄板部材31の突起部31d、31eの付け根部に達するように、突出シール面10bの高さを設定している。   In the example of FIG. 1A, the height of the projecting seal surface 10b is set so that the tip of the projecting seal surface 10b reaches the base of the projections 31d and 31e of the first layer thin plate member 31.

次に、図3〜図5により積層スライドドア30の駆動機構40、組付構造、シール構造等を具体的に説明する。なお、図3〜図5は、第1、第2ハウジング10、20の配置を図1と上下逆に配置した状態で図示しているので、空気流れ方向aが上方から下方へ向かう方向になっている。   Next, the drive mechanism 40, the assembly structure, the seal structure, and the like of the laminated slide door 30 will be specifically described with reference to FIGS. 3 to 5 show the arrangement of the first and second housings 10 and 20 upside down with respect to FIG. 1, the air flow direction a is a direction from the upper side to the lower side. ing.

駆動機構40は、本例では、駆動軸41と、この駆動軸41の軸方向において第1層開口部31aの幅寸法相当の所定間隔を隔てて一体に設けられた2つの駆動側歯車42と、第1層薄板部材31に設けられた従動側歯車43とから構成される。   In this example, the drive mechanism 40 includes a drive shaft 41 and two drive-side gears 42 that are integrally provided at a predetermined interval corresponding to the width dimension of the first layer opening 31a in the axial direction of the drive shaft 41. The driven gear 43 is provided on the first layer thin plate member 31.

従動側歯車43は、第1層薄板部材31において開口部31aの幅方向両側の周縁部にドア移動方向bに沿って延びるように形成された直線状の歯車(ラック)であって、従動側歯車43は第1層薄板部材31に樹脂で一体成形されている。駆動側歯車42はこの直線状の従動側歯車43に噛み合う円形歯車(ピニオン)である。駆動軸41は樹脂製であるので、駆動側歯車42も駆動軸41に樹脂で一体成形されている。   The driven gear 43 is a linear gear (rack) formed on the first layer thin plate member 31 so as to extend along the door movement direction b at the peripheral edges on both sides in the width direction of the opening 31a. The gear 43 is integrally formed with the first layer thin plate member 31 with resin. The drive side gear 42 is a circular gear (pinion) that meshes with the linear driven side gear 43. Since the drive shaft 41 is made of resin, the drive side gear 42 is also integrally formed on the drive shaft 41 with resin.

風上側の第2ハウジング20には、駆動軸41の軸方向(ドア移動方向bと直交する方向)の中間部に、ドア移動方向bに沿って延びる板状中間壁面からなる防振リブ21が一体に成形されている。この防振リブ21は本発明の風上側防振手段を構成するもので、第1層薄板部材31の通路遮蔽部分31b、31cを第1ハウジング10のシール面10a側に押さえ付け、弾性反力(テンション)を発生させる。   In the second housing 20 on the windward side, a vibration isolation rib 21 made of a plate-shaped intermediate wall surface extending along the door movement direction b is provided at an intermediate portion in the axial direction of the drive shaft 41 (direction orthogonal to the door movement direction b). It is molded integrally. This anti-vibration rib 21 constitutes the windward anti-vibration means of the present invention, and the passage shielding portions 31b and 31c of the first layer thin plate member 31 are pressed against the seal surface 10a side of the first housing 10 to provide an elastic reaction force. (Tension) is generated.

これにより、第1〜第4層薄板部材31〜34の通路遮蔽部分31b、31c〜34b、34cがばたつくことを防止するとともに、通路遮蔽部分31b、31c〜34b、34c相互間の密着性を向上して積層スライドドア30のシール性を高める。また、防振リブ21は第2ハウジング20を補強する補強壁面としての役割も果たす。   This prevents the passage shielding portions 31b, 31c to 34b and 34c of the first to fourth layer thin plate members 31 to 34 from flapping and improves the adhesion between the passage shielding portions 31b, 31c to 34b and 34c. Thus, the sealing performance of the laminated slide door 30 is enhanced. Further, the vibration isolating rib 21 also serves as a reinforcing wall surface that reinforces the second housing 20.

図3に示すように第1、第2ハウジング10、20のドア移動方向bに沿って延びる壁面13、14、22、23にそれぞれU形状の溝部15、16、24、25を形成し、そして、図5に示すように第2ハウジング20の壁面22、23を第1ハウジング10の壁面13、14の内側に嵌合する。   As shown in FIG. 3, U-shaped grooves 15, 16, 24, 25 are formed on the wall surfaces 13, 14, 22, 23 extending along the door movement direction b of the first and second housings 10, 20, respectively, and As shown in FIG. 5, the wall surfaces 22 and 23 of the second housing 20 are fitted inside the wall surfaces 13 and 14 of the first housing 10.

これにより、第1ハウジング10のU形状溝部15、16と第2ハウジング20のU形状溝部24、25とを組み合わせて、駆動軸41の軸方向両端部を回転可能に支持する軸受け部44、45(図5)が構成される。また、第2ハウジング20の防振リブ21にも駆動軸41との干渉を回避するU形状溝部26が形成されている。   Accordingly, the U-shaped groove portions 15 and 16 of the first housing 10 and the U-shaped groove portions 24 and 25 of the second housing 20 are combined, and the bearing portions 44 and 45 that rotatably support both axial ends of the drive shaft 41. (FIG. 5) is configured. In addition, a U-shaped groove portion 26 that avoids interference with the drive shaft 41 is also formed in the vibration isolation rib 21 of the second housing 20.

なお、本例では、第2ハウジング20の壁面22、23の外側面にそれぞれ外側へ突き出す複数の取付爪片27を一体成形し、第1ハウジング10の壁面13、14にはそれぞれ、この取付爪片27を嵌合係止できる複数の取付穴17を開けている。   In this example, a plurality of attachment claw pieces 27 protruding outward are respectively formed on the outer surfaces of the wall surfaces 22 and 23 of the second housing 20, and the attachment claws are respectively formed on the wall surfaces 13 and 14 of the first housing 10. A plurality of mounting holes 17 that can fit and lock the pieces 27 are formed.

このため、第2ハウジング20の壁面22、23を第1ハウジング10の壁面13、14の内側へ嵌合し、第2ハウジング20の壁面22、23の複数の取付爪片27を第1ハウジング10の壁面13、14の複数の取付穴17に嵌合係止することにより、第1ハウジング10と第2ハウジング20とを一体に組み付けることができる。   For this reason, the wall surfaces 22 and 23 of the second housing 20 are fitted inside the wall surfaces 13 and 14 of the first housing 10, and the plurality of mounting claw pieces 27 of the wall surfaces 22 and 23 of the second housing 20 are connected to the first housing 10. The first housing 10 and the second housing 20 can be assembled together by fitting and locking in the plurality of mounting holes 17 of the wall surfaces 13 and 14.

この両ハウジング10、20の組付により、駆動軸41の駆動側歯車42および第2ハウジング20の防振リブ21と、第1ハウジング10の円弧状シール面10aとの間で積層スライドドア30(第1〜第4層薄板部材31〜34)を弾性的に挟み込み支持する。図5はこの挟み込み支持構造を示している。   By assembling both the housings 10, 20, the laminated sliding door 30 (between the drive side gear 42 of the drive shaft 41 and the vibration isolation rib 21 of the second housing 20 and the arcuate seal surface 10 a of the first housing 10) The first to fourth layer thin plate members 31 to 34) are elastically sandwiched and supported. FIG. 5 shows this sandwiching support structure.

この挟み込み支持構造をより具体的に説明すると、第1層薄板部材31は開口部31aの両側に直線状の従動側歯車43による厚肉部が形成されるので、第1層薄板部材31の剛性は第2〜第4層薄板部材32、33、34の剛性よりも高くなる。   This sandwiching support structure will be described more specifically. Since the first layer thin plate member 31 is formed with thick portions by the linear driven gear 43 on both sides of the opening 31a, the rigidity of the first layer thin plate member 31 is increased. Becomes higher than the rigidity of the second to fourth layer thin plate members 32, 33 and 34.

そして、両ハウジング10、20の間に形成される軸受け部44、45にて駆動軸41を挟み込んだ際に、駆動軸41から駆動側歯車42と従動側歯車43との噛み合い部を経て第1層薄板部材31に第1ハウジング10の円弧状シール面10a側への押し付け力が加わるように駆動軸41の組付位置を設定する。   When the drive shaft 41 is sandwiched between the bearing portions 44 and 45 formed between the housings 10 and 20, the first through the meshing portion of the drive side gear 42 and the driven side gear 43 from the drive shaft 41. The assembly position of the drive shaft 41 is set so that a pressing force to the laminar plate member 31 toward the arcuate seal surface 10a side of the first housing 10 is applied.

これにより、剛性の高い第1層薄板部材31から剛性の低い第2〜第4層薄板部材32、33、34側へ押し付け力を効果的に加えることができる。ここで、第2〜第4層薄板部材32、33、34は、図4に2点鎖線で図示するように第1ハウジング10の円弧状シール面10aの曲率半径より大きい曲率半径を有する円弧状あるいは平板状(曲率半径が無限大)に予め成形してある。   Thereby, the pressing force can be effectively applied from the first layer thin plate member 31 having high rigidity to the second to fourth layer thin plate members 32, 33, and 34 having low rigidity. Here, the second to fourth layer thin plate members 32, 33, 34 are arc-shaped having a radius of curvature larger than the radius of curvature of the arc-shaped sealing surface 10 a of the first housing 10 as shown by a two-dot chain line in FIG. 4. Or it shape | molds previously in flat form (a curvature radius is infinite).

そのため、第1層薄板部材31からの押し付け力Faによって第2〜第4層薄板部材32、33、34の両端部分(通路遮蔽部分)にはハウジング側ケース面10aへの押し付け力Fbが作用して、第2〜第4層薄板部材32、33、34がハウジング側ケース面10aの円弧状に沿うように弾性変形するようになっている。   For this reason, the pressing force Fa from the first layer thin plate member 31 causes the pressing force Fb to the housing side case surface 10a to act on both end portions (passage shielding portions) of the second to fourth layer thin plate members 32, 33 and 34. Thus, the second to fourth layer thin plate members 32, 33, 34 are elastically deformed along the arc shape of the housing-side case surface 10a.

この際に第1薄板部材31から第4層薄板部材31へと順番に大きくし、最大の第4層薄板部材31がハウジング側ケース面10a上に配置されているから、薄板部材両端部分への押し付け力Fbを第1薄板部材31から第2〜第4層薄板部材32、33、34相互の接触部に良好に加えることができる。   At this time, the first thin plate member 31 is sequentially increased from the fourth thin plate member 31 and the largest fourth layer thin plate member 31 is disposed on the housing side case surface 10a. The pressing force Fb can be favorably applied from the first thin plate member 31 to the contact portion between the second to fourth layer thin plate members 32, 33, and 34.

第1層薄板部材31は従動側歯車43を有する剛性の高い部材であるので、第1ハウジング10の円弧状シール面10aの曲率半径と近似した曲率半径を有する円弧状に予め成形してある。従って、第1層薄板部材31の曲率半径が第2〜第4層薄板部材32、33、34の曲率半径より小さいという関係になっている。   Since the first layer thin plate member 31 is a highly rigid member having the driven gear 43, it is pre-shaped into an arc shape having a curvature radius approximate to the curvature radius of the arc-shaped sealing surface 10a of the first housing 10. Therefore, the curvature radius of the first layer thin plate member 31 is smaller than the curvature radii of the second to fourth layer thin plate members 32, 33 and 34.

そして、第2〜第4層薄板部材32、33、34の上記弾性変形に伴って第2〜第4層薄板部材32、33、34の中央部(開口部32a、33a、34aの形成部位)では、逆方向の弾性反力Fcが第1層薄板部材31に作用する。この弾性反力Fcにより歯車42、43の噛み合い部のバックラッシュを低減できる。   And the center part (formation site | part of opening part 32a, 33a, 34a) of the 2nd-4th layer thin plate member 32, 33, 34 with the said elastic deformation of the 2nd-4th layer thin plate member 32, 33, 34 Then, the elastic reaction force Fc in the reverse direction acts on the first layer thin plate member 31. This elastic reaction force Fc can reduce backlash at the meshing portions of the gears 42 and 43.

駆動軸41の軸方向の一端部41a、本例では、図5の右側端部41aをハウジング10、20の外部へ突き出して、この突出端部41aにサーボモータ等の駆動源(図示せず)を連結用歯車機構、あるいはリンク機構等を介して連結し、この駆動源の回転動力を駆動軸41に伝達するようになっている。なお、サーボモータ等の駆動源の代わりに、手動操作機構を設けて、この手動操作機構の手動操作力によって駆動軸41を回転させるようにしてもよい。   One end portion 41a in the axial direction of the drive shaft 41, in this example, the right end portion 41a in FIG. 5 protrudes to the outside of the housings 10 and 20, and a drive source (not shown) such as a servo motor is projected to the protruding end portion 41a. Are coupled via a coupling gear mechanism, a link mechanism or the like, and the rotational power of this drive source is transmitted to the drive shaft 41. Note that a manual operation mechanism may be provided instead of a drive source such as a servo motor, and the drive shaft 41 may be rotated by a manual operation force of the manual operation mechanism.

駆動軸41の軸方向の両側に段差部41b(図5)を形成し、この段差部41bを第2ハウジング20の壁面22、23の内側面に当てることにより、駆動軸41の軸方向の組付位置を規定するようになっている。   A stepped portion 41b (FIG. 5) is formed on both sides of the drive shaft 41 in the axial direction, and the stepped portion 41b is applied to the inner side surfaces of the wall surfaces 22 and 23 of the second housing 20 to thereby set the drive shaft 41 in the axial direction. The attachment position is specified.

次に、上記構成において本実施形態の作動を説明する。図示しない駆動源の回転動力により駆動機構40の駆動軸41が回転すると、駆動軸41の駆動側歯車42と第1層薄板部材31の従動側歯車43との噛み合いによって第1層薄板部材31がドア移動方向b(第1、第2空気通路11、12の並び方向)へ移動する。   Next, the operation of this embodiment in the above configuration will be described. When the drive shaft 41 of the drive mechanism 40 is rotated by the rotational power of a drive source (not shown), the first layer thin plate member 31 is engaged with the drive side gear 42 of the drive shaft 41 and the driven gear 43 of the first layer thin plate member 31. It moves in the door movement direction b (the direction in which the first and second air passages 11 and 12 are arranged).

図1および図6の状態(1)は、積層スライドドア30を構成する第1〜第4層薄板部材31〜34の全部がドア移動方向bの一端側位置(左側位置)に移動している状態である。この状態(1)では、図1(a)に示す通り各薄板部材31〜34の各開口部31a〜34aの一端側位置(左側位置)が一致することにより、第1空気通路11が全開される。   In the state (1) of FIGS. 1 and 6, all of the first to fourth layer thin plate members 31 to 34 constituting the laminated slide door 30 are moved to one end side position (left side position) in the door movement direction b. State. In this state (1), as shown in FIG. 1 (a), the first air passage 11 is fully opened when the one end side positions (left side positions) of the openings 31a to 34a of the thin plate members 31 to 34 match. The

一方、第2空気通路12側には各薄板部材31〜34の他端側(右側)の通路遮蔽部分31c、32c、33c、34cが所定寸法Aの重合部をもって階段状にずれて配置され、第2空気通路12を全閉する。   On the other hand, on the second air passage 12 side, the passage shielding portions 31c, 32c, 33c, and 34c on the other end side (right side) of the thin plate members 31 to 34 are arranged in a stepped manner with overlapping portions of a predetermined dimension A, The second air passage 12 is fully closed.

このとき、第1〜第3層薄板部材31〜33の一端側の突起部31d、32d、33dは、図1(a)に示す通り第2〜第4層薄板部材32〜34の開口部32a〜34aの一端側(左側)に集中している。これに反し、第1〜第3層薄板部材31〜33の他端側(右側)の突起部31e、32e、33eは、第2層〜第4層薄板部材32〜34の開口部32a〜34aの他端側(右側)に対して所定量(X−A)だけ離れている。   At this time, the protrusions 31d, 32d, and 33d on one end side of the first to third layer thin plate members 31 to 33 are open portions 32a of the second to fourth layer thin plate members 32 to 34 as shown in FIG. Are concentrated on one end side (left side) of .about.34a. On the other hand, the protrusions 31e, 32e, 33e on the other end side (right side) of the first to third layer thin plate members 31 to 33 are openings 32a to 34a of the second layer to fourth layer thin plate members 32 to 34, respectively. Is separated from the other end side (right side) by a predetermined amount (X-A).

このため、第1層薄板部材31がドア移動方向bの右側へ所定量(X−A)移動するごとに、右側の突起部31e、32e、33eの連動作用が生じて第1層薄板部材31と連動してドア移動方向bの右側へ移動する薄板部材の数が順番に増える。   For this reason, every time the first layer thin plate member 31 moves a predetermined amount (XA) to the right in the door movement direction b, the interlocking action of the right protrusions 31e, 32e, 33e occurs, and the first layer thin plate member 31 is moved. The number of thin plate members that move to the right side in the door movement direction b in conjunction with the number increases in order.

これにより、図6の状態(1)から状態(2)→状態(3)→状態(4)→状態(5)と第1、第2空気通路11、12の開口範囲が変化し、図6の状態(5)では第1空気通路11が全閉され、第2空気通路12が全開される。   As a result, the opening range of the first and second air passages 11 and 12 changes from the state (1) in FIG. 6 to the state (2) → the state (3) → the state (4) → the state (5). In the state (5), the first air passage 11 is fully closed and the second air passage 12 is fully opened.

なお、図6の最下段の第1、第2空気通路11、12の開口範囲における斜線部は、第1〜第4層薄板部材31〜34の通路遮蔽部分31b〜34cによる遮蔽領域で、白抜き部は第1層薄板部材31の開口部31aの移動位置により決まる通路開口領域である。   The hatched portions in the opening ranges of the first and second air passages 11 and 12 in the lowermost stage in FIG. 6 are shielding regions by the passage shielding portions 31b to 34c of the first to fourth layer thin plate members 31 to 34, and are white. The cut-out portion is a passage opening region determined by the moving position of the opening 31 a of the first layer thin plate member 31.

上記説明は、図6の状態(1)から状態(5)へ向かって第1〜第4層薄板部材31〜34がドア移動方向bの右側へ移動する場合であるが、図6の状態(5)から状態(1)へ向かって第1〜第4層薄板部材31〜34がドア移動方向bの左側へ移動する場合は、第1〜第3層薄板部材31〜33の一端側(左側)の突起部31d、32d、33dにより第1〜第4層薄板部材31〜34がドア移動方向bの左側へ向かって順番に連動して移動する。これにより、図6の状態(5)から状態(1)へ向かって第1、第2空気通路11、12の開口範囲が変化する。   Although the said description is a case where the 1st-4th layer thin plate members 31-34 move to the right side of the door moving direction b toward the state (5) from the state (1) of FIG. 5) When the first to fourth layer thin plate members 31 to 34 move to the left side in the door movement direction b from the state (1) to the state (1), one end side (left side) of the first to third layer thin plate members 31 to 33 ), The first to fourth layer thin plate members 31 to 34 are sequentially moved toward the left side in the door movement direction b. Thereby, the opening range of the 1st, 2nd air passages 11 and 12 changes from the state (5) of FIG. 6 to a state (1).

本実施形態の積層スライドドア30によると、第1、第2空気通路11、12の開口領域が第1層薄板部材31の開口部31aの移動位置により決まるとともに、第1、第2空気通路11、12の全閉状態は第1〜第4層薄板部材31〜34の通路遮蔽部分31b〜34cが階段状にずれた状態で積層されることにより達成できる。   According to the laminated sliding door 30 of the present embodiment, the opening areas of the first and second air passages 11 and 12 are determined by the moving position of the opening 31 a of the first layer thin plate member 31, and the first and second air passages 11. , 12 can be achieved by laminating the passage shielding portions 31b to 34c of the first to fourth layer thin plate members 31 to 34 in a staggered state.

従って、第1〜第4層薄板部材31〜34の個々の通路遮蔽部分31b〜34cの長さXは第1、第2空気通路11、12のドア移動方向bの開口長さL0に比較して大幅に小さい長さに設定できる。   Therefore, the length X of the individual passage shielding portions 31b to 34c of the first to fourth layer thin plate members 31 to 34 is compared with the opening length L0 of the first and second air passages 11 and 12 in the door movement direction b. Can be set to a significantly smaller length.

因みに、特許文献1のものでは、枠形状部の前後両側に配置される可撓性膜状部材を空気通路の開口を全閉できるだけの大きさに設定する必要があるので、この可撓性膜状部材のドア移動方向の長さ(上記長さXに対応する長さ)は空気通路のドア移動方向の開口長さよりも大きくしなければならない。   Incidentally, in the thing of patent document 1, since it is necessary to set the flexible film-like member arrange | positioned at the front and back both sides of a frame shape part to the magnitude | size which can fully close the opening of an air path, this flexible film | membrane is required. The length of the shaped member in the door movement direction (the length corresponding to the length X) must be larger than the opening length of the air passage in the door movement direction.

従って、本実施形態によると、特許文献1に比較して通路遮蔽部分長さXの低減により空気通路開閉装置全体の体格を効果的に小型化できる。   Therefore, according to this embodiment, the physique of the whole air passage opening / closing device can be effectively downsized by reducing the passage shielding portion length X as compared with Patent Document 1.

なお、最大の第4層薄板部材34であっても、その外形寸法La4をハウジング10のドア移動方向bの全長寸法(L0×2+W+X’×2)以内に設定できるから、外形寸法La1〜La4の異なる複数枚の薄板部材31〜34を積層する構造を採用しても、装置全体の体格の小型化を阻害することはない。   Even in the case of the largest fourth layer thin plate member 34, the outer dimension La4 can be set within the overall length dimension (L0 × 2 + W + X ′ × 2) in the door movement direction b of the housing 10, so that the outer dimensions La1 to La4 Even if a structure in which a plurality of different thin plate members 31 to 34 are stacked is adopted, the size reduction of the entire apparatus is not hindered.

そして、本実施形態の積層スライドドア30によると、第1、第2空気通路11、12の開口領域が第1層薄板部材31の開口部31aの移動位置により決まるから、風上側のハウジング20から風下側のハウジング10の第1、第2空気通路11、12へ向かう空気流れは必ず第1層薄板部材31の開口部31aを通過する。   According to the laminated sliding door 30 of the present embodiment, the opening areas of the first and second air passages 11 and 12 are determined by the movement position of the opening 31a of the first layer thin plate member 31, and therefore, from the windward housing 20 The air flow toward the first and second air passages 11 and 12 of the leeward housing 10 always passes through the opening 31 a of the first layer thin plate member 31.

このため、図6の状態(2)〜(4)のように第1、第2空気通路11、12を同時に開口する同時開口状態では、両通路11、12の中央部を開口部31aにて開口できる。   For this reason, in the simultaneous opening state in which the first and second air passages 11 and 12 are simultaneously opened as in the states (2) to (4) of FIG. 6, the central portion of both the passages 11 and 12 is the opening 31a. Open.

因みに、一般的な平板状のスライドドアを用いる空気通路開閉装置では、2つの並んだ空気通路を同時に開口する場合にスライドドアの移動方向の前後両側に2つの空気通路の開口部が離れて形成されるので、冷風と温風の泣き別れ現象が発生して、2つの空気通路からの吹出空気の温度制御が困難となるが、本実施形態では上流側のハウジング20からの冷風と温風がいずれも、両通路11、12の中央部に位置する開口部31aを通過してから、両通路11、12に流入する。   Incidentally, in a general air passage opening / closing device using a flat slide door, when two aligned air passages are opened simultaneously, the opening portions of the two air passages are formed apart on both the front and rear sides in the moving direction of the slide door. Therefore, the phenomenon of crying between the cold air and the hot air occurs, making it difficult to control the temperature of the air blown out from the two air passages. In this embodiment, the cold air and the hot air from the upstream housing 20 are Also, after passing through the opening 31 a located at the center of both the passages 11, 12, it flows into both the passages 11, 12.

従って、冷風と温風が開口部31aにて互いに接近して流れるから、冷風と温風の泣き別れ現象が発生せず、第1、第2空気通路11、12からの吹出空気の温度制御が容易となる。   Accordingly, since the cold air and the warm air flow close to each other at the opening 31a, the cold air and the hot air do not cry, and the temperature control of the air blown from the first and second air passages 11 and 12 is easy. It becomes.

更に、本実施形態においては空気通路開閉用ドア手段としての最重要機能であるドアシール性を簡素な構成で良好に確保できるという利点がある。   Furthermore, in this embodiment, there is an advantage that the door sealability, which is the most important function as the air passage opening / closing door means, can be satisfactorily secured with a simple configuration.

すなわち、第1〜第4層薄板部材31〜34を空気流れ方向aの上流側から下流側に向かって小さい方から大きい方へと順番に積層しているから、図1(a)の右側部分に例示するように第1、第2空気通路11、12を遮蔽する際に、各薄板部材31〜34の通路遮蔽部分部31b〜34cにそれぞれ空気流れの風圧を作用させて、重合部分Aを密着する方向(換言すると自己シールする側)に各薄板部材31〜34を変形させることができる。   That is, since the first to fourth layer thin plate members 31 to 34 are stacked in order from the smaller side to the larger side from the upstream side to the downstream side in the air flow direction a, the right side portion of FIG. When the first and second air passages 11 and 12 are shielded as illustrated in FIG. 5, the air flow pressure is applied to the passage shielding portions 31 b to 34 c of the thin plate members 31 to 34, respectively. The thin plate members 31 to 34 can be deformed in the direction in which they are in close contact (in other words, the self-sealing side).

しかも、これに加えて、本実施形態による積層スライドドア30の挟み込み支持構造であると、図4に示すように駆動軸41側からの押し付け力Faによって、各薄板部材31〜34の両端部(通路遮蔽部分部31b〜34c)を第1ハウジング10の円弧状のシール面10aに押し付けることができるから、複数枚の薄板部材31〜34が風圧を受けない場合でも、積層スライドドア30のシール性を確保できる。   Moreover, in addition to this, in the sandwiching and supporting structure of the laminated slide door 30 according to the present embodiment, both end portions of the thin plate members 31 to 34 (by the pressing force Fa from the drive shaft 41 side as shown in FIG. Since the passage shielding portions 31b to 34c) can be pressed against the arcuate seal surface 10a of the first housing 10, even when the plurality of thin plate members 31 to 34 are not subjected to wind pressure, the sealing performance of the laminated slide door 30 is achieved. Can be secured.

なお、本実施形態では、図5に示すように、第2ハウジング20の幅方向両側の壁面22、23の下流側端部に、ハウジング内側へL状に屈曲して突き出す屈曲壁部22a、23aを形成し、この屈曲壁部22a、23aが複数枚の薄板部材31〜34の幅方向両側部を押さえるとともに、第2ハウジング20の防振リブ21の下流側端面21aも複数枚の薄板部材31〜34の幅方向中間部を風下側へ押さえる。このことによっても、積層スライドドア30のシール性を向上できる。   In the present embodiment, as shown in FIG. 5, bent wall portions 22 a and 23 a that bend and protrude in an L shape toward the inside of the housing at the downstream end portions of the wall surfaces 22 and 23 on both sides in the width direction of the second housing 20. The bent wall portions 22a and 23a hold down both sides in the width direction of the plurality of thin plate members 31 to 34, and the downstream end surface 21a of the vibration isolation rib 21 of the second housing 20 also includes the plurality of thin plate members 31. The intermediate part in the width direction of ~ 34 is pressed down to the leeward side. Also by this, the sealing performance of the laminated slide door 30 can be improved.

以上により、特別のシール材を付加することなく複数枚の樹脂製薄板部材31〜34を積層するだけの簡素なドア構成であっても、積層スライドドア30のシール性を良好に確保できる。   As described above, even with a simple door configuration in which a plurality of thin resin plate members 31 to 34 are stacked without adding a special sealing material, the sealing performance of the stacked sliding door 30 can be ensured satisfactorily.

なお、隣接する2枚の薄板部材が同一樹脂材であると、2枚の薄板部材の接触摺動時に2枚の薄板部材がくっつきやすいので、2枚の薄板部材が一旦、くっついた後、離れる際に異音を発生する。このような現象を一般にはスティックスリップ現象と言う。   If two adjacent thin plate members are made of the same resin material, the two thin plate members are likely to stick together when the two thin plate members are in contact with each other. An abnormal noise is generated. Such a phenomenon is generally called a stick-slip phenomenon.

従って、第1層および第3層薄板部材31、33を例えば、ABS樹脂で構成し、第2層および第4層薄板部材32、34を例えば、ポリプロピレン樹脂で構成するといったように、隣接する2枚の薄板部材の樹脂材を変更した方が好ましい。これにより、スティックスリップ現象の異音を抑制できる。   Accordingly, the first and third thin plate members 31 and 33 are made of, for example, ABS resin, and the second and fourth layer thin plate members 32 and 34 are made of, for example, polypropylene resin. It is preferable to change the resin material of the thin plate member. Thereby, the abnormal noise of a stick-slip phenomenon can be suppressed.

また、同一の樹脂材であっても、表面コーティング層の形成、表面に微細な突起を形成するシボ加工等の表面処理を行うことにより、上記スティックスリップ現象を抑制するようにしてもよい。   Moreover, even if it is the same resin material, you may make it suppress the said stick-slip phenomenon by performing surface treatments, such as formation of a surface coating layer and embossing which forms a fine protrusion on the surface.

(第2実施形態)
ところで、本発明者は、第1実施形態による空気通路開閉装置の製品化に際して試作品に基づいて具体的に検討評価したところ、複数枚の薄板部材31〜34の積層構造を持つ積層スライドドア構成では、シール性確保という基本性能の他に異音という課題があることが判明した。
(Second Embodiment)
By the way, when this inventor concretely examined and evaluated based on the prototype at the time of commercialization of the air passage opening and closing device according to the first embodiment, a laminated sliding door configuration having a laminated structure of a plurality of thin plate members 31 to 34 is provided. Then, in addition to the basic performance of ensuring sealing performance, it was found that there was a problem of abnormal noise.

ここで、本発明者の検討によれば、積層スライドドア構成における具体的な異音現象は次の4つに大別される。   Here, according to the study of the present inventor, specific abnormal noise phenomena in the laminated sliding door configuration are roughly classified into the following four.

1.複数枚の薄板部材31〜34間の風漏れによる風切り異音
2.複数枚の薄板部材31〜34の自励振動に起因する異音
3.外部からの物理的な振動伝達に起因する異音
4.複数枚の薄板部材31〜34間の摺動異音
積層スライドドア構成では、例えば、空気通路11、12の開口部をシールする複数の薄板部材31〜34が自重を受けて安定している状態から風圧を受けて自己シール状態に遷移して負荷バランスが釣り合ったような状態で自励振動が発生して異音が生じやすい。この自励振動による異音を回避するために、薄板部材31〜34の剛性を上げるなどの対応も可能であるが、剛性を上げると風圧による変形がしにくくなるので、風圧による自己シール作用を発揮しにくくなり、風漏れ量が増えるという背反がある。
1. 1. Wind noise due to wind leakage between a plurality of thin plate members 31 to 34 2. Abnormal noise caused by self-excited vibration of a plurality of thin plate members 31-34. Abnormal noise caused by physical vibration transmission from outside 4. Sliding abnormal noise between a plurality of thin plate members 31 to 34 In a laminated slide door configuration, for example, a state in which a plurality of thin plate members 31 to 34 that seal the openings of the air passages 11 and 12 are stable due to their own weight. The self-excited vibration is likely to occur in a state where the wind pressure is received and the self-sealed state is changed and the load balance is balanced. In order to avoid abnormal noise due to this self-excited vibration, it is possible to cope with such as increasing the rigidity of the thin plate members 31 to 34. However, if the rigidity is increased, the deformation due to the wind pressure becomes difficult. There is a trade-off that it becomes difficult to demonstrate and the amount of wind leakage increases.

また、外部から加わる物理的な振動(車両の振動等)に対しても薄板部材31〜34を押さえつける力に頼った構造になっていると、例えば雰囲気温度が高くなるなどの環境条件の変化で薄板部材31〜34の剛性が低下して押え力がなくなり、加振力に対し振動しやすくなる。この現象についても、薄板部材31〜34の剛性を上げることである程度の対応は可能であるが、剛性を上げると上記のごとく風漏れ量が増えるという背反がある。   In addition, when the structure depends on the force of pressing the thin plate members 31 to 34 against physical vibrations (vehicle vibrations, etc.) applied from the outside, for example, due to changes in environmental conditions such as an increase in ambient temperature. The rigidity of the thin plate members 31 to 34 is reduced, the pressing force is lost, and the vibration is easily caused by the excitation force. This phenomenon can also be dealt with to some extent by increasing the rigidity of the thin plate members 31 to 34, but there is a tradeoff that increasing the rigidity increases the amount of wind leakage as described above.

第1実施形態においては、前述したように、防振リブ21による押さえ付けにてドアのばたつき防止を図ったり、曲率の違う薄板部材31〜34を重ね合わせることで、薄板部材31〜34間の密着度を上げシール性を高めることで風切り異音の抑制に配慮したり、隣り合う薄板部材31〜34相互の材質の組合せを変えることで摺動異音について配慮している。   In the first embodiment, as described above, it is possible to prevent the door from flapping by pressing with the vibration-isolating ribs 21, or the thin plate members 31 to 34 having different curvatures are overlapped, so that the thin plate members 31 to 34 are overlapped. Consideration is given to suppression of wind noise by increasing the degree of adhesion and sealing performance, and consideration is given to sliding noise by changing the combination of the materials of the adjacent thin plate members 31-34.

これに加え、第2本実施形態では以下に述べるように空気流れ前後の2つの防振リブを組み合わせた防振対策を施している。この2つの防振リブを用いた防振構造を図8、図9に基づいて具体的に説明する。図8は、図1(a)の右側半分、すなわち、第2空気通路12に対応する右側部分に相当するものである。   In addition to this, in the second embodiment, as described below, anti-vibration measures are taken by combining two anti-vibration ribs before and after the air flow. The anti-vibration structure using these two anti-vibration ribs will be specifically described with reference to FIGS. FIG. 8 corresponds to the right half of FIG. 1A, that is, the right portion corresponding to the second air passage 12.

従って、積層スライドドア30を構成する複数の薄板部材31〜34については、図1(a)の開口部31a〜34aよりも右側に位置する連動用突起部31e〜33eおよび通路遮蔽部分31c〜34cの部分のみが図8に図示されている。図9は図8のD−D断面図である。   Accordingly, with respect to the plurality of thin plate members 31 to 34 constituting the laminated slide door 30, the interlocking protrusions 31e to 33e and the passage shielding portions 31c to 34c located on the right side of the openings 31a to 34a in FIG. Only this part is shown in FIG. 9 is a cross-sectional view taken along the line DD of FIG.

図8(a)は、風下側の第1ハウジング10に対する薄板部材31〜34の組み付け位置と、風上側の第2ハウジング20に設けられる風上側防振リブ21、および風下側の第1ハウジング10に設けられる風下側防振リブ18の形成位置との関係を示すもので、薄板部材31〜34の組み付け位置は風上側の第2ハウジング20が組み付けられていない状態、すなわち、風上側防振リブ21による押しつけ力が作用していない自由状態における組み付け位置を示している。   FIG. 8A shows the position where the thin plate members 31 to 34 are assembled to the first housing 10 on the leeward side, the windward vibration isolation ribs 21 provided on the second housing 20 on the leeward side, and the first housing 10 on the leeward side. 3 shows the relationship with the formation position of the leeward vibration isolating rib 18, and the assembling position of the thin plate members 31 to 34 is the state where the second housing 20 on the windward side is not assembled, that is, the windward vibration isolating rib. The assembly position in the free state where the pressing force by 21 is not acting is shown.

これに対し、図8(b)は風上側の第2ハウジング20を組み付けた状態、すなわち、風上側防振リブ21による押しつけ力が作用している状態における薄板部材31〜34の組み付け位置を示している。   On the other hand, FIG. 8B shows the assembly position of the thin plate members 31 to 34 in the state where the second housing 20 on the windward side is assembled, that is, in the state where the pressing force by the windward vibration isolation rib 21 is acting. ing.

風上側防振リブ21は前述した図3、図5に示す防振リブ21と同等のものであって、複数の薄板部材31〜34の風上側領域にてドア移動方向bに沿って延びる板状部材で構成されている。風上側防振リブ21は風上側の第2ハウジング20に樹脂にて一体成形されている。   The windward vibration isolation rib 21 is the same as the vibration isolation rib 21 shown in FIGS. 3 and 5 described above, and extends along the door movement direction b in the windward region of the plurality of thin plate members 31 to 34. It is comprised by the shape member. The windward vibration isolating rib 21 is integrally formed with the second housing 20 on the windward side with resin.

また、風下側防振リブ18は第2空気通路12の開口部にてドア移動方向bに沿って延びる板状部材であり、風下側の第1ハウジング10に樹脂にて一体成形されている。風下側防振リブ18は複数の薄板部材31〜34の風下側に位置して薄板部材31〜34の風下側への変形を所定量以内に規制するものである。風上側防振リブ21および風下側防振リブ18は複数の薄板部材31〜34に対して実質的に剛体として作用する。   The leeward vibration isolation rib 18 is a plate-like member extending along the door movement direction b at the opening of the second air passage 12 and is integrally formed with the first housing 10 on the leeward side with resin. The leeward vibration isolation rib 18 is located on the leeward side of the plurality of thin plate members 31 to 34 and restricts the deformation of the thin plate members 31 to 34 within a predetermined amount. The windward vibration isolation rib 21 and the leeward vibration isolation rib 18 substantially act as rigid bodies with respect to the plurality of thin plate members 31 to 34.

なお、風上側防振リブ21および風下側防振リブ18は図9に示すように薄板状であり、その板面は空気流れ方向aと平行になっているので、この両防振リブ21、18による通風圧損は僅少である。   Note that the windward vibration isolation ribs 21 and the leeward vibration isolation ribs 18 are thin plates as shown in FIG. 9 and their plate surfaces are parallel to the air flow direction a. The ventilation pressure loss due to 18 is very small.

そして、風上側防振リブ21と風下側防振リブ18の形成位置は図9に示すように複数の薄板部材31〜34の幅方向(図9の左右方向で、ドア移動方向bと直交方向)に対して互いにオフセットした位置に配置されている。具体的には、風上側防振リブ21が複数の薄板部材31〜34の幅方向の中央部に配置され、これに対し、風下側防振リブ18は、風上側防振リブ21の位置から左右両側に所定量ずれた対称位置に配置されている。   And the formation position of the leeward side vibration isolation rib 21 and the leeward side vibration isolation rib 18 is the width direction of the plurality of thin plate members 31 to 34 as shown in FIG. ) With respect to each other. Specifically, the windward vibration isolation rib 21 is disposed at the center in the width direction of the plurality of thin plate members 31 to 34, whereas the leeward vibration isolation rib 18 is positioned from the position of the windward vibration isolation rib 21. They are arranged at symmetrical positions shifted by a predetermined amount on both the left and right sides.

なお、図8では、第2空気通路12側に位置する風上側防振リブ21および風下側防振リブ18のみ図示しているが、図8において図示しない第1空気通路11側にも風上側防振リブ21および風下側防振リブ18が同様に形成されることはもちろんである。   In FIG. 8, only the windward vibration isolation rib 21 and the leeward vibration isolation rib 18 located on the second air passage 12 side are shown, but the windward side is also shown on the first air passage 11 side not shown in FIG. Of course, the vibration isolation rib 21 and the leeward vibration isolation rib 18 are similarly formed.

図8(a)に示すように、複数の薄板部材31〜34のうち、最上流部に位置する最小の第1層薄板部材31の風上側板面よりも風上側防振リブ21の先端部が所定の押しつけ寸法Eだけ風下側へ突き出すように風上側防振リブ21を配置している。   As shown to Fig.8 (a), the front-end | tip part of the windward vibration isolating rib 21 rather than the windward board surface of the smallest 1st layer thin plate member 31 located in the most upstream part among several thin plate members 31-34. Is disposed on the windward side anti-vibration rib 21 so as to protrude toward the leeward side by a predetermined pressing dimension E.

このため、風下側の第1ハウジング10と風上側の第2ハウジング20とを一体に組み付けた状態では、図8(b)に示すように、風上側防振リブ21の先端部が第1層薄板部材31を上記押しつけ寸法Eだけ風下側へ押しつけるので、この押しつけ力によって、第1層薄板部材31が風下側へ弾性変形し、これに伴って第2層〜第4層薄板部材32、33、34も風下側へ弾性変形する。この弾性変形により、各薄板部材31〜34に弾性反力(テンション)が発生するようになっている。   For this reason, in the state where the leeward first housing 10 and the leeward second housing 20 are assembled together, as shown in FIG. 8B, the tip of the leeward vibration isolation rib 21 is the first layer. Since the thin plate member 31 is pressed to the leeward side by the pressing dimension E, the first layer thin plate member 31 is elastically deformed to the leeward side by this pressing force, and accordingly, the second to fourth layer thin plate members 32 and 33 are pressed. , 34 are also elastically deformed to the leeward side. Due to this elastic deformation, an elastic reaction force (tension) is generated in each of the thin plate members 31 to 34.

なお、図8(b)は送風停止状態あるいは小風量状態における組み付け位置関係を示しており、この送風停止状態あるいは小風量状態では、風下側防振リブ18が複数の薄板部材31〜34のいずれにも接触せず、風下側防振リブ18と複数の薄板部材31〜34との間に微小隙間が発生するようになっている。   FIG. 8B shows the assembly position relationship in the air supply stop state or the small air volume state. In the air supply stop state or the low air volume state, the leeward vibration isolation rib 18 is one of the plurality of thin plate members 31 to 34. In addition, a minute gap is generated between the leeward vibration isolation rib 18 and the plurality of thin plate members 31 to 34.

より具体的には、風下側防振リブ18に最も接近するのは第2層薄板部材32の連動用突起部32eであり、この突起部32eの頂部と風下側防振リブ18との間に微小隙間が発生するように各部寸法関係が設定されている。   More specifically, the closest approach to the leeward vibration isolation rib 18 is the interlocking protrusion 32e of the second layer thin plate member 32, and between the top of the protrusion 32e and the leeward vibration isolation rib 18. The dimensional relationships are set so that minute gaps are generated.

また、風下側の第1ハウジング10の内壁面のうち、第2空気通路12の矩形状の開口部の周縁部全周にわたってシールリブ10cが薄板部材31〜34側(風上側)へ突き出すように形成されている。このシールリブ10cは、図1(a)のシール面10a、10bに対応するものであって、複数の薄板部材31〜34はこのシールリブ10c上を摺動するようになっている。   Moreover, it forms so that the seal rib 10c may protrude in the thin-plate members 31-34 side (windward side) over the perimeter part of the rectangular opening part of the 2nd air passage 12 among the inner wall surfaces of the 1st housing 10 in the leeward side. Has been. The seal rib 10c corresponds to the seal surfaces 10a and 10b in FIG. 1A, and the plurality of thin plate members 31 to 34 slide on the seal rib 10c.

このシールリブ10cの形成によって、風下側第1ハウジング10の内壁面と薄板部材31〜34との摺動面積を減少できる。   By forming the seal rib 10c, the sliding area between the inner wall surface of the leeward side first housing 10 and the thin plate members 31 to 34 can be reduced.

風上側第2ハウジング20の下流側端部に、ハウジング内側へL状に屈曲して突き出す屈曲壁部22aを形成している。なお、第1実施形態では、風上側第2ハウジング20の下流側端部のうち、ドア幅方向の両端部のみに屈曲壁部22a、23aを形成しているが、第2実施形態では、風上側第2ハウジング20の下流側端部の全周(ドア幅方向の両端部およびドア移動方向bの両端部の両方)にわたって屈曲壁部22aを形成している。従って、図9に示すドア幅方向の両端部に位置する屈曲壁部22aは、第1実施形態の図5に示す屈曲壁部22a、23aに相当する。   A bent wall portion 22a is formed at the downstream end of the windward second housing 20 so as to bend and protrude in an L shape toward the inside of the housing. In the first embodiment, the bent wall portions 22a and 23a are formed only at both end portions in the door width direction among the downstream end portions of the windward second housing 20, but in the second embodiment, A bent wall portion 22a is formed over the entire circumference (both both ends in the door width direction and both ends in the door movement direction b) of the downstream end portion of the upper second housing 20. Accordingly, the bent wall portions 22a located at both ends in the door width direction shown in FIG. 9 correspond to the bent wall portions 22a and 23a shown in FIG. 5 of the first embodiment.

そして、この屈曲壁部22a外側面と風下側第1ハウジング10の内壁面との間に、薄板部材31〜34の周縁部をガイドするガイド空間Sが形成される。このガイド空間Sの高さは、複数の薄板部材31〜34の合計板厚よりも若干量大きくして、複数の薄板部材31〜34の移動をスムースにガイドするようになっている。   And the guide space S which guides the peripheral part of the thin-plate members 31-34 is formed between this bending wall part 22a outer side surface and the inner wall surface of the leeward side 1st housing 10. FIG. The height of the guide space S is slightly larger than the total plate thickness of the plurality of thin plate members 31 to 34 so that the movement of the plurality of thin plate members 31 to 34 is smoothly guided.

また、ガイド空間Sのうち、ドア移動方向bの両端部に位置するガイド空間S(図8参照)の奥行き寸法Mは複数の薄板部材31〜34の通路遮蔽部分31c〜34cの長さX(図1、図7参照)と略同等に設計して、この通路遮蔽部分31c〜34cをガイド空間S内にほぼ収納できるようになっている。   Moreover, the depth dimension M of the guide space S (refer FIG. 8) located in the both ends of the door moving direction b among the guide spaces S is the length X (the passage shielding portions 31c to 34c of the plurality of thin plate members 31 to 34). The passage shielding portions 31c to 34c are designed to be substantially accommodated in the guide space S by designing substantially the same as those shown in FIGS.

次に、第2実施形態の作用効果を説明する。積層スライドドア30の基本的作動は第1実施形態と同じであり、ドア30(薄板部材31〜34)がドア移動方向bへ移動することにより空気通路12および図示しない空気通路11の開口部を開閉する。この際、空気通路12または空気通路11を全閉する時は薄板部材31〜34相互間に所定の重合寸法A(図8)を設定するとともに風圧を受けて薄板部材31〜34相互間および薄板部材31〜34とシールリブ10cとの間が密着することで自己シール作用を発揮して風洩れを防ぐ。   Next, the function and effect of the second embodiment will be described. The basic operation of the laminated slide door 30 is the same as that of the first embodiment. When the door 30 (thin plate members 31 to 34) moves in the door movement direction b, the openings of the air passage 12 and the air passage 11 (not shown) are opened. Open and close. At this time, when the air passage 12 or the air passage 11 is fully closed, a predetermined overlapping dimension A (FIG. 8) is set between the thin plate members 31 to 34 and the wind pressure is received between the thin plate members 31 to 34 and the thin plate. When the members 31 to 34 and the seal rib 10c are in close contact with each other, a self-sealing action is exhibited to prevent wind leakage.

また、空気通路12または空気通路11を全開する時は、右側の通路遮蔽部分31c〜34cまたは左側の通路遮蔽部分31d〜34dが重なりあって(図1(a)の左側部、図7参照)、風下側第1ハウジング10のドア移動方向bの両端部に位置するガイド空間S内に収納されることで、装置全体の体格の小型化を実現する。   When the air passage 12 or the air passage 11 is fully opened, the right-side passage shielding portions 31c to 34c or the left-side passage shielding portions 31d to 34d are overlapped (see the left side in FIG. 1A, see FIG. 7). The physique of the entire apparatus is reduced in size by being housed in the guide spaces S located at both ends of the leeward side first housing 10 in the door movement direction b.

ところで、複数の薄板部材31〜34に対しては、図8(a)に示す押しつけ寸法Eの設定によって風上側防振リブ21による押しつけ力が常に作用するので、複数の薄板部材31〜34には弾性反力が常に発生してテンションがかかった状態になることで、送風時の自励振動を防止できる。これと同時に、車両振動等による外部からの振動入力に対する異音防止についても貢献できる。このように、風上側防振リブ21の押しつけ作用のみでも、所定の防振効果を期待できる。   By the way, with respect to the plurality of thin plate members 31 to 34, the pressing force by the windward vibration isolation rib 21 always acts by setting the pressing dimension E shown in FIG. Since elastic reaction force is always generated and tension is applied, self-excited vibration during blowing can be prevented. At the same time, it can contribute to the prevention of abnormal noise caused by external vibration input caused by vehicle vibration or the like. Thus, a predetermined vibration-proof effect can be expected only by the pressing action of the windward vibration-proof rib 21.

しかし、その一方で、積層スライドドア30にかかる風圧が大きくなる場合とか、あるいは夏期のように雰囲気温度が上昇して、薄板部材31〜34の剛性が下がるような場合に風圧を受けると、薄板部材31〜34が風下側へ大きく膨出変形し、その結果、風上側防振リブ21から薄板部材31〜34が離れる現象が発生する。   However, on the other hand, if the wind pressure applied to the laminated slide door 30 is increased, or if the atmospheric temperature is increased and the rigidity of the thin plate members 31 to 34 is reduced as in the summer, the thin plate The members 31 to 34 are greatly bulged and deformed to the leeward side, and as a result, a phenomenon that the thin plate members 31 to 34 are separated from the windward vibration isolation rib 21 occurs.

この現象が生じると、ドア30(薄板部材31〜34)が送風条件により再び自励振動を発生する可能性があるため、構造的な配慮が必要となる。   When this phenomenon occurs, the door 30 (thin plate members 31 to 34) may generate self-excited vibration again depending on the air blowing conditions, and thus structural considerations are necessary.

そこで、上記風圧による膨出変形を防ぐために薄板部材31〜34の板厚増加、材質変更等により薄板部材31〜34の剛性を高くすることが考えられるが、これは、逆に風圧による自己シール作用が低下してシール性が悪化するという背反がある。   Therefore, in order to prevent the bulging deformation due to the wind pressure, it is conceivable to increase the rigidity of the thin plate members 31 to 34 by increasing the thickness of the thin plate members 31 to 34, changing the material, or the like. There is a trade-off that the action is reduced and the sealing performance is deteriorated.

また、風上側防振リブ21の押しつけ寸法Eを、温度、風圧の影響を加味した最大値で設計すれば、薄板部材31〜34が防振リブ21から離れることはなくなるが、その代わりに、通常時にかかる弾性反力(テンション)が大きくなり過ぎ、ドア操作力が大幅に増大するという背反がある。   Moreover, if the pressing dimension E of the windward vibration isolating rib 21 is designed with the maximum value in consideration of the effects of temperature and wind pressure, the thin plate members 31 to 34 will not be separated from the anti-vibration rib 21, but instead, There is a contradiction that the elastic reaction force (tension) applied during normal time becomes too large, and the door operation force is greatly increased.

そこで、第2実施形態では、薄板部材31〜34の風上側に防振リブ21を配置するととともに、薄板部材31〜34の風下側にも防振リブ18を配置している。この風下側防振リブ18は、薄板部材31〜34の風下側への変形を所定量以内に規制する作用を果たすので、薄板部材31〜34が風圧を受けて風下側へ大きく膨出することを防止できる。   Therefore, in the second embodiment, the anti-vibration rib 21 is disposed on the leeward side of the thin plate members 31 to 34, and the anti-vibration rib 18 is also disposed on the leeward side of the thin plate members 31 to 34. The leeward vibration isolating rib 18 functions to restrict the deformation of the thin plate members 31 to 34 to the leeward side within a predetermined amount, so that the thin plate members 31 to 34 swell greatly to the leeward side under the wind pressure. Can be prevented.

この結果、薄板部材31〜34の剛性を特別に高める上げることなく、ドア30(薄板部材31〜34)の自励振動による異音や、外部からの振動入力による異音の発生を良好に抑制できる。   As a result, the generation of abnormal noise due to self-excited vibration of the door 30 (thin plate members 31 to 34) and abnormal noise due to external vibration input can be satisfactorily suppressed without specially increasing the rigidity of the thin plate members 31 to 34. it can.

このように、薄板部材31〜34の剛性を高める必要がないので、異音発生を防止できると同時に、自己シール作用の確保およびドア操作力の増大抑制を達成できる。   As described above, since it is not necessary to increase the rigidity of the thin plate members 31 to 34, it is possible to prevent the generation of abnormal noise, and at the same time, to ensure the self-sealing action and suppress the increase in the door operating force.

さらに、第2実施形態では、送風停止時や風圧の低いときには薄板部材31〜34が風上側防振リブ21のみに接触し、風下側防振リブ18からは離れている。そして、風圧が所定値以上に上昇して薄板部材31〜34が風上側防振リブ21から離れると、風下側防振リブ18のみに薄板部材31〜34が接触する。   Further, in the second embodiment, the thin plate members 31 to 34 are in contact with only the windward vibration isolation rib 21 and are separated from the leeward vibration isolation rib 18 when the air blowing is stopped or when the wind pressure is low. When the wind pressure rises above a predetermined value and the thin plate members 31 to 34 are separated from the windward vibration isolation rib 21, the thin plate members 31 to 34 are in contact with only the leeward vibration isolation rib 18.

つまり、薄板部材31〜34が風上側防振リブ21および風下側防振リブ18のうちいずれか一方のみに接触するから、薄板部材31〜34が両防振リブ21、18に同時に接触する場合に比較して、薄板部材31〜34の摺動摩擦を低減してドア操作力を低減できる。   That is, since the thin plate members 31 to 34 are in contact with only one of the windward vibration isolation rib 21 and the leeward vibration isolation rib 18, the thin plate members 31 to 34 are simultaneously in contact with both the vibration isolation ribs 21 and 18. In comparison with this, the sliding friction of the thin plate members 31 to 34 can be reduced, and the door operating force can be reduced.

また、薄板部材31〜34が風圧を受けて風下側へ大きく膨出することを風下側防振リブ18によって防止できるから、薄板部材31〜34の風下側への大変形→薄板部材31〜34の塑性変形が起きることを未然に防止して、安定したシール性を長期間保証することが可能となる。   Further, the thin plate members 31 to 34 can be prevented from receiving a wind pressure and greatly bulging to the leeward side by the leeward vibration isolating rib 18, so that the thin plate members 31 to 34 are largely deformed to the leeward side → the thin plate members 31 to 34. It is possible to prevent the occurrence of plastic deformation in advance and to guarantee a stable sealing property for a long period of time.

ところで、風上側防振リブ21および風下側防振リブ18をドア幅方向(図9左右方向)に対して同一位置に配置しても、両防振リブ21、18の併用による上記作用効果は発揮できるが、両防振リブ21、18が同一位置であると、薄板部材31〜34が空気流れの前後から挟み込まれる状態になるので、ドア操作力の増大が生じやすい。   By the way, even if the windward side anti-vibration rib 21 and the leeward side anti-vibration rib 18 are arranged at the same position with respect to the door width direction (left-right direction in FIG. 9), the above-described operation and effect by the combined use of the anti-vibration ribs 21 and 18 Although the anti-vibration ribs 21 and 18 are at the same position, the thin plate members 31 to 34 are sandwiched from before and after the air flow, so that the door operation force is likely to increase.

そこで、第2実施形態では、図9に示すようにドア幅方向に対して両防振リブ21、18を同一位置に配置せず、オフセット配置している。これによれば、薄板部材31〜34が両防振リブ21、18によって同一位置にて空気流れの前後から挟み込まれる状態が発生せず、ドア操作力の増大を抑制できる。   Therefore, in the second embodiment, as shown in FIG. 9, the anti-vibration ribs 21 and 18 are not arranged at the same position in the door width direction but are arranged offset. According to this, the state in which the thin plate members 31 to 34 are sandwiched from the front and rear of the air flow at the same position by both the vibration isolation ribs 21 and 18 does not occur, and an increase in the door operating force can be suppressed.

(第3実施形態)
上述の第1、第2実施形態では、薄板部材31〜34の積層枚数が4枚であり、このように積層枚数が増えると、外部から加わる振動によって、薄板部材31〜34がばたついて異音(バタツキ異音)が生じることが課題となる。
(Third embodiment)
In the first and second embodiments described above, the number of laminated thin plate members 31 to 34 is four. When the number of laminated members increases as described above, the thin plate members 31 to 34 flutter due to vibration applied from the outside. The problem is that noise (flapping noise) is generated.

そこで、第3実施形態においては、このバタツキ異音低減のために、図10に示すように第2層〜第4層薄板部材32〜34の隅部に突起32f、33f、34fを形成するとともに、第4層薄板部材34にはドア移動方向端部の中央部に突起34gを形成している。   Therefore, in the third embodiment, in order to reduce the flutter noise, projections 32f, 33f, and 34f are formed at the corners of the second to fourth layer thin plate members 32 to 34 as shown in FIG. The fourth layer thin plate member 34 is formed with a protrusion 34g at the center of the door moving direction end.

これらの突起32f、33f、34f、34gは図11に示すように風上側ハウジング10の屈曲壁部22aに向かって突き出す円柱形状にて各薄板部材32〜34に一体成形される。図11は図9のG−G断面位置に相当する断面図で、第1層〜第4層薄板部材31〜34のハウジング10、20内での積層状態、より具体的には、各薄板部材31〜34の右側通路遮蔽部分31c〜34cを積層した状態(通路遮蔽部分収納状態)を示す。   These protrusions 32f, 33f, 34f, and 34g are integrally formed with the thin plate members 32 to 34 in a cylindrical shape protruding toward the bent wall portion 22a of the windward housing 10 as shown in FIG. FIG. 11 is a cross-sectional view corresponding to the GG cross-sectional position in FIG. 9, in which the first to fourth layer thin plate members 31 to 34 are stacked in the housings 10 and 20, more specifically, each thin plate member. A state where the right side passage shielding portions 31c to 34c of 31 to 34 are stacked (the passage shielding portion storage state) is shown.

なお、図10では、第2層〜第4層薄板部材32〜34の右側の2箇所の隅部における突起32f、33f、34fを図示しているが、実際には図示しない左側の2箇所の隅部にも突起32f、33f、34fを形成するので、第2層〜第4層薄板部材32〜34の4隅に突起32f、33f、34fを形成する。同様に、突起34gも第4層薄板部材34のドア移動方向右端部の中央部だけでなく、図示しないドア移動方向左端部の中央部にも形成する。   In FIG. 10, the protrusions 32f, 33f, and 34f at the two corners on the right side of the second to fourth layer thin plate members 32 to 34 are shown. Since the projections 32f, 33f, and 34f are also formed at the corners, the projections 32f, 33f, and 34f are formed at the four corners of the second to fourth layer thin plate members 32 to 34. Similarly, the protrusion 34g is formed not only at the center of the right end of the fourth layer thin plate member 34 in the door movement direction but also at the center of the left end of the door movement direction (not shown).

上記の突起32f、33f、34f、34gの突出高さは第2層〜第4層薄板部材32〜34へと順次高くなるように設定して、各突起32f、33f、34f、34gの先端部がいずれも屈曲壁部22aに圧接して、各薄板部材32〜34の隅部を風下側の第1ハウジング10側へ押しつけて弾性反力(テンション)を発生させる。これにより、第1層〜第4層薄板部材31〜34相互間にガタが生じることを防止できる。そのため、車両の振動等が外部から加わっても、薄板部材31〜34相互間でばたつき異音が生じることを防止できる。   The protrusion heights of the protrusions 32f, 33f, 34f, and 34g are set so as to increase sequentially from the second layer to the fourth layer thin plate members 32 to 34, and the tips of the protrusions 32f, 33f, 34f, and 34g Are pressed against the bent wall portion 22a and the corner portions of the thin plate members 32 to 34 are pressed against the first housing 10 side on the leeward side to generate an elastic reaction force (tension). Thereby, it can prevent that a backlash arises between the 1st layer-the 4th layer thin plate members 31-34. Therefore, even if vehicle vibration or the like is applied from the outside, it is possible to prevent fluttering noises between the thin plate members 31 to 34.

そして、上記突起32f、33f、34fの突きだし方向に位置する第1層〜第3層薄板部材31〜33の隅部(具体的には4隅)に切り欠き部31g〜33gを形成している。この切り欠き部31g〜33gは、上記の突起32f、33f、34fが第1層〜第3層薄板部材31〜33に接触することを回避して、各薄板部材の通路遮蔽部分を図7、図11のように積層して収納する際に、突起32f、33f、34fがその収納動作の妨げとならないようにするものである。この切り欠き部31g〜33gの大きさは、第1層薄板部材31が最も大きく、第2層薄板部材32、第3層薄板部材33と順次小さくなっている。ここで、切り欠き部31g〜33gは全閉時のシール性に影響のない大きさに設定する必要がある。   And the notch parts 31g-33g are formed in the corner part (specifically four corners) of the 1st layer-3rd layer thin plate members 31-33 located in the protrusion direction of the said protrusion 32f, 33f, 34f. . The notches 31g to 33g avoid the projections 32f, 33f, and 34f from coming into contact with the first to third layer thin plate members 31 to 33, and the passage shielding portions of the respective thin plate members are illustrated in FIG. When stacking and storing as shown in FIG. 11, the protrusions 32f, 33f, and 34f are prevented from hindering the storing operation. The size of the notches 31g to 33g is the largest in the first layer thin plate member 31, and the sizes of the second layer thin plate member 32 and the third layer thin plate member 33 are sequentially reduced. Here, it is necessary to set the notches 31g to 33g to a size that does not affect the sealing performance when fully closed.

以上により、シール性およびドア収納サイズを悪化させることなく、薄板部材31〜34相互間のガタおよびそれに基づくばたつき異音を良好に防止することができる。   As described above, the backlash between the thin plate members 31 to 34 and the fluttering noise based thereon can be satisfactorily prevented without deteriorating the sealing performance and the door storage size.

本実施形態では、最も振動の影響を受けやすい最下流の第4層薄板部材34については、隅部に突起34fを形成するとともに、ドア移動方向端部の中央部にも突起34gを形成している。これにより、第4層薄板部材34における弾性反力発生部位を増やして第4層薄板部材34のガタ防止の効果をより一層向上できる。   In the present embodiment, the most downstream fourth layer thin plate member 34 that is most susceptible to vibration is formed with a protrusion 34f at the corner and a protrusion 34g at the center of the door moving direction end. Yes. Thereby, the elastic reaction force generation | occurrence | production site | part in the 4th layer thin plate member 34 can be increased, and the effect of the backlash prevention of the 4th layer thin plate member 34 can be improved further.

なお、突起34gを形成するためのスペース的な余裕がない場合は、突起34gを廃止して、突起34fのみを第4層薄板部材34に形成すればよい。   If there is not enough space for forming the protrusion 34g, the protrusion 34g may be eliminated and only the protrusion 34f may be formed on the fourth layer thin plate member 34.

ところで、突起32f、33f、34f、34gの高さ寸法は低すぎると、薄板部材31〜34相互間にガタが発生し、防振としての効果が半減する。一方、高さ寸法が高すぎると操作力が過大になるという背反がある。   By the way, if the height dimensions of the protrusions 32f, 33f, 34f, and 34g are too low, play occurs between the thin plate members 31 to 34, and the effect of vibration isolation is halved. On the other hand, if the height dimension is too high, the operating force is excessive.

この高さ寸法のバラツキを吸収するため、図11に示すように風下側ハウジング10の空気通路12(11)の開口部周縁の全周にわたってシールリブ10cを薄板部材側へ突出形成している。   In order to absorb the variation in the height dimension, as shown in FIG. 11, the seal rib 10 c is formed to protrude toward the thin plate member over the entire circumference of the periphery of the opening of the air passage 12 (11) of the leeward housing 10.

これにより、突起32f、33f、34f、34gの高さ寸法が成形上のバラツキの範囲で高くなっても、風下側ハウジング10の内壁摺動部に隙間S1を確保することができる。そのため、ドア操作力の増大を招くことなく、薄板部材相互を確実に接触させることが可能となる。つまり、シールリブ10cの形成は、ドア摺動時における風下側ハウジング10の内壁との接触面積を小さくして、ドア操作力の低減に非常に有用である。   Thereby, even if the height dimension of protrusion 32f, 33f, 34f, 34g becomes high in the range of the variation in shaping | molding, the clearance gap S1 can be ensured in the inner-wall sliding part of the leeward side housing 10. FIG. Therefore, the thin plate members can be reliably brought into contact with each other without increasing the door operating force. That is, the formation of the seal rib 10c is very useful for reducing the door operating force by reducing the contact area with the inner wall of the leeward housing 10 when the door slides.

なお、第1層薄板部材31は従動側歯車43が設けられ、剛性が高いので、第1層薄板部材31の隅部に突起を形成していないが、必要に応じて第1層薄板部材31の隅部に突起を形成してもよい。   Since the first layer thin plate member 31 is provided with the driven gear 43 and has high rigidity, no protrusions are formed at the corners of the first layer thin plate member 31, but the first layer thin plate member 31 is necessary. Protrusions may be formed at the corners.

また、ドア移動方向端部の中央部に位置する突起34gを第4層薄板部材34に形成しているが、第1層〜第3層薄板部材31〜33のいずれかにドア移動方向端部の中央部に位置する突起を形成してもよい。   Moreover, although the protrusion 34g located in the center part of the door movement direction edge part is formed in the 4th layer thin plate member 34, the door movement direction edge part is provided in either the 1st layer-3rd layer thin plate members 31-33. You may form the protrusion located in the center part.

(第4実施形態)
第3実施形態では、第2層〜第4層薄板部材32〜34のいずれにも突起32f、33f、34f、34gを形成しているが、第4実施形態では、ある特定の薄板部材のみに突起を形成している。
(Fourth embodiment)
In the third embodiment, the protrusions 32f, 33f, 34f, and 34g are formed on any of the second to fourth layer thin plate members 32 to 34. However, in the fourth embodiment, only a specific thin plate member is formed. Protrusions are formed.

具体的には、図12に示すように、最も振動の影響を受けやすい最下流の第4層薄板部材34のみに突起34fを形成して、第4層薄板部材34の防振効果を高めるようにしている。ここで、第4層薄板部材34の代わりに、例えば、第3層薄板部材33のみに突起33fを形成してもよい。図12は図11と同様に図9のG−G断面位置に相当する断面図である。   Specifically, as shown in FIG. 12, only the most downstream fourth layer thin plate member 34 that is most susceptible to vibration is formed with a protrusion 34f to enhance the vibration isolation effect of the fourth layer thin plate member 34. I have to. Here, instead of the fourth layer thin plate member 34, for example, the protrusion 33f may be formed only on the third layer thin plate member 33. FIG. 12 is a cross-sectional view corresponding to the GG cross-sectional position of FIG.

なお、第1〜第4実施形態では、空気通路開閉装置の具体的用途について述べていないが、本発明の空気通路開閉装置は小型化への要求が強い車両用空調装置に用いて好適である。具体的には、車両用空調装置における複数の車室内吹出通路を開閉する吹出モード切替ドア、あるいは車両用空調装置における温風の風量と冷風の風量の割合を調整するエアミックスドア等を本発明の空気通路開閉装置により構成すればよい。   In the first to fourth embodiments, the specific use of the air passage opening / closing device is not described, but the air passage opening / closing device of the present invention is suitable for use in a vehicle air conditioner that is strongly demanded for downsizing. . Specifically, the present invention includes a blow mode switching door that opens and closes a plurality of vehicle interior blow passages in a vehicle air conditioner, or an air mix door that adjusts the ratio of the amount of warm air and the amount of cold air in a vehicle air conditioner. What is necessary is just to comprise by this air passage opening and closing apparatus.

(他の実施形態)
(1)第1実施形態では、薄板部材31〜34を樹脂製としているが、薄板部材31〜34を鉄等の金属薄板で構成してもよい。金属製の薄板部材31〜34の場合は連動用の突起部31d〜33eを曲げ加工にて成形できる。
(Other embodiments)
(1) In 1st Embodiment, although the thin plate members 31-34 are made from resin, you may comprise the thin plate members 31-34 with metal thin plates, such as iron. In the case of the metal thin plate members 31 to 34, the projections 31d to 33e for interlocking can be formed by bending.

(2)上述の各実施形態では、4枚の薄板部材31〜34を積層する例について説明したが、薄板部材31〜34の積層枚数は必要に応じて増減することができ、薄板部材31〜34の最小積層枚数として2枚を設定してもよい。   (2) In each of the above-described embodiments, the example in which the four thin plate members 31 to 34 are stacked has been described. However, the number of the thin plate members 31 to 34 can be increased or decreased as necessary. Two sheets may be set as the minimum number of stacked 34 sheets.

(3)本発明の具体的な適用例として車両用空調装置について説明したが、本発明は車両用空調装置に限定されることなく、種々な用途の空気通路開閉装置に広く適用できるものである。   (3) Although the vehicle air conditioner has been described as a specific application example of the present invention, the present invention is not limited to the vehicle air conditioner, and can be widely applied to air passage opening and closing devices for various uses. .

(a)は本発明の第1実施形態による積層スライドドアを用いた空気通路開閉装置の基本構造を示す概略断面図、(b)はその平面展開図である。(A) is a schematic sectional drawing which shows the basic structure of the air passage opening and closing apparatus using the lamination | stacking sliding door by 1st Embodiment of this invention, (b) is the plane | planar expansion | deployment figure. 第1実施形態による積層スライドドアの連動手段を例示する断面図である。It is sectional drawing which illustrates the interlocking | linkage means of the lamination | stacking slide door by 1st Embodiment. 第1実施形態による空気通路開閉装置の概略分解斜視図である。1 is a schematic exploded perspective view of an air passage opening and closing device according to a first embodiment. 第1実施形態による積層スライドドアのシール機能を説明する概略分解断面図である。It is a schematic exploded sectional view explaining the sealing function of the lamination slide door by a 1st embodiment. 第1実施形態による積層スライドドアの駆動機構部の軸方向断面図である。It is an axial direction sectional view of the drive mechanism part of the lamination slide door by a 1st embodiment. 第1実施形態による積層スライドドアの作動パターンの説明図である。It is explanatory drawing of the action | operation pattern of the lamination | stacking slide door by 1st Embodiment. 図1(a)の左側通路遮蔽部分の拡大断面図である。It is an expanded sectional view of the left channel | path shielding part of Fig.1 (a). 本発明の第2実施形態による積層スライドドアを用いた空気通路開閉装置の基本構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of the air path opening / closing apparatus using the lamination | stacking slide door by 2nd Embodiment of this invention. 図8(b)のD−D断面図である。It is DD sectional drawing of FIG.8 (b). (a)、(c)、(e)、(g)は、本発明の第3実施形態による積層スライドドアにおける薄板部材の部分平面図、(b)、(d)、(f)、(h)は、同薄板部材の部分正面図、(i)は(g)の側面図である。(A), (c), (e), (g) is a partial plan view of a thin plate member in the laminated sliding door according to the third embodiment of the present invention, (b), (d), (f), (h) ) Is a partial front view of the thin plate member, and (i) is a side view of (g). 図10の薄板部材の積層状態を示す要部断面図である。It is principal part sectional drawing which shows the lamination | stacking state of the thin-plate member of FIG. 本発明の第4実施形態を示す要部断面図である。It is principal part sectional drawing which shows 4th Embodiment of this invention.

符号の説明Explanation of symbols

10、20…ハウジング、11、12…空気通路、
18…風下側防振リブ(風下側防振手段)、21…風上側防振リブ(風上側防振手段)、
30…積層スライドドア(ドア手段)、31〜34…薄板部材、31a〜34a…開口部、31b〜34c…通路遮蔽部分、31d〜33e…突起部(連動手段)、40…駆動機構。
10, 20 ... housing, 11, 12 ... air passage,
18 ... leeward side anti-vibration rib (leeward side anti-vibration means), 21 ... leeward side anti-vibration rib (leeward side anti-vibration means),
30 ... laminated slide door (door means), 31-34 ... thin plate member, 31a-34a ... opening, 31b-34c ... passage shielding part, 31d-33e ... projection (interlocking means), 40 ... drive mechanism.

Claims (9)

空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備えるとともに、
前記複数枚の薄板部材(31〜34)の風下側領域に、前記複数枚の薄板部材(31〜34)の風圧による風下側への変形を所定量以内に規制する風下側防振手段(18)を備えることを特徴とする空気通路開閉装置。
Door means (30) moving in a direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12), and the air passage (11) is provided by the door means (30). 12) An air passage opening and closing device for opening and closing,
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). While equipped with windward vibration isolation means (21) for generating reaction force ,
In the leeward side area of the plurality of thin plate members (31 to 34), the leeward side vibration isolation means (18) restricts the deformation of the plurality of thin plate members (31 to 34) to the leeward side due to the wind pressure within a predetermined amount. ) air passage switching device, characterized in that it comprises a.
前記風上側防振手段(21)および前記風下側防振手段(18)は、前記ドア手段(30)の移動方向(b)に沿って延びる板状部材であることを特徴とする請求項に記載の空気通路開閉装置。 The windward vibration isolation means (21) and the downwind-side vibration isolating means (18), according to claim 1, wherein a plate-like member extending along the direction of movement (b) of the door means (30) An air passage opening and closing device according to claim 1. 前記空気流れの風圧が低いときには前記複数枚の薄板部材(31〜34)が前記風上側防振手段(21)のみに接触し、
前記空気流れの風圧が所定値以上になると、前記複数枚の薄板部材(31〜34)が前記風上側防振手段(21)から離れて前記風下側防振手段(18)のみに接触することを特徴とする請求項またはに記載の空気通路開閉装置。
When the wind pressure of the air flow is low, the plurality of thin plate members (31 to 34) are in contact with only the windward vibration isolating means (21),
When the wind pressure of the air flow becomes a predetermined value or more, the plurality of thin plate members (31 to 34) are separated from the windward vibration isolating means (21) and contact only with the leeward vibration isolating means (18). The air passage opening and closing device according to claim 1 or 2 .
前記風上側防振手段(21)と前記風下側防振手段(18)は、前記移動方向(b)と直交する方向において互いにオフセット配置されていることを特徴とする請求項ないしのいずれか1つに記載の空気通路開閉装置。 The windward vibration isolation means (21) and the downwind-side vibration isolating means (18) are all of claims 1 to 3, characterized in that it is arranged offset to one another in a direction perpendicular to the moving direction (b) The air passage opening and closing device according to claim 1. 空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備えるとともに、
前記複数枚の薄板部材(31〜34)のうち、少なくとも1つの薄板部材の隅部に押しつけ力を付与する突起部(32f、33f、34f)が設けられていることを特徴とする空気通路開閉装置。
Door means (30) moving in a direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12), and the air passage (11) is provided by the door means (30). 12) An air passage opening and closing device for opening and closing,
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). While equipped with windward vibration isolation means (21) for generating reaction force ,
Protruding portions (32f, 33f, 34f) for applying a pressing force to corners of at least one thin plate member among the plurality of thin plate members (31-34) are provided. apparatus.
前記複数枚の薄板部材(31〜34)のうち、前記突起部(32f、33f、34f)の突きだし方向に積層される薄板部材(31〜34)の隅部に、この薄板部材(31〜34)と前記突起部(32f、33f、34f)との接触を回避する切り欠き部(31g〜33g)が形成されていることを特徴とする請求項に記載の空気通路開閉装置。 Among the plurality of thin plate members (31 to 34), the thin plate members (31 to 34) are arranged at the corners of the thin plate members (31 to 34) stacked in the protruding direction of the protrusions (32f, 33f, 34f). The air passage opening and closing device according to claim 5 , wherein notches (31g to 33g) for avoiding contact between the projections (32f, 33f, and 34f) are formed. 空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備えるとともに、
前記複数枚の薄板部材(31〜34)のうち、少なくとも1つの薄板部材における前記移動方向(b)の端部の中央部付近に押しつけ力を付与する突起部(34g)が設けられていることを特徴とする空気通路開閉装置。
Door means (30) moving in a direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12), and the air passage (11) is provided by the door means (30). 12) An air passage opening and closing device for opening and closing,
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). While equipped with windward vibration isolation means (21) for generating reaction force ,
Of the plurality of thin plate members (31 to 34), a projection (34g) for applying a pressing force is provided in the vicinity of the center of the end in the moving direction (b) of at least one thin plate member. An air passage opening and closing device.
空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備えるとともに、
前記空気通路(11、12)の開口部周縁の全周に、前記複数枚の薄板部材(31〜34)側へ突き出すシールリブ(10c)が形成されていることを特徴とする空気通路開閉装置。
Door means (30) moving in a direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12), and the air passage (11) is provided by the door means (30). 12) An air passage opening and closing device for opening and closing,
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). While equipped with windward vibration isolation means (21) for generating reaction force ,
Sealing ribs (10c) protruding toward the plurality of thin plate members (31 to 34) are formed on the entire circumference of the peripheral edge of the opening of the air passages (11, 12) .
空気通路(11、12)の開口部の風上側に空気流れ方向(a)と直交する方向(b)に移動するドア手段(30)を備え、前記ドア手段(30)により前記空気通路(11、12)を開閉する空気通路開閉装置であって、
前記ドア手段(30)は、前記空気流れ方向(a)に積層された複数枚の薄板部材(31〜34)で構成され、
前記複数枚の薄板部材(31〜34)はそれぞれ開口部(31a〜34a)と通路遮蔽部分(31b〜34c)とを有しており、
前記複数枚の薄板部材(31〜34)の前記開口部(31a〜34a)が前記空気通路(11、12)の開口部と重合することにより前記空気通路(11、12)を開口し、
一方、前記複数枚の薄板部材(31〜34)の前記通路遮蔽部分(31b〜34c)が階段状にずれた状態で積層されることにより前記空気通路(11、12)の遮蔽範囲が決定されるようになっており、
さらに、前記複数枚の薄板部材(31〜34)の風上側領域に、前記複数枚の薄板部材(31〜34)を風下側へ押しつけて、前記複数枚の薄板部材(31〜34)に弾性反力を発生する風上側防振手段(21)を備え
前記空気通路(11、12)は、前記空気流れ方向(a)の風下側領域に位置する第1ハウジング(10)により形成され、前記空気流れ方向(a)の風上側領域には第2ハウジング(20)が配置され、
前記複数枚の薄板部材(31〜34)は、前記第1ハウジング(10)と前記第2ハウジング(20)との間に移動可能に配置され、
前記風上側防振手段は、前記第2ハウジング(20)に設けられて前記複数枚の薄板部材(31〜34)の移動方向に沿って延びる防振リブ(21)であることを特徴とする空気通路開閉装置。
Door means (30) moving in a direction (b) perpendicular to the air flow direction (a) is provided on the windward side of the opening of the air passage (11, 12), and the air passage (11) is provided by the door means (30). 12) An air passage opening and closing device for opening and closing,
The door means (30) is composed of a plurality of thin plate members (31 to 34) laminated in the air flow direction (a),
Each of the plurality of thin plate members (31 to 34) has an opening (31a to 34a) and a passage shielding portion (31b to 34c),
The openings (31a to 34a) of the plurality of thin plate members (31 to 34) are overlapped with the openings of the air passages (11, 12) to open the air passages (11, 12),
Meanwhile, the shielding range of the air passages (11, 12) is determined by stacking the passage shielding portions (31b to 34c) of the plurality of thin plate members (31 to 34) in a staggered manner. It is supposed to
Further, the plurality of thin plate members (31 to 34) are pressed to the leeward side of the plurality of thin plate members (31 to 34) to the leeward side region, thereby elastically acting on the plurality of thin plate members (31 to 34). A windward vibration isolating means (21) for generating a reaction force ;
The air passages (11, 12) are formed by a first housing (10) located in a leeward region of the air flow direction (a), and a second housing is located in the leeward region of the air flow direction (a). (20) is arranged,
The plurality of thin plate members (31 to 34) are movably disposed between the first housing (10) and the second housing (20),
The windward vibration isolation means is a vibration isolation rib (21) provided in the second housing (20) and extending along a moving direction of the plurality of thin plate members (31 to 34). Air passage opening and closing device.
JP2005366215A 2005-12-20 2005-12-20 Air passage opening and closing device Expired - Fee Related JP4581989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366215A JP4581989B2 (en) 2005-12-20 2005-12-20 Air passage opening and closing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366215A JP4581989B2 (en) 2005-12-20 2005-12-20 Air passage opening and closing device

Publications (2)

Publication Number Publication Date
JP2007168522A JP2007168522A (en) 2007-07-05
JP4581989B2 true JP4581989B2 (en) 2010-11-17

Family

ID=38295681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366215A Expired - Fee Related JP4581989B2 (en) 2005-12-20 2005-12-20 Air passage opening and closing device

Country Status (1)

Country Link
JP (1) JP4581989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184495A (en) * 2008-02-06 2009-08-20 Denso Corp Air conditioner
JP4596046B2 (en) * 2008-06-19 2010-12-08 株式会社デンソー Air passage opening and closing device
KR101595244B1 (en) 2012-10-30 2016-02-18 한온시스템 주식회사 Air conditioner for vehicle
KR20150060244A (en) * 2013-11-26 2015-06-03 현대자동차주식회사 Air Flap for Vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671222U (en) * 1993-03-25 1994-10-04 株式会社ゼクセル Air conditioning unit
JP4363283B2 (en) * 2004-09-13 2009-11-11 株式会社デンソー Air passage opening and closing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237186B2 (en) * 1992-05-08 2001-12-10 株式会社デンソー Air passage switching device
JP3284726B2 (en) * 1994-01-19 2002-05-20 株式会社デンソー Air passage switching device
JPH11115459A (en) * 1997-10-21 1999-04-27 Mitsubishi Heavy Ind Ltd Air-conditioning device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671222U (en) * 1993-03-25 1994-10-04 株式会社ゼクセル Air conditioning unit
JP4363283B2 (en) * 2004-09-13 2009-11-11 株式会社デンソー Air passage opening and closing device

Also Published As

Publication number Publication date
JP2007168522A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4363283B2 (en) Air passage opening and closing device
JP4581989B2 (en) Air passage opening and closing device
US9849755B2 (en) Air flow direction adjusting device and vehicle air conditioning device
JP4496546B2 (en) Sliding door device for air conditioner
US6688964B2 (en) Air passage opening/closing device and vehicle air conditioner using the same
JP6115462B2 (en) Air conditioning unit
US20110056818A1 (en) Key switch device
JP5447354B2 (en) Air conditioner for vehicles
JP2004322915A (en) Air passage opening/closing device, and vehicular air-conditioner
JP4856754B2 (en) Air conditioning structure for vehicle air conditioning
US20040043720A1 (en) Air passage switching device
JP2011259059A (en) Slide unit mechanism
JP2000211339A (en) Air inlet mode selector device of vehicular air conditioner
JP2004155248A (en) Air conditioner for automobile and its manufacturing method
JP3153445U (en) register
JP5047682B2 (en) Air conditioner for automobile
JP2007147033A (en) Link device
JP2007093766A (en) Sound insulation tool and outer case equipped with same
JP5520594B2 (en) Air outlet
JP2001253221A (en) Air passage changeover device
JP2006143126A (en) Airway switching door
JP2007200668A (en) In-vehicle operation unit
JP2022040465A (en) Air-conditioning register
WO2022130927A1 (en) Casing unit
JP2011020517A (en) Damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4581989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees