JP4581477B2 - Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell - Google Patents

Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell Download PDF

Info

Publication number
JP4581477B2
JP4581477B2 JP2004142518A JP2004142518A JP4581477B2 JP 4581477 B2 JP4581477 B2 JP 4581477B2 JP 2004142518 A JP2004142518 A JP 2004142518A JP 2004142518 A JP2004142518 A JP 2004142518A JP 4581477 B2 JP4581477 B2 JP 4581477B2
Authority
JP
Japan
Prior art keywords
solid polymer
polymer electrolyte
stretched porous
membrane
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004142518A
Other languages
Japanese (ja)
Other versions
JP2005327500A (en
Inventor
憲俊 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004142518A priority Critical patent/JP4581477B2/en
Publication of JP2005327500A publication Critical patent/JP2005327500A/en
Application granted granted Critical
Publication of JP4581477B2 publication Critical patent/JP4581477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Description

本発明は、固体高分子型燃料電池、水電解装置などに用いる固体高分子電解質の製造方法、固体高分子電解質膜、及び燃料電池に関する。特に、燃料電池に用いた時に、運転状況の繰り返し変化に対する破損のない耐久性に優れた固体高分子電解質の製造方法に関する。   The present invention relates to a method for producing a solid polymer electrolyte used in a solid polymer fuel cell, a water electrolysis apparatus, and the like, a solid polymer electrolyte membrane, and a fuel cell. In particular, the present invention relates to a method for producing a solid polymer electrolyte excellent in durability without damage to repeated changes in operating conditions when used in a fuel cell.

固体高分子電解質型燃料電池は、電解質として固体高分子電解質膜を用い、この膜の両面に電極を接合した構造を有する。   A solid polymer electrolyte fuel cell has a structure in which a solid polymer electrolyte membrane is used as an electrolyte and electrodes are joined to both surfaces of the membrane.

燃料電池として使用する際に高分子固体電解質膜は、それ自体の膜抵抗が低い必要があり、その為には膜厚はできるだけ薄い方が望ましい。しかしながら、膜厚をあまり薄くすると、製膜時にピンホールが生じたり、電極成形時に膜が破れてしまったり、電極間の短絡が発生したりしやすいという問題点があった。また、燃料電池使用される高分子固体電解質膜は、常に湿潤状態で使用されるため、湿潤による高分子膜の膨潤、変形等による差圧運転時の耐圧性やクロスリーク等、信頼性に問題が生じるようになる。   When used as a fuel cell, the polymer solid electrolyte membrane needs to have a low membrane resistance. For that purpose, it is desirable that the film thickness be as thin as possible. However, if the film thickness is too thin, there are problems that pinholes are easily formed during film formation, the film is broken during electrode forming, and a short circuit between the electrodes is likely to occur. In addition, since solid polymer electrolyte membranes used in fuel cells are always used in a wet state, there are problems in reliability such as pressure resistance and cross leak during differential pressure operation due to swelling and deformation of the polymer membrane due to wetting. Comes to occur.

そこで、下記特許文献1には、イオン交換樹脂の含水量の変化が繰り返し生じても破損せず、かつイオン交換樹脂とフッ素樹脂等の多孔膜が互いに密着し、ピンホールができ難いイオン交換膜を目的として、延伸により作製されたフッ素樹脂等の多孔膜の少なくとも孔中に、溶媒に溶解したポリマーを含浸させ、乾燥することにより多孔膜に付着させた後、イオン交換基を導入してイオン交換膜を製造する方法が開示されている。   Therefore, in Patent Document 1 below, an ion exchange membrane that does not break even when a change in the water content of the ion exchange resin repeatedly occurs, and the ion exchange resin and a porous membrane such as a fluororesin are in close contact with each other and pinholes are difficult to form. For the purpose of the above, at least the pores of a porous membrane such as a fluororesin prepared by stretching are impregnated with a polymer dissolved in a solvent and dried to adhere to the porous membrane, and then ion exchange groups are introduced to introduce ions. A method of manufacturing an exchange membrane is disclosed.

特開平9−194609号公報JP-A-9-194609

上記特許文献1に開示された方法では、ポリマーは親水性であるのに対し延伸多孔膜は疎水性であり、溶媒にて馴染み易くしてはいるが、耐久性の高い複合化は行われていない。したがって、使用中に電解質とPTFEが分離するという懸念がもたれている。これは、目的に反して、ポリマーと多孔膜間の界面にわずかに空隙が残存するためである。溶媒を用い、溶媒に溶解したポリマーを用いて複合化することが原因であると考えられる。延伸多孔質PTFEへの電解質溶液含浸はPTFEが撥水性であるために電解質樹脂が十分に複合できないと考えられる。   In the method disclosed in Patent Document 1, the polymer is hydrophilic, while the stretched porous membrane is hydrophobic, and it is easy to become familiar with the solvent, but is highly durable. Absent. Therefore, there is a concern that the electrolyte and PTFE are separated during use. This is because slightly voids remain at the interface between the polymer and the porous membrane, contrary to the purpose. It is thought that this is caused by using a solvent and making a complex using a polymer dissolved in the solvent. When the porous porous PTFE is impregnated with the electrolyte solution, it is considered that the electrolyte resin cannot be sufficiently combined because PTFE is water repellent.

そこで、電解質前駆体の薄膜を延伸多孔質PTFEに溶融・加圧により含浸させる技術が開発され、電解質とPTFE多孔質の複合化改善が検討されたが、材料選定をランダムに行うと、以下のような不具合を生じる。
(1)延伸多孔質PTFEに電解質前駆体が含浸しない。例えば、延伸多孔質の気孔率や細孔径が小さいと溶融した樹脂が流れにくいために、うまく含浸しないことがあげられる。また、前駆体樹脂の溶融粘度が高すぎても同様にうまく含浸しない。
(2)細孔径が大きく補強効果が小さいために、複合膜の機械的耐久性が維持できない。
(3)複合膜の加熱収縮が激しく、しわなど膜表面の性状が悪くなる。例えば、延伸多孔質PTFEの熱収縮が激しいと複合膜の熱収縮も激しくなる。
Therefore, a technique for impregnating expanded porous PTFE by melting and pressurizing the electrolyte precursor thin film was developed and improvement of the composite of electrolyte and PTFE porous was studied. This causes problems.
(1) The expanded porous PTFE is not impregnated with the electrolyte precursor. For example, if the porosity and pore diameter of the stretched porous material are small, the molten resin is difficult to flow, and therefore it is not possible to impregnate well. Moreover, even if the melt viscosity of the precursor resin is too high, it does not impregnate similarly.
(2) Since the pore diameter is large and the reinforcing effect is small, the mechanical durability of the composite membrane cannot be maintained.
(3) Heat shrinkage of the composite film is severe, and the film surface properties such as wrinkles are deteriorated. For example, when the thermal contraction of expanded porous PTFE is severe, the thermal contraction of the composite membrane also becomes severe.

本発明は、上記従来技術の問題点に鑑みて発明されたものであり、薄膜化が可能で、強度が高く、かつ燃料ガスのクロスリーク量が少ない高耐久性複合ポリマー膜を提供し、この複合ポリマー膜を固体高分子電解質膜として用いることによって、出力電圧及び電流密度が向上された燃料電池を提供することを目的とする。   The present invention has been invented in view of the above-described problems of the prior art, and provides a highly durable composite polymer film that can be thinned, has high strength, and has a small amount of cross-leakage of fuel gas. An object of the present invention is to provide a fuel cell having an improved output voltage and current density by using a composite polymer membrane as a solid polymer electrolyte membrane.

本発明者は、溶媒の存在無しに電解質前駆体を延伸多孔質補強材に含浸することにより、上記課題が解決されることを見出し、本発明に至った。   The present inventor has found that the above problems can be solved by impregnating the expanded porous reinforcing material with the electrolyte precursor without the presence of a solvent, and has reached the present invention.

即ち、第1に、本発明は、固体高分子電解質の製造方法の発明であり、延伸多孔質補強材の分解温度よりも低い温度において所定の溶融粘度以下である電解質前駆体を、前記延伸多孔質補強材である2枚の延伸多孔質樹脂膜で挟み込み、所定の荷重で熱圧して複合化し、複合化した電解質前駆体にイオン交換基を導入することを特徴とする。上記方法とすることにより、電解質前駆体は延伸多孔質補強材の分解温度以下で所定の粘度以下となるので、補強材と同様の撥水性を呈しつつ良好に含浸複合化することができ、高耐久の固高分子膜を製造することが可能になる。 That is, first, the present invention is an invention of a method for producing a solid polymer electrolyte, wherein an electrolyte precursor having a predetermined melt viscosity or less at a temperature lower than the decomposition temperature of the stretched porous reinforcing material is used as the stretched porous material. It is characterized in that it is sandwiched between two stretched porous resin membranes which are carbonaceous reinforcing materials, and is heat-compressed with a predetermined load to form a composite, and an ion exchange group is introduced into the composite electrolyte precursor . By using the above method, the electrolyte precursor has a predetermined viscosity or less below the decomposition temperature of the stretched porous reinforcing material, so that it can be well impregnated and composited while exhibiting the same water repellency as the reinforcing material. it is possible to produce a solid high polymer film durability.

延伸多孔質補強材としては、気孔率50%以上、細孔径0.05〜5μmで、膜厚5〜100μmであることが好ましい。これにより、(1)延伸多孔質補強材に電解質前駆体が含浸しないという問題、及び(2)細孔径が大きく補強効果が小さいために、複合膜の機械的耐久性が維持できないという問題が解決される。   The stretched porous reinforcing material preferably has a porosity of 50% or more, a pore diameter of 0.05 to 5 μm, and a film thickness of 5 to 100 μm. This solves (1) the problem that the expanded porous reinforcing material is not impregnated with the electrolyte precursor, and (2) the problem that the mechanical durability of the composite membrane cannot be maintained because the pore size is large and the reinforcing effect is small. Is done.

又、延伸多孔質補強材としては、熱収縮の少ないものが好ましい。具体的には、220℃×30分の加熱において、その寸法変化が、加熱前寸法ベースで、膜厚105%以下、MD94%以上、TD97%以上であることが好ましい。ここで、MDとは成形方向であり、TDとはMDの垂直方向である。これにより、(3)複合膜の加熱収縮が激しく、しわなど膜表面の性状が悪くなるという問題が解決される。   Further, as the stretched porous reinforcing material, a material having a small heat shrinkage is preferable. Specifically, in heating at 220 ° C. for 30 minutes, the dimensional change is preferably 105% or less, MD 94% or more, and TD 97% or more on a dimensional basis before heating. Here, MD is a molding direction, and TD is a perpendicular direction of MD. This solves the problem that (3) the heat shrinkage of the composite film is severe and the film surface properties such as wrinkles are deteriorated.

延伸多孔質補強材としては、具体的には、下記一般式(1)で表される(式中、Aは下記[化2]から選択される1種以上であり、a:b=1:0〜9:1である)ポリテトラフルオロエチレン(PTFE)又は共重合成分を10モル%以下含むテトラフルオロエチレン共重合体が好ましく例示される。   The stretched porous reinforcing material is specifically represented by the following general formula (1) (wherein A is one or more selected from the following [Chemical Formula 2], and a: b = 1: Preferred examples include polytetrafluoroethylene (PTFE) (0-9: 1) or a tetrafluoroethylene copolymer containing 10 mol% or less of a copolymer component.

Figure 0004581477
Figure 0004581477

Figure 0004581477
Figure 0004581477

電解質前駆体としては、200〜300℃の範囲内の温度で成形可能で、その温度における溶融粘度がせん断速度1/secで4000Pa・sec以下であることが好ましい。これにより、上記の好ましい物性を有する延伸多孔質補強材と相まって、これにより、(1)延伸多孔質補強材に電解質前駆体が含浸しないという問題、及び、(2)細孔径が大きく補強効果が小さいために、複合膜の機械的耐久性が維持できないという問題が解決される。   The electrolyte precursor can be molded at a temperature in the range of 200 to 300 ° C., and the melt viscosity at that temperature is preferably 4000 Pa · sec or less at a shear rate of 1 / sec. Thereby, coupled with the stretched porous reinforcing material having the preferred physical properties described above, thereby, (1) the problem that the stretched porous reinforcing material is not impregnated with the electrolyte precursor, and (2) the effect of reinforcing the pore diameter is large. Due to the small size, the problem that the mechanical durability of the composite film cannot be maintained is solved.

電解質前駆体としては、具体的には、下記一般式(2)で表される(式中、c:d=1:1〜9:1、n=0,1,2)が好ましく例示される。   Specifically, preferred examples of the electrolyte precursor are represented by the following general formula (2) (where c: d = 1: 1 to 9: 1, n = 0, 1, 2). .

Figure 0004581477
Figure 0004581477

上記一般式(2)で表される電解質前駆体は、側鎖末端のスルホニルフルオライド基が常法によりアルカリで加水分解され、酸で中和されて、スルホン酸基となり、下記一般式(3)で表される(式中、c:d=1:1〜9:1、n=0,1,2)イオン交換能を有する固体高分子電解質となる。   In the electrolyte precursor represented by the general formula (2), the sulfonyl fluoride group at the end of the side chain is hydrolyzed with an alkali by a conventional method, neutralized with an acid to become a sulfonic acid group, and the following general formula (3 (Wherein c: d = 1: 1 to 9: 1, n = 0, 1, 2), a solid polymer electrolyte having ion exchange ability.

Figure 0004581477
Figure 0004581477

第2に、本発明は、上記方法により製造される固体高分子電解質膜である。具体的には、延伸多孔質樹脂を基体膜とし、電解質前駆体を2枚の延伸多孔質樹脂膜で挟み込み、所定の荷重、温度、時間で熱圧し、含浸された電解質前駆体を加水分解することで得られる。   Second, the present invention is a solid polymer electrolyte membrane produced by the above method. Specifically, the stretched porous resin is used as a base film, the electrolyte precursor is sandwiched between two stretched porous resin films, and the impregnated electrolyte precursor is hydrolyzed by hot pressing at a predetermined load, temperature, and time. Can be obtained.

本発明によれば、固体高分子電解質膜は、電解質膜の厚さを延伸多孔質樹脂基体膜の厚さで調節することができるので、従来のパーフルオロカーボンスルホン酸樹脂を膜状に成形した電解質膜に比べて遠心多孔質樹脂を支持体として用いることで、強度を補強することができるので、従来のパーフルオロカーボンスルホン酸樹脂を膜状に成形した電解質に比べて厚さを薄くしても使用可能である。また、延伸多孔質樹脂を電解質膜の支持体として用いるため、電解質膜の強度を補強することができる。   According to the present invention, since the solid polymer electrolyte membrane can adjust the thickness of the electrolyte membrane by the thickness of the stretched porous resin substrate membrane, an electrolyte obtained by forming a conventional perfluorocarbon sulfonic acid resin into a membrane shape Compared to membranes, centrifugal porous resin can be used as a support to reinforce the strength, so it can be used even when the thickness of the perfluorocarbon sulfonic acid resin is reduced compared to electrolytes formed into membranes. Is possible. Further, since the stretched porous resin is used as a support for the electrolyte membrane, the strength of the electrolyte membrane can be reinforced.

第3に、本発明は、上記方法により製造される固体高分子電解質膜を有する燃料電池である。   3rdly, this invention is a fuel cell which has a solid polymer electrolyte membrane manufactured by the said method.

本発明によれば、固体高分子電解質膜の厚さを薄くすることが可能であり、また、延伸多孔質樹脂を電解質膜の支持体として用いるため、電解質膜の強度を補強することができるので、本発明に係る固体高分子電解質膜を備えた燃料電池は、高耐久性であるとともに、燃料ガスのクロスリーク量が少なく、電流−電圧特性を向上することができる。   According to the present invention, it is possible to reduce the thickness of the solid polymer electrolyte membrane, and since the stretched porous resin is used as a support for the electrolyte membrane, the strength of the electrolyte membrane can be reinforced. The fuel cell comprising the solid polymer electrolyte membrane according to the present invention is highly durable, has a small amount of cross leak of fuel gas, and can improve current-voltage characteristics.

本発明により、溶融粘度の規制された固体高分子電解質前駆体を気孔率・空孔径の制御された延伸多孔質PTFEに溶融含浸成形することで、高度に空孔に電解質が含浸複合された補強型高分子固体電解質を得ることができる。   According to the present invention, a solid polymer electrolyte precursor whose melt viscosity is regulated is melt-impregnated and molded into a porous porous PTFE having a controlled porosity and pore diameter, so that the pores are highly impregnated with an electrolyte. Type solid polymer electrolyte can be obtained.

又、上記複合成形において加熱寸法安定性に優れた延伸多孔質PTFEを選択することで、MEA形成で安定した形状維持可能な補強型高分子固体電解質膜を得ることができる。   Further, by selecting stretched porous PTFE excellent in heating dimensional stability in the composite molding, a reinforced polymer solid electrolyte membrane capable of maintaining a stable shape by forming MEA can be obtained.

以下、本発明の実施例及び比較例を示す。   Examples of the present invention and comparative examples are shown below.

電解質膜前駆体を延伸多孔質PTFE膜2枚で挟み込み、所定の荷重・温度・時間で熱圧した。これをNaOHlmo1/L水溶液とDMSOの6:4混合溶媒中で80℃、2時間処理して加水分解し、膜を水洗してHNO1mo1/L水溶液中で80℃、1時間処理して中和した。(実施例1〜6、比較例1〜2)
加水分解・中和処理の前後でIRスペクトルを見た結果、前駆体の−SOFが完全に−SOHに変換されていることが確認された。この膜の概観及び凍結破断による断面のSEM観察により、電解質の延伸多孔質への含浸状態を確認した。また、90℃で水中浸漬3時間行い、取り出した膜の表面に付着した水をふき取って乾燥状態からの寸法変化を測定した。
The electrolyte membrane precursor was sandwiched between two stretched porous PTFE membranes and hot pressed at a predetermined load, temperature, and time. This was hydrolyzed by treatment in a 6: 4 mixed solvent of NaOH 1 / L and DMSO at 80 ° C. for 2 hours, and the membrane was washed with water and treated in HNO 3 1mo 1 / L aqueous solution at 80 ° C. for 1 hour. It was summed up. (Examples 1-6, Comparative Examples 1-2)
As a result of observing the IR spectrum before and after the hydrolysis / neutralization treatment, it was confirmed that the precursor —SO 2 F was completely converted to —SO 3 H. The appearance of the membrane and the SEM observation of the cross section by freezing fracture confirmed the state of impregnation of the electrolyte into the stretched porous material. Moreover, it immersed in water at 90 degreeC for 3 hours, wiped off the water adhering to the surface of the taken-out film | membrane, and measured the dimensional change from a dry state.

比較対象として、電解質単膜(比較例3)、延伸多孔質PTFEへの溶媒キャスト法による補強膜複合電解質膜(比較例4)を同様に観察した。   As comparative objects, a single electrolyte membrane (Comparative Example 3) and a reinforced membrane composite electrolyte membrane (Comparative Example 4) obtained by a solvent casting method to expanded porous PTFE were similarly observed.

電解質のSOF量は溶融NMR分析から得られるシグナルの面積比をもとに計算して得た。溶融粘度は、それぞれの成形温度で動的粘弾性の周波数依存性を回転型レオメーターを用いて測定した。多孔体の気孔率は多孔体の比重とPTFEの比重(2.2)から計算して求めた。多孔体の空孔径は、水銀圧入法により得られる孔径分布チャートから平均値を算出したものを用いた。多孔体の熱収縮は220℃、3時間の熱処理前後の寸法変化を測定した。EWは、濃度既知のNaC1水溶液に酸型電解質サンプルを投入し、電解質により変換されたプロトンをNaOH水で滴定し、滴定値とサンプル量から算出した。
結果を、下記表1に示す。
The amount of SO 2 F in the electrolyte was obtained by calculation based on the area ratio of signals obtained from melt NMR analysis. For the melt viscosity, the frequency dependence of dynamic viscoelasticity at each molding temperature was measured using a rotary rheometer. The porosity of the porous material was calculated from the specific gravity of the porous material and the specific gravity of PTFE (2.2). As the pore size of the porous body, an average value calculated from a pore size distribution chart obtained by a mercury intrusion method was used. The heat shrinkage of the porous body was measured by dimensional change before and after heat treatment at 220 ° C. for 3 hours. The EW was calculated from the titration value and the sample amount by introducing an acid-type electrolyte sample into a NaC1 aqueous solution having a known concentration, titrating protons converted by the electrolyte with NaOH water.
The results are shown in Table 1 below.

Figure 0004581477
Figure 0004581477

表1の結果より、延伸多孔質補強材の分解温度よりも低い温度において所定の溶融粘度以下である電解質前駆体を、溶媒の存在無しに該延伸多孔質補強材に含浸して延伸多孔質補強材と電解質ポリマーを複合化し、複合化した電解質ポリマーにイオン交換基を導入した実施例1〜6では、比較例1〜4と比べて、高分子電解質の含浸状態が優れていた。   From the results shown in Table 1, the expanded porous reinforcement is impregnated with an electrolyte precursor having a predetermined melt viscosity or lower at a temperature lower than the decomposition temperature of the expanded porous reinforcement without the presence of a solvent. In Examples 1 to 6, in which the material and the electrolyte polymer were combined and ion exchange groups were introduced into the combined electrolyte polymer, the impregnation state of the polymer electrolyte was superior to Comparative Examples 1 to 4.

特に、延伸多孔質補強材が、気孔率50%以上、細孔径0.05〜5μm以上で、膜厚5〜100μmである場合、延伸多孔質補強材が、220℃×30分の加熱において、その寸法変化が、加熱前寸法ベースで、膜厚105%以下、MD94%以上、TD97%以上である場合において、電解質前駆体が、200〜300℃の範囲内の温度で成形可能で、その温度における溶融粘度がせん断速度1/secで4000Pa・sec以下である場合において、優れた含浸性を示していることが分かる。   In particular, when the stretched porous reinforcing material has a porosity of 50% or more, a pore diameter of 0.05 to 5 μm or more and a film thickness of 5 to 100 μm, the stretched porous reinforcing material is heated at 220 ° C. for 30 minutes, When the dimensional change is based on the dimensions before heating and the film thickness is 105% or less, MD94% or more, TD97% or more, the electrolyte precursor can be molded at a temperature in the range of 200 to 300 ° C. It can be seen that excellent impregnation properties are exhibited when the melt viscosity at 1 is 4,000 Pa · sec or less at a shear rate of 1 / sec.

本発明によれば、固体高分子電解質膜の耐久性を向上させることが可能であり、本発明に係る固体高分子電解質膜を備えた燃料電池は、高耐久性であるとともに、燃料ガスのクロスリーク量が少なく、電流−電圧特性を向上することができる。
これにより、燃料電池の耐久性と発電性能を高め、その実用化及び普及に貢献する。
According to the present invention, it is possible to improve the durability of the solid polymer electrolyte membrane, and the fuel cell including the solid polymer electrolyte membrane according to the present invention is highly durable and crosses the fuel gas. The amount of leakage is small, and the current-voltage characteristics can be improved.
This enhances the durability and power generation performance of the fuel cell and contributes to its practical use and spread.

Claims (8)

延伸多孔質補強材の分解温度よりも低い温度において所定の溶融粘度以下である電解質前駆体を、前記延伸多孔質補強材である2枚の延伸多孔質樹脂膜で挟み込み、所定の荷重で熱圧して複合化し、複合化した電解質前駆体にイオン交換基を導入することを特徴とする固体高分子電解質の製造方法。 An electrolyte precursor having a predetermined melt viscosity or lower at a temperature lower than the decomposition temperature of the stretched porous reinforcing material is sandwiched between the two stretched porous resin films, which are the stretched porous reinforcing material, and hot-pressed with a predetermined load. conjugated Te, method for producing a solid polymer electrolyte, which comprises introducing complexed with electrolyte precursor to ion-exchange group. 前記延伸多孔質補強材が、気孔率50%以上、細孔径0.05〜5μmで、膜圧5〜100μmであることを特徴とする請求項1に記載の固体高分子電解質の製造方法。   2. The method for producing a solid polymer electrolyte according to claim 1, wherein the stretched porous reinforcing material has a porosity of 50% or more, a pore diameter of 0.05 to 5 μm, and a membrane pressure of 5 to 100 μm. 前記延伸多孔質補強材が、220℃×30分の加熱において、その寸法変化が、加熱前寸法ベースで、膜厚105%以下、MD94%以上、TD97%以上であることを特徴とする請求項1又は2に記載の固体高分子電解質の製造方法。   The stretched porous reinforcing material, when heated at 220 ° C for 30 minutes, has a dimensional change of 105% or less, 94% or more of MD, and 97% or more of TD on a dimensional basis before heating. 3. A method for producing a solid polymer electrolyte according to 1 or 2. 前記延伸多孔質補強材が、下記一般式(1)で表される(式中、Aは下記[化2]から選択される1種以上であり、a:b=1:0〜9:1である)ポリテトラフルオロエチレン(PTFE)又は共重合成分を10モル%以下含むテトラフルオロエチレン共重合体であることを特徴とする請求項1乃至3のいずれかに記載の固体高分子電解質の製造方法。
Figure 0004581477

Figure 0004581477
The stretched porous reinforcing material is represented by the following general formula (1) (where A is one or more selected from the following [Chemical Formula 2], and a: b = 1: 0 to 9: 1. The production of a solid polymer electrolyte according to any one of claims 1 to 3, which is polytetrafluoroethylene (PTFE) or a tetrafluoroethylene copolymer containing 10 mol% or less of a copolymer component. Method.
Figure 0004581477

Figure 0004581477
前記電解質前駆体が、200〜300℃の範囲内の温度で成形可能で、その温度における溶融粘度がせん断速度1/secで4000Pa・sec以下であることを特徴とする請求項1乃至4のいずれかに記載の固体高分子電解質の製造方法。   The electrolyte precursor can be molded at a temperature within a range of 200 to 300 ° C, and the melt viscosity at that temperature is 4000 Pa · sec or less at a shear rate of 1 / sec. A method for producing a solid polymer electrolyte according to claim 1. 前記電解質前駆体が、下記一般式(2)で表される(式中、c:d=1:1〜9:1、n=0, 1, 2)ことを特徴とする請求項1乃至5のいずれかに記載の固体高分子電解質の製造方法。
Figure 0004581477
The electrolyte precursor is represented by the following general formula (2) (wherein c: d = 1: 1 to 9: 1, n = 0, 1, 2). A method for producing a solid polymer electrolyte according to any one of the above.
Figure 0004581477
請求項1乃至6のいずれかに記載の方法により製造される固体高分子電解質膜。   A solid polymer electrolyte membrane produced by the method according to claim 1. 請求項7に記載の固体高分子電解質膜を有する燃料電池。   A fuel cell comprising the solid polymer electrolyte membrane according to claim 7.
JP2004142518A 2004-05-12 2004-05-12 Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell Expired - Fee Related JP4581477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142518A JP4581477B2 (en) 2004-05-12 2004-05-12 Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142518A JP4581477B2 (en) 2004-05-12 2004-05-12 Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell

Publications (2)

Publication Number Publication Date
JP2005327500A JP2005327500A (en) 2005-11-24
JP4581477B2 true JP4581477B2 (en) 2010-11-17

Family

ID=35473688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142518A Expired - Fee Related JP4581477B2 (en) 2004-05-12 2004-05-12 Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell

Country Status (1)

Country Link
JP (1) JP4581477B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157637A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Reinforcement type solid polymer electrolyte membrane and its manufacturing method
JP4923627B2 (en) * 2006-03-01 2012-04-25 トヨタ自動車株式会社 Method for producing reinforced electrolyte membrane
JP4882541B2 (en) * 2006-06-26 2012-02-22 トヨタ自動車株式会社 Manufacturing method of electrolyte membrane for fuel cell and membrane electrode assembly
JP5173262B2 (en) * 2007-05-29 2013-04-03 日本ゴア株式会社 Method for producing solid polymer electrolyte membrane, solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same
JP5533688B2 (en) * 2011-01-18 2014-06-25 トヨタ自動車株式会社 Manufacturing method of electrolyte membrane for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575835B2 (en) * 1985-04-22 1993-10-21 Japan Gore Tex Inc
JPH06342666A (en) * 1993-03-23 1994-12-13 Asahi Chem Ind Co Ltd Solid high molecular type fuel cell
JP2000510510A (en) * 1996-04-30 2000-08-15 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Integrated multilayer ion exchange composite membrane
JP2003173799A (en) * 2001-04-04 2003-06-20 Sumitomo Chem Co Ltd Polymer electrolyte and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575835B2 (en) * 1985-04-22 1993-10-21 Japan Gore Tex Inc
JPH06342666A (en) * 1993-03-23 1994-12-13 Asahi Chem Ind Co Ltd Solid high molecular type fuel cell
JP2000510510A (en) * 1996-04-30 2000-08-15 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Integrated multilayer ion exchange composite membrane
JP2003173799A (en) * 2001-04-04 2003-06-20 Sumitomo Chem Co Ltd Polymer electrolyte and its manufacturing method

Also Published As

Publication number Publication date
JP2005327500A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
JP4231110B2 (en) Novel polymer electrolyte membrane for fuel cells
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
WO2012046777A1 (en) Fluorine-containing polymer electrolyte membrane
EP2053679B1 (en) Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same
KR20010034536A (en) Ion Conductive Matrixes and Their Use
US9325027B2 (en) Preparation method of fluorine-containing ionomer composite material with ion exchange function
KR102262297B1 (en) Electrolyte membrane and manufacturing method thereof
KR20110120185A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
JP5489945B2 (en) Fluorine polymer electrolyte membrane
JP7340172B2 (en) Method for producing sulfo group-containing graphene oxide, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
KR101597835B1 (en) Process for producing solid polymer electrolyte membrane and solid polymer electrolyte membrane
JPH11310649A (en) Cation exchange membrane and its use
KR20190021975A (en) Modified polytetrafluoroethylene, method for preparing the same, ion exchange membranes using the same and method for preparing ion exchange membranes using the same
JP2006049002A (en) Manufacturing method of solid polyelectrolyte, solid polyelectrolyte film, and fuel cell
JP4581477B2 (en) Method for producing solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
JP2007511873A (en) Ion conductive composite membrane
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP5189394B2 (en) Polymer electrolyte membrane
KR20110054607A (en) Reinfored composite electrolyte membrane and manufacturing method thereof
JP2014110232A (en) Fluorine-based polymer electrolyte film
KR102008400B1 (en) Polymer eletrolyte membrane
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
Choudhury et al. Studies on composite proton exchange membranes made from poly (vinyl alcohol-co-styrenesulfonic acid)/non-woven fabric for direct methanol fuel cell
JP2003526184A (en) Method for producing electrode-membrane assembly, method for producing electrode-membrane-electrode assembly, assembly obtained in the manner described above, and fuel cell device provided with these assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4581477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees