JP4580682B2 - Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus - Google Patents

Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus Download PDF

Info

Publication number
JP4580682B2
JP4580682B2 JP2004143506A JP2004143506A JP4580682B2 JP 4580682 B2 JP4580682 B2 JP 4580682B2 JP 2004143506 A JP2004143506 A JP 2004143506A JP 2004143506 A JP2004143506 A JP 2004143506A JP 4580682 B2 JP4580682 B2 JP 4580682B2
Authority
JP
Japan
Prior art keywords
coil
insulating
resin
manufacturing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004143506A
Other languages
Japanese (ja)
Other versions
JP2005328615A (en
Inventor
久之 平井
誠 河原
浩 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Technology Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Technology Corp filed Critical Toshiba Corp
Priority to JP2004143506A priority Critical patent/JP4580682B2/en
Publication of JP2005328615A publication Critical patent/JP2005328615A/en
Application granted granted Critical
Publication of JP4580682B2 publication Critical patent/JP4580682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

本発明は、水車発電機やタービン発電機などの大型回転電機に用いられる絶縁コイルのプリプレグ絶縁及び含浸絶縁の硬化成形を行う製造装置及びこの装置を用いた製造方法に関する。   The present invention relates to a manufacturing apparatus for performing prepreg insulation and impregnation insulation curing of an insulating coil used in a large rotating electrical machine such as a turbine generator and a turbine generator, and a manufacturing method using this apparatus.

一般に、大型回転電機コイルの絶縁は、プリプレグ法と樹脂含浸法の2つの方法が主流で行われている。   In general, two main methods of insulating a large rotating electrical machine coil are a prepreg method and a resin impregnation method.

プリプレグ法は、例えばガラステープにマイカ片を多めの樹脂により半硬化状態で固定したマイカテープをコイル導体に巻回して、所定の当て板などを施した後、液状の加熱・加圧媒体で絶縁層を硬化・成形する液圧硬化成形法が知られている。   In the prepreg method, for example, a mica tape, in which mica pieces are fixed in a semi-cured state with a large amount of resin on a glass tape, is wound around a coil conductor, applied with a predetermined backing plate, and then insulated with a liquid heating / pressure medium There is known a hydraulic curing molding method in which a layer is cured and molded.

その一例として、絶縁コイルの表面に金属板や積層板などの硬い材料を当てて硬化し、平滑性とコイル寸法精度を高めるようにした液圧硬化成形法がある(例えば、特許文献1)。この時の加熱・加圧媒体としては、アスファルトコンパウンドが使用されている。   As an example, there is a hydraulic curing molding method in which a hard material such as a metal plate or a laminated plate is applied to the surface of an insulating coil and cured to improve smoothness and coil dimensional accuracy (for example, Patent Document 1). As the heating / pressurizing medium at this time, asphalt compound is used.

また、他の例として、加熱・加圧媒体としてポリオレフィン、ポリエチレンを使用した液圧硬化成形法がある(例えば、特許文献2)。   As another example, there is a hydraulic curing molding method using polyolefin or polyethylene as a heating / pressurizing medium (for example, Patent Document 2).

前者は、刺激臭、粉塵、作業性に劣るなどのいくつかの環境的な課題はあるが、後者はこれらの課題を解決している。   The former has some environmental problems such as irritating odor, dust, and poor workability, but the latter solves these problems.

しかし、両者とも、加熱・加圧媒体を高温に貯蔵する大型タンクと絶縁コイルを硬化する真空・加熱・加熱用の大型タンクが必要であり、その設備投資に多額の費用がかかる。   However, both require a large tank for storing the heating / pressurizing medium at a high temperature and a large tank for vacuum / heating / heating for curing the insulating coil, and the capital investment is expensive.

また、プレスモールドと称して絶縁コイルに機械的な加熱・加圧を行って硬化成形する方法もあるが、コイルエンドの曲線部分の成形が均質にできないという課題がある。この場合も、絶縁コイルが収納できる加熱プレス装置が必要で、且つ1本1本成形するので生産効率が低いという課題がある。   In addition, there is a method called a press mold in which an insulating coil is mechanically heated and pressurized to be cured and molded, but there is a problem that the curve portion of the coil end cannot be molded uniformly. In this case as well, there is a problem that a heating press apparatus that can store an insulating coil is necessary, and since each piece is molded one by one, the production efficiency is low.

一方、樹脂含浸方法は、絶縁コイルを大型タンクに収納してタンク内を減圧後、絶縁コイルが含浸樹脂中に収まるまで含浸樹脂を注入する。さらに、減圧を継続して絶縁コイル中に含まれる空気と含浸樹脂の置換を進める。その後、タンク内を減圧から加圧に切替えて残存気体を押しつぶすことにより絶縁物中への樹脂の含浸率を向上させると同時に欠陥の発生を抑制させることが行われている。これをVPI法と称している。   On the other hand, in the resin impregnation method, the insulating coil is housed in a large tank, the inside of the tank is decompressed, and the impregnating resin is injected until the insulating coil fits in the impregnating resin. Further, the pressure reduction is continued and the replacement of the air contained in the insulating coil with the impregnating resin is advanced. Thereafter, the inside of the tank is switched from depressurization to pressurization to crush the residual gas, thereby improving the impregnation rate of the resin into the insulator and simultaneously suppressing the occurrence of defects. This is called the VPI method.

このようにして含浸された絶縁コイルをタンクから取出した後、当て板や収縮テープなど成形手段を施工し、大型の熱風乾燥炉で加熱硬化して仕上げている。このような絶縁コイルの成形では、生樹脂が付着した状態での作業を余儀なくされるので、作業環境が悪いという課題がある。   After taking out the insulation coil impregnated in this way from the tank, a molding means such as a backing plate or shrink tape is applied, and it is finished by heating and curing in a large hot air drying furnace. In the formation of such an insulating coil, there is a problem that the working environment is bad because the operation with the raw resin attached is forced.

VPI法において、タンク内に注入される樹脂量は、コイルを十分に浸漬するため、コイル絶縁物中に含浸される必要樹脂量の数十倍にも達する。このとき余った含浸樹脂は、含浸樹脂が終了すると貯蔵タンクに戻される。   In the VPI method, the amount of resin injected into the tank reaches several tens of times the required amount of resin impregnated in the coil insulator in order to sufficiently immerse the coil. At this time, the remaining impregnating resin is returned to the storage tank when the impregnating resin is completed.

このように含浸樹脂が循環して使用されるので、含浸タンクやコイル表面に付着した汚れや不純物が含浸樹脂中に混入し、特性の低下をきたす恐れがある。また、粘度上昇が速くなり、貯蔵寿命が本来よりも短くなるので樹脂廃棄量が増大して環境的、コスト的にも大きな課題である。さらに、樹脂硬化をする大型熱風乾燥炉は、温度分布や風量のバラツキが大きく絶縁コイルの硬化度合いに差が生じて電気特性を低下させるなどの課題がある。
米国特許 第3050787号公報 特開平10−58545公報
Since the impregnating resin is circulated and used in this manner, dirt and impurities adhering to the impregnation tank and the coil surface may be mixed in the impregnating resin, resulting in deterioration of characteristics. In addition, since the increase in viscosity is accelerated and the shelf life is shorter than the original, the amount of resin waste is increased, which is a major problem in terms of environment and cost. Furthermore, a large-sized hot air drying furnace that cures a resin has problems such as a large variation in temperature distribution and air volume, resulting in a difference in the degree of curing of the insulating coil and a decrease in electrical characteristics.
U.S. Pat. No. 3,050,787 Japanese Patent Laid-Open No. 10-58545

このように従来の回転電機における絶縁コイルの製造方法においては、大型設備が不可欠で作業性や樹脂廃棄に伴う環境的な課題があり、また大型熱風乾燥炉における絶縁コイルにおける硬化程度のバラツキから電気特性を低下させるという課題があった。   As described above, in the conventional method for manufacturing an insulating coil in a rotating electric machine, a large facility is indispensable, and there are environmental problems associated with workability and resin disposal. There was a problem of lowering the characteristics.

本発明はかかる従来の事情に対処してなされたものであり、樹脂の含浸性及び電気的特性の向上を図ることができ、しかも環境的、コスト的にも有利に1本から複数本まで絶縁コイルを最適に製造できる回転電機における絶縁コイルの製造装置及びこの装置を用いた製造方法を提供することを目的とする。   The present invention has been made in response to such a conventional situation, and can improve the impregnation property and electrical characteristics of the resin, and insulate from one to a plurality of wires advantageously in terms of environment and cost. It is an object of the present invention to provide an insulating coil manufacturing apparatus in a rotating electrical machine that can optimally manufacture a coil and a manufacturing method using this apparatus.

本発明の観点に従った回転電機における絶縁コイルの製造装置は、周囲に絶縁層が形成され、前記絶縁層の外周に離型テープが巻回されたコイル導体を挿入する気密性を有するコイル挿入チューブと、前記コイル挿入チューブを真空引きする真空引き手段と、前記コイル挿入チューブの少なくとも2側面を加熱するための当て板と、前記当て板の外層部に設けられた加圧するための加圧用チューブと、前記コイル挿入チューブ、前記当て板、及び前記加圧用チューブを固定するために覆われた外装とを備えている。 An insulating coil manufacturing apparatus in a rotating electrical machine according to an aspect of the present invention is an airtight coil insertion device in which an insulating layer is formed around and a coil conductor having a release tape wound around the outer periphery of the insulating layer is inserted. A tube, vacuum evacuating means for evacuating the coil insertion tube, a backing plate for heating at least two side surfaces of the coil insertion tube, and a pressurizing tube for pressurization provided on an outer layer portion of the backing plate And an outer sheath covered to fix the coil insertion tube, the contact plate, and the pressurizing tube.

本発明は、プリプレグ絶縁の硬化成形においては、大型の圧力容器設備が不要で、熱効率が高く、電気特性に優れたコイル絶縁とすることができ、含浸硬化成形においては、含浸時間を速く、しかもボイド等の欠陥を少なくでき樹脂の含浸性と共に電気特性の向上を図ることができ、また環境的、コスト的にも有利に1本から複数本まで絶縁コイルを最適に製造できる。   The present invention eliminates the need for large pressure vessel equipment in the prepreg insulation curing molding, and can provide coil insulation with high thermal efficiency and excellent electrical characteristics.In the impregnation curing molding, the impregnation time is fast. It is possible to reduce defects such as voids, improve the electrical characteristics as well as resin impregnation, and optimally manufacture one to a plurality of insulated coils advantageously in terms of environment and cost.

以下本発明の実施形態を図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による回転電機における絶縁コイルの製造装置の模式図である。   FIG. 1 is a schematic view of an apparatus for manufacturing an insulating coil in a rotating electrical machine according to the present invention.

図1において、1は平角の絶縁被覆線を束ねて構成される断面が正方形あるいは長方形のコイル導体で、このコイル導体1にはテーピングマシンでプリプレグマイカテープを所定回数巻き付けてコイル絶縁層2が形成されている。ここで、コイル絶縁層2の外周面にシールド層を形成する場合もある。   In FIG. 1, reference numeral 1 denotes a coil conductor having a square or rectangular cross section formed by bundling flat insulating coated wires. A coil insulating layer 2 is formed by winding a prepreg mica tape a predetermined number of times on the coil conductor 1 with a taping machine. Has been. Here, a shield layer may be formed on the outer peripheral surface of the coil insulating layer 2.

また、コイル絶縁層2の外周あるいは最内層の少なくともいずれかに熱収縮性を有する離型テープ3を巻き付ける。このように形成したコイルを薄く柔軟性を有する熱可塑性樹脂で形成されたコイル挿入チューブ4内に収め、幅広の二面に温度制御可能な加熱手段を有する当て板5をチューブ4の上から当て、また、幅の狭い2面にはガラス繊維強化プラスチック板6を配置する。   Further, a release tape 3 having heat shrinkability is wound around at least one of the outer periphery and the innermost layer of the coil insulating layer 2. The coil thus formed is housed in a coil insertion tube 4 formed of a thin and flexible thermoplastic resin, and a contact plate 5 having heating means capable of temperature control on two wide surfaces is applied from above the tube 4. In addition, the glass fiber reinforced plastic plate 6 is disposed on the two narrow surfaces.

この場合、コイル挿入チューブ4の材質としては、ポリアミド系が優れており、ナイロン6やナイロン66などが好ましい。また、温度制御可能な加熱手段を有する当て板5としては、鉄板にシート状ヒータ或いは線状或いは面状発熱体を配線したヒータを一体化したものである。ヒータとしては、細いシーズ線、薄いテープ状やカーボンを塗布化した導電性材料等があり、当て板との密着性や熱効率を考慮すると、シリコーンゴムFRPやポリイミドフィルムなどで絶縁した平面形状が良い。ここでは当て板5にシーズ線ヒータを貼り付けたものを使用する。   In this case, the material of the coil insertion tube 4 is excellent in polyamide, and nylon 6 and nylon 66 are preferable. In addition, as the contact plate 5 having heating means capable of controlling temperature, a sheet heater or a heater in which a linear or planar heating element is wired on an iron plate is integrated. Heaters include thin sheathed wires, thin tapes, and conductive materials coated with carbon. Considering adhesion to the backing plate and thermal efficiency, a planar shape insulated with silicone rubber FRP or polyimide film is good. . Here, the caulking plate 5 with a sheathed wire heater is used.

勿論、プラスチック板6に同様の加熱手段を施したものでも良い。   Of course, the same heating means may be applied to the plastic plate 6.

さらに、幅広の二面に配置されたそれぞれの当て板5の外側に耐熱性のゴム状、例えばフッ素系ゴムに繊維状やクロス状の補強材を複合した材料からなる加圧用チューブ7を当て、その外側にカーボン繊維クロスで形成された外装8により緊密に固定する。   Furthermore, a pressurizing tube 7 made of a heat-resistant rubber-like material, for example, a material in which a fibrous or cloth-like reinforcing material is combined with fluorine-based rubber, is applied to the outer side of each contact plate 5 arranged on two wide surfaces, The outside is tightly fixed by an exterior 8 formed of carbon fiber cloth.

上記加圧用チューブ7は、絶縁コイルの硬化のための温度に設定される当て板のヒータに接すると同時に内部に加圧媒体が注入されるので、耐熱性と耐圧力が必要となる。硬化温度が低ければ、EPDM等耐熱性の低い材料でも良い。   The pressurizing tube 7 needs heat resistance and pressure resistance because the pressurizing medium is injected into the presser tube 7 at the same time as it contacts the heater of the contact plate set to a temperature for curing the insulating coil. If the curing temperature is low, a material having low heat resistance such as EPDM may be used.

次にこのような構成の絶縁コイルの製造装置を用いて、絶縁コイルを製造する方法について説明する。   Next, a method of manufacturing an insulating coil using the insulating coil manufacturing apparatus having such a configuration will be described.

先ず、第1の実施形態として、コイルの絶縁がプリプレグ絶縁の場合について述べる。   First, as a first embodiment, a case where the insulation of the coil is prepreg insulation will be described.

上記構成のコイルシステム11において、図2に示すように真空ポンプ13をコイル挿入チューブ4の末端にバルブ10を介して接続し、加圧用チューブ7には窒素又は空気などの気体加圧系12を接続する。さらに、ヒータ制御手段14を当て板5に貼り付けたシーズ線ヒータにヒータ制御が個別に行えるように接続する。   In the coil system 11 having the above configuration, as shown in FIG. 2, a vacuum pump 13 is connected to the end of the coil insertion tube 4 via a valve 10, and a gas pressurizing system 12 such as nitrogen or air is connected to the pressurizing tube 7. Connecting. Further, the heater control means 14 is connected to the sheathed wire heater affixed to the contact plate 5 so that the heater control can be performed individually.

かかる接続構成において、バルブ10を開き、真空ポンプ13によりコイル挿入チューブ4内を一定時間の真空乾燥を経てコイル全体を減圧できる状態とし、この状態で窒素加圧系12により加圧用チューブ7内に所定の圧力を加えると同時に、ヒータ制御手段14により当て板5に貼り付けたヒータに電流を流して加熱する。この場合、ヒータによる加熱温度としては、プリプレグマイカテープの樹脂が流れ、且つ硬化反応時間を長く取れる温度に設定される。   In such a connection configuration, the valve 10 is opened, and the inside of the coil insertion tube 4 is vacuum-dried for a certain time by the vacuum pump 13 so that the entire coil can be depressurized. In this state, the nitrogen pressurization system 12 puts the inside of the pressurization tube 7. At the same time as applying a predetermined pressure, the heater control means 14 heats the heater attached to the backing plate 5 by passing an electric current. In this case, the heating temperature by the heater is set to a temperature at which the resin of the prepreg mica tape flows and the curing reaction time can be increased.

このようにコイル挿入チューブ4内の減圧と加圧用チューブ7内に所定の圧力を加えながら当て板5により加熱すると、マイカテープ間が樹脂の流れによって融合されると同時にテープ中の空気が押し出されるので、ボイドの少ない絶縁層が形成できる。その後、さらに温度を高くして最適な硬化温度で所定時間硬化する。   When heating is performed by the contact plate 5 while applying a predetermined pressure in the coil insertion tube 4 and the pressure tube 7 in this way, the mica tape is fused by the flow of the resin and the air in the tape is pushed out. Therefore, an insulating layer with few voids can be formed. Thereafter, the temperature is further raised and cured at an optimum curing temperature for a predetermined time.

このように第1の実施形態では、柔軟で強度の高い外装8でコイル全体を固定し、その内部に設けた加圧用チューブ7内に加圧系12より加圧媒体として窒素ガス又は空気などの気体を送込むことによって当て板5を介してコイル絶縁層に押し圧力を加えることができる。また、コイル絶縁層2に加熱による硬化と寸法を制御できる圧力を加えることで、所定の形状に成形することができる。また、本方式では温度分布に優れ、加圧チューブが断熱的な働きをするので、無駄なエネルギーが少なく、効率に優れた絶縁コイルの製造ができる。   As described above, in the first embodiment, the entire coil is fixed with the flexible and high-strength exterior 8, and nitrogen gas or air is used as a pressurizing medium from the pressurizing system 12 in the pressurizing tube 7 provided in the inside. Pushing pressure can be applied to the coil insulating layer through the contact plate 5 by feeding gas. Moreover, it can shape | mold to a predetermined shape by applying the pressure which can control the hardening and dimension by heating to the coil insulating layer 2. FIG. Further, in this method, the temperature distribution is excellent, and the pressurizing tube functions as an adiabatic, so that it is possible to manufacture an insulating coil with less wasteful energy and excellent efficiency.

また、プリプレグによる絶縁コイルの製造方法においては、減圧によって絶縁層中の気体の低減と共に、樹脂の流動する温度で加圧して樹脂の溶融、気体の除去が充分行われた後に樹脂の硬化温度に設定し、加圧・加熱硬化成形をすることで、ボイドの無い絶縁層を成形することができる。したがって、設備として大型の圧力容器が不用で、熱効率が高く、電気特性に優れた絶縁コイルを製造することができる。   In addition, in the method of manufacturing an insulating coil by prepreg, the gas in the insulating layer is reduced by reducing the pressure, and the resin is melted and the gas is sufficiently removed by pressurizing at the temperature at which the resin flows, and then the resin curing temperature is reached. By setting and pressurizing / heat-curing, an insulating layer without voids can be formed. Therefore, a large pressure vessel is not required as equipment, and an insulating coil having high thermal efficiency and excellent electrical characteristics can be manufactured.

なお、上記では加圧系12より加圧用チューブ7に加圧媒体として窒素ガス又は空気などの気体を送り込むようにしたが、加圧系12よりシリコーンオイル又は耐熱オイルで加熱した加圧媒体を加圧用チューブ7に送り込んで熱と圧力を同時に加えるようにしても良い。   In the above description, a gas such as nitrogen gas or air is sent from the pressurization system 12 to the pressurization tube 7 as a pressurization medium. However, a pressurization medium heated with silicone oil or heat-resistant oil is added from the pressurization system 12. Heat and pressure may be applied simultaneously by feeding into the pressure tube 7.

このような加圧媒体を用いると、当て板5にヒータがなくても良い。   When such a pressurizing medium is used, the backing plate 5 may not have a heater.

ここで、第1の実施形態における絶縁コイルの具体的な製造方法の実施例と比較例について述べる。   Here, an example and a comparative example of a specific method for manufacturing the insulating coil according to the first embodiment will be described.

(実施例1)
長さ1.2mの転移したコイル導体にガラス裏打ちのプリプレグマイカテープを1/2重ね10回巻き付けてコイル絶縁層を成形したコイルとした。このコイルの外装に離型を兼ねたポリエステルの熱収縮テープを1/2重ねて1回巻き付けた。このコイルをナイロン6製のコイル挿入チューブに入れて、一端を密封し、他端を真空ポンプから繋がるパイプに接続した。その上に第1の実施形態で示したようにヒータ付きの当て板、加圧用チューブを設置し、全体をカーボン繊維クロスからなる外装で覆った。
Example 1
A coil-insulating layer was formed by winding a glass-backed prepreg mica tape 1/2 times 10 times around the transitioned coil conductor having a length of 1.2 m. A polyester heat-shrink tape that also serves as a mold release was halved and wound once on the exterior of the coil. This coil was put into a coil insertion tube made of nylon 6, one end was sealed, and the other end was connected to a pipe connected from a vacuum pump. On top of that, as shown in the first embodiment, a backing plate with a heater and a pressurizing tube were installed, and the whole was covered with an exterior made of carbon fiber cloth.

ヒータを60℃にセットすると同時に真空引きを行い、コイルの絶縁層中に含まれている水分などの減圧乾燥を行った。1時間経過後、加圧チューブに窒素ガスを導入して0.6MPaにして、約1時間で150℃まで温度を上げる。この間真空引きと加圧は継続され、プリプレグテープの樹脂は70℃程度から流動性を持つので、テープ間の空隙や絶縁層中の気体と置換して行き、ボイドが少なくなる。この真空引きは、樹脂のゲル化前に止め、コイル絶縁層を大気圧に戻した。さらに、加熱と加圧は継続して、温度が150℃に到達して5時間経過した後に温度及び圧力を徐々に下げ、室温まで冷却する。その後、コイルの外装を取り去り、絶縁コイルとする。   The heater was set to 60 ° C. and evacuated at the same time, and dried under reduced pressure such as moisture contained in the insulating layer of the coil. After 1 hour, nitrogen gas is introduced into the pressure tube to 0.6 MPa, and the temperature is increased to 150 ° C. in about 1 hour. During this time, evacuation and pressurization are continued, and the resin of the prepreg tape has fluidity from about 70 ° C. Therefore, the voids are reduced by substituting with the gap between the tapes and the gas in the insulating layer. This evacuation was stopped before the resin gelled, and the coil insulating layer was returned to atmospheric pressure. Further, heating and pressurization are continued, and after 5 hours have passed since the temperature reached 150 ° C., the temperature and pressure are gradually lowered and cooled to room temperature. Thereafter, the outer packaging of the coil is removed to obtain an insulating coil.

(比較例1)
長さ1.2mの転移した素線コイルにガラス裏打ちのプリプレグマイカテープを1/2重ね10回巻き付けてコイル絶縁層を成形したコイルとした。このコイルの外装に離型を兼ねたポリエステルの熱収縮テープを1/2重ねて1回巻き付けた。コイルの幅の広い対峙する2面に鉄板を、幅の狭い対峙する2面にガラス繊維強化FRPを所定寸法に揃えて当て、熱収縮製ポリエステルテープを1/2重ね2回巻きで当て板を固定した。このコイルを圧力容器にセットして次の工程で硬化成形した。始めに約70℃程度で減圧乾燥し、温度を150℃に予熱しておいた液圧媒体を導入してコイルを浸漬する。直ちに窒素ガスを導入して0.7MPaに圧力を上げ、コイル絶縁層に加熱と加圧を加えて硬化成形する。硬化後、液圧媒体を貯蔵槽に、圧力を大気圧に戻し冷却後にコイルを取り出して装着された冶具類を除去した。
(Comparative Example 1)
A coil in which a coil insulating layer was formed by winding a glass-backed prepreg mica tape 1/2 times 10 times around a wire coil having a length of 1.2 m was formed. A polyester heat-shrink tape that also serves as a mold release was halved and wound once on the exterior of the coil. Put the steel plate on the two opposite faces of the coil that are wide, and apply the glass fiber reinforced FRP to the two opposite faces so that they are the same size. Fixed. This coil was set in a pressure vessel and cured and formed in the next step. First, the pressure is dried at about 70 ° C. under reduced pressure, a hydraulic medium preheated to 150 ° C. is introduced, and the coil is immersed. Immediately, nitrogen gas is introduced to increase the pressure to 0.7 MPa, and heating and pressurization are applied to the coil insulating layer to perform hardening molding. After curing, the hydraulic medium was stored in a storage tank, the pressure was returned to atmospheric pressure, the coil was taken out after cooling, and the mounted jigs were removed.

上述したプリプレグマイカテープの実施例1と比較例1とを対比すると、後者(比較例1)は大型コイルを収納する大型の圧力容器と貯蔵タンクが必要であり、コイルを設置して真空乾燥後加熱媒体を導入して先ず温度、次に圧力を加えるが、大量の加熱媒体の温度コントロールは熱容量の関係から時間遅れが生じ、加圧も液体媒体導入後に加圧に切替えて所定の圧力に達するのにかなりの時間が必要になる。   Comparing Example 1 and Comparative Example 1 of the prepreg mica tape described above, the latter (Comparative Example 1) requires a large pressure vessel and a storage tank for storing a large coil. First, the temperature and then the pressure are applied after the heating medium is introduced. However, the temperature control of a large amount of the heating medium has a time delay due to the heat capacity, and the pressure is switched to the pressure after the liquid medium is introduced to reach a predetermined pressure. It takes a considerable amount of time.

このように温度・圧力の順序が決まっており、それぞれに時間遅れが生じるので、プリプレグレジンの硬化特性はプロセスに合わせている。   In this way, the order of temperature and pressure is determined, and each has a time delay, so the curing characteristics of the prepreg resin are matched to the process.

これに対して前者(実施例1)は、真空引き、加圧、加熱ともそれぞれにコントロールできる特徴を有している。先ず所定の真空度に達した頃、加圧用チューブに窒素ガスを加えてコイル絶縁層に所定圧力を加え、プリプレグレジンが流動性を持つ程度に温度を上げ、コイル絶縁層内部の気体を押し出し、次に真空引きを大気に戻して硬化温度まで温度を上げボイドを極小に押しつぶし硬化成形する。   On the other hand, the former (Example 1) has the characteristic which can control each of evacuation, pressurization, and heating. First, when a predetermined degree of vacuum is reached, nitrogen gas is added to the pressurizing tube, a predetermined pressure is applied to the coil insulating layer, the temperature is increased to such an extent that the prepreg resin has fluidity, and the gas inside the coil insulating layer is pushed out. Next, the vacuuming is returned to the atmosphere, the temperature is raised to the curing temperature, and the voids are crushed to a minimum to be cured.

このようにして製造されたコイル絶縁層の電気特性の内、ボイドに最も影響のある電圧―誘電体損(V−tanδ)で定格電圧の1.5倍まで測定したが、すべての電圧において実施例1によるtanδ値が低く優れていた。   Of the electrical characteristics of the coil insulation layer manufactured in this way, the voltage that has the greatest effect on voids-the dielectric loss (V-tan δ) was measured up to 1.5 times the rated voltage, but it was implemented at all voltages. The tan δ value according to Example 1 was low and excellent.

次に本発明の第2の実施形態として、絶縁層のマイカテープを樹脂含浸法で含浸硬化する方法について図1及び図3を用いて説明する。   Next, as a second embodiment of the present invention, a method for impregnating and curing a mica tape of an insulating layer by a resin impregnation method will be described with reference to FIGS.

図1において、コイル導体1にテーピングマシンで含浸用ドライマイカテープを所定回数巻き付けてコイル絶縁層2を形成する。ここで、このコイル絶縁層2の外周面にシールド層を形成する場合もある。さらに、コイル絶縁層2の外周に離型テープ3を巻くが、この離型テープ3としては熱収縮性を有するテープが好ましい。   In FIG. 1, a coil insulating layer 2 is formed by winding a dry mica tape for impregnation a predetermined number of times around a coil conductor 1 with a taping machine. Here, a shield layer may be formed on the outer peripheral surface of the coil insulating layer 2. Further, a release tape 3 is wound around the outer periphery of the coil insulating layer 2. As the release tape 3, a tape having heat shrinkability is preferable.

このように形成したコイルをナイロン6製のコイル挿入チューブ4に収め、その上の対峙する幅広の2面にガラス繊維強化シリコーンゴムでシーズ線ヒータが埋め込まれたシートを貼り付けてなる鉄製当て板5を当てる。また、幅の狭い対峙する2面にはガラス繊維強化プラスチック板6を当てその外側にカーボン繊維クロスからなる外装7により全体を緊密に覆うように配置して固定する。   The coil formed in this manner is accommodated in a coil insertion tube 4 made of nylon 6, and an iron pad made by attaching a sheet in which a sheathed wire heater is embedded with glass fiber reinforced silicone rubber on two opposing wide surfaces Hit 5. Further, a glass fiber reinforced plastic plate 6 is applied to the two opposing surfaces facing each other with a narrow width so as to be tightly covered with an exterior 7 made of carbon fiber cloth on the outside.

このような構成のコイルシステム11において、コイルの絶縁層を樹脂含浸及び硬化するには、図3に示すような接続で行われる。   In the coil system 11 having such a configuration, the insulation layer of the coil is impregnated and cured with a resin as shown in FIG.

コイル挿入チューブ4の一端を樹脂槽9の注入口にバルブ10aを介して接続し、コイル挿入チューブ4の他端を真空ポンプ13にバルブ10bを介して接続する。窒素加圧系12とヒータ制御手段14への接続は第1の実施形態と同じである。   One end of the coil insertion tube 4 is connected to the inlet of the resin tank 9 via a valve 10a, and the other end of the coil insertion tube 4 is connected to the vacuum pump 13 via a valve 10b. The connection to the nitrogen pressurization system 12 and the heater control means 14 is the same as in the first embodiment.

かかる接続構成において、予めバルブ10aを閉じた状態で樹脂槽9に含浸樹脂を入れておく。この状態でバルブ10bを開き、真空ポンプ13によりコイル挿入チューブ4内を一定時間の真空乾燥を経てコイル全体を減圧乾燥する。充分乾燥した後、バルブ10aを開き、樹脂をコイル挿入チューブ4内のコイルの絶縁層に注入する。この場合、樹脂含浸中は常に真空ポンプ13を動作させておく。   In such a connection configuration, the impregnating resin is placed in the resin tank 9 with the valve 10a closed in advance. In this state, the valve 10b is opened, and the inside of the coil insertion tube 4 is vacuum-dried for a certain time by the vacuum pump 13, and the entire coil is dried under reduced pressure. After sufficiently drying, the valve 10a is opened, and the resin is injected into the insulating layer of the coil in the coil insertion tube 4. In this case, the vacuum pump 13 is always operated during the resin impregnation.

なお、この時含浸樹脂槽9に加圧気体口9aから適度な窒素ガスによる圧力を加えることにより、圧力の程度によって含浸速度が速くなり、作業効率が高くなる。また、当て板5のヒータで温度を調整しても樹脂の含浸速度が速くなり、作業効率を高くすることができる。   At this time, by applying an appropriate pressure of nitrogen gas to the impregnation resin tank 9 from the pressurized gas port 9a, the impregnation speed is increased depending on the degree of pressure, and the working efficiency is increased. Moreover, even if the temperature is adjusted with the heater of the backing plate 5, the impregnation rate of the resin is increased, and the working efficiency can be increased.

コイル末端まで含浸が進むと樹脂が樹脂溜め15に流出して溜まるので、適当な樹脂量になったところで真空ポンプ13側のバルブ10bを閉じる。この樹脂溜め15はコイルより高い位置に置かれているので、コイルの樹脂層内部の含浸斑があっても、樹脂溜め15からの樹脂逆流による含浸もある。したがって、一定時間経過することで均一にコイルの絶縁層が含浸される。また、この含浸レベルは、コイルに設置した静電容量の測定や樹脂検知装置によって検出できる。   As impregnation proceeds to the end of the coil, the resin flows out and accumulates in the resin reservoir 15, and the valve 10b on the vacuum pump 13 side is closed when an appropriate amount of resin is reached. Since the resin reservoir 15 is placed at a position higher than the coil, even if there is an impregnation spot inside the resin layer of the coil, there is also an impregnation due to a reverse flow of resin from the resin reservoir 15. Therefore, the coil insulating layer is uniformly impregnated after a certain period of time. Moreover, this impregnation level can be detected by measuring capacitance or installing a resin detector installed in the coil.

このようにして含浸が終了した後にバルブ10aを閉じ、加圧用チューブ7に窒素ガスを導入して所定の圧力を加えると同時に当て板5に配設されたヒータを含浸樹脂の硬化プロセスに合わせて温度制御をすることにより、コイルの絶縁層が硬化成形できる。   After the impregnation is completed in this manner, the valve 10a is closed, nitrogen gas is introduced into the pressurizing tube 7 and a predetermined pressure is applied, and at the same time, the heater disposed on the backing plate 5 is matched with the curing process of the impregnating resin. By controlling the temperature, the coil insulating layer can be cured.

上記では1本のコイルを含浸硬化する場合について述べたが、複数本のコイルを含浸硬化する場合には、図4に示すように各コイルのコイル挿入チューブ4の一端をパイプ16aにバルブ10aをそれぞれ介して接続すると共に、このパイプ16aに樹脂槽9を接続し、各コイルのコイル挿入チューブ4の他端をパイプ16bにバルブ10bをそれぞれ介して接続すると共に、このパイプ16bに真空ポンプ13を接続することにより、前述同様に複数個のコイルの含浸処理が自在にできる。すなわち、複数のコイルに対して個々の条件で温度及び加圧をコントロールしながら同時に含浸・硬化による製造ができ、利便性に優れた方法である。   In the above description, the case where one coil is impregnated and cured has been described. However, when a plurality of coils are impregnated and cured, as shown in FIG. 4, one end of the coil insertion tube 4 of each coil is connected to a pipe 16a with a valve 10a. The resin tank 9 is connected to the pipe 16a, the other end of the coil insertion tube 4 of each coil is connected to the pipe 16b via the valve 10b, and the vacuum pump 13 is connected to the pipe 16b. By connecting, a plurality of coils can be impregnated freely as described above. That is, it is a method that is excellent in convenience because it can be manufactured by impregnation and curing while simultaneously controlling the temperature and pressurization of each of the plurality of coils under individual conditions.

また、大きな設備を必要とせず、任意に必要数の絶縁コイルが製造できるので、省エネルギーで経済的である。このような特性から、交通不便な発電所等での現地製造、組立にも容易に対応可能な優れた絶縁コイルの製造ができる。   Moreover, since a required number of insulated coils can be manufactured arbitrarily without requiring a large facility, it is energy saving and economical. Due to these characteristics, it is possible to manufacture an excellent insulating coil that can be easily adapted to on-site production and assembly at a power plant with inconvenient traffic.

ここで、絶縁コイルの具体的な製造方法の実施例と比較例について述べる。   Here, an example and a comparative example of a specific method for manufacturing an insulating coil will be described.

(実施例2)
長さ1.2mの転移した素線コイルにガラス裏打ちの含浸用ドライプリプレグマイカテープを1/2重ね10回巻き付けてコイル絶縁層を成形したコイルとした。このコイルの外装として離型を兼ねたポリエステルの熱収縮テープを1/2重ねて1回巻き付けた。このコイルをナイロン6製のチューブに入れて、一端を含浸樹脂側に、他端を真空ポンプから繋がるパイプに接続した。その上に第2の実施形態で示したようにヒータ付きの当て板、加圧用のチューブ、カーボン繊維クロスからなる外装により全体を覆うように設置して固定した。
(Example 2)
A coil in which a coil insulating layer was formed by winding a glass lining impregnated dry prepreg mica tape 1/2 times 10 times around a 1.2-m-long transitional wire coil. As an exterior of this coil, a polyester heat-shrinkable tape also serving as a mold release was halved and wound once. This coil was put in a nylon 6 tube, and one end was connected to the impregnating resin side and the other end was connected to a pipe connected from a vacuum pump. On top of that, as shown in the second embodiment, it was installed and fixed so as to cover the whole with a sheathing plate with a heater, a tube for pressurization, and a carbon fiber cloth.

このようなコイルシステムにおいて、図3の略図で示したような接続構成にして第2の実施形態で述べた方法で樹脂を含浸した。先ず、真空ポンプを稼動してコイル絶縁を減圧乾燥し、バルブを開いて含浸樹脂を注入する。この含浸樹脂を窒素ガスで適度に加圧し、当て板に配設されたヒータで温度を上げておくことで含浸速度を調整できる利便性に優れたものとなる。   In such a coil system, the resin was impregnated by the method described in the second embodiment in the connection configuration shown in the schematic diagram of FIG. First, the vacuum pump is operated to dry the coil insulation under reduced pressure, and the valve is opened to inject the impregnating resin. This impregnating resin is moderately pressurized with nitrogen gas, and the temperature is raised by a heater disposed on the backing plate, so that the impregnation speed can be adjusted and the convenience can be adjusted.

上記実施例2の含浸速度の結果例を図5のグラフに実線にて示した。   The result of the impregnation rate of Example 2 is shown by the solid line in the graph of FIG.

(比較例2)
長さ1.2mの転移した素線コイルにガラス裏打ちの含浸用ドライマイカテープを1/2重ね10回巻き付けてコイル絶縁層を成形したコイルとした。このコイルの外装に離型を兼ねたポリエステルの熱収縮テープを1/2重ねて1回巻き付けた。このコイルを含浸タンクに入れ真空乾燥した後、含浸樹脂を導入して真空含浸を行い、その後加圧に切替えて含浸をする。所定時間経過後タンク圧力を大気圧力に戻してコイルを取り出し、所定の当て板を当ててスプリング法で絶縁層に圧力を加えて熱風乾燥炉で所定の温度プロセスで硬化成形する。
(Comparative Example 2)
A coil in which a coil insulating layer was formed by winding a glass-backed impregnating dry mica tape 1/2 times 10 times around a transitioned wire coil having a length of 1.2 m was obtained. A polyester heat-shrink tape that also serves as a mold release was halved and wound once on the exterior of the coil. After this coil is put in an impregnation tank and dried in vacuum, impregnation resin is introduced and vacuum impregnation is performed, and then the pressure is switched to pressurization. After a predetermined time has elapsed, the tank pressure is returned to the atmospheric pressure, the coil is taken out, a predetermined backing plate is applied, pressure is applied to the insulating layer by a spring method, and curing is performed in a hot air drying furnace by a predetermined temperature process.

上記比較例2の含浸速度の結果例を図5のグラフに点線にて示した。   A result of the impregnation rate of Comparative Example 2 is shown by a dotted line in the graph of FIG.

上述した含浸における実施例2と比較例2とを対比すると、後者(比較例2)は真空加圧含浸法と言われる最も一般的で、優れた方法と言われている。   Comparing Example 2 and Comparative Example 2 in the impregnation described above, the latter (Comparative Example 2) is said to be the most general and excellent method called the vacuum pressure impregnation method.

これに対して、前者(実施例2)は、第2の実施形態で述べたように絶縁されたコイルをチューブに挿入してチューブの一端を真空ポンプ側に、他端を含浸樹脂側に接続する。含浸樹脂側に圧力を加えることで、コイル絶縁には圧力差が常に加わり樹脂の含浸速度、ボイドの生成が大幅に向上する。これらの一例を図5に示した。   On the other hand, in the former (Example 2), as described in the second embodiment, the insulated coil is inserted into the tube, and one end of the tube is connected to the vacuum pump side and the other end is connected to the impregnating resin side. To do. By applying pressure to the impregnating resin side, a pressure difference is always applied to the coil insulation, and the resin impregnation speed and void generation are greatly improved. An example of these is shown in FIG.

この結果、コイルの電気特性は、特にV−tanδ特性において従来の方法に比べて優れている。   As a result, the electrical characteristics of the coil are superior to the conventional method, particularly in the V-tan δ characteristics.

含浸樹脂について言えば、VPI法では、貯槽タンクと含浸タンク内を巡回しながら消費され、汚れと貯蔵寿命が大きな問題となるが、実施例2では1回だけの使用になるので、汚れと貯蔵寿命については必要が無い特性になる。したがって、貯蔵槽の必要がなく、数種類の含浸樹脂を用意しておくことも可能であり、発電機などの要求特性に応じた含浸樹脂を用意しておくことができる。   Speaking of the impregnating resin, the VPI method is consumed while circulating in the storage tank and the impregnation tank, and contamination and storage life become a big problem. However, in Example 2, it is used only once. It becomes a characteristic that is not necessary for the lifetime. Therefore, there is no need for a storage tank, and it is possible to prepare several types of impregnating resins, and it is possible to prepare impregnating resins according to required characteristics such as a generator.

加熱などのエネルギー的には、コイル絶縁層に接してヒータが配設され、且つ加熱用のチューブで断熱されるので、熱効率、コントロール性に優れ、含浸樹脂に合わせた硬化プロフィールを容易に付与することができる。   In terms of energy, such as heating, a heater is placed in contact with the coil insulation layer and insulated by a heating tube, so it has excellent thermal efficiency and controllability, and easily imparts a curing profile that matches the impregnation resin. be able to.

このように第2の実施形態では、コイルを挿入したチューブ4の一端を真空ポンプ13に接続し、他端を樹脂槽9の含浸樹脂注入口に接続して、真空ポンプ13によりコイルを減圧した状態で他端から含浸樹脂を注入している。このとき、含浸樹脂槽9の加圧気体口9aから、例えば窒素などの気体圧力を加えることで、含浸に要する時間を短縮することができる。   As described above, in the second embodiment, one end of the tube 4 into which the coil is inserted is connected to the vacuum pump 13, the other end is connected to the impregnation resin inlet of the resin tank 9, and the coil is decompressed by the vacuum pump 13. In the state, the impregnating resin is injected from the other end. At this time, the time required for impregnation can be shortened by applying a gas pressure such as nitrogen from the pressurized gas port 9a of the impregnation resin tank 9.

また、真空ポンプ13側のコイル端に樹脂溜め15をセットしておくことで、含浸樹脂がコイル端まで達していることが確認できると同時に含浸樹脂の真空ポンプ13への流入を防止できる。このとき当て板5の温度をコントロールして含浸に適した温度状態にしておくことで含浸性を高めることが可能となり、短時間で含浸ができる。   Moreover, by setting the resin reservoir 15 at the coil end on the vacuum pump 13 side, it can be confirmed that the impregnating resin reaches the coil end, and at the same time, the impregnation resin can be prevented from flowing into the vacuum pump 13. At this time, by controlling the temperature of the contact plate 5 to a temperature suitable for impregnation, the impregnation property can be improved, and impregnation can be performed in a short time.

含浸が完了後、当て板5を所定の硬化温度にコントロールすると同時に加圧用チューブ7に気体による所定の圧力を加えて、絶縁層を加熱と加圧によって硬化させ、所定の寸法に成形する。   After the impregnation is completed, the base plate 5 is controlled to a predetermined curing temperature, and at the same time, a predetermined pressure by a gas is applied to the pressurizing tube 7, and the insulating layer is cured by heating and pressurization, and formed into a predetermined size.

この方式での含浸樹脂は、使い切りになるので貯蔵時間が問題になることは殆どなく、そのため、含浸中のコイル温度も高くできるので、樹脂粘度が低下して含浸時間を短縮できる。また、樹脂溜め15をコイル末端より高くすることで良好に含浸できると共に、廃棄する樹脂量も少なくすることができる。   Since the impregnating resin in this system is used up, the storage time hardly poses a problem. Therefore, the coil temperature during the impregnation can be increased, so that the resin viscosity is lowered and the impregnation time can be shortened. Further, by making the resin reservoir 15 higher than the end of the coil, it can be satisfactorily impregnated and the amount of resin to be discarded can be reduced.

一方、絶縁コイルの含浸時において、樹脂注入口の反対側に少なくとも1個以上の含浸樹脂検知センサ或いは静電容量測定電極を設けて含浸の程度を検出するようにしている。   On the other hand, at the time of impregnation of the insulating coil, at least one impregnation resin detection sensor or capacitance measuring electrode is provided on the opposite side of the resin injection port to detect the degree of impregnation.

含浸樹脂は、注入口側コイルの素線の凹凸への浸入が最も速く、長さ方向と共に絶縁層の外側に向って浸透していく現象が見られる。したがって、樹脂注入口の反対側にセンサを設けておけば、樹脂含浸の状況が判断できる。これらは1本毎に確認できるので、確実に含浸され、大きな含浸タンクで複数本を同時に含浸するよりもコイル特性のバラツキを小さく抑えることができる。   The impregnating resin has the fastest penetration into the irregularities of the wire of the inlet side coil, and a phenomenon is seen in which it penetrates toward the outside of the insulating layer along the length direction. Therefore, if a sensor is provided on the opposite side of the resin injection port, the state of resin impregnation can be determined. Since these can be confirmed one by one, it is reliably impregnated, and variation in coil characteristics can be suppressed to a smaller extent than when a plurality of impregnation tanks are impregnated simultaneously.

また、樹脂槽9には、気体で樹脂を加圧できる機構を備えており、含浸時に樹脂を加圧することができる。最も一般的で優れた含浸法であるVPI法は、真空中で樹脂含浸して加圧に切替えて残留ボイドを押しつぶしてさらに含浸を押し進める方法である。   Moreover, the resin tank 9 is provided with a mechanism capable of pressurizing the resin with gas, and the resin can be pressurized during the impregnation. The VPI method, which is the most common and excellent impregnation method, is a method in which resin impregnation is performed in a vacuum, and the pressure is changed to pressurization to crush residual voids and further impregnation.

本実施形態では、一方で真空引きをしながら含浸樹脂を加圧する方法で、樹脂にかかる圧力はある範囲で任意に調整できるので、含浸速度を速くできと同時に樹脂と絶縁層中に存在する気体の置換を順序良くでき、残留ボイドを極めて少なくできる。   In this embodiment, on the other hand, the pressure applied to the impregnating resin while evacuating can be arbitrarily adjusted within a certain range, so that the impregnation rate can be increased and at the same time the gas present in the resin and the insulating layer. Can be arranged in order and the residual voids can be extremely reduced.

本発明による回転電機における絶縁コイルの製造装置を示す模式図。The schematic diagram which shows the manufacturing apparatus of the insulation coil in the rotary electric machine by this invention. 本発明の第1の実施形態として、プリプレグによる絶縁コイルの製造方法を説明するためのプリプレグ絶縁硬化装置を示す模式図。The schematic diagram which shows the prepreg insulation hardening apparatus for demonstrating the manufacturing method of the insulated coil by a prepreg as the 1st Embodiment of this invention. 本発明の第2の実施形態として、樹脂含浸による絶縁コイルの製造方法を説明するための樹脂含浸・硬化装置を示す模式図。The schematic diagram which shows the resin impregnation and hardening apparatus for demonstrating the manufacturing method of the insulated coil by resin impregnation as the 2nd Embodiment of this invention. 同じく複数本の絶縁コイルの樹脂含浸・硬化装置を示す模式図。The schematic diagram which similarly shows the resin impregnation and hardening apparatus of a plurality of insulated coils. 本発明方法により製造された絶縁コイルの実施例を従来例と対比して示す含浸特性図。The impregnation characteristic figure which shows the Example of the insulated coil manufactured by the method of this invention in contrast with the prior art example.

符号の説明Explanation of symbols

1…コイル導体、2…コイル絶縁層、3…離型テープ、4…コイル挿入チューブ、5…当て板、6…ガラス繊維強化プラスチック板、7…加圧用チューブ、8…外装、9…樹脂槽、9a…加圧気体口、10.10a,10b…バルブ、11…コイルシステム、12…窒素加圧系、13…真空ポンプ、14…ヒータ制御手段、15…樹脂溜め、16a,16b…パイプ。   DESCRIPTION OF SYMBOLS 1 ... Coil conductor, 2 ... Coil insulation layer, 3 ... Release tape, 4 ... Coil insertion tube, 5 ... Cover plate, 6 ... Glass fiber reinforced plastic plate, 7 ... Pressurizing tube, 8 ... Exterior, 9 ... Resin tank , 9a ... pressurized gas port, 10.10a, 10b ... valve, 11 ... coil system, 12 ... nitrogen pressurization system, 13 ... vacuum pump, 14 ... heater control means, 15 ... resin reservoir, 16a, 16b ... pipe.

Claims (14)

に絶縁層形成され、前記絶縁層の外周に離型テープ巻回されたコイル導体を挿入する気密性を有するコイル挿入チューブと、
前記コイル挿入チューブを真空引きする真空引き手段と、
前記コイル挿入チューブの少なくとも2側面を加熱するための当て板と、
前記当て板の外層部に設けられた加圧するための加圧用チューブと、
前記コイル挿入チューブ、前記当て板、及び前記加圧用チューブを固定するために覆われた外装
を備えたことを特徴とする回転電機における絶縁コイルの製造装置。
Insulation layer is formed on the ambient, and a coil insertion tube having airtightness of inserting the coil conductor release tape is wound on the outer periphery of the insulating layer,
Evacuation means for evacuating the coil insertion tube;
And caul for heating at least two sides of the coil insertion tube,
A pressurization tube for pressurizing provided in the outer layer portion of the backing plate,
An outer sheath covered to fix the coil insertion tube, the backing plate, and the pressurizing tube ;
Apparatus for producing insulating coils in rotary electrical machine characterized by comprising a.
記コイル挿入チューブは、熱可塑性樹脂で形成されていること
を特徴とする請求項1に記載の回転電機における絶縁コイルの製造装置。
Before Symbol coil insertion tube manufacturing apparatus for insulating the coil in the rotating electric machine according to claim 1, characterized in that it is formed of a thermoplastic resin.
記当て板は、
鉄板と
前記鉄板にシート状ヒータ又は線状或いは面状発熱体を配線したヒータとを備えたこと
を特徴とする請求項1に記載の回転電機における絶縁コイルの製造装置。
Before Symbol backing plate,
An iron plate ,
The iron plate, sheet heater, or linear or apparatus for producing insulating coils in rotary electrical machine according to the planar heating element to claim 1, characterized in that a heater wire.
記加圧用チューブは、フッ素系ゴムに補強材を複合した材料で構成されたこと
を特徴とする請求項1に記載の回転電機における絶縁コイルの製造装置。
Before SL pressurizing tube manufacturing apparatus for insulating the coil in the rotating electric machine according to claim 1, characterized in that it is composed of a material that combines reinforcement material to a fluorine-based rubber.
前記外装は、ガラスクロス又はカーボン繊維クロスで構成されテープであること
を特徴とする請求項1に記載の回転電機における絶縁コイルの製造装置。
The said exterior is a tape comprised with the glass cloth or the carbon fiber cloth, The manufacturing apparatus of the insulated coil in the rotary electric machine of Claim 1 characterized by the above-mentioned .
前記外装の材料は、ガラスクロス又はカーボン繊維クロスで構成されテープで固定されていること
を特徴とする請求項1に記載の回転電機における絶縁コイルの製造装置。
The said exterior material is fixed with the tape comprised by the glass cloth or the carbon fiber cloth, The manufacturing apparatus of the insulated coil in the rotary electric machine of Claim 1 characterized by the above-mentioned .
前記コイル挿入チューブに含浸樹脂を注入するための樹脂槽
を備えたことを特徴とする請求項1乃至請求項6のいずれか一項に記載の回転電機における絶縁コイルの製造装置
Resin tank for injecting impregnating resin into the coil insertion tube
An apparatus for manufacturing an insulating coil in a rotating electrical machine according to any one of claims 1 to 6, wherein the apparatus is provided .
複数の前記コイル挿入チューブが設けられ、
前記真空引き手段は、複数の前記コイル挿入チューブに接続され、
複数の前記コイル挿入チューブに含浸樹脂を注入するための樹脂槽を備えたこと
を特徴とする請求項1乃至請求項6のいずれか一項に記載の回転電機における絶縁コイルの製造装置
A plurality of the coil insertion tubes are provided;
The evacuation means is connected to a plurality of the coil insertion tubes,
The production of an insulating coil in a rotating electric machine according to any one of claims 1 to 6, further comprising a resin tank for injecting an impregnating resin into the plurality of coil insertion tubes. Equipment .
前記樹脂槽は、前記含浸樹脂を気体で加圧する含浸樹脂加圧手段を備えたこと
を特徴とする請求項7又は請求項8に記載の回転電機における絶縁コイルの製造装置
The apparatus for manufacturing an insulating coil in a rotating electric machine according to claim 7 or 8, wherein the resin tank includes an impregnating resin pressurizing unit that pressurizes the impregnating resin with a gas .
前記コイル挿入チューブに設けられ、前記絶縁層の含浸レベルを検出するための、含浸樹脂検知センサ又は静電容量測定電極を備えたこと
を特徴とする請求項7乃至請求項9のいずれか一項に記載の回転電機における絶縁コイルの製造装置
Provided in the coil insertion tube, wherein for detecting the impregnation level of the insulating layer, of claims 7 to 9, characterized in <br/> further comprising an impregnating resin detection sensor or capacitance measurement electrode The manufacturing apparatus of the insulation coil in the rotary electric machine as described in any one .
請求項1乃至請求項6のいずれか一項に記載の回転電機における絶縁コイルの製造装置を用いて、前記絶縁層がプリプレグの絶縁コイルを製造する製造方法であって、
前記真空引き手段により、前記コイル挿入チューブを減圧し、
前記当て板を加熱し、
前記加圧用チューブにより、前記絶縁層を加圧すること
を含むことを特徴とする回転電機における絶縁コイルの製造方法。
A manufacturing method for manufacturing an insulating coil in which the insulating layer is a prepreg using the manufacturing apparatus for an insulating coil in a rotating electrical machine according to any one of claims 1 to 6,
The coil insertion tube is depressurized by the evacuation means,
Heating the caul plate,
Pressurizing the insulating layer with the pressurizing tube
The manufacturing method of the insulation coil in the rotary electric machine characterized by including these .
請求項7乃至請求項10のいずれか一項に記載の回転電機における絶縁コイルの製造装置を用いて、前記絶縁層が樹脂含浸型の絶縁コイルを製造する製造方法であって、
前記コイル挿入チューブに前記樹脂槽を接続した状態で、前記真空引き手段により、前記コイル挿入チューブを減圧して、前記樹脂槽から前記コイル挿入チューブに前記含浸樹脂を注入し、
前記当て板により、前記含浸樹脂が注入された前記コイル挿入チューブを含浸に適した温度に加熱し、
含浸終了後、前記当て板を所定の硬化温度にコントロールし、前記加圧用チューブにより所定の圧力を加えて、前記絶縁層を加熱と加圧によって硬化させて成形すること
を含むことを特徴とする回転電機における絶縁コイルの製造方法。
A manufacturing method for manufacturing an insulating coil in which the insulating layer is a resin-impregnated type using the apparatus for manufacturing an insulating coil in a rotating electrical machine according to any one of claims 7 to 10,
With the resin tank connected to the coil insertion tube, the coil insertion tube is depressurized by the evacuation means, and the impregnation resin is injected from the resin tank into the coil insertion tube,
Heating the coil insertion tube filled with the impregnating resin to a temperature suitable for impregnation by the caulking plate,
After the impregnation, the base plate is controlled to a predetermined curing temperature, a predetermined pressure is applied by the pressurizing tube, and the insulating layer is cured by heating and pressurizing to form.
The manufacturing method of the insulation coil in the rotary electric machine characterized by including these .
前記加圧用チューブは、注入される加圧媒体として、空気又は窒素ガスを使用すること
を特徴とする請求項11又は請求項12に記載の回転電機における絶縁コイルの製造方法。
The method for manufacturing an insulating coil in a rotating electrical machine according to claim 11 or 12, wherein the pressurizing tube uses air or nitrogen gas as a pressurized medium to be injected .
前記加圧用チューブは、注入される加圧媒体として、シリコーンオイル又は耐熱オイルを加温して使用することThe pressurizing tube is used by heating silicone oil or heat-resistant oil as a pressurized medium to be injected.
を特徴とする請求項11又は請求項12に記載の回転電機における絶縁コイルの製造方法。The method for manufacturing an insulating coil in a rotating electric machine according to claim 11 or 12, characterized in that:
JP2004143506A 2004-05-13 2004-05-13 Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus Expired - Lifetime JP4580682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143506A JP4580682B2 (en) 2004-05-13 2004-05-13 Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143506A JP4580682B2 (en) 2004-05-13 2004-05-13 Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus

Publications (2)

Publication Number Publication Date
JP2005328615A JP2005328615A (en) 2005-11-24
JP4580682B2 true JP4580682B2 (en) 2010-11-17

Family

ID=35474516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143506A Expired - Lifetime JP4580682B2 (en) 2004-05-13 2004-05-13 Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus

Country Status (1)

Country Link
JP (1) JP4580682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391257A (en) * 2015-12-27 2016-03-09 新乡辉簧弹簧有限公司 Automatic paint-irrigating machine for starter stator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503116C1 (en) * 2012-05-30 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Method to control quality of impregnation of windings in electrical items
CN103944326B (en) * 2014-04-18 2016-07-06 山东齐鲁电机制造有限公司 A kind of generator stator bar mould type list props up VPI releasing process
JP7202258B2 (en) * 2018-09-03 2023-01-11 株式会社Subaru Resin impregnation measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618410A (en) * 1979-07-23 1981-02-21 Toshiba Corp Insulating treatment for coil
JPS5983564A (en) * 1982-11-01 1984-05-15 Toshiba Corp Manufacture of insulated coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618410A (en) * 1979-07-23 1981-02-21 Toshiba Corp Insulating treatment for coil
JPS5983564A (en) * 1982-11-01 1984-05-15 Toshiba Corp Manufacture of insulated coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391257A (en) * 2015-12-27 2016-03-09 新乡辉簧弹簧有限公司 Automatic paint-irrigating machine for starter stator
CN105391257B (en) * 2015-12-27 2018-06-15 新乡辉簧弹簧有限公司 Starter stator fills paint machine automatically

Also Published As

Publication number Publication date
JP2005328615A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
RU2443555C2 (en) Moulding-casting device and method of producing preforms and plastic articles reinforced by fibers by means of said device
US9539770B2 (en) Flexible membrane for the production of parts made from composite materials
US20050104252A1 (en) Method of manufacturing insulated coil of rotating electric machine and insulated coil
CN1336712A (en) Pressing cast method for insulation of stator windings
US6780457B2 (en) Method for producing a high-quality insulation of electrical conductors or conductor bundles of rotating electrical machines by means of fluidized-bed sintering
JP4580682B2 (en) Insulating coil manufacturing apparatus in rotating electrical machine and manufacturing method using this apparatus
KR20120111132A (en) Curing process of pressure or vacuum for pressure vessel of wet filament winding
CN108189423B (en) Composite insulating pipe lining and preparation method and application thereof
EP2339723A1 (en) Method for realising insulation around a conductive bar
JPH07192912A (en) Superconducting coil and diagnostic method of stability thereof
Runde et al. Internal pressures and pressure gradients in mass-impregnated HVDC cables during current cycling
JP2002010587A (en) Coil insulation method
JP2000197300A (en) Reinforced pressure tube for mechanically supporting winding overhang of rotating machine
JP3618956B2 (en) Resin impregnation and curing method for electrical equipment windings
JP2622053B2 (en) Manufacturing method of coil for electromagnet
JP6005480B2 (en) Method for manufacturing FRP insulated horizontal pipe for supporting train lines
JP2000032717A (en) Method for curing coil insulation layer using hollow electric wire
US20170126107A1 (en) Method for producing a conductor bar
US10388437B2 (en) Assembly and method for manufacturing insulation layer of electrical conductors
US20230302740A1 (en) Method for bonding two fiber composite components with each other to form a fiber composite structure
JP2009268274A (en) Method of manufacturing coil for rotary electric machine and coil for rotary electric machine
RU2359353C1 (en) Coil windings with resin insulation, not involving moulding
CN203521070U (en) Electrical switch box insulating device and generator switch
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
CA2043139C (en) Method and apparatus for forming an insulating film on the surface of a solid body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350