JP4580283B2 - Evaluation method of electrostatic chuck - Google Patents

Evaluation method of electrostatic chuck Download PDF

Info

Publication number
JP4580283B2
JP4580283B2 JP2005174157A JP2005174157A JP4580283B2 JP 4580283 B2 JP4580283 B2 JP 4580283B2 JP 2005174157 A JP2005174157 A JP 2005174157A JP 2005174157 A JP2005174157 A JP 2005174157A JP 4580283 B2 JP4580283 B2 JP 4580283B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
wafer
temperature
contact angle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005174157A
Other languages
Japanese (ja)
Other versions
JP2006351726A (en
Inventor
秀紀 藤井
和市 山村
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005174157A priority Critical patent/JP4580283B2/en
Publication of JP2006351726A publication Critical patent/JP2006351726A/en
Application granted granted Critical
Publication of JP4580283B2 publication Critical patent/JP4580283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体製造用成膜装置などに用いられる静電チャックの評価方法に関する。   The present invention relates to an evaluation method for an electrostatic chuck used in a film forming apparatus for semiconductor manufacturing.

半導体ウェハに所定の加工を施したり、顕微鏡下でこれを検査するときには、加工または検査中に半導体ウェハが試料台上を移動したり転落したりすることのないように、固定手段で保持する必要がある。従来、保持手段としてメカニカルチャックが用いられてきたが、中でも試料の表面を遮蔽することがない利点を有することから、真空チャックが多用されてきた。しかし、減圧下ないし真空中で半導体ウェハを保持する必要がある場合には、真空チャックを用いることができず、代わりに静電チャックが開発され、使用されている。
静電チャックは、絶縁膜の下に静電チャック電極が設けられており、この絶縁膜で静電チャック電極と試料との間が隔てられている。
When a semiconductor wafer is subjected to predetermined processing or inspected under a microscope, it must be held by a fixing means so that the semiconductor wafer does not move or fall on the sample stage during processing or inspection. There is. Conventionally, mechanical chucks have been used as holding means, but vacuum chucks have been frequently used because of the advantage of not shielding the surface of the sample. However, when it is necessary to hold the semiconductor wafer under reduced pressure or in a vacuum, the vacuum chuck cannot be used, and an electrostatic chuck has been developed and used instead.
In the electrostatic chuck, an electrostatic chuck electrode is provided under an insulating film, and the electrostatic chuck electrode and the sample are separated by this insulating film.

半導体用のデバイスを作製する際には、シリコンウェハ(以下、単にウェハと称する)上にポリシリコン膜や酸化膜、導体膜、誘電体膜等をCVD装置やスパッタ装置で形成したり、逆にエッチング装置により、これらの薄膜をエッチングしたりすることにより製造される。
ウェハの加工には、バッチ式と枚葉式とがある。枚葉式は、バッチ式と比較して処理量の面で劣っているが、基板温度の均一化や、成膜速度、膜組成の安定化をはかるために、枚葉式スパッタリングが用いられている。
When manufacturing a semiconductor device, a polysilicon film, an oxide film, a conductor film, a dielectric film, or the like is formed on a silicon wafer (hereinafter simply referred to as a wafer) by a CVD apparatus or a sputtering apparatus. It is manufactured by etching these thin films with an etching apparatus.
There are two types of wafer processing: batch type and single wafer type. The single wafer type is inferior in terms of throughput compared to the batch type, but single wafer type sputtering is used to make the substrate temperature uniform, stabilize the film formation rate, and film composition. Yes.

搬送装置にて処理されたウェハは、次の工程に進められるが、枚葉式では、静電チャックからウェハを取り外し(デチャック)リフトアップする際に、ウェハに残っている残留電荷等の影響でウェハが揺れ、位置ずれを生じて搬送装置にうまく乗らずに工程を止めざるを得ないときがある。また、ずれが小さくうまく搬送できた場合でも、次工程で微妙な位置ずれが生じ、所望の特性が得られないことがある。
従って、静電チャックに要求される特性のなかでも、ウェハのデチャック時にウェハの位置ずれが生じないことが必須条件である。このため、静電チャックのデチャック特性は正確に評価する必要があった。
The wafer processed by the transfer device is advanced to the next process. However, in the single wafer type, when the wafer is removed from the electrostatic chuck (dechuck) and lifted up, it is affected by residual charges remaining on the wafer. In some cases, the wafer shakes, causes a positional shift, and the process must be stopped without successfully riding on the transfer device. Even when the deviation is small and the sheet can be transported successfully, a slight positional deviation may occur in the next process, and desired characteristics may not be obtained.
Therefore, among the characteristics required for the electrostatic chuck, it is an essential condition that the wafer is not displaced when the wafer is dechucked. For this reason, it is necessary to accurately evaluate the dechuck characteristic of the electrostatic chuck.

また、ヒーター機能を有する静電チャックの場合は、デチャック特性に加えてチャッキング時のウェハの温度分布、昇温速度が重要となってくる。
静電チャックの検査方法は、実機に使用するウェハと同じものを使用して静電チャックにウェハをチャッキングした後、デチャックしてリフトアップする際のウェハの挙動を観察する、というのが一般的である。温度特性を評価するときは、静電チャックを加熱してウェハの温度分布及び昇温速度を評価する。
In the case of an electrostatic chuck having a heater function, in addition to the dechuck characteristic, the temperature distribution of the wafer during chucking and the rate of temperature increase are important.
The inspection method of the electrostatic chuck is to observe the behavior of the wafer when it is dechucked and lifted up after chucking the wafer on the electrostatic chuck using the same wafer as that used in the actual machine Is. When evaluating the temperature characteristics, the electrostatic chuck is heated to evaluate the temperature distribution and the heating rate of the wafer.

評価に使用されるウェハは、静電チャックを評価するにあたって繰り返し使用される。しかし、繰り返し使用していると、同じような特性の静電チャックを評価しても、ウェハの挙動が異なることがあった。
本発明は、繰り返し使用されるウェハによってその挙動が異なることなく、正確な評価を行うことのできる、静電チャックの評価方法を提供することを課題としている。
The wafer used for evaluation is repeatedly used for evaluating the electrostatic chuck. However, when repeatedly used, even when an electrostatic chuck having similar characteristics is evaluated, the behavior of the wafer may be different.
An object of the present invention is to provide an electrostatic chuck evaluation method capable of performing an accurate evaluation without different behavior depending on wafers that are repeatedly used.

本発明の静電チャックの評価方法は、シリコンウェハを使用して静電チャックのデチャック特性を評価する方法において、静電チャックに水の接触角が45°以下であるシリコンウェハをチャッキングした後、デチャックしてリフトアップする際のウェハの挙動を観察することを特徴としている。前記水の接触角が45°以下であるシリコンウェハは、温度300〜700°における真空中で予め熱処理されているものであることが好ましい。
また、シリコンウェハを使用して静電チャックの加熱特性を評価する方法において、静電チャックに水の接触角が45°以下であるシリコンウェハをチャッキングした後、静電チャックを加熱して、前記ウェハの温度分布及び昇温速度を観察することを特徴とする。前記水の接触角が45°以下であるシリコンウェハは、温度300〜700°における真空中で予め熱処理されているものであることが好ましい。
Evaluation method of the electrostatic chuck of the present invention uses a silicon wafer Ha Te method odor of evaluating dechucking characteristics of the electrostatic chuck, the silicon wafer contact angle of water to the electrostatic chuck is 45 ° or less Chat after King, it is the features that you observe the behavior of the wafer at the time of lift-up and de-chucking. The silicon wafer having a water contact angle of 45 ° or less is preferably preheated in vacuum at a temperature of 300 to 700 °.
In the method for evaluating the heating characteristics of the electrostatic chuck using a silicon wafer, after chucking a silicon wafer having a water contact angle of 45 ° or less to the electrostatic chuck, the electrostatic chuck is heated, The temperature distribution and the heating rate of the wafer are observed. The silicon wafer having a water contact angle of 45 ° or less is preferably preheated in vacuum at a temperature of 300 to 700 °.

繰り返し使用されるウェハの清浄度を管理し、正確な評価のできる清浄度を規定することにより、常に安定して正確に静電チャックを評価することができる。   By controlling the cleanliness of a wafer that is repeatedly used and defining the cleanliness that can be accurately evaluated, the electrostatic chuck can be evaluated stably and accurately at all times.

本発明者等による鋭意研究の結果、このウェハ表面の汚染と静電チャックのデチャック特性とは密接な関係があり、汚染が進行するとデチャック特性が悪くなり、汚染の進んだウェハを使用して静電チャックを評価しても正当な評価ができないことが判明した。そこで、静電チャックの特性を評価する際に使用する検査用ウェハの清浄度を管理し、水に対する接触角が45°以下であるウェハを使用することにより、常に安定した静電チャックの特性評価ができることを知見し、本発明をなすに至った。   As a result of diligent research by the present inventors, there is a close relationship between the contamination of the wafer surface and the dechucking characteristics of the electrostatic chuck, and as the contamination progresses, the dechucking characteristic deteriorates. It was found that even if an electric chuck was evaluated, a valid evaluation could not be performed. Therefore, by controlling the cleanliness of the inspection wafer used when evaluating the characteristics of the electrostatic chuck and using wafers with a contact angle with water of 45 ° or less, the characteristics of the electrostatic chuck can always be evaluated stably. As a result, the present invention has been made.

検査用ウェハは使用される毎にその清浄度が下がり、静電チャックのデチャック特性や温度特性などが正確に評価できなくなってくる。その原因は、ウェハの静電チャックへの接着面の汚染であり、この汚染の度合いにより印加した電圧が有効にかからなかったり、印加を停止しても帯電が残り、すみやかに除電されないためである。   Each time an inspection wafer is used, its cleanliness decreases, and the dechucking characteristics and temperature characteristics of the electrostatic chuck cannot be accurately evaluated. The cause is contamination of the wafer's electrostatic chuck and the applied voltage may not be applied effectively due to the degree of contamination, or the charge will remain even if the application is stopped and the charge will not be immediately removed. is there.

そのため、静電チャックを正しく評価するには、表面の清浄度の高いウェハを用いて評価する必要がある。検査用ウェハの清浄度を評価するには、水に対する接触角を調べるのが簡易かつ正確であり、表面が清浄であれば通常20°程度である。しかし、測定を繰り返し、処理回数が増していくとその清浄度は落ちていく。正しい評価をするにはその接触角は45°以下、より好ましくは40°以下とし、45°を超えると清浄度が低いと判断する。清浄度の低い45°を超えるウェハを使用すると、静電チャックの正確な評価ができない。すなわち、デチャック後のウェハリリースの際に、一部に静電吸着力が残ることがあり、ウェハの位置ずれを生じ、静電チャックに誤まった評価を与える。   Therefore, in order to correctly evaluate the electrostatic chuck, it is necessary to perform evaluation using a wafer having a high surface cleanliness. In order to evaluate the cleanliness of the inspection wafer, it is simple and accurate to examine the contact angle with water. If the surface is clean, it is usually about 20 °. However, the degree of cleanliness decreases as the measurement is repeated and the number of treatments increases. For correct evaluation, the contact angle is set to 45 ° or less, more preferably 40 ° or less. If a wafer with a cleanliness exceeding 45 ° is used, the electrostatic chuck cannot be accurately evaluated. That is, when the wafer is released after dechucking, an electrostatic attraction force may remain in part, causing a wafer position shift, and giving an erroneous evaluation to the electrostatic chuck.

また、ヒーター付き静電チャックの場合は、ウェハの清浄度が低いとチャック力が弱くなり、温度分布が不均一になったり、昇温速度が遅くなるという現象が現れ、正確な温度分布評価ができない。よって、ヒーター付き静電チャックの場合においても、検査用ウェハの水に対する接触角は45°以下とし、常に清浄度の高いウェハを使用して評価を行う必要がある。なお、静電チャックのウェハ温度分布特性及び昇温速度特性の評価は、ウェハの所望のポイントに熱電対を埋設することで行うことができる。   In the case of an electrostatic chuck with a heater, if the cleanliness of the wafer is low, the chucking force becomes weak, and the temperature distribution becomes non-uniform or the temperature rise rate slows down. Can not. Therefore, even in the case of an electrostatic chuck with a heater, it is necessary to make an evaluation by using a wafer with a contact angle with respect to water of the inspection wafer of 45 ° or less and always using a highly clean wafer. The evaluation of the wafer temperature distribution characteristic and the temperature increase rate characteristic of the electrostatic chuck can be performed by embedding a thermocouple at a desired point on the wafer.

ウェハの繰り返し使用によってウェハの清浄度が低下する原因として、被検査物である静電チャックからの汚染や、人による取り扱い時の汚染などが挙げられる。ウェハは、クリーンルーム用のグローブを使用して取り扱われるが、このグローブとの接触による汚染、あるいは人の汗等による汚染が最も大きいと考えられる。そのため検査用として繰り返し使用されるウェハは、充分注意を払って取り扱われているが、それでも清浄度は次第に低下する。   Possible causes of the decrease in the cleanliness of the wafer due to repeated use of the wafer include contamination from an electrostatic chuck, which is an object to be inspected, and contamination during handling by a person. The wafer is handled using a glove for a clean room, and it is considered that contamination due to contact with the glove or human sweat is the largest. For this reason, wafers that are repeatedly used for inspection are handled with great care, but the cleanliness gradually decreases.

従来、静電チャックの評価に使用されるウェハは、その都度、イソプロピルアルコール、メチルアルコール、エチルアルコール等の有機溶剤を含浸させたクリーンワイパーで拭かれていたが、ウェハを初期状態の清浄度に戻すことは困難で、表面の汚染は蓄積されていく。
これを清浄度の高い初期状態にまで回復させる必要があるが、これには、UV照射、オゾン水洗浄などによりウェハ表面に付着している有機物を分解させる方法が有効である。その他に、温度300〜700℃における高温真空中での熱処理により有機物を分解させる方法も有効である。
Conventionally, wafers used for electrostatic chuck evaluation were each wiped with a clean wiper impregnated with an organic solvent such as isopropyl alcohol, methyl alcohol, or ethyl alcohol. It is difficult to return, and surface contamination accumulates.
It is necessary to recover this to an initial state with a high degree of cleanness. For this, a method of decomposing organic substances adhering to the wafer surface by UV irradiation, ozone water cleaning or the like is effective. In addition, a method of decomposing organic substances by heat treatment in a high temperature vacuum at a temperature of 300 to 700 ° C. is also effective.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではなく、様々な態様が可能である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these, Various aspects are possible.

(実施例1)
直径300mm、厚さ20mmのグラファイト基材上にPBN絶縁体層、その上にパイロリティックグラファイト(PG)の導電体層、さらにその上に厚さ約100μmのPBN誘電体層が形成されたヒーター機能付き静電チャックのデチャック特性及び温度特性を、以下の手順で評価した。
直径300mm、厚さ0.7mm、水に対する接触角19°の検査用ウェハを準備し、このウェハの5箇所に温度分布測定用の熱電対を埋設した。
Example 1
Heater function in which a PBN insulator layer is formed on a graphite substrate with a diameter of 300mm and a thickness of 20mm, a conductor layer of pyrolytic graphite (PG) is formed on it, and a PBN dielectric layer with a thickness of about 100μm is formed on it. The dechucking characteristics and temperature characteristics of the attached electrostatic chuck were evaluated by the following procedure.
An inspection wafer having a diameter of 300 mm, a thickness of 0.7 mm, and a contact angle of 19 ° with respect to water was prepared, and thermocouples for temperature distribution measurement were embedded at five locations on the wafer.

先ず、温度300℃、印加電圧0.3kVにて静電チャックのチャッキング特性を測定した。その結果、検査用ウェハの温度上昇速度、熱電対を埋設した5ポイント間の温度分布も良好で、デチャック後、リリースする際のウェハの動きもスムーズであった。測定終了後、一度ウェハと静電チャックの表面をイソプロピルアルコールで拭き、同様の測定を繰り返した。15回目の測定後にウェハとの水の接触角を測定すると35°で、UV照射を行って接触角を測定すると22°に回復した。さらに、30回目の測定後に測定すると接触角は36°で、UV照射後は24°になった。   First, the chucking characteristics of the electrostatic chuck were measured at a temperature of 300 ° C. and an applied voltage of 0.3 kV. As a result, the temperature rise rate of the inspection wafer and the temperature distribution between the five points embedded with the thermocouple were good, and the movement of the wafer when releasing after dechucking was smooth. After the measurement was completed, the surfaces of the wafer and the electrostatic chuck were once wiped with isopropyl alcohol, and the same measurement was repeated. After the 15th measurement, when the contact angle of water with the wafer was measured, it was 35 °, and when the contact angle was measured by UV irradiation, it was restored to 22 °. Furthermore, when measured after the 30th measurement, the contact angle was 36 ° and 24 ° after UV irradiation.

このように、測定15回目、30回目の測定後に検査用ウェハの清浄度を回復させ、合計40回の測定を行ったが、常に安定した測定値を得ることができた。なお、図1に(1)測定1回目(初期状態)、(2)16回目(清浄化直後)、(3)40回目での印加直後からの温度上昇曲線を示したが、図からは、温度上昇速度が測定回数を重ねても安定していることが分かる。   As described above, the cleanliness of the inspection wafer was recovered after the 15th and 30th measurements, and a total of 40 measurements were performed, but a stable measurement value could always be obtained. FIG. 1 shows (1) the first measurement (initial state), (2) the 16th (immediately after cleaning), and (3) the temperature rise curve immediately after the 40th application. It can be seen that the temperature rise rate is stable even after repeated measurement.

(実施例2)
ヒーター機能付き静電チャックのデチャック特性及び温度特性の測定を行った。検査用ウェハの清浄度の回復を温度500℃、30分程度の熱処理により行った以外は、実施例1に従って測定を行い、測定15回目、30回目の測定後にウェハの熱処理を行い、計40回の測定を行った。実施例1と同様に常に安定した測定結果が得られた。
(Example 2)
The dechucking characteristics and temperature characteristics of the electrostatic chuck with a heater function were measured. Except that the cleanliness of the inspection wafer was recovered by heat treatment at a temperature of 500 ° C. for about 30 minutes, the measurement was performed according to Example 1, and the wafer was heat-treated after the 15th and 30th measurement, for a total of 40 times. Was measured. As in Example 1, stable measurement results were always obtained.

(実施例3)
ヒーター機能付き静電チャックのデチャック特性及び温度特性の測定を行った。検査用ウェハの清浄度の回復をオゾン水(オゾン濃度0.3ppm)に60分間浸漬して行った以外は、実施例1に従って測定を行い、測定15回目、30回目の測定後にオゾン水によるウェハの清浄化を行い、計40回の測定を行った。実施例1と同様に常に安定した測定結果が得られた。
(Example 3)
The dechucking characteristics and temperature characteristics of the electrostatic chuck with a heater function were measured. The measurement was performed according to Example 1 except that the cleanliness of the inspection wafer was recovered by immersing in ozone water (ozone concentration 0.3 ppm) for 60 minutes. After the 15th and 30th measurement, the wafer was washed with ozone water. Cleaning was performed and a total of 40 measurements were taken. As in Example 1, stable measurement results were always obtained.

(比較例1)
測定15回目、30回目の測定後に検査用ウェハの清浄化を行わなかった以外は、実施例1に従って測定を繰り返し、デチャック後、リリースする際のウェハの動きを観察した。
測定33回目に達すると、ウェハをリリースする際に吸着力が残り、スムースに剥がれなかった。このウェハの接触角を測定すると47°と高く、清浄度が低くなっていた。
(Comparative Example 1)
The measurement was repeated according to Example 1 except that the inspection wafer was not cleaned after the 15th and 30th measurements, and the movement of the wafer during dechucking and release was observed.
When the 33rd measurement was reached, the adsorption force remained when the wafer was released, and it did not peel off smoothly. When the contact angle of this wafer was measured, it was as high as 47 ° and the cleanliness was low.

(比較例2)
測定15回目、30回目の測定後に検査用ウェハの清浄化を行わなかった以外は、実施例1に従って測定を繰り返し、温度特性を評価した。
(1)測定1回目、(2)16回目及び(3)30回目における、印加直後からの温度上昇曲線を図2に示した。測定回数を重ねる毎に温度上昇速度が低下しているのが認められ、清浄化しないと16回目では昇温速度が落ち、30回目の測定値では、充分な昇温速度ではなく、静電チャックの特性に問題があると判断を下されてしまうほどの数値であった。測定30回目終了時のウェハの接触角を測定すると47°と高く、清浄度が低くなっていた。
(Comparative Example 2)
The measurement was repeated according to Example 1 except that the inspection wafer was not cleaned after the 15th and 30th measurements, and the temperature characteristics were evaluated.
FIG. 2 shows temperature rise curves immediately after the application in (1) first measurement, (2) 16th time, and (3) 30th time. It is recognized that the temperature rise rate decreases every time the number of measurements is repeated, and if it is not cleaned, the temperature rise rate drops at the 16th time, and the measured value at the 30th time is not a sufficient temperature rise rate. The value was such that it was judged that there was a problem with the characteristics of. When the contact angle of the wafer at the end of the 30th measurement was measured, it was as high as 47 ° and the cleanliness was low.

(実施例4)
比較例2で30回測定した検査用ウェハをUV照射したところ、水に対する接触角は25°に低下した。さらに、この清浄化したウェハで温度特性を測定をしたところ、温度上昇曲線は図3のようになり、初期状態に回復させることができた。
Example 4
When the wafer for inspection measured 30 times in Comparative Example 2 was irradiated with UV, the contact angle with water decreased to 25 °. Further, when the temperature characteristics of the cleaned wafer were measured, the temperature rise curve was as shown in FIG. 3, and the initial state could be recovered.

検査用ウェハを繰り返し使用しても、常に静電チャックの正しい評価を行うことができる。   Even if the inspection wafer is used repeatedly, the electrostatic chuck can always be correctly evaluated.

実施例1における静電チャックの温度特性を評価するグラフであり、(1)は測定1回目、(2)は測定16回目、(3)は測定40回目である。3 is a graph for evaluating the temperature characteristics of the electrostatic chuck in Example 1. (1) is the first measurement, (2) is the 16th measurement, and (3) is the 40th measurement. 比較例2における静電チャックの温度特性を評価するグラフであり、(1)は測定1回目、(2)は測定16回目、(3)は測定30回目である。It is a graph which evaluates the temperature characteristic of the electrostatic chuck in the comparative example 2, (1) is the first measurement, (2) is the 16th measurement, and (3) is the 30th measurement. 実施例3における静電チャックの温度特性を評価するグラフである。6 is a graph for evaluating temperature characteristics of an electrostatic chuck in Example 3.

Claims (4)

シリコンウェハを使用して静電チャックのデチャック特性を評価する方法において、静電チャックに水の接触角が45°以下であるシリコンウェハをチャッキングした後、デチャックしてリフトアップする際のウェハの挙動を観察することを特徴とする静電チャックの評価方法。 The silicon wafer Te commentary worth method odor dechucking characteristics of the electrostatic chuck using, after a contact angle of water was chucking the silicon wafer is 45 ° or less to the electrostatic chuck, when lifted up by dechucking evaluation method of the electrostatic chuck characterized that you of observing the behavior of the wafer. 前記水の接触角が45°以下であるシリコンウェハは、温度300〜700°における真空中で予め熱処理されている請求項1に記載の静電チャックの評価方法。   The method for evaluating an electrostatic chuck according to claim 1, wherein the silicon wafer having a water contact angle of 45 ° or less is preheated in vacuum at a temperature of 300 to 700 °. シリコンウェハを使用して静電チャックの加熱特性を評価する方法において、静電チャックに水の接触角が45°以下であるシリコンウェハをチャッキングした後、静電チャックを加熱して、前記ウェハの温度分布及び昇温速度を観察することを特徴とする静電チャックの評価方法。  In the method for evaluating the heating characteristics of an electrostatic chuck using a silicon wafer, after chucking a silicon wafer having a water contact angle of 45 ° or less to the electrostatic chuck, the electrostatic chuck is heated to An electrostatic chuck evaluation method characterized by observing the temperature distribution and the heating rate of the electrostatic chuck. 前記水の接触角が45°以下であるシリコンウェハは、温度300〜700°における真空中で予め熱処理されている請求項3に記載の静電チャックの評価方法。  The method for evaluating an electrostatic chuck according to claim 3, wherein the silicon wafer having a water contact angle of 45 ° or less is preheated in a vacuum at a temperature of 300 to 700 °.
JP2005174157A 2005-06-14 2005-06-14 Evaluation method of electrostatic chuck Active JP4580283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174157A JP4580283B2 (en) 2005-06-14 2005-06-14 Evaluation method of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174157A JP4580283B2 (en) 2005-06-14 2005-06-14 Evaluation method of electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2006351726A JP2006351726A (en) 2006-12-28
JP4580283B2 true JP4580283B2 (en) 2010-11-10

Family

ID=37647267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174157A Active JP4580283B2 (en) 2005-06-14 2005-06-14 Evaluation method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4580283B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536806A (en) * 1991-07-26 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> Transient characteristic of evaluation device and method for electrostatic chuck
JPH0969557A (en) * 1995-08-30 1997-03-11 Shin Etsu Handotai Co Ltd Stocking/transporting method for wafer
JPH09213780A (en) * 1996-01-29 1997-08-15 Tokyo Electron Ltd Electrostatic chuck device, and method of separating electrostatic chuck
JPH10261687A (en) * 1997-03-18 1998-09-29 Furontetsuku:Kk Production system for semiconductor and the like
JPH1144443A (en) * 1997-07-24 1999-02-16 Oki Electric Ind Co Ltd Clean room, manufacture of semiconductor element, treating chamber for manufacturing semiconductor element, manufacturing device for semiconductor element and cleaning method of member for semiconductor element
JP2000043976A (en) * 1998-07-27 2000-02-15 Shin Etsu Polymer Co Ltd Precision substrate storage container
JP2002134601A (en) * 2000-10-27 2002-05-10 Toto Ltd Method and apparatus for removing subject to be attracted from electrostatic chuck
JP2002252271A (en) * 2001-02-26 2002-09-06 Anelva Corp Substrate holding device for substrate processing apparatus
JP2002313903A (en) * 1995-06-13 2002-10-25 Takasago Thermal Eng Co Ltd Clean material storage
JP2003133404A (en) * 2001-08-07 2003-05-09 Tokyo Electron Ltd Method for characterizing performance of electrostatic chuck

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536806A (en) * 1991-07-26 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> Transient characteristic of evaluation device and method for electrostatic chuck
JP2002313903A (en) * 1995-06-13 2002-10-25 Takasago Thermal Eng Co Ltd Clean material storage
JPH0969557A (en) * 1995-08-30 1997-03-11 Shin Etsu Handotai Co Ltd Stocking/transporting method for wafer
JPH09213780A (en) * 1996-01-29 1997-08-15 Tokyo Electron Ltd Electrostatic chuck device, and method of separating electrostatic chuck
JPH10261687A (en) * 1997-03-18 1998-09-29 Furontetsuku:Kk Production system for semiconductor and the like
JPH1144443A (en) * 1997-07-24 1999-02-16 Oki Electric Ind Co Ltd Clean room, manufacture of semiconductor element, treating chamber for manufacturing semiconductor element, manufacturing device for semiconductor element and cleaning method of member for semiconductor element
JP2000043976A (en) * 1998-07-27 2000-02-15 Shin Etsu Polymer Co Ltd Precision substrate storage container
JP2002134601A (en) * 2000-10-27 2002-05-10 Toto Ltd Method and apparatus for removing subject to be attracted from electrostatic chuck
JP2002252271A (en) * 2001-02-26 2002-09-06 Anelva Corp Substrate holding device for substrate processing apparatus
JP2003133404A (en) * 2001-08-07 2003-05-09 Tokyo Electron Ltd Method for characterizing performance of electrostatic chuck

Also Published As

Publication number Publication date
JP2006351726A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US8859393B2 (en) Methods for in-situ passivation of silicon-on-insulator wafers
JP2002516483A (en) Improved thin film manufacturing method for semiconductor materials
JP2001203164A (en) Method for in-situ cleaning of surfaces in a substrate processing chamber
TWI541933B (en) Heated electrostatic chuck including mechanical clamp capability at high temperature
US20070089761A1 (en) Non-plasma method of removing photoresist from a substrate
TW201534407A (en) Electrostatic chuck cleaning fixture
TW200929433A (en) Method and system for performing electrostatic chuck clamping in track lithography tools
CN101094733A (en) Wet cleaning of electrostatic chucks
JPH01185176A (en) Processing method using electrostatic adsorption
JP2007307521A (en) Cleaning sheet, conveying member with cleaning function, and cleaning method of substrate treatment apparatus
CN101803000A (en) Method of manufacturing electrostatic chuck mechanism
CN108140556B (en) Substrate backside texturing
JP3054123B2 (en) Ion implantation method
KR20120102707A (en) Methodology for cleaning of surface metal contamination from an upper electrode used in a plasma chamber
JP4580283B2 (en) Evaluation method of electrostatic chuck
US5697751A (en) Wafer transfer apparatus and method
JP2004063521A (en) Method for manufacturing semiconductor device
CN115631994A (en) Substrate thinning method and manufacturing method of silicon carbide Schottky diode
US20150062772A1 (en) Barrier Layer For Electrostatic Chucks
KR20060044541A (en) Ceramic susceptor and a method of cleaning the same
US9412639B2 (en) Method of using separate wafer contacts during wafer processing
TWI604536B (en) Device and method for bonding of substrates
JP5292080B2 (en) Cleaning method for electrostatic chuck
JP2008252009A (en) 300 mm silicon test wafer and semiconductor manufacturing apparatus
JP5179401B2 (en) Bonded wafer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150