JP4580055B2 - A baker's yeast with high amino acid accumulation - Google Patents

A baker's yeast with high amino acid accumulation Download PDF

Info

Publication number
JP4580055B2
JP4580055B2 JP2000057271A JP2000057271A JP4580055B2 JP 4580055 B2 JP4580055 B2 JP 4580055B2 JP 2000057271 A JP2000057271 A JP 2000057271A JP 2000057271 A JP2000057271 A JP 2000057271A JP 4580055 B2 JP4580055 B2 JP 4580055B2
Authority
JP
Japan
Prior art keywords
yeast
gene
car1
dough
frozen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000057271A
Other languages
Japanese (ja)
Other versions
JP2001238665A (en
Inventor
純 島
勝美 森
博幸 高野
肇 渡辺
亮一 中島
康生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
National Agriculture and Food Research Organization
Original Assignee
Oriental Yeast Co Ltd
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd, National Agriculture and Food Research Organization filed Critical Oriental Yeast Co Ltd
Priority to JP2000057271A priority Critical patent/JP4580055B2/en
Publication of JP2001238665A publication Critical patent/JP2001238665A/en
Application granted granted Critical
Publication of JP4580055B2 publication Critical patent/JP4580055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規にしてきわめて有用な冷凍生地耐性実用パン酵母に関するものである。本発明に係る実用パン酵母は、冷凍耐性にすぐれ、凍結融解における生地発酵力の低下が少ないという特徴を有し、冷凍パン生地からすぐれた品質のパンを製造するのに有利に使用できる。
【0002】
【従来の技術】
近年、製パン業界においては、製パン工程の合理化及び焼きたてパンの供給という生産者及び消費者サイドからの要求から、冷凍生地によるパンの製造が注目され、一部は既に実施されている。そして、この場合、パン酵母としては従来のパン酵母を使用したのでは所期の目的を達成することはできず、冷凍耐性を有するパン酵母が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来から知られている冷凍耐性酵母は、未だ冷凍耐性が充分であるとはいえず、改良の余地が残されており、現時点において、最終的に美味なパンを作ることのできる冷凍生地耐性実用パン酵母は未だ得られていないのが現状である。本発明は、このような技術の現状に鑑み、冷凍耐性にすぐれた新規な冷凍生地耐性実用パン酵母を創製し、また、このパン酵母を用いて冷凍生地を創製し、更にまたこの冷凍生地を用いて美味なパンを製造するトータルシステムを新たに構築する目的でなされたものである。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであって、すぐれた冷凍生地耐性実用パン酵母を開発するために各方面から検討した結果、本発明者らは、酵母の冷凍耐性に菌体内アミノ酸蓄積量が影響する点に着目した。そして、アミノ酸の内、アルギニンにはじめて着目し、アルギニン代謝酵素のひとつであるアルギナーゼをコードする遺伝子(CAR1遺伝子)を破壊した酵母を創製したところ、このアルギナーゼ遺伝子(CAR1)破壊株は、グルタミン酸やアルギニン蓄積量が野生型株に比して高く、凍結融解における生地発酵力の低下が野生型株に比して顕著に少いという新知見を得た。
【0005】
本発明は、この新規CAR1遺伝子破壊株が卓越した冷凍耐性を示すという上記した有用新知見に基づき、更に研究の結果、遂に完成されたものである。以下、本発明について詳述する。
【0006】
現在わが国で市販されている実用パン酵母は2倍体がほとんどであり、しかもその大半がa/α型である。このような当業界の現状において本発明はなされたものであって、本発明は、2倍体にしたとき実用パン酵母となる1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなるCAR1遺伝子破壊1倍体酵母に関するものであり、また、CAR1遺伝子の遺伝子破壊操作方法を新たに提供するものである。更に、本発明は、このCAR1遺伝子破壊1倍体酵母を1もしくは2以上用いて交雑してなる2倍体以上の倍数体冷凍生地耐性実用パン酵母に関するものである。
【0007】
更に本発明は、上記した2倍体以上の倍数体冷凍生地耐性実用パン酵母を用いてパン生地を作り、これを前発酵し、次いで冷凍してなる冷凍生地耐性実用パン酵母含有冷凍パン生地、及びこの冷凍パン生地を常法にしたがって解凍、発酵、焼成してなる風味のすぐれたパンに関するものである。
【0008】
本発明を実施するには、先ず、2倍体にしたとき実用パン酵母となる1倍体酵母を選別する必要があるが、これは常法にしたがって行えばよく、型のきまった1倍体酵母との接合の有無により、a型かα型を確定する。
【0009】
CAR1遺伝子の遺伝子破壊操作は、1倍体酵母が有するCAR1遺伝子(アルギナーゼ遺伝子)内に、URA3(ウリジル酸合成酵素)(Gene 29 : 113-124(1984))やADE2、LYS2などの栄養要求性マーカー遺伝子を挿入すればよい。その結果、CAR1遺伝子は破壊されて発現しなくなり、代りに挿入されたURA3や栄養要求性マーカー遺伝子が発現して、遺伝子破壊を確認することができる。なお、挿入するURA3や他のマーカー遺伝子は、セルフクローニングを達成するために、サッカロミセス・セレビシエ、特にパン酵母のものが好ましい。
【0010】
1倍体菌株からura3(遺伝子マーカーとしてのURA3欠損株)を選択するには、5−フルオロオロチン酸含有培地で選択すればよく、この培地で生育した菌株は、自然突然変異によってURA3遺伝子を欠損している。これらの菌株は、ウラシルを除く培地上では生育しないが、URA3を含有するプラスミド、YCp50等によって形質転換することにより、ウラシルを除く培地上で生育出来るようになるので、URA3の欠損が確認できる。
【0011】
CAR1遺伝子の破壊は、CAR1遺伝子が発現してアルギナーゼを作り、これがアルギニンを分解することを防止すれば、その結果、アミノ酸高蓄積株になって目的を達成することができるので、CAR1の全部もしくは1部を削除してもよいし、本発明実施例に詳述するようにURA3をCAR1遺伝子全部ないし一部領域内に挿入することによって、CAR1遺伝子の破壊を行ってもよい。
【0012】
CAR1遺伝子としては、酵母から切り出したり、化学合成法やPCR法等によって製造したCAR1遺伝子の全部領域又は一部領域を使用する。このクローニングした領域をプラスミドに挿入し、次いでこの領域にURA3遺伝子を挿入し、得られたプラスミドを必要に応じて大腸菌等で大量にふやした後、このプラスミドから挿入遺伝子のDNA断片のみを切り出し、単離したものをそのまま酢酸リチウム法によって、2倍体にしたとき実用パン酵母となる1倍体酵母(例えば、上記によって得たura3株(URA3遺伝子欠損株))に形質転換する(図1)。
【0013】
CAR1遺伝子は、アルギニン代謝酵素のひとつであるアルギナーゼをコードするアルギナーゼ遺伝子であって、その塩基配列は、配列表の配列番号1、図2に示される。また、それに対応する蛋白質(アルギナーゼ)のアミノ酸配列は配列番号2、及び、図3、図4に示される。またURA3遺伝子は、ウリジル酸合成酵素をコードする遺伝子であって、その塩基配列は、配列番号3、及び、図5、図6(上段)に示され、それに対応する蛋白質(ウリジル酸合成酵素)のアミノ酸配列は、配列番号4、及び図5、図6(下段)に示される。
【0014】
1倍体酵母に入ったCAR1(前部)−URA3−CAR1(後部)は、細胞***に際し、1倍体酵母のCAR1(全部ないしは一部領域)にURA3を余すように結合・組換えをおこし、これらの結合が切断されて分かれてしまい(つまり、CAR1を前部と後部に、URA3をはさんで完全にわけてしまい)、遺伝子破壊は完成する。したがって、CAR1遺伝子が発現することはない。
【0015】
ここに得られるCAR1遺伝子破壊1倍体酵母は、既にa型かα型かは定まっており、また、2倍体にしたとき実用パン酵母になるすぐれた性質は有するもので、遺伝子破壊操作ではCAR1遺伝子のみが破壊され、その他のすぐれた性質を生む遺伝子はそのままである。本発明では、2倍体にしたとき実用パン酵母となる1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなる酵母を1もしくは2以上用いて交雑し、2倍体以上の倍数体冷凍生地耐性実用パン酵母を得る。
【0016】
これらの内、好ましい酵母としては、例えばa型CAR1遺伝子破壊1倍体酵母とα型CAR1遺伝子破壊1倍体酵母を交雑して得られた2倍体酵母が非限定的に例示される。得られた2倍体パン酵母の内の1株(CA118株)を、Saccharomyces cerevisiae CA118と命名し、これを工業技術院生命工学工業技術研究所にFERM BP−7042として国際寄託した。
【0017】
このようにして造成した新規な倍数体冷凍生地耐性実用パン酵母は、CAR1遺伝子が破壊されており、冷凍耐性、特にパン生地を前発酵したものを冷凍した冷凍パン生地における冷凍耐性にきわめてすぐれている。したがって、本発明に係る実用パン酵母は、前発酵した生地中でも凍結状態によく耐え、解凍して発酵させたとき、よくその能力を発揮し、これを焼上げたとき、美味な各種パンを得ることができる。
【0018】
本発明に係る冷凍パン生地は、上記した倍数体冷凍生地耐性実用パン酵母を使用するほかは常法にしたがって製造すればよいし、パンの製造も、本発明に係る冷凍パン生地を使用するほかは冷凍生地製パンの常法にしたがって行えばよい。
以下、本発明の実施例について述べる。
【0019】
【実施例1】
(1)実用パン酵母1倍体株のura3(URA3欠損株)株の取得
交雑して二倍体株とした場合、市販のパン酵母となりうる性能を保有する野生型の1倍体株(実用パン酵母1倍体株)について、そのura3株を取得した。
すなわち、1倍体株をYPD培地(1%イーストエキス、2%ペプトン、2%グルコース)で培養した後、5−フルオロオロチン酸を含む培地(0.7% YEAST NITROGEN BASE(DIFCO)、2%グルコース、0.1%5−フルオロオロチン酸、0.05%ウラシル、2%寒天)に塗沫した後、30℃で3日間培養し、生育したコロニーを選別した。
【0020】
(2)CAR1遺伝子のクローニング
CAR1遺伝子を破壊するために、CAR1遺伝子の一部領域をクローニングした。クローニングはPCR法により行った。すなわち酵母染色体DNAを鋳型として、下記の配列をプライマーとして用いた。94℃で5分間インキュベートした後に、94℃1分、45℃1分、72℃1分の条件で30サイクルのPCR反応を行った。これらのプライマーは配列表の配列番号5、6に示した。

Figure 0004580055
【0021】
(3)CAR1破壊用ベクターの作成(図7)
PCR反応で得られた約0.5kbのDNA断片を市販されているプラスミドベクターpGEM−Tに挿入し、プラスミドpARG1を作製した。ここに、公知のプラスミドYEp24を制限酵素HindIIIで消化して得られるURA3遺伝子のDNA断片を挿入することにより、プラスミドpARG2を作製した。
【0022】
(4)CAR1遺伝子破壊1倍体株の作成
プラスミドpARG2を制限酵素PvuIIで消化することにより得られる挿入遺伝子のDNA断片のみを切り出し、単離したものを酢酸リチウム法により1倍体酵母(ura3)に導入した。ここでウラシル要求性を示さない株を選抜することにより、形質転換によりCAR1遺伝子が破壊された株を選別することができた。
【0023】
(5)交雑による2倍体株の作成
こうして得られたCAR1遺伝子破壊された1倍体株を交雑することにより2倍体の実用パン酵母を得た。同様に野生型株の1倍体を交雑することにより親株となる2倍体の実用パン酵母を得た。すなわち野生型株の1倍体同士を掛け合わせたT118株と、遺伝子組換えによりCAR1遺伝子が破壊された1倍体同士を掛け合わせたCA118株を造成した。
【0024】
上記した菌株は、下記に示すとおりである。これらの菌株は、いずれも農林水産省 食品総合研究所 酵母研究室に保管されており、希望者は容易に入手することができるだけでなく、CA118株は生命研にFERM BP−7042として寄託されている。また、親株であるT118株も、Saccharomyces cerevisiae T118として同じく生命研に寄託されているので(FERM BP−6096)、本実施例その他本明細書の記載によれば、容易に本発明を実施することができ、本発明の効果を確認することができる。
【0025】
(菌株)
Figure 0004580055
【0026】
【実施例2】
(2倍体株の培養試験)
流加培養試験は、YMPD培地(0.3%、イーストエキス、0.3%マルトエキス、0.5%ペプトン、3%グルコース)で培養した酵母菌体1.2gを種酵母として糖蜜、ウレア、リン酸1ナトリウム2水和物を用いて、糖蜜を連続流加した。
バッチ培養試験はYMPD培地で30℃48時間培養することにより、酵母菌体を得た。
【0027】
(1)アミノ酸含量
培養した菌体を集菌した後、熱水抽出(100℃、5分)を行い、菌体内のアミノ酸をアミノ酸アナライザーにて測定した。得られた結果を図8に示す。なお、図中、各株におけるアミノ酸含量の測定結果は、それぞれ、左から順にGlu、Arg、Proの結果を示す。
【0028】
流加培養した場合にはT118株とCA118株を比較すると遊離のグルタミン酸の含量が増大していることがわかる。
また、実験室レベルで行われるYMPD培地における培養試験を実施し、同様にアミノ酸含量を測定した。このときは培地中の窒素源の形態が違うため、細胞内の遊離アミノ酸のバランスが流加培養時とまったく異なることがわかる。
Batch培養時にはCAR1遺伝子破壊により菌体内のアルギニン含量が増大していた。
このように培養法の違いにより菌体内遊離アミノ酸のバランスはまったく異なるため、実用化に即した冷凍耐性を判定するためには実用レベルを模した培養条件で試験を行う必要がある。
【0029】
(2)発酵過程
流加培養により得られた菌体を用いて、液系での発酵試験を行った。すなわち、酵母菌体をG10培地(10%グルコース)に接種し、30℃で振とう培養した。ここで10分おきに菌体をサンプリングして、アミノ酸含量を測定した。
【0030】
実際冷凍生地における製パン時には、冷凍前に一度パン生地中で発酵する過程(前発酵)が入る。このとき当然菌体内の遊離アミノ酸含量は変化することが考えられ、特に凍結直前の遊離アミノ酸含量が冷凍生地耐性を左右すると考えられる。そこで培養終了時に最も蓄積量の差が大きいグルタミン酸について発酵過程における消長を観察した。得られた結果を図9に示す。T118株とCA118株を比較すると、初発でグルタミン酸の含量の差が最も大きく、発酵が進むにしたがいその差は縮まっていくことが判る。
【0031】
【実施例3】
実施例1で造成したCAR1遺伝子破壊株とその野生型株の2倍体の流加培養試験で得られた菌体について、冷凍生地耐性について評価した。
実施例1の実験結果において、実験室レベルで行われるバッチ培養と実際にパン酵母製造時に行われる糖蜜を用いた流加培養とでは、酵母細胞内の遊離アミノ酸の構成比がまったく異なるため、バッチ培養した菌体を用いた冷凍生地試験は無意味であるため、今回流加培養した菌体を用いて冷凍生地耐性を評価した。
【0032】
(冷凍生地試験)
凍結区:低糖生地の配合(小麦粉100g、イースト2g、砂糖6g、塩2g、水65ml)で混合したパン生地を40gずつ分割し、30℃の恒温槽で60分または120分発酵させた後、−20℃で凍結保存した。凍結2週間後、生地を30℃で1時間解凍し、ファーモグラフ(ATTO社製)で炭酸ガス発生量(ml/120分)を測定した。
【0033】
非凍結区:低糖生地の配合で混合したパン生地を40gずつ分割し、30℃の恒温槽で60分または120分発酵させた後、ファーモグラフ(ATTO社製)で炭酸ガス発生量(ml/120分)を測定した。冷凍生地耐性については非凍結区の2時間発酵で生成した炭酸ガス量に対する凍結区の2時間発酵で生成した炭酸ガス量の百分率で表した。得られた結果を下記表1に示す。
【0034】
Figure 0004580055
【0035】
上記結果から明らかなようにT118株とCA118株を比較した場合、CAR1遺伝子の破壊によりグルタミン酸の蓄積が向上したCAR1遺伝子破壊株は、野生型株に比較して冷凍生地耐性が向上していた。
また前発酵時間が短いときのほうがより遺伝子破壊効果が顕著であり、これは発酵過程において、初発でグルタミン酸の含量の差が最も大きく、発酵が進むにしたがいその差は縮まっていく事実と一致する。
【0036】
以上の結果より、CAR1遺伝子を破壊することにより酵母細胞中のグルタミン酸含量を増大させることに成功し、結果、冷凍生地耐性を向上させることができた。
【0037】
【実施例4】
(冷凍生地耐性実用パン酵母含有冷凍パン生地)
本発明に係るパン酵母CA118(FERM BP−7042)及びその親株であるT118を圧搾して市販イーストと同様の形状となし、これを用いて下記の配合及び製パン条件にて冷凍生地製パン試験をおこなった。
【0038】
(配合割合)
小麦粉 100g
砂糖 5g
食塩 2g
イースト 2g
ショートニング 5g
水 67ml
【0039】
(製パン条件)
凍結前発酵 60分
冷凍期間 1週間
解凍 30℃、90分
丸め、ベンチ 30分
成型
ホイロ 55分
焼成 25分
【0040】
焼成したパンを比較すると、親株であるT118株を用いて製造したパンに比して、アルギナーゼ遺伝子破壊株であるCA118株を用いて製造したパンは明らかに品質が優れており、高い冷凍生地耐性を示した。
【0041】
【発明の効果】
本発明に係る冷凍生地耐性実用パン酵母は、CAR1が破壊されているため、アミノ酸蓄積量が高く、凍結融解における生地発酵力の低下がきわめて少なく、すぐれた冷凍耐性を示す。
【0042】
【配列表】
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055

【図面の簡単な説明】
【図1】CAR1遺伝子破壊株の作成図である。
【図2】CAR1遺伝子の塩基配列を示す。
【図3】CAR1遺伝子の塩基配列に対応するアミノ酸配列1を示す。
【図4】CAR1遺伝子の塩基配列に対応するアミノ酸配列2を示す。
【図5】URA3遺伝子の塩基配列及びそれぞれ対応するアミノ酸配列1を示す。
【図6】URA3遺伝子の塩基配列及びそれぞれ対応するアミノ酸配列2を示す。
【図7】CAR1遺伝子破壊用ベクターの作成図である。
【図8】アミノ酸蓄積量を示す。
【図9】グルタミン酸の消長を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a new and extremely useful frozen dough-resistant practical baker's yeast. The practical baker's yeast according to the present invention has the characteristics that it has excellent freezing tolerance and little decrease in dough fermenting power in freezing and thawing, and can be advantageously used to produce excellent quality bread from frozen dough.
[0002]
[Prior art]
In recent years, in the bakery industry, due to the demands of producers and consumers to streamline the breadmaking process and supply freshly baked bread, the manufacture of bread using frozen dough has attracted attention, and some have already been implemented. . In this case, if the conventional baker's yeast is used as the baker's yeast, the intended purpose cannot be achieved, and baker's yeast having freezing tolerance is used.
[0003]
[Problems to be solved by the invention]
However, the conventionally known freeze-tolerant yeast is still not sufficiently freeze-tolerant, and there is still room for improvement. At present, frozen dough that can finally produce delicious bread. The current situation is that resistant practical baker's yeast has not yet been obtained. In view of the present state of the art, the present invention has created a novel frozen dough-resistant practical baker's yeast excellent in freezing resistance, and also created a frozen dough using this baker's yeast, It was made for the purpose of constructing a new total system for producing delicious bread.
[0004]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above object, and as a result of studying from various directions in order to develop an excellent frozen dough-resistant practical baker's yeast, the present inventors We focused on the influence of amino acid accumulation in the body. Among the amino acids, attention was paid to arginine for the first time, and a yeast in which a gene encoding CARginase (CAR1 gene), which is one of the arginine metabolizing enzymes, was disrupted, was found. The accumulated amount was higher than that of the wild type strain, and the new finding that the decrease in dough fermenting power during freezing and thawing was significantly smaller than that of the wild type strain was obtained.
[0005]
The present invention has been finally completed as a result of further research based on the above-described useful new finding that this novel CAR1 gene disruption strain exhibits excellent freezing tolerance. Hereinafter, the present invention will be described in detail.
[0006]
Practical baker's yeast currently on the market in Japan is mostly diploid, and most of them are a / α type. In the present state of the art, the present invention has been made, and the present invention is a CAR1 gene disruption obtained by gene disruption of the CAR1 gene of a haploid yeast that becomes a practical baker's yeast when diploid is used. The present invention relates to a haploid yeast and newly provides a gene disruption method for CAR1 gene. Furthermore, the present invention relates to a diploid frozen dough resistant practical baker's yeast obtained by crossing using one or two or more of this CAR1 gene disrupted haploid yeast.
[0007]
Furthermore, the present invention provides a frozen dough containing frozen dough-resistant practical bread yeast, prepared by making bread dough using the above-described diploid or higher polyploid frozen dough-resistant practical bread yeast, pre-fermented and then frozen. The present invention relates to a bread with excellent flavor obtained by thawing, fermenting and baking frozen dough according to a conventional method.
[0008]
In order to carry out the present invention, it is necessary to first select a haploid yeast that becomes a practical baker's yeast when it is made into a diploid, and this may be carried out according to a conventional method. The a-type or α-type is determined depending on the presence or absence of conjugation with yeast.
[0009]
The gene disruption operation of CAR1 gene is auxotrophic such as URA3 (uridylate synthase) (Gene 29: 113-124 (1984)), ADE2, LYS2 in CAR1 gene (arginase gene) possessed by haploid yeast. What is necessary is just to insert a marker gene. As a result, the CAR1 gene is destroyed and is not expressed, and the inserted URA3 or auxotrophic marker gene is expressed instead, and gene disruption can be confirmed. In order to achieve self-cloning, URA3 and other marker genes to be inserted are preferably those of Saccharomyces cerevisiae, particularly baker's yeast.
[0010]
To select ura3 (a URA3 deficient strain as a genetic marker) from a haploid strain, it is sufficient to select in a medium containing 5-fluoroorotic acid, and the strain grown in this medium is deficient in the URA3 gene by natural mutation. is doing. Although these strains do not grow on a medium other than uracil, they can grow on a medium other than uracil by transformation with a plasmid containing URA3, such as YCp50, so that URA3 deficiency can be confirmed.
[0011]
If the CAR1 gene is disrupted by expressing the CAR1 gene to produce arginase and preventing it from degrading arginine, the objective can be achieved by becoming a high amino acid accumulation strain. One part may be deleted, or the CAR1 gene may be disrupted by inserting URA3 into all or a part of the CAR1 gene as described in detail in the Examples of the present invention.
[0012]
As the CAR1 gene, the entire region or a partial region of the CAR1 gene produced by cutting out from yeast or by a chemical synthesis method, a PCR method or the like is used. This cloned region was inserted into a plasmid, and then the URA3 gene was inserted into this region. After the resulting plasmid was swollen in large quantities with E. coli, etc., only the DNA fragment of the inserted gene was excised from this plasmid, The isolated product is transformed into a haploid yeast (for example, ura3 strain (URA3 gene-deficient strain) obtained as described above), which becomes a practical baker's yeast when it is made diploid by the lithium acetate method as it is (FIG. 1). .
[0013]
The CAR1 gene is an arginase gene that encodes arginase, which is one of the arginine metabolizing enzymes, and its base sequence is shown in SEQ ID NO: 1 in the sequence listing and FIG. The amino acid sequence of the corresponding protein (arginase) is shown in SEQ ID NO: 2, and FIGS. The URA3 gene is a gene encoding uridylate synthase, the base sequence of which is shown in SEQ ID NO: 3, and FIG. 5 and FIG. 6 (upper), and the corresponding protein (uridylate synthase). The amino acid sequence of is shown in SEQ ID NO: 4, and FIG. 5 and FIG. 6 (bottom).
[0014]
CAR1 (front part) -URA3-CAR1 (rear part) contained in haploid yeast is bound and recombined to leave URA3 in CAR1 (all or a partial region) of haploid yeast during cell division. These bonds are cut and separated (that is, CAR1 is completely separated between the front part and the rear part and URA3 is sandwiched), and the gene disruption is completed. Therefore, the CAR1 gene is not expressed.
[0015]
The CAR1 gene disrupted haploid yeast obtained here has already been determined whether it is a-type or α-type, and has the excellent property of becoming a practical baker's yeast when diploid is used. Only the CAR1 gene is destroyed, and other genes that produce excellent properties remain intact. In the present invention, one or two or more yeasts obtained by genetic disruption of CAR1 gene of haploid yeast, which becomes a practical baker's yeast when diploid is used, are crossed to produce a diploid or higher polyploid frozen dough resistance. Obtain practical baker's yeast.
[0016]
Among these, preferable yeasts include, but are not limited to, diploid yeast obtained by crossing a-type CAR1 gene disrupted haploid yeast and α-type CAR1 gene disrupted haploid yeast. One strain (CA118 strain) of the obtained diploid baker's yeast was named Saccharomyces cerevisiae CA118, and this was internationally deposited as FERM BP-7042 at the Institute of Biotechnology, Institute of Industrial Science and Technology.
[0017]
The novel polyploid frozen dough-resistant practical baker's yeast produced in this way has the CAR1 gene disrupted, and is extremely excellent in freezing resistance, particularly in freezing bread dough that has been prepared by pre-fermenting bread dough. Therefore, the practical baker's yeast according to the present invention withstands the frozen state well even in the pre-fermented dough, exhibits its ability well when thawed and fermented, and obtains various delicious breads when baked be able to.
[0018]
The frozen bread dough according to the present invention may be produced according to a conventional method except that the above-described polyploid frozen dough-resistant practical bread yeast is used, and bread is also frozen except that the frozen bread dough according to the present invention is used. What is necessary is just to follow the usual method of dough bread.
Examples of the present invention will be described below.
[0019]
[Example 1]
(1) A wild-type haploid strain possessing the ability to become a commercially available baker's yeast (practical use) when the ura3 (URA3 deficient strain) strain of a practical baker's yeast haploid strain is crossed into a diploid strain The ura3 strain was obtained for baker's yeast haploid strain).
That is, after a haploid strain was cultured in a YPD medium (1% yeast extract, 2% peptone, 2% glucose), a medium containing 5-fluoroorotic acid (0.7% Yeast NITRogen BASE (DIFCO), 2% (Glucose, 0.1% 5-fluoroorotic acid, 0.05% uracil, 2% agar), followed by culturing at 30 ° C. for 3 days, and growing colonies were selected.
[0020]
(2) Cloning of CAR1 gene In order to destroy the CAR1 gene, a partial region of the CAR1 gene was cloned. Cloning was performed by PCR. That is, yeast chromosomal DNA was used as a template, and the following sequences were used as primers. After incubating at 94 ° C. for 5 minutes, 30 cycles of PCR reaction were performed under the conditions of 94 ° C. for 1 minute, 45 ° C. for 1 minute, and 72 ° C. for 1 minute. These primers are shown in SEQ ID NOS: 5 and 6 in the sequence listing.
Figure 0004580055
[0021]
(3) Creation of CAR1 destruction vector (Fig. 7)
A DNA fragment of about 0.5 kb obtained by the PCR reaction was inserted into a commercially available plasmid vector pGEM-T to prepare a plasmid pARG1. A plasmid pARG2 was prepared by inserting a DNA fragment of the URA3 gene obtained by digesting the known plasmid YEp24 with the restriction enzyme HindIII.
[0022]
(4) Preparation of CAR1 gene disrupted haploid strain Only the DNA fragment of the inserted gene obtained by digesting plasmid pARG2 with the restriction enzyme PvuII was excised, and the isolated one was haploid yeast (ura3) by the lithium acetate method. Introduced. Here, by selecting a strain that does not exhibit uracil requirement, a strain in which the CAR1 gene was disrupted by transformation could be selected.
[0023]
(5) Preparation of a diploid strain by crossing The diploid strain obtained by disrupting the CAR1 gene thus obtained was crossed to obtain a practical diploid baker's yeast. Similarly, a diploid practical baker's yeast serving as a parent strain was obtained by crossing haploids of the wild type strain. That is, a T118 strain obtained by crossing haploids of the wild type strain and a CA118 strain obtained by crossing haploids in which the CAR1 gene was disrupted by gene recombination were created.
[0024]
The above strains are as shown below. All of these strains are stored in the Yeast Laboratory of the Food Research Laboratory, Ministry of Agriculture, Forestry and Fisheries. Not only can they be easily obtained, but the CA118 strain has been deposited with the Life Research Institute as FERM BP-7042. Yes. In addition, since the parent strain T118 is also deposited with the Life Research Institute as Saccharomyces cerevisiae T118 (FERM BP-6096), the present invention can be easily carried out according to the description of the present example and other specifications. The effect of the present invention can be confirmed.
[0025]
(Strain)
Figure 0004580055
[0026]
[Example 2]
(Diploid strain culture test)
The fed-batch culture test was conducted using 1.2 g of yeast cells cultured in YMPD medium (0.3%, yeast extract, 0.3% malto extract, 0.5% peptone, 3% glucose) as seed yeast. Molasses was continuously fed using monosodium phosphate dihydrate.
In the batch culture test, yeast cells were obtained by culturing in YMPD medium at 30 ° C. for 48 hours.
[0027]
(1) Amino acid content After collecting cultured cells, hot water extraction (100 ° C., 5 minutes) was performed, and amino acids in the cells were measured with an amino acid analyzer. The obtained result is shown in FIG. In the figure, the measurement results of the amino acid content in each strain show the results of Glu, Arg, and Pro in order from the left.
[0028]
In the case of fed-batch culture, comparing the T118 strain and the CA118 strain, it can be seen that the content of free glutamic acid is increased.
Moreover, the culture test in the YMPD culture medium performed at a laboratory level was implemented, and the amino acid content was measured similarly. At this time, since the form of the nitrogen source in the medium is different, it can be seen that the balance of intracellular free amino acids is completely different from that in fed-batch culture.
During Batch culture, the arginine content in the cells increased due to the disruption of the CAR1 gene.
As described above, the balance of free amino acids in the cells is completely different depending on the culture method. Therefore, in order to determine the freezing tolerance suitable for practical use, it is necessary to perform a test under culture conditions simulating a practical level.
[0029]
(2) Fermentation process A fermentation test in a liquid system was performed using the cells obtained by fed-batch culture. That is, yeast cells were inoculated into G10 medium (10% glucose) and cultured with shaking at 30 ° C. Here, the cells were sampled every 10 minutes, and the amino acid content was measured.
[0030]
Actually, when bread is made in frozen dough, a process (pre-fermentation) is performed in which the dough is once fermented before freezing. At this time, naturally, the free amino acid content in the cells is considered to change, and it is considered that the free amino acid content immediately before freezing influences the resistance to frozen dough. Therefore, the changes in the fermentation process were observed for glutamic acid, which has the largest difference in accumulated amount at the end of the culture. The obtained results are shown in FIG. Comparing the T118 strain and the CA118 strain, it can be seen that the difference in the content of glutamic acid is the largest at the beginning, and the difference is reduced as the fermentation proceeds.
[0031]
[Example 3]
Frozen dough tolerance was evaluated for the cells obtained in the fed-batch culture test of the diploid CAR1 gene disrupted strain and its wild type strain constructed in Example 1.
In the experimental results of Example 1, the batch culture performed at the laboratory level and the fed-batch culture using molasses actually performed at the time of baker's yeast production are completely different in the composition ratio of free amino acids in the yeast cells. Since the frozen dough test using the cultured cells was meaningless, the frozen dough resistance was evaluated using the cells fed this time.
[0032]
(Frozen dough test)
Frozen section: 40 g of bread dough mixed with low sugar dough formulation (wheat flour 100 g, yeast 2 g, sugar 6 g, salt 2 g, water 65 ml) is divided into 40 g portions, fermented in a thermostatic bath at 30 ° C. for 60 minutes or 120 minutes, − It was stored frozen at 20 ° C. Two weeks after freezing, the dough was thawed at 30 ° C. for 1 hour, and the amount of carbon dioxide gas generated (ml / 120 minutes) was measured with a farmograph (manufactured by ATTO).
[0033]
Non-frozen section: 40 g of bread dough mixed with low-sugar dough blended, fermented in a thermostatic bath at 30 ° C. for 60 minutes or 120 minutes, and then the amount of carbon dioxide generated (ml / ml) by a fermograph (manufactured by ATTO) 120 minutes). The resistance to frozen dough was expressed as a percentage of the amount of carbon dioxide produced by the two-hour fermentation in the frozen section relative to the amount of carbon dioxide produced by the two-hour fermentation in the non-frozen section. The obtained results are shown in Table 1 below.
[0034]
Figure 0004580055
[0035]
As is clear from the above results, when the T118 strain and the CA118 strain were compared, the CAR1 gene-disrupted strain in which the accumulation of glutamic acid was improved by disrupting the CAR1 gene had improved frozen dough resistance compared to the wild-type strain.
Moreover, the gene disruption effect is more pronounced when the pre-fermentation time is shorter, which is consistent with the fact that the difference in glutamic acid content is the largest in the fermentation process, and that the difference decreases as the fermentation progresses. .
[0036]
From the above results, the glutamic acid content in the yeast cells was successfully increased by disrupting the CAR1 gene, and as a result, the resistance to frozen dough could be improved.
[0037]
[Example 4]
(Frozen dough resistant frozen bread containing frozen bread dough)
The bread yeast CA118 (FERM BP-7042) and its parent strain T118 according to the present invention are squeezed into a shape similar to that of commercially available yeast, and using this, a frozen dough bread test under the following formulation and bread making conditions I did it.
[0038]
(Mixing ratio)
100g flour
5g sugar
2g of salt
Yeast 2g
Shortening 5g
67 ml of water
[0039]
(Baking conditions)
Fermentation before freezing 60 minutes Freezing period 1 week thawing 30 ° C, 90 minutes rounding, bench 30 minutes molding proof 55 minutes firing 25 minutes [0040]
Comparing the baked bread, the bread produced using the CA118 strain, which is the arginase gene-disrupted strain, is clearly superior in quality to the bread produced using the parent strain, T118, and has a high resistance to frozen dough. showed that.
[0041]
【The invention's effect】
Since the frozen dough-resistant practical baker's yeast according to the present invention has CAR1 destroyed, the amino acid accumulation amount is high, the fall of the dough fermentation power in freezing and thawing is extremely small, and excellent freezing tolerance is exhibited.
[0042]
[Sequence Listing]
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055
Figure 0004580055

[Brief description of the drawings]
FIG. 1 is a drawing showing the creation of a CAR1 gene disruption strain.
FIG. 2 shows the nucleotide sequence of CAR1 gene.
FIG. 3 shows amino acid sequence 1 corresponding to the nucleotide sequence of CAR1 gene.
FIG. 4 shows amino acid sequence 2 corresponding to the nucleotide sequence of CAR1 gene.
FIG. 5 shows the nucleotide sequence of the URA3 gene and the corresponding amino acid sequence 1.
FIG. 6 shows the nucleotide sequence of URA3 gene and the corresponding amino acid sequence 2.
FIG. 7 is a diagram showing the creation of a CAR1 gene disruption vector.
FIG. 8 shows amino acid accumulation amount.
FIG. 9 shows changes in glutamic acid.

Claims (6)

a型1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなるCAR1遺伝子破壊a型1倍体酵母と、α型1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなるCAR1遺伝子破壊α型1倍体酵母を交雑してなる、流加培養した場合に菌体内にグルタミン酸を高蓄積するa/α型2倍体冷凍生地耐性実用パン酵母。CAR1 gene disruption a type haploid yeast obtained by gene disruption of CAR1 gene of type a haploid yeast and CAR1 gene disruption α type 1 time obtained by gene disruption of CAR1 gene of α type haploid yeast An a / α-type diploid frozen dough-resistant practical baker's yeast that accumulates glutamic acid in cells when fed-batch culture is formed by crossing somatic yeast. 2倍体にしたとき実用パン酵母となるa型1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなるCAR1遺伝子破壊a型1倍体酵母と、2倍体にしたとき実用パン酵母となるα型1倍体酵母のCAR1遺伝子を遺伝子破壊操作してなるCAR1遺伝子破壊α型1倍体酵母を交雑してなる、流加培養した場合に菌体内にグルタミン酸を高蓄積するa/α型2倍体冷凍生地耐性実用パン酵母。CAR1 gene-disrupted a-type haploid yeast obtained by gene disruption of CAR1 gene of a-type haploid yeast that becomes practical baker's yeast when diploid is used, and α that becomes practical baker's yeast when diploid is used. A / α-type double that accumulates glutamic acid in the cells when fed-batch culture is produced by crossing CAR1 gene-disrupted α-type haploid yeast obtained by genetic disruption of CAR1 gene of type haploid yeast Body baked yeast resistant to frozen dough. 該1倍体酵母のCAR1遺伝子の遺伝子破壊操作がCAR1遺伝子内への栄養要求性マーカー遺伝子の挿入であることを特徴とする請求項1又は2に記載の酵母。The yeast according to claim 1 or 2, wherein the gene disruption operation of the CAR1 gene of the haploid yeast is insertion of an auxotrophic marker gene into the CAR1 gene. 流加培養した場合に菌体内にグルタミン酸を高蓄積する2倍体冷凍生地耐性実用パン酵母、Saccharomyces cerevisiae CA118(FERM BP−7042)。Saccharomyces cerevisiae CA118 (FERM BP-7042), a diploid frozen dough-resistant practical baker's yeast that highly accumulates glutamic acid in the cells when fed-batch culture is performed . 請求項1〜4のいずれか1項に記載した2倍体冷凍生地耐性実用パン酵母を流加培養した菌体を用いてパン生地を作り、これを前発酵し、次いで冷凍してなる2倍体冷凍生地耐性実用パン酵母含有冷凍パン生地。Make dough diploid frozen dough-resistant, practical baker's yeast as claimed in any one of claims 1-4 with cells that fed-batch culture, which was prior to fermentation, then diploid formed by freezing Frozen dough resistant frozen bread dough containing practical bread yeast. 請求項5に記載した冷凍パン生地を、解凍し、発酵し、焼成して得られた2倍体冷凍生地耐性実用パン酵母含有冷凍パン生地からのパン。Bread from diploid frozen dough-resistant practical bread yeast-containing frozen bread dough obtained by thawing, fermenting and baking the frozen bread dough according to claim 5.
JP2000057271A 2000-03-02 2000-03-02 A baker's yeast with high amino acid accumulation Expired - Lifetime JP4580055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057271A JP4580055B2 (en) 2000-03-02 2000-03-02 A baker's yeast with high amino acid accumulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057271A JP4580055B2 (en) 2000-03-02 2000-03-02 A baker's yeast with high amino acid accumulation

Publications (2)

Publication Number Publication Date
JP2001238665A JP2001238665A (en) 2001-09-04
JP4580055B2 true JP4580055B2 (en) 2010-11-10

Family

ID=18578089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057271A Expired - Lifetime JP4580055B2 (en) 2000-03-02 2000-03-02 A baker's yeast with high amino acid accumulation

Country Status (1)

Country Link
JP (1) JP4580055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528020A (en) * 2006-02-28 2009-08-06 サントリーホールディングス株式会社 Gene encoding glycogen branching enzyme and use thereof
JP2009528019A (en) 2006-02-28 2009-08-06 サントリーホールディングス株式会社 Gene encoding trehalose-6-phosphate phosphatase and use thereof
JP2009528021A (en) 2006-02-28 2009-08-06 サントリーホールディングス株式会社 Gene encoding glycogen synthase and use thereof
JP2009034043A (en) * 2007-08-01 2009-02-19 Iwata Kagaku Kogyo Kk New yeast strain having high productivity of s-adenosylmethionine and method for producing the same
JP5637507B2 (en) * 2008-03-31 2014-12-10 興人ライフサイエンス株式会社 Yeast mutants and yeast extracts
EP2792740B1 (en) * 2011-12-15 2017-01-04 National University Corporation Nara Institute of Science and Technology Yeast having freezing stress resistance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239940A (en) * 1986-04-14 1987-10-20 日清製粉株式会社 Charge seed composition of swollen food
JPS63196261A (en) * 1987-02-06 1988-08-15 Kyoichi Kobashi Decomposition of urea in fermented food
JPH01128741A (en) * 1987-11-12 1989-05-22 Kanegafuchi Chem Ind Co Ltd Method for making breads and breads having increased flavor
JPH02117385A (en) * 1988-10-26 1990-05-01 Tax Adm Agency Plasmid vector for gene destruction or gene replacement, transformant therefrom and its use
JPH0372869A (en) * 1989-08-14 1991-03-28 Tax Adm Agency Urea-nonproductive practical brewing yeast, method for breeding the same and production of sakes (japanese rice wines) using the same
JPH0420282A (en) * 1990-05-15 1992-01-23 Tax Adm Agency Selective medium for orginase gene-deficient strain, breeding of urea-nonproductive yeast using the same and preparation of liquor using the yeast
JPH10117771A (en) * 1996-10-23 1998-05-12 Natl Food Res Inst Frozen dough resistant-practical bread yeast
JPH11169180A (en) * 1997-12-08 1999-06-29 Natl Food Res Inst Practical bread yeast having frozen dough resistance and high sugar dough resistance
JPH11243944A (en) * 1998-03-04 1999-09-14 Natl Food Res Inst Dryness-resistant practical bread yeast for baking
JP2000037185A (en) * 1998-07-23 2000-02-08 Ajinomoto Co Inc Production of freeze resistant yeast

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789832B2 (en) * 1987-09-17 1995-10-04 鐘淵化学工業株式会社 Bread and confectionery dough improvement method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239940A (en) * 1986-04-14 1987-10-20 日清製粉株式会社 Charge seed composition of swollen food
JPS63196261A (en) * 1987-02-06 1988-08-15 Kyoichi Kobashi Decomposition of urea in fermented food
JPH01128741A (en) * 1987-11-12 1989-05-22 Kanegafuchi Chem Ind Co Ltd Method for making breads and breads having increased flavor
JPH02117385A (en) * 1988-10-26 1990-05-01 Tax Adm Agency Plasmid vector for gene destruction or gene replacement, transformant therefrom and its use
JPH0372869A (en) * 1989-08-14 1991-03-28 Tax Adm Agency Urea-nonproductive practical brewing yeast, method for breeding the same and production of sakes (japanese rice wines) using the same
JPH0420282A (en) * 1990-05-15 1992-01-23 Tax Adm Agency Selective medium for orginase gene-deficient strain, breeding of urea-nonproductive yeast using the same and preparation of liquor using the yeast
JPH10117771A (en) * 1996-10-23 1998-05-12 Natl Food Res Inst Frozen dough resistant-practical bread yeast
JPH11169180A (en) * 1997-12-08 1999-06-29 Natl Food Res Inst Practical bread yeast having frozen dough resistance and high sugar dough resistance
JPH11243944A (en) * 1998-03-04 1999-09-14 Natl Food Res Inst Dryness-resistant practical bread yeast for baking
JP2000037185A (en) * 1998-07-23 2000-02-08 Ajinomoto Co Inc Production of freeze resistant yeast

Also Published As

Publication number Publication date
JP2001238665A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
Nagodawithana et al. Yeast selection for baking
US7569360B2 (en) γ-glutamylcysteine producing yeast
JP4580055B2 (en) A baker's yeast with high amino acid accumulation
US5858764A (en) Yeast strains for saccharide fermentation
RU2756307C2 (en) Frost-resistant yeast and its application
JP4278726B2 (en) Frozen dough resistant and high sugar dough resistant practical baker's yeast
EP0878996B1 (en) Novel cold-sensitive bread yeasts
EP0306107A2 (en) New yeast strains providing for an enhanced rate of the fermentation of sugars, a process to obtain such yeasts and the use of these yeats
EP0229976B1 (en) Improved yeast strains, method of production and use in baking
JPH10117771A (en) Frozen dough resistant-practical bread yeast
JP3795529B2 (en) New yeast gene
ES2382069T3 (en) Method to introduce recessive properties in a baker's yeast
JPH11243944A (en) Dryness-resistant practical bread yeast for baking
US20130344197A1 (en) Novel bread yeast strains
JP3966887B2 (en) New yeast gene
JP2683253B2 (en) Yeast with increased sugar fermentation rate and method for producing the yeast
JP2579723B2 (en) Torraspora delbrutsuki H299-18 and method for producing frozen dough using bread
US6924132B1 (en) Protein complementing yeast low temperature-sensitivity fermentability
JP3790318B2 (en) Novel gene and novel yeast containing the gene
JP2002027974A (en) Bread yeast and method for producing bread therewith
JPH1142090A (en) Yeast having controlled activation at low temperature and it preparation and use

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term