JP4578847B2 - Low thermal expansion cast iron - Google Patents

Low thermal expansion cast iron Download PDF

Info

Publication number
JP4578847B2
JP4578847B2 JP2004115871A JP2004115871A JP4578847B2 JP 4578847 B2 JP4578847 B2 JP 4578847B2 JP 2004115871 A JP2004115871 A JP 2004115871A JP 2004115871 A JP2004115871 A JP 2004115871A JP 4578847 B2 JP4578847 B2 JP 4578847B2
Authority
JP
Japan
Prior art keywords
thermal expansion
cast iron
graphite
nickel
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004115871A
Other languages
Japanese (ja)
Other versions
JP2005298887A (en
Inventor
光男 伊藤
英紀 橋本
秀雄 中江
Original Assignee
伊藤鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤鉄工株式会社 filed Critical 伊藤鉄工株式会社
Priority to JP2004115871A priority Critical patent/JP4578847B2/en
Publication of JP2005298887A publication Critical patent/JP2005298887A/en
Application granted granted Critical
Publication of JP4578847B2 publication Critical patent/JP4578847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、薄肉鋳物の鋳造に適した、低熱膨張性鋳鉄材に関するものである。   The present invention relates to a low thermal expansion cast iron material suitable for casting a thin casting.

例えば、エレクトロニクスやフォトニクス用の筐体であるとか、取り付け部品、或いは調整機器等は、アルミニウム、真鍮或いは金属と樹脂の複合材料などによって形成されている。しかしこれらの材料は、熱膨張係数が大きく、例えば光軸ずれに敏感なレーザー装置を収める筐体の材料としては適していない。しかも材料の熱膨張係数が大きければ、性能が温度に依存することになり、冷却装置を設けなければならず、そのために全体のコストが押し上げられ、装置としても複雑なものとなる。インバー材やスーパーインバー材を材料とする筐体類も製造されていたが、どちらも5千円/kg程度と高価であり、さらに鉄塊から削り出しという加工工程を経るため最終のコストは非常に高価なものとなっていた。   For example, a housing for electronics or photonics, a mounting part, an adjustment device, or the like is formed of aluminum, brass, a composite material of metal and resin, or the like. However, these materials have a large coefficient of thermal expansion, and are not suitable as materials for a housing that houses a laser device that is sensitive to optical axis deviation, for example. Moreover, if the coefficient of thermal expansion of the material is large, the performance will depend on the temperature, and a cooling device must be provided, which increases the overall cost and makes the device complex. Cases made of Invar or Super Invar were also manufactured, but both are expensive at around 5,000 yen / kg, and the final cost is very high because of the processing process of cutting out from the iron ingot. It was expensive.

低熱膨張性を有する先行技術に例えば特開2000−119793号のものがあり、同号の発明も低温安定性を有する低膨張性鋳鉄を提案している。また特開平6−172919号の発明は低熱膨張鋳鉄を提案しており、他にも熱膨張率を低く抑制しようとする鋳鉄の発明は少なからず存在するが、それらは質量%で三十数%を超えるニッケルを含むか、或いは相当量のコバルトを含んでおり、ニッケルやコバルトはいずれも高価な方に属する材料であるため、コスト高という問題は依然として解決されないままである。一般に低熱膨張性と認められる熱膨張係数を有し、かつまたニッケルの含有量が三十数%を越えず、コバルトのように高価な材料を使用しない鋳鉄材は提案されていない。
For example, Japanese Patent Application Laid-Open No. 2000-119793 discloses a prior art having low thermal expansion, and the invention of the same also proposes low-expansion cast iron having low-temperature stability. The invention of JP-A-6-172919 proposes a low thermal expansion cast iron, although no small invention of cast iron to be suppressed low thermal expansion rate to another, they mass% thirty several% Since nickel or cobalt is a material belonging to an expensive one, nickel and cobalt are included in an expensive one, the problem of high cost still remains unsolved. There has not been proposed a cast iron material having a thermal expansion coefficient generally recognized as low thermal expansion and having a nickel content not exceeding 30% and not using an expensive material such as cobalt.

特開2000−119793号JP 2000-119793 A 特開平6−172919号JP-A-6-172919

本発明は前記の点に着目してなされたものであり、その課題は、一般に低熱膨張性と認められる3〜4×10−6以下の熱膨張係数を持ち、かつまたニッケルの含有率が三十数%を越えず、コバルトのように高価な材料を使用しないことによって、低コストという目標を満足することである。本発明において低コストという場合、インバー材の価格を下回るのは勿論、従来の低熱膨張性鋳鉄材よりも低コストであることを意味する。また本発明は、削り出しの工程を必要とせず、鋳造のみによってフォトニクス用筐体等の薄肉鋳物部品を鋳造することができる、低熱膨張性鋳鉄材を提供することを他の課題とする。 The present invention has been made paying attention to the above-mentioned points, and the problem is that it has a thermal expansion coefficient of 3 to 4 × 10 −6 or less, which is generally recognized as low thermal expansion, and has a nickel content of three. By not using more than a dozen percent and not using expensive materials like cobalt, the goal of low cost is met. In the present invention, the term “low cost” means that the price is lower than that of the conventional low thermal expansion cast iron material as well as the price of the invar material. Another object of the present invention is to provide a low-thermal-expansion cast iron material that does not require a machining step and can cast a thin cast part such as a photonics casing only by casting.

前記の課題を解決するため本発明は、質量%でマンガン0.1〜0.5%、リン0.02〜0.06%、イオウ0.05〜0.1%、炭素1.5〜3.0%、シリコン0.2〜1.6%、ニッケル30〜36%及び銅0.5〜1.6%を含有するとともに、球状化材又は接種剤を含有し、残部が鉄及び不可避的に含まれる不純物から成る、薄肉鋳物の鋳造に適した、低熱膨張性鋳鉄材であって、球状化材はミッシュメタル単独又はマグネシウムと複合したNi−Mg若しくはFe−Si−Mgの形で0.01〜1%、接種剤はFe−Tiの形でTi0.2〜1%とするという手段を講じたものである。
In order to solve the above-mentioned problems, the present invention, in mass%, contains 0.1 to 0.5% manganese, 0.02 to 0.06 % phosphorus, 0.05 to 0.1% sulfur, and 1.5 to 3 carbon. 0.0%, silicon 0.2-1.6%, nickel 30-36% and copper 0.5-1.6% , containing spheroidizing material or inoculant , the balance being iron and inevitable A low-thermal-expansion cast iron material suitable for casting of a thin-walled casting made of impurities contained in the spheroids , wherein the spheroidizing material is 0.1% in the form of Ni-Mg or Fe-Si-Mg combined with misch metal alone or magnesium. 01 to 1%, the inoculum is in the form of Fe-Ti, and measures are taken to make Ti 0.2 to 1% .

<組成>
本発明の低熱膨張性鋳鉄材において、低熱膨張性とは、前述のように3〜4×10−6以下の熱膨張係数のレベルをいうものとする。通常、低熱膨張性鋳鉄は質量%で2.0%以下の炭素を含有しており、この値よりも炭素量が減少すると熱膨張係数も低下する傾向のあることが実験により分かっている。しかし、炭素量を減少させると鋳造性が損なわれ、薄肉鋳物の鋳造を目的とする本発明に適合しないことなる。
<Composition>
In the low thermal expansion cast iron material of the present invention, low thermal expansion means a level of thermal expansion coefficient of 3 to 4 × 10 −6 or less as described above. Usually, low-thermal-expansion cast iron contains 2.0% or less by mass of carbon, and it has been experimentally found that the coefficient of thermal expansion tends to decrease when the amount of carbon decreases below this value. However, if the amount of carbon is reduced, the castability is impaired, and it does not conform to the present invention for the purpose of casting a thin casting.

このような観点から、炭素量を変化させ、シリコン2.0%、ニッケル35%に固定した成分比率を有する鋳鉄材について試験片を作製し、熱膨張係数の変化を測定した。鋳鉄の基本成分はマンガン0.1〜0.5%、リン0.02〜0.06%、イオウ0.05〜0.1%、炭素2〜4.5%残部鉄である。測定結果を表1に示す。   From such a viewpoint, a test piece was prepared for a cast iron material having a component ratio fixed to 2.0% silicon and 35% nickel by changing the carbon amount, and the change in the thermal expansion coefficient was measured. The basic components of cast iron are manganese 0.1-0.5%, phosphorus 0.02-0.06%, sulfur 0.05-0.1%, carbon 2-4.5% balance iron. The measurement results are shown in Table 1.

表1
Si:2.0%,Ni:35%にて、C量を変化させた場合

Figure 0004578847
Table 1
When the C content is changed at Si: 2.0% and Ni: 35%
Figure 0004578847

表1によれば、前に触れたように炭素量の減少につれて、いずれの温度領域においても熱膨張係数が下がることが分かるが、炭素量減少により鋳造性も損なわれるため、炭素量の下限を1.5%、上限を3.0%とした。より好ましくは、表1に記載した1.9〜2.5%の範囲、代表例としては2.3%を本発明における炭素の成分比率として扱うものとした。上限を3.0%としたのは、3.0%を超えると熱膨張係数が5.2×10−6を越え、好ましくないためである。表1から分かるように、本発明における1.9〜3.0%という成分比率は、従来の低熱膨張性鋳鉄よりも多いことになるが、このことは切削性、振動減衰特性において優れていることを示唆する。なお、表1に係る実験では、銅、チタン、ミッシュメタルは添加せず、球状化材としてニッケル−マグネシウムを使用しており、その内マグネシウムの成分比率は0.3〜1.0%とした。
According to Table 1, it can be seen that as the carbon content decreases, the thermal expansion coefficient decreases in any temperature region as described above. However, since the castability is also impaired by the carbon content decrease, the lower limit of the carbon content is reduced. The upper limit was 1.5% and the upper limit was 3.0%. More preferably, the range of 1.9 to 2.5% described in Table 1, and 2.3% as a representative example, is treated as the carbon component ratio in the present invention. The upper limit is set to 3.0% because if it exceeds 3.0%, the thermal expansion coefficient exceeds 5.2 × 10 −6 , which is not preferable. As can be seen from Table 1, component proportions, of from 1.9 to 3.0% in the present invention is thus greater than the conventional low thermal Rise tonicity cast iron, this is excellent in machinability, damping property Suggest that In the experiment according to Table 1, copper, titanium, and misch metal were not added, and nickel-magnesium was used as a spheroidizing material, and the component ratio of magnesium was 0.3 to 1.0%. .

次に、炭素を2.3%、ニッケルを35%に夫々固定し、シリコン量を変化させた成分比率を有する鋳鉄材について試験片を作製し、熱膨張係数の変化を測定した。その結果を表2に示す。鋳鉄の基本成分をはじめとして他の条件は表1の場合と同一であり、銅、チタン、ミッシュメタルを添加せず、球状化材を表1の実験の場合と同じように用いてい
る。
Next, a test piece was prepared for a cast iron material having a component ratio in which carbon was fixed at 2.3% and nickel was fixed at 35%, and the amount of silicon was changed, and a change in thermal expansion coefficient was measured. The results are shown in Table 2. The other conditions including the basic components of cast iron are the same as those in Table 1. The spheroidizing material is used in the same manner as in the experiment in Table 1 without adding copper, titanium, and misch metal.

表2
C:2.3%,Ni:35%にて、Si量を変化させた場合

Figure 0004578847
Table 2
When changing Si amount at C: 2.3%, Ni: 35%
Figure 0004578847

表2によれば、シリコン量が減少すると、熱膨張係数も下がる傾向のあることが分かるが、特に、その傾向は100〜200℃、という、より高い温度領域において顕著である。シリコンには鋳造性の改善、黒鉛化の促進の効果がある。なお、シリコン量については、通常取引されている鋼屑を本発明に係る鋳鉄材の原料として使用したときに不可避的に含有されることになる0.2%以上を下限とし、上限は、熱膨張係数が5×10−6を余り越えない2.1%以下とした。 According to Table 2, it can be seen that as the amount of silicon decreases, the thermal expansion coefficient tends to decrease. In particular, this tendency is remarkable in a higher temperature range of 100 to 200 ° C. Silicon has the effect of improving castability and promoting graphitization. As for the silicon content, the lower limit is 0.2% or more, which is inevitably contained when using steel scrap that is usually traded as a raw material for the cast iron material according to the present invention. The expansion coefficient was set to 2.1% or less not exceeding 5 × 10 −6 .

ニッケルは熱膨張係数に影響のある主要な元素であり、最もインバー効果を発揮する成分比率は31〜37%の範囲にあることが分かっている。しかも、シリコン0.4%においてニッケル量を変化させると、31〜38%でも30〜100℃の温度領域では熱膨張係数に大きな違いが表れないが、本発明においては、コストを可能な限り抑制することが大きな目標であるので、使用温度が100℃未満での低熱膨張率を必要とする低熱膨張性鋳鉄として、コストと生産上の成分制御の可能な範囲を考慮し、上限、下限を決定することとした。下限としては、インバー効果を示す最低限の31%、上限は、コストを考慮して34.5%とした低熱膨張性鋳鉄(表3)と、インバー効果の上限である38%に可能な限り近付けて100から200℃の熱膨張率を低くすることを狙い35.5%とした低熱膨張性鋳鉄(表4)の値から、36%とした。   Nickel is a main element that affects the coefficient of thermal expansion, and it has been found that the component ratio that exhibits the most invar effect is in the range of 31 to 37%. Moreover, if the amount of nickel is changed in 0.4% silicon, there is no significant difference in the thermal expansion coefficient in the temperature range of 30 to 100 ° C. even at 31 to 38%, but in the present invention, the cost is suppressed as much as possible. As a low-expansion cast iron that requires a low coefficient of thermal expansion when the operating temperature is less than 100 ° C, the upper and lower limits are determined in consideration of cost and the possible range of component control in production. It was decided to. The lower limit is 31% which shows the invar effect, and the upper limit is as low as possible with low thermal expansion cast iron (Table 3) of 34.5% considering the cost and 38% which is the upper limit of the invar effect. The value of low thermal expansion cast iron (Table 4), which was 35.5% aiming to lower the thermal expansion coefficient from 100 to 200 ° C., was 36%.

表3
C:2.3%,Si:2.1%にて、Ni量を変化させた場合

Figure 0004578847
Table 3
When the Ni content is changed at C: 2.3% and Si: 2.1%
Figure 0004578847

表4
C:2.5%,Si:0.4%にて、Ni量を変化させた場合

Figure 0004578847
Table 4
When the amount of Ni is changed at C: 2.5% and Si: 0.4%
Figure 0004578847

表3から理解されるように、ニッケル31%の下限では炭素2.3%、シリコン2.0%の場合に100〜200℃の温度領域で好ましくない熱膨張係数値を示す、ほかは、目標をほぼ満足する熱膨張係数値を得ている。鋳鉄の基本成分及び他の条件は表1の場合と同一であり、銅、チタン、ミッシュメタルを添加せず、球状化材を表1の場合と同様に使用している。   As can be seen from Table 3, the lower limit of 31% nickel is 2.3% carbon, and 2.0% silicon shows an undesirable coefficient of thermal expansion in the temperature range of 100-200 ° C. The thermal expansion coefficient value almost satisfying The basic components and other conditions of the cast iron are the same as in Table 1, and copper, titanium and misch metal are not added, and a spheroidizing material is used as in Table 1.

銅は、本発明において、ニッケルの代替として使用している。銅はFeC の分解を助長して黒鉛化を促進するなどのニッケルと同じ効果がある点に着目し、またニッケルとの比較上安価であるため、本発明の低熱膨張性鋳鉄材の構成要素としたものである。なお、インバー効果についても銅にはニッケルのそれと同様の効果を発揮するとの認識である。炭素2.3%、シリコン0.4%、ニッケル32%を夫々固定し、銅量を変化させた鋳鉄材について試験片を作製し、熱膨張係数を測定した。その結果を表5に示す。 Copper is used as an alternative to nickel in the present invention. Focusing on the fact that copper has the same effect as nickel, such as promoting the decomposition of Fe 3 C and promoting graphitization, and because it is inexpensive compared with nickel, the configuration of the low thermal expansion cast iron material of the present invention It is an element. Regarding the Invar effect, it is recognized that copper has the same effect as nickel. Test pieces were prepared for cast iron materials in which carbon 2.3%, silicon 0.4%, and nickel 32% were fixed and the amount of copper was changed, and the thermal expansion coefficient was measured. The results are shown in Table 5.

表5
C:2.3%,Si:0.4%, Ni:32%にて、Cu量を変化させた場合

Figure 0004578847
Table 5
When the amount of Cu is changed at C: 2.3%, Si: 0.4%, Ni: 32%
Figure 0004578847

表5によれば、銅を含まない場合よりも銅を含む方が多くの場合低熱膨張率を示しているが、1.6%を越えると熱膨張係数も大きくなることが分かる。従って銅はニッケルの代替となることが裏付けられており、下限として、少なくとも0.5%の銅を含み、その上限は1.6%を越えないことをもって成分比率を決定した。   According to Table 5, it can be seen that the thermal expansion coefficient is higher in the case where copper is included than in the case where copper is not included. Therefore, copper is proved to be an alternative to nickel, and the component ratio was determined by including at least 0.5% copper as a lower limit and not exceeding 1.6% as the upper limit.

本発明においては、材料費として反映する各成分のコスト低下のほかに、鋳造性の向上及び加工費の低下を目的とし、全体のコスト低減することが求められている。この要求に黒鉛形状は加工費の面から寄与することができる。   In the present invention, in addition to the cost reduction of each component reflected as the material cost, it is required to reduce the overall cost for the purpose of improving the castability and reducing the processing cost. The graphite shape can contribute to this requirement from the viewpoint of processing cost.

<黒鉛形状>
熱膨張係数は基地中の固溶炭素量が少ないほど低くなることが分かっている。このため本発明では、黒鉛粒数を増すことにより黒鉛間距離を短くし、基地中の炭素が黒鉛に拡散しやすい状態とした。黒鉛粒数を増す手段として、本発明では、球状化材を添加する方法と、黒鉛改良剤を添加する方法の2手段を適用する。この2手段は、いずれか一方のみを適用しても良く、また両方を併せ適用しても良い。
<Graphite shape>
It has been found that the thermal expansion coefficient decreases as the amount of dissolved carbon in the matrix decreases. For this reason, in the present invention, the distance between graphites is shortened by increasing the number of graphite grains, and the carbon in the base is easily diffused into the graphite. As means for increasing the number of graphite grains, in the present invention, two means are applied: a method of adding a spheroidizing material and a method of adding a graphite improver. Only one of these two means may be applied, or both may be applied together.

一般に、球状黒鉛鋳鉄の球状化材には、Ni−Mg、Fe−Si−Mgなどが使用される。しかし本発明では、ミッシュメタルを単独で、又はNi−Mg、Fe−Si−Mgなどの形でマグネシウムと複合して添加することによりチャンキー黒鉛を生成した。なお、ミッシュメタルは、セリウム、ランタン、その他の希土類金属の粗混合物からなる合金と考えて良いが、本発明の場合50〜60%のセリウムを含有するミッシュメタルを使用した。ミッシュメタルの成分比率は、チャンキー黒鉛を崩さない0.01〜1.0%の範囲である。チャンキー黒鉛について、冷却速度と黒鉛組織の関係を、試験片を作製して観察したところ、冷却速度が速いほどチャンキー黒鉛の分布の均一化する傾向が認められた。   In general, Ni—Mg, Fe—Si—Mg, or the like is used as a spheroidizing material for spheroidal graphite cast iron. However, in the present invention, chunky graphite was produced by adding misch metal alone or in combination with magnesium in the form of Ni—Mg, Fe—Si—Mg or the like. The misch metal may be considered as an alloy made of a cerium, lanthanum, or other rare earth metal, but in the present invention, a misch metal containing 50-60% cerium was used. The component ratio of the misch metal is in the range of 0.01 to 1.0% which does not break the chunky graphite. With respect to the chunky graphite, the relationship between the cooling rate and the graphite structure was observed by producing a test piece.

接種剤は、本発明において、片状黒鉛において黒鉛組織が微細であり無方向に配列している黒鉛形状であるD型黒鉛、E型黒鉛を生成するために、黒鉛改良剤として使用される。本発明で使用する黒鉛改良剤はチタン(実際にはFe−Tiが良い。)である。チタンは、片状黒鉛を細かくする効果があり、これにより黒鉛間距離を短くし、固溶炭素量を低減して熱膨張係数の低下したD型黒鉛、E型黒鉛を生成することができる。チタンの量は、0.2〜1.0%が良く、0.2%未満ではD型黒鉛の生成が過少であり、また1.0%を越えると炭化物を生成し切削性を低下させる。   In the present invention, the inoculant is used as a graphite improver in order to produce D-type graphite and E-type graphite having a graphite shape in which flake graphite has a fine graphite structure and is arranged in a non-direction. The graphite improver used in the present invention is titanium (in fact, Fe—Ti is good). Titanium has the effect of making the flake graphite finer, whereby the distance between graphites can be shortened, and the amount of solute carbon can be reduced to produce D-type graphite and E-type graphite having a reduced thermal expansion coefficient. The amount of titanium is preferably 0.2 to 1.0%, and if it is less than 0.2%, the formation of D-type graphite is too small, and if it exceeds 1.0%, carbide is generated and the machinability is lowered.

黒鉛形状の相違に伴う低熱膨張性鋳鉄の熱膨張係数の変化を表6に示す。   Table 6 shows changes in the coefficient of thermal expansion of the low thermal expansion cast iron accompanying the difference in graphite shape.

表6
C:2.5%,Si:0.4%,Ni:31%にて、黒鉛形状を変化させた場合

Figure 0004578847
Table 6
When the graphite shape is changed at C: 2.5%, Si: 0.4%, Ni: 31%
Figure 0004578847

表6は、炭素2.5%、シリコン0.4%、ニッケル31%、残部不可避的元素を含む鋳鉄からなるものの熱膨張係数値を表示している。表6から、球状黒鉛のみを含む鋳鉄よりも、チャンキー黒鉛又はD型黒鉛を含む鋳鉄の熱膨張係数の方が明らかに低い値を示していることが分かる。   Table 6 displays the thermal expansion coefficient values of cast iron containing 2.5% carbon, 0.4% silicon, 31% nickel, and the balance inevitable elements. From Table 6, it can be seen that the thermal expansion coefficient of cast iron containing chunky graphite or D-type graphite is clearly lower than that of cast iron containing only spheroidal graphite.

本発明はこのように構成されかつ作用するものであるから、30〜100℃の温度領域における熱膨張係数を、低熱膨張性と認められる3〜4×10−6以下にほぼ抑制することができ、かつまたニッケルの含有量が36%を越えず、コバルトのように高価な材料を使用しないことによって、低コストという目標を達成することができる。また本発明の低熱膨張性鋳鉄材は、薄肉鋳物の鋳造に適しているので、鉄塊から削り出す工程を必要とせずに筐体又はそれに類似の薄肉鋳物部品を鋳造することができ、最終製品の価格を著しく低下することができるという効果を奏する。 Since the present invention is configured and operates in this way, the thermal expansion coefficient in the temperature range of 30 to 100 ° C. can be substantially suppressed to 3 to 4 × 10 −6 or less recognized as low thermal expansion. Also, the goal of low cost can be achieved by not using an expensive material such as cobalt with a nickel content not exceeding 36%. Moreover, since the low thermal expansion cast iron material of the present invention is suitable for casting of a thin casting, a casing or a similar thin casting part can be cast without requiring a step of cutting out from an iron ingot. The price can be significantly reduced.

以下実施例、比較例により、本発明に係る低熱膨張性鋳鉄材をより具体的に説明する。なお、実施例、比較例は表7に要点をまとめて記載した。   Hereinafter, the low thermal expansion cast iron material according to the present invention will be described more specifically with reference to Examples and Comparative Examples. The examples and comparative examples are summarized in Table 7.

実施例1は、炭素1.70%、シリコン0.25%、銅0.50%、ニッケル31.2%を含み、黒鉛改良剤としてFe−Tiを試験片鋳造の際に添加したもので、D型黒鉛が鋳鉄組織中に生成されている。この場合、30〜100℃の温度領域における熱膨張係数は4.30×10−6、100〜200℃の温度領域においても6.00×10−6でありほぼ許容範囲となっている。 Example 1 contains 1.70% carbon, 0.25% silicon, 0.50% copper, 31.2% nickel, and Fe-Ti was added as a graphite improver during casting of the test piece. D-type graphite is produced in the cast iron structure. In this case, the coefficient of thermal expansion in the temperature range of 30 to 100 ° C. is 4.30 × 10 −6 , and the temperature range of 100 to 200 ° C. is 6.00 × 10 −6, which is almost acceptable.

実施例2は炭素2.21%、シリコン1.50%、銅0.51%、ニッケル34.5%
を含み、ミッシュメタルを球状化材としてチャンキー黒鉛を生成したもので、30〜100℃の温度領域における熱膨張係数は5.00×10−6となり、100〜200℃の温度領域では7.00×10−6となっている。
Example 2 is carbon 2.21%, silicon 1.50%, copper 0.51%, nickel 34.5%
, Spheroidizing material is used to produce chunky graphite. The coefficient of thermal expansion in the temperature range of 30 to 100 ° C. is 5.00 × 10 −6 , and in the temperature range of 100 to 200 ° C. 00 × 10 −6 .

実施例3は炭素2.80%、シリコン0.41%、銅0.53%、ニッケル34.5%
と銅を漸増させ、黒鉛改良剤によりD型黒鉛を鋳鉄組織中に生成させたもので、30〜100℃領域での熱膨張係数は3.80×10−6と最小値を記録している。これは100〜200℃の温度領域でも4.80×10−6と最小値である。
Example 3 is carbon 2.80%, silicon 0.41%, copper 0.53%, nickel 34.5%
And copper were gradually increased, and D-type graphite was produced in the cast iron structure by a graphite improver, and the thermal expansion coefficient in the region of 30 to 100 ° C. was 3.80 × 10 −6 and recorded the minimum value. . This is a minimum value of 4.80 × 10 −6 even in the temperature range of 100 to 200 ° C.

実施例4は、炭素2.30%、シリコン0.48%、銅1.45%、ニッケル34.8%とし、球状化材の添加によりチャンキー黒鉛を生成したもので、30〜100℃の温度領域での熱膨張係数は4.00×10−6、100〜200℃の温度領域での熱膨張係数5.00×10−6と、実施例3の最小値に次ぐ値を示している。 In Example 4, carbon 2.30%, silicon 0.48%, copper 1.45%, and nickel 34.8% were produced, and chunky graphite was produced by adding a spheroidizing material. The thermal expansion coefficient in the temperature region is 4.00 × 10 −6 , the thermal expansion coefficient in the temperature region of 100 to 200 ° C. is 5.00 × 10 −6, and the value next to the minimum value in Example 3. .

表7

Figure 0004578847
Table 7
Figure 0004578847

比較例1は、銅11.53%としたほかは本発明所定の成分比率内とし、球状化材としてNi-Mgを添加し、鋳鉄組織中に球状黒鉛を生成したものである。比較例1の熱膨張係数は30〜100℃の温度領域で7.40×10−6、100〜200℃の温度領域で、7.50×10−6となり、いずれも7× 10−6を上回ってしまう。 In Comparative Example 1, except that the content of copper was 11.53%, the composition ratio was within the predetermined range of the present invention, Ni-Mg was added as a spheroidizing material, and spherical graphite was produced in the cast iron structure. The thermal expansion coefficient of Comparative Example 1 is 7.40 × 10 −6 in the temperature range of 30 to 100 ° C. and 7.50 × 10 −6 in the temperature range of 100 to 200 ° C., and both are 7 × 10 −6 . It will exceed.

比較例2は、銅を含まないほかは、本発明所定の成分比率内とし、球状化材として比較例1と同じNi-Mgを使用し、球状黒鉛を鋳鉄組織中に生成したもので、30〜100℃の温度領域、100〜200℃の温度領域のいずれにおいても夫々7.86×10−6、96×10−6と最大値となり許容できない範囲となる。黒鉛形状が球状黒鉛と共通している比較例1、2を見ると、銅が過大でも、また銅を含まない場合でも、好ましくない熱膨張係数値を示すことが分かる。 Comparative Example 2, except that it does not contain copper, is within the prescribed component ratio of the present invention, uses the same Ni—Mg as Comparative Example 1 as a spheroidizing material, and produces spherical graphite in the cast iron structure. In both the temperature range of -100 ° C. and the temperature range of 100-200 ° C., the maximum values are 7.86 × 10 −6 and 96 × 10 −6, which are unacceptable ranges. It can be seen from Comparative Examples 1 and 2 that the graphite shape is the same as that of spheroidal graphite, even if the copper is excessive or does not contain copper, an undesirable coefficient of thermal expansion is exhibited.

<実験内容>
以上の実験例1〜4及び比較例1、2の鋳鉄材は、出願人自社工場の実験用高周波電気炉(50Kg)を用いて溶解した。溶解温度は1580〜1600℃を目標として行った。球状化材は、サンドイッチ法で添加した。注湯品は各種製作したが、本発明に関係するものは薄肉試験体と段階状試験片であり、共にガス砂と呼ばれる鋳型を使用して鋳造した。熱膨張率の測定には、埼玉県産業技術総合センターに依頼し、株式会社リガク製のサーモプラス2(Thermo Plus2 TMA8310)を用いて行った。
<Experiment contents>
The cast iron materials of the above Experimental Examples 1 to 4 and Comparative Examples 1 and 2 were melted using the experimental high frequency electric furnace (50 Kg) of the applicant's own factory. The dissolution temperature was set to 1580 to 1600 ° C. The spheroidizing material was added by the sandwich method. Various types of pouring products were produced, but those relating to the present invention were thin-walled specimens and stepped specimens, both of which were cast using a mold called gas sand. The thermal expansion coefficient was measured by using the Saitama Prefectural Industrial Technology Center and using Thermo Plus 2 (TMA8310) manufactured by Rigaku Corporation.

薄肉試験体を目視にて外観不良状況の検査を行った。特に薄肉であることから、湯流れ不良について検査し、そのために薄肉試験体を切断し、内部欠陥の有無及び状況の検査を行った。その結果、実施例1〜4の薄肉試験体については、鋳じわ、湯境などの鋳造不良は殆んど認められなかった。しかし、鋳込み順が遅いものに鋳造不良を見い出したが、これは注湯温度が1300℃前後まで降下していることが原因と考えられる。   The thin test specimen was visually inspected for poor appearance. Since it was particularly thin, it was inspected for poor hot water flow, and for that purpose, the thin specimen was cut and inspected for the presence and state of internal defects. As a result, for the thin specimens of Examples 1 to 4, almost no casting defects such as cast wrinkles and hot water boundaries were observed. However, a casting defect was found in the case where the casting order was slow. This is considered to be because the pouring temperature dropped to around 1300 ° C.

本発明に係る低熱膨張性鋳鉄材は以上説明したような技術的内容を有しており、従来用いられて来たインバー材(ニッケル35%)やスーパーインバー材(ニッケル31%、コバルト5%)で使用されていたニッケルの比率を減少可能とするために、ニッケルの代替として銅を使用し、コバルトを排除することによってコストダウンを達成し、黒鉛形状をD型黒鉛、チャンキー黒鉛として、基地中の固溶炭素量を低減し、従来のインバー材等と比較して遜色のない熱膨張係数を保持するものである。また本発明に係る低熱膨張性鋳鉄材によって肉厚2〜5mmという薄肉軽量品の鋳造を行い、問題のないことを確認しているので、エレクトロニクス・フォトニクス用の筐体、取り付け部品、調整機器を安価に提供することができる。   The low-thermal-expansion cast iron material according to the present invention has the technical contents as described above, and conventionally used invar material (nickel 35%) and super invar material (nickel 31%, cobalt 5%). In order to be able to reduce the ratio of nickel used in Japan, copper was used as an alternative to nickel, and the cost was reduced by eliminating cobalt. The amount of solid solution carbon is reduced, and a thermal expansion coefficient comparable to that of a conventional invar material or the like is maintained. In addition, the low thermal expansion cast iron material according to the present invention is used to cast thin and light products with a thickness of 2 to 5 mm, and it has been confirmed that there are no problems. It can be provided at low cost.

本発明は、光通信システムに使用される、石英基板やガラス部品を半田付けなどで固定する、金属基板用また、これらの部品を収容する筐体、ケース、及びこれらを固定する定盤用の低膨張性鋳鉄材として利用することができる。

The present invention is used for an optical communication system, for fixing a quartz substrate or a glass component by soldering or the like, for a metal substrate, and for a casing, a case for storing these components, and a surface plate for fixing these components. It can be used as a low expansion cast iron material.

Claims (1)

質量%でマンガン0.1〜0.5%、リン0.02〜0.06%、イオウ0.05〜0.1%、炭素1.5〜3.0%、シリコン0.2〜1.6%、ニッケル30〜36%及び銅0.5〜1.6%を含有するとともに、球状化材又は接種剤を含有し、残部が鉄及び不可避的に含まれる不純物から成る、薄肉鋳物の鋳造に適した、低熱膨張性鋳鉄材であって、球状化材はミッシュメタル単独又はマグネシウムと複合したNi−Mg若しくはFe−Si−Mgの形で0.01〜1%、接種剤はFe−Tiの形でTi0.2〜1%としたことを特徴とする低熱膨張性鋳鉄材。 Manganese 0.1-0.5% by mass, phosphorus 0.02-0.06%, sulfur 0.05-0.1%, carbon 1.5-3.0%, silicon 0.2-1. Casting of thin-walled castings containing 6%, nickel 30-36% and copper 0.5-1.6% , containing spheronizing material or inoculant , the balance consisting of iron and inevitable impurities Low thermal expansive cast iron material suitable for spheroid , the spheroidizing material is misch metal alone or in the form of Ni-Mg or Fe-Si-Mg combined with magnesium, 0.01 to 1%, the inoculum is Fe-Ti A low thermal expansion cast iron material characterized in that Ti is 0.2 to 1% .
JP2004115871A 2004-04-09 2004-04-09 Low thermal expansion cast iron Expired - Lifetime JP4578847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115871A JP4578847B2 (en) 2004-04-09 2004-04-09 Low thermal expansion cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115871A JP4578847B2 (en) 2004-04-09 2004-04-09 Low thermal expansion cast iron

Publications (2)

Publication Number Publication Date
JP2005298887A JP2005298887A (en) 2005-10-27
JP4578847B2 true JP4578847B2 (en) 2010-11-10

Family

ID=35330799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115871A Expired - Lifetime JP4578847B2 (en) 2004-04-09 2004-04-09 Low thermal expansion cast iron

Country Status (1)

Country Link
JP (1) JP4578847B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053218A (en) * 1973-09-11 1975-05-12
JPS55131155A (en) * 1979-04-02 1980-10-11 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS61166943A (en) * 1985-01-18 1986-07-28 Hitachi Ltd Low thermal expansion ductile cast iron
JPS62284039A (en) * 1986-06-03 1987-12-09 Nippon Chuzo Kk Low thermal expansion cast iron
JPS63433A (en) * 1986-06-20 1988-01-05 Hitachi Metals Ltd Low thermal expansion and high damping capacity cv cast iron
JPS63114936A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Low thermal expansion cast iron and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053218A (en) * 1973-09-11 1975-05-12
JPS55131155A (en) * 1979-04-02 1980-10-11 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS61166943A (en) * 1985-01-18 1986-07-28 Hitachi Ltd Low thermal expansion ductile cast iron
JPS62284039A (en) * 1986-06-03 1987-12-09 Nippon Chuzo Kk Low thermal expansion cast iron
JPS63433A (en) * 1986-06-20 1988-01-05 Hitachi Metals Ltd Low thermal expansion and high damping capacity cv cast iron
JPS63114936A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Low thermal expansion cast iron and its production

Also Published As

Publication number Publication date
JP2005298887A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
JP4137054B2 (en) Gray cast iron alloy and internal combustion engine casting parts
KR20060120276A (en) Copper alloy and method for production thereof
JP2011179113A (en) Austenitic ductile cast iron
CN103069028A (en) Co-based alloy
CN114086077B (en) Cast iron-based austenite creep-resistant steel and preparation method and application thereof
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JP2016505382A (en) Method for manufacturing engine components, use of engine components and aluminum alloys
JP5488941B2 (en) Austenitic cast iron, austenitic cast iron casting and method for producing the same
JP4744420B2 (en) Manufacturing method of high temperature damping manganese-based alloy
JP4578847B2 (en) Low thermal expansion cast iron
JP2006225750A (en) Magnesium alloy for die casting
CN109136770B (en) High-chromium alloy steel crucible for magnesium smelting and preparation method thereof
JPH02122040A (en) Creep-resistat zn-a1 base cast alloy
JPH02298236A (en) Low thermal expansion alloy
JP3939014B2 (en) High strength cast iron
CN102994838B (en) MgAlSi heat resistance magnesium alloy
CN109097614A (en) A kind of method of Refining Mg Alloy crystallite dimension
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP2602838B2 (en) High thermal expansion cast iron
US3740212A (en) Oxidation resistant austenitic ductile nickel chromium iron
KR20100007090A (en) Ferritic nodular cast iron
JPS6360255A (en) Low thermal expansion cast iron and its manufacture
JP3737040B2 (en) High carbon spheroidal graphite cast iron and heat-resistant cast iron casting comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250