JP4576581B2 - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP4576581B2
JP4576581B2 JP2004296521A JP2004296521A JP4576581B2 JP 4576581 B2 JP4576581 B2 JP 4576581B2 JP 2004296521 A JP2004296521 A JP 2004296521A JP 2004296521 A JP2004296521 A JP 2004296521A JP 4576581 B2 JP4576581 B2 JP 4576581B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
gas
silver
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004296521A
Other languages
Japanese (ja)
Other versions
JP2006101831A (en
Inventor
健 野崎
明 根岸
斌紀 柏原
徹 嘉藤
健 加藤
順一 高橋
一孝 梅津
修 浜本
純二 小野
昌夫 渡辺
奈美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004296521A priority Critical patent/JP4576581B2/en
Publication of JP2006101831A publication Critical patent/JP2006101831A/en
Application granted granted Critical
Publication of JP4576581B2 publication Critical patent/JP4576581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、バイオマスから水素を製造する方法に関する。   The present invention relates to a method for producing hydrogen from biomass.

水素は、従来、石油の水素脱硫に用いられ、近年では、燃料電池の燃料として用いられ、無公害の燃料として注目されている。
従来、水素は、電気分解、熱分解ガスの精製、触媒によるメタンの改質等で製造されてきたが、他の燃料に比べ製造コストが大きく、水力資源が豊富又は太陽光発電に適した地域での電解水素の製造等限定された条件下でのみ有利となる。
Hydrogen has been conventionally used for petroleum hydrodesulfurization, and in recent years, it has been used as a fuel for fuel cells and has attracted attention as a pollution-free fuel.
Conventionally, hydrogen has been produced by electrolysis, pyrolysis gas purification, methane reforming with a catalyst, etc., but the production cost is higher than other fuels, and there are abundant hydropower resources or suitable for solar power generation. This is advantageous only under limited conditions such as the production of electrolytic hydrogen at

近年、嫌気性発酵の一技術として、嫌気性発酵槽から直接水素を得る方法が提案されるようになった(非特許文献1参照)。有機化合物の嫌気性発酵(消化)過程は加水分解菌、有機酸(カルボン酸)生産菌、水素・酢酸生成菌、水素資化メタン生産菌などが作用しており、通常、生成した水素は速やかにメタン生成菌によって消費されるため、水素を回収することは困難であった。   In recent years, a method for obtaining hydrogen directly from an anaerobic fermenter has been proposed as a technique for anaerobic fermentation (see Non-Patent Document 1). The anaerobic fermentation (digestion) process of organic compounds is performed by hydrolyzing bacteria, organic acid (carboxylic acid) -producing bacteria, hydrogen / acetic acid-producing bacteria, hydrogen-utilizing methane-producing bacteria, etc. Because it is consumed by methanogens, it is difficult to recover hydrogen.

しかし、メタン生成菌の増殖速度は遅いため、基質(発酵物)の水力学的な滞留時間(HRT)が充分でないと、メタン発生まで至らず、水素の生成が見られる。
従って、従来の水素発酵はこのようなHRTを調整する方法か、又はメタン生成菌を死滅させた発酵槽を用いる方法で行なわれてきた。
しかしながら、これらの方法は、非常に厳密なバイオリアクターとしての管理が必要であり、エネルギープラントとして用いる実用性に欠けているため、単なる提案のみに留まっている。
稲森悠平著、「用水と排水」産業用水調査会、p.126(2003)
However, since the growth rate of methanogens is slow, unless the substrate (fermented product) has a sufficient hydrodynamic residence time (HRT), methane generation does not occur and hydrogen generation is observed.
Therefore, conventional hydrogen fermentation has been carried out by a method of adjusting such HRT or a method of using a fermenter in which methanogens are killed.
However, these methods need to be managed as very strict bioreactors, and lack practicality for use as an energy plant, so they are merely proposals.
Kohei Inamori, “Water and Wastewater” Industrial Water Research Committee, p. 126 (2003)

従って、本発明の目的は、微生物を利用してバイオマスから水素を工業的に有利に製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for industrially advantageously producing hydrogen from biomass using microorganisms.

斯かる実状に鑑み、本発明者は、鋭意研究を行った結果、微生物を担持する−0.35V(銀塩化銀電極電位基準)又はこれより卑に分極された作用電極に、pH5.5以下の嫌気性発酵液を接触させれば、水素が工業的に有利に製造できることを見出し本発明を完成した。
すなわち、本発明は、次の方法を提供するものである。
In view of such a situation, the present inventor has conducted intensive research, and as a result, the working electrode carrying microorganisms at −0.35 V (silver silver chloride electrode potential reference) or a base electrode polarized below this has a pH of 5.5 or less. The present invention was completed by finding that hydrogen can be produced industrially advantageously by contacting the anaerobic fermentation broth.
That is, the present invention provides the following method.

<1> 微生物を担持する−1.00V〜−0.35V(銀塩化銀電極電位基準))の作用電極に、pH3〜pH5.5の嫌気性発酵液を接触させることを特徴とする水素製造方法。
<1> to create electrodes for carrying the microorganism -1.00V~ -0.35V (silver-silver electrode potential reference chloride)), pH3~ pH5. A method for producing hydrogen, comprising contacting the anaerobic fermented liquid of No. 5 .

> 嫌気性発酵液のpHが3.5〜4.5である<1>記載の水素製造方法。
<2> pH anaerobic fermentation liquid is 3.5 to 4.5 <1> SL placing the hydrogen production process.

> 嫌気性発酵液のpHを、バイオマスの添加量で調整することを特徴とする<1>又は<2>記載の水素製造方法。 <3> the pH of the anaerobic fermentation liquor, <1> or <2> SL placement of hydrogen production method characterized by adjusting the addition amount of biomass.

本発明方法によれば、水素を工業的に有利に製造することができる   According to the method of the present invention, hydrogen can be produced industrially advantageously.

本発明の水素製造方法は、微生物を担持する−0.35V(銀塩化銀電極電位基準)又はこれより卑に分極された作用電極に、pH5.5以下の嫌気性発酵液を接触させることを特徴とする。銀塩化銀電極は、25℃において、水素電極電位に対して約+0.22Vの電位を示す。
すなわち、本発明は、特定の電位の作用電極にpH5.5以下の嫌気性発酵液を接触させることによりメタン発酵を抑制し、効率よく水素ガスを製造せんとするものである。
以下、詳細に説明する。
In the hydrogen production method of the present invention, an anaerobic fermentation solution having a pH of 5.5 or less is brought into contact with -0.35 V (a silver-silver chloride electrode potential reference) supporting microorganisms or a working electrode polarized more negatively than this. Features. The silver-silver chloride electrode exhibits a potential of about +0.22 V with respect to the hydrogen electrode potential at 25 ° C.
That is, the present invention suppresses methane fermentation by bringing an anaerobic fermentation solution having a pH of 5.5 or less into contact with a working electrode having a specific potential, thereby efficiently producing hydrogen gas.
Details will be described below.

[嫌気性発酵液]
本発明に供する嫌気性発酵液とは、微生物が分解可能な有機成分(BOD成分)を含む懸濁液またはスラリーの嫌気性(外気を遮断した)の発酵液をいい、嫌気性発酵液としては、例えば、次のものが挙げられる。
1.家畜糞尿、生ごみや下水汚泥などの処理(消化)用プラントの発酵槽から抜出した消化液
例えば、牛、豚、鶏等の糞尿処理用バイオガスプラント消化液、下水、し尿処理汚泥消化タンク内発酵液。
2.生ごみ等の有機性廃棄物、事業系有機性廃棄物などの嫌気性発酵処理における消化液(発酵液)。
[Anaerobic fermentation broth]
The anaerobic fermentation liquid used in the present invention refers to an anaerobic (obtained outside air) fermentation liquid or suspension containing an organic component (BOD component) that can be decomposed by microorganisms. For example, the following may be mentioned.
1. Digested liquid extracted from fermentation tanks for processing (digestion) plants such as livestock manure, food waste and sewage sludge For example, digestive liquid for sewage treatment such as cattle, pigs and chickens, sewage and human waste in sludge digestion tank Fermented liquid.
2. Digestive liquid (fermented liquid) in anaerobic fermentation treatment of organic waste such as kitchen waste and business organic waste.

嫌気性発酵液のpHの調整法は特に制限はないが、バイオマスの添加量、酸又は及びアルカリの添加が挙げられる。ここで酸としては、塩酸、蟻酸等が挙げられ、アルカリとしては、水酸化ナトリウム、水酸化カルシウム等が挙げられる。
嫌気性発酵液のpHは、5.5以下であるが、好ましくは、3〜5.5であり、更に好ましくは3.5〜4.5である。
Although there is no restriction | limiting in particular in the adjustment method of pH of anaerobic fermentation liquid, The addition amount of biomass, addition of an acid or an alkali is mentioned. Examples of the acid include hydrochloric acid and formic acid, and examples of the alkali include sodium hydroxide and calcium hydroxide.
The pH of the anaerobic fermentation broth is 5.5 or less, preferably 3 to 5.5, and more preferably 3.5 to 4.5.

[作用電極]
作用電極の構成は次の通りである。
電極材料は、ポリアクリロニトル系、セルロース系、カイノール系、ピッチ系などの炭素繊維集合体(カーボンクロスまたはカーボンフェルト)である。これらは、焼成して製造されるが、このときの焼成温度は1200℃〜3000℃であり、好ましくは1500℃から2000℃である。焼成品のかさ比重(見掛け比重)は、0.05〜1.0、好ましくは0.1〜0.7程度である。炭素繊維の他にも表面をエッチングして比表面積を上げた炭素板(グラファイト板)や多孔質炭素(グラファイト)、炭素を塗布した比表面積の大きい導電材などがある。本発明に使用する作用極材は、使用する電位において、十分な水素過電圧を有することが好ましい。十分な水素過電圧を付与する方法は、従来から知られている各種の方法(例えば、Electorochemistry, 72(8), p322-327(2004))でよい。
これを発酵液に浸透して電極に微生物を担持させる。微生物としては、クロストリジウム属等のバクテリアが好適に用いられる。
[Working electrode]
The configuration of the working electrode is as follows.
The electrode material is a carbon fiber aggregate (carbon cloth or carbon felt) such as polyacrylonitrile, cellulose, quinol, or pitch. These are produced by firing, and the firing temperature at this time is 1200 ° C. to 3000 ° C., preferably 1500 ° C. to 2000 ° C. The bulk specific gravity (apparent specific gravity) of the fired product is about 0.05 to 1.0, preferably about 0.1 to 0.7. In addition to carbon fibers, there are a carbon plate (graphite plate) and porous carbon (graphite) whose surfaces are etched to increase the specific surface area, and a conductive material with a large specific surface area coated with carbon. The working electrode material used in the present invention preferably has a sufficient hydrogen overvoltage at the potential used. A method for imparting a sufficient hydrogen overvoltage may be a variety of conventionally known methods (for example, Electorochemistry, 72 (8), p322-327 (2004)).
This is permeated into the fermentation broth, and the microorganism is supported on the electrode. As the microorganism, bacteria such as Clostridium are preferably used.

作用電極の電位は、−0.35V(銀塩化銀電極電位基準)又はこれより卑であるが、好ましくは、−0.35〜−1.00Vであり、更に好ましくは、−0.55〜−0.95である。   The potential of the working electrode is -0.35 V (based on silver-silver chloride electrode potential) or lower, but is preferably -0.35 to -1.00 V, and more preferably -0.55 -0.95.

[水素製造方法]
本発明方法に用いる装置は、特に限定されないが、例えば図1に示すものが挙げられる。
以下、この図1に沿って説明する。
嫌気性発酵液は、発酵槽1に入れられる。発酵槽1には、微生物が担持された作用電極2が有り、本発明方法の主要な反応がここで起こる。また、発酵槽1には、対極3が設けられている。対極としては、陽イオン交換膜で仕切ったガラス管内を対極室として同じ発酵液を入れ、そこに白金線を浸漬したもの等が挙げられる。発酵槽1は、ヒータ12により適温に調整される。発酵液の温度は、室温〜85℃が好ましく、特に35〜65℃が好ましい。発酵槽1は、ポンプ10と2つの管で繋がれており、ポンプ10は該発酵液を循環させる。発生した水素は、発酵槽1の上部から取り出され、ガス採取部6から回収される。また、ガスの一部は、ガス捕集・計量管に導かれ、サンプリングされる。
[Hydrogen production method]
Although the apparatus used for the method of the present invention is not particularly limited, for example, the apparatus shown in FIG.
Hereinafter, description will be given with reference to FIG.
The anaerobic fermentation liquid is put in the fermenter 1. The fermenter 1 has a working electrode 2 on which microorganisms are supported, and the main reaction of the method of the present invention takes place here. The fermenter 1 is provided with a counter electrode 3. Examples of the counter electrode include a glass tube partitioned by a cation exchange membrane as a counter electrode chamber, in which the same fermentation broth is put, and a platinum wire is immersed therein. The fermenter 1 is adjusted to an appropriate temperature by the heater 12. The temperature of the fermentation broth is preferably room temperature to 85 ° C, particularly preferably 35 to 65 ° C. The fermenter 1 is connected to the pump 10 by two pipes, and the pump 10 circulates the fermentation liquid. The generated hydrogen is taken out from the upper part of the fermenter 1 and collected from the gas sampling unit 6. A part of the gas is guided to a gas collecting / metering tube and sampled.

サンプリングされたガスは、ガスクロマトグラフ等により水素ガスの割合を定量する。
また、発酵槽1内には、参照極4が設けられており、これには市販のガラス製ダブル接合型の銀/塩化銀電極等が使用できる。また、酸化還元電位検出用白金極5、温度計11も槽内の状態を把握する上で有用である。これらにより得られたデータにより、電位、pH、温度等を調整し、最適条件で水素発酵を行うことが可能となる。
For the sampled gas, the proportion of hydrogen gas is quantified by a gas chromatograph or the like.
In addition, a reference electrode 4 is provided in the fermenter 1, and a commercially available glass double-junction silver / silver chloride electrode or the like can be used. The oxidation-reduction potential detecting platinum electrode 5 and the thermometer 11 are also useful for grasping the state in the tank. By using the data obtained from these, it is possible to adjust the potential, pH, temperature, etc., and perform hydrogen fermentation under optimum conditions.

実施例1、比較例1
図1に示す半透明樹脂(硬質ポリエチレン)製発酵槽(容量約500mL)を含む実験装置を用いて、pHを4.0〜7.8に調整した牛糞尿メタン発酵液を対象にした実験を行い、発生するガス組成の測定を行った。
発酵液は搾乳牛糞尿、処理量15t/日の実プラントの発酵槽(高温発酵法)から抜出した消化液を用い、400mLを発酵槽1に入れた。実験期間中、槽内の液面レベルが減少する分は、新たに同じpHに調整した発酵液を追加して、同じレベルを維持するようにした。発酵液のpH調整は塩酸と水酸化ナトリウム溶液の添加によって行った。
槽内の発酵液はチューブで外部に引き出し、チューブポンプ10で循環する攪拌方法をとった。
Example 1 and Comparative Example 1
Using an experimental apparatus including a semitransparent resin (rigid polyethylene) fermenter (capacity: about 500 mL) shown in FIG. 1, an experiment targeting a cow manure methane fermentation liquid having a pH adjusted to 4.0 to 7.8 was performed. The gas composition generated was measured.
The fermented liquor was extracted from milking cow manure, fermenter (high-temperature fermentation method) of the actual plant with a processing amount of 15 t / day, and 400 mL was put into the fermenter 1. During the experiment, the amount of the liquid level in the tank decreased, and the fermentation liquid newly adjusted to the same pH was added to maintain the same level. The pH of the fermentation broth was adjusted by adding hydrochloric acid and sodium hydroxide solution.
The fermented liquid in the tank was drawn out to the outside with a tube and circulated with a tube pump 10.

炭素繊維電極2はポリアクリロニトリル系の日本カーボン(株)製GF−5を電気炉にて1,500℃に焼成した(炭化時に酸化アルミニウム+水による表面賦活処理を行った。)。この焼成品の厚さは約3mmの不織布であり、これを見掛けの面積300cm2使用した。印加電位は−0.9V(銀塩化銀電極電位基準)とした。
また、陽イオン交換膜で仕切ったガラス管内を対極室として同じ発酵液を入れ、そこに白金線を浸漬して対極3とした。参照極4には市販のガラス製ダブル接合型の銀/塩化銀電極を使用した。発酵槽1をリボンヒータ12によって加熱し、槽内を55℃に維持できるようにした。、ガス組成分析にはガスクロマトグラフ(活性炭およびモレキュラーシーブ5Aカラム、熱伝導セル検出器)を用いた。
For the carbon fiber electrode 2, polyacrylonitrile-based GF-5 manufactured by Nippon Carbon Co., Ltd. was fired at 1,500 ° C. in an electric furnace (surface activation treatment with aluminum oxide + water was performed during carbonization). The fired product was a nonwoven fabric having a thickness of about 3 mm, and an apparent area of 300 cm 2 was used. The applied potential was −0.9 V (based on the silver-silver chloride electrode potential).
In addition, the same fermentation broth was placed in a glass tube partitioned by a cation exchange membrane as a counter electrode chamber, and a platinum wire was immersed therein to form a counter electrode 3. The reference electrode 4 was a commercially available glass double-junction silver / silver chloride electrode. The fermenter 1 was heated by a ribbon heater 12 so that the inside of the vessel could be maintained at 55 ° C. In the gas composition analysis, a gas chromatograph (activated carbon and molecular sieve 5A column, heat conduction cell detector) was used.

実験開始後72時間後までのpH約6.0、5.5、および4.8に調整した発酵液の水素発生量は投入揮発性有機物(VS)あたり、それぞれ 約0.03±0.03、0.30±0.06および0.40±0.07L/g−VSであり、発生ガス中の水素の割合(乾式ベース)は約5%、約20%、約45%であった。pH4.8に調整した消化液をその後10日間にわたり−0.9V(銀塩化銀電極電位基準)の電位に印加して実験を継続したところ、水素ガス発生量はさらに約25%増加し、発生ガス中の水素の割合は変わらなかった。本試験により回収するに十分な量の水素を発生する消化液のpH値は5.5以下であることが判った。   The hydrogen generation amount of the fermentation broth adjusted to pH 6.0, 5.5, and 4.8 until 72 hours after the start of the experiment was about 0.03 ± 0.03 for each input volatile organic substance (VS). 0.30 ± 0.06 and 0.40 ± 0.07 L / g-VS, and the ratio of hydrogen in the generated gas (dry basis) was about 5%, about 20%, and about 45%. When the experiment was continued by applying the digested liquid adjusted to pH 4.8 to a potential of -0.9 V (silver silver chloride electrode potential reference) for 10 days, the hydrogen gas generation amount further increased by about 25%. The proportion of hydrogen in the gas did not change. In this test, it was found that the pH value of the digestive fluid that generates a sufficient amount of hydrogen to be recovered is 5.5 or less.

実施例2および比較例2
上記実施例1で用いた実験装置を用いて作用極の電極電位、発酵液のpH及び温度の関係を検討した。実験開始1時間後から2時間後の間の発生ガス量および水素の割合を測定した。結果を表1及び表2に示す。
Example 2 and Comparative Example 2
The relationship between the electrode potential of the working electrode, the pH of the fermentation broth, and the temperature was examined using the experimental apparatus used in Example 1 above. The amount of generated gas and the ratio of hydrogen were measured between 1 hour and 2 hours after the start of the experiment. The results are shown in Tables 1 and 2.

Figure 0004576581
Figure 0004576581

* −1.10Vの実験は対極において著しい酸素発生がみられ、ガス発生量の30%程度は電解によって生じたことが判った。 * -1. It was found that the experiment of 1.10 V showed significant oxygen generation at the counter electrode, and about 30% of the gas generation amount was generated by electrolysis.

Figure 0004576581
Figure 0004576581

本実験で水素ガス発生量が100mLを十分に超え、良好に水素を回収できる条件としては、pH値3より大、5.5より小、電極電位−0.35Vより卑−1.00Vより貴の範囲であることが判った。   In this experiment, the hydrogen gas generation amount sufficiently exceeds 100 mL, and the conditions for recovering hydrogen well are as follows: pH value greater than 3, less than 5.5, electrode potential from -0.35 V to base-1.00 V It was found to be in the range.

実施例3および比較例
実施例1で使用した実験システムを用いて通常のメタン発酵(実験A)および作用極電位−0.8V(銀塩化銀電極電位基準)に設定した発酵(実験B)を行った。発酵液中には白金の指示電極を浸漬して、その電位も測定した。発酵液は実施例1と同じ搾乳牛糞尿のメタン発酵液(消化液)で、塩酸と水酸化ナトリウム水溶液添加によってpHを調整した。pH調整後の消化液400mLを入れてシール(外気を遮断)し、電位を印加しない場合と印加した場合のガス発生量を積算値で読み取ると共に、ガス中のメタン、水素の量をガスクロマトグラフで測定した。結果を図2に示す。図2Aは電位を印加しない場合、図2Bは印加した場合である。水素発生が十分に認知できるpH領域は3以上5.5以下であった。
Example 3 and Comparative Example Using the experimental system used in Example 1, normal methane fermentation (Experiment A) and fermentation (Experiment B) set to a working electrode potential of -0.8 V (silver silver chloride electrode potential reference) went. A platinum indicator electrode was immersed in the fermentation broth, and its potential was also measured. The fermentation broth was the same methane fermentation broth (digested liquid) of milked cow manure as in Example 1, and the pH was adjusted by adding hydrochloric acid and aqueous sodium hydroxide solution. Put 400mL of digested juice after pH adjustment and seal (block off the outside air), read the amount of gas generated when no potential is applied and when it is applied as an integrated value, and measure the amount of methane and hydrogen in the gas with a gas chromatograph. It was measured. The results are shown in FIG. FIG. 2A shows the case where no potential is applied, and FIG. 2B shows the case where it is applied. The pH range where hydrogen generation can be sufficiently recognized was 3 or more and 5.5 or less.

本発明方法によれば、微生物を利用してバイオマスから水素を工業的に有利に製造することができる。   According to the method of the present invention, hydrogen can be industrially advantageously produced from biomass using microorganisms.

実施例に用いた水素発生装置示す図である。It is a figure which shows the hydrogen generator used for the Example. ガス発生量とpHの関係を示す図である。It is a figure which shows the relationship between gas generation amount and pH.

符号の説明Explanation of symbols

1 発酵槽
2 炭素繊維不織布の作用極(担持電極)
3 白金線対極
4 参照極(Ag/AgCl,ダブル接合型)
5 酸化還元電位検出用白金極
6 ガス採取部
7 ガス捕集・計量管
8 定電位電解装置(ポテンショスタット)
9 電圧計
10 発酵液循環用チューブポンプ
11 温度計
12 ヒータ
13 ガスの流れ
14 発酵液の流れ
1 Fermenter 2 Working electrode of carbon non-woven fabric (supported electrode)
3 Platinum wire counter electrode 4 Reference electrode (Ag / AgCl, double junction type)
5 Platinum electrode for redox potential detection 6 Gas sampling part 7 Gas collection / measuring tube 8 Potentiostat (potentiostat)
9 Voltmeter 10 Tube pump for circulating fermented liquid 11 Thermometer 12 Heater 13 Gas flow 14 Fermented liquid flow

Claims (3)

微生物を担持する−1.00V〜−0.35V(銀塩化銀電極電位基準)の作用電極に、pH3〜pH5.5の嫌気性発酵液を接触させることを特徴とする水素製造方法。 The work electrode of carrying microorganisms -1.00V~ -0.35V (silver-silver electrode potential reference chloride), pH 3 to pH 5. A method for producing hydrogen, comprising contacting the anaerobic fermented liquid of No. 5 . 嫌気性発酵液のpHが3.5〜4.5である請求項1記載の水素製造方法。 Claim 1 Symbol placement hydrogen production method pH anaerobic fermentation liquid is 3.5 to 4.5. 嫌気性発酵液のpHを、バイオマスの添加量で調整することを特徴とする請求項1又は2記載の水素製造方法。
The pH of the anaerobic fermentation liquor, according to claim 1 or 2 SL placing the hydrogen production process and adjusting the addition amount of biomass.
JP2004296521A 2004-10-08 2004-10-08 Hydrogen production method Expired - Fee Related JP4576581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296521A JP4576581B2 (en) 2004-10-08 2004-10-08 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296521A JP4576581B2 (en) 2004-10-08 2004-10-08 Hydrogen production method

Publications (2)

Publication Number Publication Date
JP2006101831A JP2006101831A (en) 2006-04-20
JP4576581B2 true JP4576581B2 (en) 2010-11-10

Family

ID=36372237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296521A Expired - Fee Related JP4576581B2 (en) 2004-10-08 2004-10-08 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP4576581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805395B2 (en) * 2010-03-31 2015-11-04 一般財団法人電力中央研究所 Hydrogen fermentation treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294396A (en) * 1995-04-26 1996-11-12 Ebara Corp Production of hydrogen gas
JPH08308591A (en) * 1995-05-16 1996-11-26 Ebara Corp Biological production of hydrogen
JP2003521258A (en) * 2000-02-01 2003-07-15 ロイチョウドフリー、スコマル Method for producing hydrogen from anaerobic decomposition organic matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294396A (en) * 1995-04-26 1996-11-12 Ebara Corp Production of hydrogen gas
JPH08308591A (en) * 1995-05-16 1996-11-26 Ebara Corp Biological production of hydrogen
JP2003521258A (en) * 2000-02-01 2003-07-15 ロイチョウドフリー、スコマル Method for producing hydrogen from anaerobic decomposition organic matter

Also Published As

Publication number Publication date
JP2006101831A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
Huang et al. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure
Lu et al. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells
Li et al. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction
Liu et al. Electrochemically assisted biohydrogen production from acetate
Keruthiga et al. Sugar industry waste-derived anode for enhanced biohydrogen production from rice mill wastewater using artificial photo-assisted microbial electrolysis cell
US10351879B2 (en) Method and system for electro-assisted hydrogen production from organic material
Jia et al. Hydrogen production from wastewater using a microbial electrolysis cell
CN103771583B (en) Electrochemical coupling upflow anaerobic bioreactor and application method
CN111430730B (en) Preparation method of graphene modified carbon-based electrode and microbial electrochemical sewage treatment synchronous electricity generation device constructed by using same
CN103397340B (en) Utilize the method that microorganism electrolysis cell reclaims nickel from nickel-containing waste water
Ma et al. Granular activated carbon stimulated caproate production through chain elongation in fluidized cathode electro-fermentation systems
Zhang et al. Metabolic pathways of hydrogen production in fermentative acidogenic microflora
Li et al. Low-grade heat energy driven microbial electrosynthesis for ethanol and acetate production from CO2 reduction
CN204779029U (en) Organic waste processing apparatus and be equipped with device&#39;s anaerobic tank
Poontaweegeratigarn et al. Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature
JP4576581B2 (en) Hydrogen production method
Khamtib et al. Co-digestion of oil palm trunk hydrolysate and slaughterhouse wastewater for biohydrogen production in a fixed bed reactor by immobilized Thermoanaerobacterium thermosaccharolyticum KKU19 on expanded clay
CN201648379U (en) Single-tank electrolysis assisted fermentation hydrogen-producing device
KR20200108746A (en) Apparatus for Biohydrogen Production using Dynamic Biofilm and Manufacturing method thereof
CN107024521B (en) Detect sewage concentration&#39;s biosensor
Wang et al. Process performance and microbial community functional structure in a thermophilic anaerobic baffled reactor coupled with biocatalysed electrolysis
Yuan et al. Optimization of biodrying pretreatment of municipal solid waste and microbial fuel cell treatment of leachate
CN108987757B (en) Preparation method of anode material of microbial fuel cell
CN209456145U (en) A kind of electrode biomembrane reaction unit for water process
CN110451631A (en) A kind of method of enhanced biological electrochemical in-situ pollution waters restoration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees