JP4574583B2 - Cu-Ni-Si copper alloy strip with excellent bending workability - Google Patents

Cu-Ni-Si copper alloy strip with excellent bending workability Download PDF

Info

Publication number
JP4574583B2
JP4574583B2 JP2006095458A JP2006095458A JP4574583B2 JP 4574583 B2 JP4574583 B2 JP 4574583B2 JP 2006095458 A JP2006095458 A JP 2006095458A JP 2006095458 A JP2006095458 A JP 2006095458A JP 4574583 B2 JP4574583 B2 JP 4574583B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
bending workability
peak intensity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095458A
Other languages
Japanese (ja)
Other versions
JP2006307340A (en
Inventor
宏司 原田
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006095458A priority Critical patent/JP4574583B2/en
Publication of JP2006307340A publication Critical patent/JP2006307340A/en
Application granted granted Critical
Publication of JP4574583B2 publication Critical patent/JP4574583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、端子・コネクタ等の電子部品に用いられる、高い強度及び良好な曲げ加工性を兼ね備えたCu−Ni−Si系銅合金条、さらにそれらを用いた端子・コネクタに関するものである。   The present invention relates to a Cu—Ni—Si-based copper alloy strip having high strength and good bending workability, which is used for electronic parts such as terminals and connectors, and further to a terminal and connector using them.

端子やコネクタ等の電子部品には機械的強度及び電気伝導性、さらには半田付け性やめっき性等の観点から銅合金が用いられている。電子部品用の銅合金条としては、従来りん青銅や黄銅等に代表される固溶強化型銅合金が用いられてきたが、近年においては電気伝導度の観点から時効硬化型のCu−Ni−Si系銅合金(コルソン合金)の使用量が増加している。   Copper alloys are used for electronic parts such as terminals and connectors from the viewpoints of mechanical strength and electrical conductivity, as well as solderability and plating properties. Conventionally, as a copper alloy strip for electronic parts, a solid solution strengthened copper alloy represented by phosphor bronze, brass or the like has been used, but in recent years, from the viewpoint of electrical conductivity, age-hardened Cu-Ni- The amount of Si-based copper alloy (Corson alloy) used is increasing.

近年、電子部品の軽薄・短小化の進展に伴い、より薄い材料が求められるようになった。材料が薄くなるとコネクタの接圧が下がるため、材料を高強度化する必要がある。また、電子部品の高密度実装化に伴い、より微細な加工が施されるようになったため、材料の加工性、特に曲げ加工性を向上させる必要がある。この曲げ加工性の改善要求に対し、特許文献1では介在物の個数を、特許文献2では結晶粒の形態(大きさ、平行断面の結晶粒の長径と直角断面の結晶粒の長径との比)を、特許文献3では結晶方位を、各々制御することを提言している。   In recent years, with the progress of miniaturization and miniaturization of electronic parts, thinner materials have been demanded. Since the contact pressure of the connector decreases as the material becomes thinner, it is necessary to increase the material strength. In addition, as electronic components have been mounted with higher density, finer processing has been performed, and therefore, it is necessary to improve workability of materials, particularly bending workability. In response to this improvement in bending workability, Patent Document 1 describes the number of inclusions, and Patent Document 2 describes the shape of crystal grains (size, ratio of the major axis of crystal grains in a parallel section to the major axis of crystal grains in a perpendicular section). ), Patent Document 3 proposes to control the crystal orientation.

特開2001−49369号公報JP 2001-49369 A 特開2002−38228号公報JP 2002-38228 A 特開2000−80428号公報JP 2000-80428 A

これらの提言は、これまでに求められていた曲げ加工性のレベルであれば、有効であった。しかしながら、材料に要求される曲げ加工性のレベルが高度化し、従来問題とはならなかった微細な割れに対しても改善が求められるようになった。従来技術では、近年要求されるレベルの曲げ加工性を安定して得ることはできなかった。
本発明の目的は、優れた曲げ加工性を安定して有するCu−Ni−Si系銅合金条を提供することにある。
These recommendations were effective at the level of bending workability that has been required so far. However, the level of bending workability required for materials has been improved, and improvements have been demanded even for fine cracks that have not been a problem in the past. In the prior art, it has not been possible to stably obtain the level of bending workability required in recent years.
An object of the present invention is to provide a Cu—Ni—Si based copper alloy strip that has excellent bending workability stably.

本発明者らは、Cu−Ni−Si合金では、表面(圧延面)においてX線回折により測定した(220)ピーク強度(IS(220))が、厚み内部の面において測定した(220)ピーク強度(IC(220))より低いことを知見した。ここで、IC(220)は、試料の片側表面をエッチングすることにより厚み中央の面を表面に露出させ、この露出させた面において測定した値である。 In the Cu-Ni-Si alloy, the inventors measured (220) peak intensity ( IS (220) ) measured by X-ray diffraction on the surface (rolled surface) on the surface inside the thickness (220). It was found to be lower than the peak intensity (I C (220) ). Here, IC (220) is a value measured on the exposed surface by exposing the surface at the center of the thickness by etching one surface of the sample.

そして、この結晶方位の特徴と曲げ性との関係を調査し、IC(220)が同じ場合、IS(220)が低いほど良好な曲げ性が得られることを見出した。すなわち、優れた曲げ加工性を安定して得るためには、IS(220)とIC(220)との比(IS(220)/IC(220))を、所定のレベル以下に規制する必要があることを知見したのである。 Then, the relationship between the characteristics of the crystal orientation and the bendability was investigated, and when I C (220) was the same, it was found that better bendability can be obtained as I S (220) is lower. That is, in order to stably obtain the excellent bending workability, the ratio (I S (220) / I C (220)) and I S (220) and I C (220), following a predetermined level They found that there was a need to regulate.

次に本発明者らは、IS(220)/IC(220)を調整する方法を研究した。Cu−Ni−Si系合金の製造工程では、熱間圧延、冷間圧延、溶体化処理、冷間圧延、時効処理が順次行われ、時効処理後に冷間圧延や歪取焼鈍を行うこともある。各冷間圧延では、材料の圧延機への通板(パス)を繰り返し、材料を所定の厚みに仕上げる。
C(220)は溶体化処理後のトータルの圧延加工度(R)によって定まり、Rを高くするとIC(220)は大きくなった。ここで、Rは溶体化処理後の厚みをt、製品の厚みをtとし、次式で定義される。
R(%)=(t−t)/t×100
一方、IS(220)はRだけでなく、溶体化処理後の圧延における種々の圧延条件の影響をも受け、
a.パス回数が少ない(一回のパスでの加工度が高い)ほどIS(220)は低い
b.圧延油の粘度が低いほどIS(220)は低い
c.圧延温度が低いほどIS(220)は低い
ことが判明した。
Next, the inventors studied a method of adjusting I S (220) / I C (220) . In the manufacturing process of the Cu-Ni-Si alloy, hot rolling, cold rolling, solution treatment, cold rolling, and aging treatment are sequentially performed, and cold rolling and strain relief annealing may be performed after the aging treatment. . In each cold rolling, the material is repeatedly passed through a rolling mill to finish the material to a predetermined thickness.
I C (220) was determined by the total degree of rolling (R) after the solution treatment, and when R was increased, I C (220) was increased. Here, R is defined by the following equation, where t 0 is the thickness after solution treatment, and t is the thickness of the product.
R (%) = (t 0 −t) / t 0 × 100
On the other hand, IS (220) is affected not only by R but also by various rolling conditions in rolling after solution treatment,
a. The smaller the number of passes (the higher the degree of processing in a single pass ), the lower the IS (220) b. The lower the viscosity of the rolling oil, the lower the IS (220) c. It was found that the lower the rolling temperature, the lower the IS (220) .

銅合金の曲げ加工性は、圧延加工度が低くなると向上する。一方、IC(220)、IS(220)とも圧延加工度を低くすると低下する。この両関係より、IS(220)が低いCu−Ni−Si系合金条の曲げが優れることは従来より知られていた。しかし、IC(220)とIS(220)との比に着目した曲げ改善策は、過去に報告されていない。 The bending workability of the copper alloy improves as the rolling degree decreases. On the other hand, both I C (220) and I S (220) decrease when the rolling degree is lowered. From both of these relationships, it has been conventionally known that bending of Cu—Ni—Si alloy strips with low IS (220) is excellent. However, no bending improvement measures focusing on the ratio of I C (220) and I S (220) have been reported in the past.

以上説明したように、今回発見した厚み方向での結晶方位制御の方策により、良好な曲げ加工性が安定して得られるようになった。本発明のCu−Ni−Si系銅合金条は、小型電子部品で使用される端子、コネクタ、またはリレー用の素材として好適であり、従来のCu−Ni−Si系銅合金と同様のコストで製造でき、また、強度、曲げ加工性以外の特性が従来のCu−Ni−Si系銅合金と同等であることから、工業的に極めて有用である。   As described above, good bending workability can be stably obtained by the crystal orientation control method in the thickness direction discovered this time. The Cu—Ni—Si based copper alloy strip of the present invention is suitable as a material for terminals, connectors, or relays used in small electronic components, and at the same cost as a conventional Cu—Ni—Si based copper alloy. Since it can be manufactured and properties other than strength and bending workability are equivalent to those of conventional Cu—Ni—Si based copper alloys, it is extremely useful industrially.

本発明の詳細を以下に説明する。
Ni及びSi濃度
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。ただし、Ni濃度が1.0%未満の場合、またはSi濃度が0.25%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5%を超える場合、またはSi濃度が1.5%を超える場合は十分な強度は得られるものの、導電性は低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性及びめっき性の低下を招く。よって、Ni濃度を1.0〜4.5%、Si濃度を0.25〜1.5%と定めた。
Details of the present invention will be described below.
Ni and Si Concentrations Ni and Si are formed by aging treatment to form precipitated particles of intermetallic compounds mainly composed of Ni 2 Si in which Ni and Si are fine, and remarkably increase the strength of the alloy. Further, the conductivity is improved with the precipitation of Ni 2 Si in the aging treatment. However, when the Ni concentration is less than 1.0% or the Si concentration is less than 0.25%, the desired strength cannot be obtained even if the other component is added. Further, when the Ni concentration exceeds 4.5%, or when the Si concentration exceeds 1.5%, sufficient strength can be obtained, but the conductivity is low, and further, coarse Ni that does not contribute to the improvement of the strength. -Si-based particles (crystallized substances and precipitates) are generated in the matrix phase, and bending workability, etching properties and plating properties are reduced. Therefore, the Ni concentration is set to 1.0 to 4.5%, and the Si concentration is set to 0.25 to 1.5%.

Mg濃度
Mgは応力緩和特性を大幅に改善する効果及び熱間加工性を改善する効果があるが、0.05%未満ではその効果が得られず、0.3%を超えると鋳造性(鋳肌品質)、熱間加工性及びめっき耐熱剥離性が低下するためMgの濃度を0.05〜0.3%と定める。
Mg concentration Mg has the effect of greatly improving the stress relaxation characteristics and the hot workability, but if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.3%, the castability (casting) Since the skin quality), hot workability and plating heat-resistant peelability are reduced, the Mg concentration is determined to be 0.05 to 0.3%.

Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBe
Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeには、Cu−Ni−Si系銅合金の強度及び耐熱性を改善する作用がある。また、これらの中でZnには、半田接合部の耐熱性を改善する効果もあり、Feには組織を微細化する効果もある。更にTi、Zr、Al及びMnは熱間圧延性を改善する効果を有する。この理由は、これらの元素が硫黄との親和力が強いため硫黄と化合物を形成し、熱間圧延割れの原因であるインゴット粒界への硫化物の偏析を軽減するためである。Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、またはBeの濃度が総量で0.005%未満であると上記の効果は得られず、総量が2.0%を越えると導電性が著しく低下する。そこで、これらの含有量を総量で0.005〜2.0%と定める。
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be has an effect of improving the strength and heat resistance of the Cu—Ni—Si based copper alloy. Among these, Zn has an effect of improving the heat resistance of the solder joint portion, and Fe has an effect of refining the structure. Furthermore, Ti, Zr, Al, and Mn have an effect of improving hot rollability. The reason for this is that these elements have a strong affinity with sulfur, so that sulfur and a compound are formed, and the segregation of sulfide to the ingot grain boundary, which is the cause of hot rolling cracks, is reduced. If the concentration of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be is less than 0.005% in total amount, the above effect cannot be obtained, and the total amount is 2.0%. If it exceeds, the conductivity will be significantly reduced. Therefore, these contents are set to 0.005 to 2.0% in total.

圧延面と厚み中央のエッチング面についての(220)ピーク強度の比
本発明のCu−Ni−Si系銅合金は、圧延面についての(220)ピーク強度(IS(220))と厚み中央部のエッチング面についての(220)ピーク強度(IC(220))との関係が、IS(220)/IC(220)≦0.85であることを特徴とする。
結晶粒径が同じ場合、製品の強度は溶体化処理以降の冷間圧延のトータル加工度と相関を持つ。また、IC(220)も溶体化処理以降の冷間圧延でのトータル加工度と相関を持つ。すなわち、IC(220)は製品に求められる強度によって決定される。一方、IS(220)は良好な曲げ加工性を得る目的で規定される。
Ratio of (220) peak strength for the rolled surface and the central etched surface The Cu—Ni—Si-based copper alloy of the present invention has a (220) peak strength ( IS (220) ) and a central thickness portion for the rolled surface. The relationship between the etched surface and the (220) peak intensity (I C (220) ) is I S (220) / I C (220) ≦ 0.85.
When the crystal grain size is the same, the strength of the product has a correlation with the total degree of cold rolling after the solution treatment. IC (220) also has a correlation with the total degree of work in cold rolling after the solution treatment. That is, I C (220) is determined by the strength required for the product. On the other hand, IS (220) is defined for the purpose of obtaining good bending workability.

S(220)/IC(220)>0.85の範囲では、IS(220)/IC(220)が低くなるに従い曲げ加工性が向上する。IS(220)/IC(220)=0.85でこの効果は飽和し、IS(220)/IC(220)をこれ以上小さくしても曲げ加工性はほとんど変化しない。そこでIS(220)/IC(220)≦0.85と規定する。 In the range of IS (220) / IC (220) > 0.85, the bending workability improves as IS (220) / IC (220) decreases. This effect is saturated when I S (220) / I C (220) = 0.85, and even if I S (220) / I C (220) is further reduced, the bending workability hardly changes. Therefore, it is defined that IS (220) / IC (220) ≦ 0.85.

電気銅を原料とし、添加元素を大気溶解炉中に所定量投入した後、溶湯温度1250℃で出湯し、表1〜9に示す9種類の合金組成のインゴットを得た。次にこのインゴットを900℃の温度で熱間圧延を行うことにより厚さ10mmの板にし、表層の酸化スケールを機械研磨により除去した後、実施例の表1、3、5、6、7、8、9の合金については0.235mmの板厚に、表2、4の合金については0.4mmの板厚になるよう冷間圧延を行った。次に800℃で溶体化処理を行った。溶体化処理では結晶粒が5μm程度になるように加熱時間を調整し、加熱後の試料を急冷した。最後に冷間圧延によりそれぞれ0.2mmの板厚にそろえた。圧延加工度は表1、3、5、6、7、8、9の合金が15%、表2、4の合金が50%である。この冷間圧延において、冷間圧延の温度を25℃にして圧延油の粘度と圧延のパス回数を表1〜表9に示すように行うことによりIC(220)とIS(220)との比(I(220)比)変化させた。その後Ar雰囲気中で450℃で6時間の時効処理を行い、20質量%硫酸−1質量%過酸化水素水溶液で酸洗した後バフ研磨を実施した。 A predetermined amount of the additive element was charged into the atmospheric melting furnace using electrolytic copper as a raw material, and then the hot metal was discharged at a molten metal temperature of 1250 ° C. to obtain nine ingots of alloy compositions shown in Tables 1 to 9. Next, this ingot was hot-rolled at a temperature of 900 ° C. to form a plate having a thickness of 10 mm, and after the surface oxide scale was removed by mechanical polishing, Tables 1, 3, 5, 6, 7, Cold rolling was performed so that the alloys of 8 and 9 had a thickness of 0.235 mm and the alloys of Tables 2 and 4 had a thickness of 0.4 mm. Next, solution treatment was performed at 800 ° C. In the solution treatment, the heating time was adjusted so that the crystal grains were about 5 μm, and the heated sample was rapidly cooled. Finally, the thickness was adjusted to 0.2 mm by cold rolling. The degree of rolling work is 15% for the alloys in Tables 1, 3, 5, 6, 7, 8, and 9 and 50% for the alloys in Tables 2 and 4. In this cold rolling, the temperature of the cold rolling is set to 25 ° C., and the viscosity of the rolling oil and the number of passes of the rolling are performed as shown in Tables 1 to 9, whereby I C (220) and I S (220) Ratio (I (220) ratio). Thereafter, an aging treatment was performed at 450 ° C. for 6 hours in an Ar atmosphere, and after pickling with a 20 mass% sulfuric acid-1 mass% aqueous hydrogen peroxide solution, buffing was performed.

次いで、この板材について引張試験により0.2%耐力を求め、曲げ加工性の評価として曲げ試験を行った。また、X線回折装置により(220)ピーク強度を求めた。
引張試験は圧延方向に対しその長手方向が平行になるように採取したJIS 13B号試験片を使用して、引張試験機(ORIENTEC社製UTM−10T)を用いて室温、初期標点距離50mm、引張速度5mm/分の条件で引張試験を実施し、得られた応力−歪曲線よりオフセット法で0.2%耐力(永久伸び0.2%)を求めた。
曲げ試験はBadwayのW曲げ(JIS H 3110)を各種曲げ半径で行い、割れの発生しない最小の曲げ半径比(r(曲げ半径)/t(試験片厚さ))を求めた。試験片の幅は10mmとした。
Subsequently, 0.2% proof stress was calculated | required by the tension test about this board | plate material, and the bending test was done as evaluation of bending workability. Further, the (220) peak intensity was determined by an X-ray diffractometer.
The tensile test was performed using a JIS No. 13B test piece taken so that its longitudinal direction was parallel to the rolling direction, using a tensile tester (UTM-10T manufactured by ORIENTEC) at room temperature, an initial mark distance of 50 mm, A tensile test was performed under the condition of a tensile speed of 5 mm / min, and 0.2% yield strength (permanent elongation 0.2%) was determined by an offset method from the obtained stress-strain curve.
In the bending test, Badway W bending (JIS H 3110) was performed at various bending radii, and the minimum bending radius ratio (r (bending radius) / t (test specimen thickness)) at which no crack was generated was obtained. The width of the test piece was 10 mm.

(220)ピーク強度は(株)リガク製X線回折装置RINT2500を用い、Co管球(λ=1.7889Å)を使用して、管電圧:30kV、管電流:100mA、発散スリット:1°、発散縦制限スリット:10mm、散乱スリット:1°、受光スリット:0.3mm、モノクロ受光スリット0.8mm、走査速度7°/min、ステップ幅0.05°、走査軸:2θ/θ、走査範囲:85°〜93°の条件で測定を行い、スムージング及びバックグラウンド除去を行った後、測定範囲中の最大強度を(220)ピーク強度とした。まず、製品表面(時効処理後に酸洗およびバフ研磨を施した表面)において、圧延面の(220)ピーク強度(IS(220))を測定した。次に、塩化第二鉄溶液を用い片面のみをスプレーエッチングすることにより板厚中央部を露出させ、板厚中央部の
(220)ピーク強度(IC(220))を測定した。そして、これらデータよりIS(220)/IC(220)(I(220)比)を求めた。
表1〜9に各試料の評価結果を示す。
(220) The peak intensity was measured using a Rigaku X-ray diffractometer RINT2500, using a Co tube (λ = 1.7889 mm), tube voltage: 30 kV, tube current: 100 mA, divergence slit: 1 °, Divergence length limiting slit: 10 mm, scattering slit: 1 °, light receiving slit: 0.3 mm, monochrome light receiving slit 0.8 mm, scanning speed 7 ° / min, step width 0.05 °, scanning axis: 2θ / θ, scanning range : Measurement was performed under the conditions of 85 ° to 93 °, smoothing and background removal were performed, and the maximum intensity in the measurement range was defined as (220) peak intensity. First, the product surface (surface subjected to pickling and buffing after aging) was measured (220) peak intensity of the rolling surface (I S (220)). Next, the central part of the plate thickness was exposed by spray-etching only one side using a ferric chloride solution, and the (220) peak intensity (IC (220) ) of the central part of the plate thickness was measured. Then, I S (220) / I C (220) (I (220) ratio) was determined from these data.
Tables 1 to 9 show the evaluation results of each sample.

Figure 0004574583
Figure 0004574583

表1において、発明例である条件A〜Dは、パス回数を1回とし圧延油動粘度を10mm/s以下にしたものであり、I(220)比が本発明の0.85以下となり、R/t=0の良好な曲げ加工性が得られた。
一方、比較例である条件E〜Jは圧延油動粘度が高いまたはパス回数が多いことによりI(220)比が0.85を超えたものであり、発明例に対し曲げ加工性が悪化している。
図1(左)は、圧延条件がI(220)比に及ぼす影響を示したものである。パス回数を少なくし、圧延油動粘度を下げることにより、I(220)比を低減できることが示されている。
また、図1(右)はI(220)比が、曲げ加工性に及ぼす影響を示したものである。圧延油動粘度が低いほどI(220)比の値は低くなるが、I(220)比が0.85以下では曲げ性は変化せず、その効果は飽和していることがわかる。
In Table 1, conditions A to D, which are examples of the invention, are those in which the number of passes is 1 and the rolling oil dynamic viscosity is 10 mm 2 / s or less, and the I (220) ratio is 0.85 or less of the present invention. Good bending workability of R / t = 0 was obtained.
On the other hand, conditions E to J, which are comparative examples, are those in which the I (220) ratio exceeds 0.85 due to high rolling oil kinematic viscosity or a large number of passes. ing.
FIG. 1 (left) shows the effect of rolling conditions on the I (220) ratio. It has been shown that the I (220) ratio can be reduced by reducing the number of passes and lowering the rolling oil kinematic viscosity.
FIG. 1 (right) shows the influence of the I (220) ratio on the bending workability. Rolling Aburado lower the viscosity I (220) ratio value is lower, I (220) ratio does not change the flexural properties at 0.85, the effect is seen to saturate.

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

Figure 0004574583
Figure 0004574583

表2〜表9に示す通り、他の合金においても表1と同様のデータが得られた。 As shown in Tables 2 to 9, the same data as in Table 1 was obtained for other alloys.

表1の実施例におけるI(220)比と圧延油動粘度との関係及びI(220)比と曲げ加工性との関係を示す図である。It is a figure which shows the relationship between I (220) ratio and rolling oil dynamic viscosity in the Example of Table 1, and the relationship between I (220) ratio and bending workability.

Claims (4)

Niを1.0〜4.5質量%(以下%とする)、Siを0.25〜1.5%、Mgを0.05〜0.3%含有し、残部がCu及び不可避的不純物よりなる銅合金条において、X線回折により圧延面について測定した(220)面のピーク強度(IS(220))と圧延面の片側を厚さ中央部までエッチングで除去し、このエッチング面について測定した(220)面のピーク強度(IC(220))との関係が、
S(220)/IC(220)≦0.85
であることを特徴とする曲げ加工性に優れるCu−Ni−Si系銅合金条。
Ni is contained in an amount of 1.0 to 4.5% by mass (hereinafter referred to as “%”), Si is contained in an amount of 0.25 to 1.5%, and Mg is contained in an amount of 0.05 to 0.3%. In the obtained copper alloy strip, the peak intensity (I S (220) ) of the (220) plane measured on the rolled surface by X-ray diffraction and one side of the rolled surface were removed by etching to the center of the thickness, and this etched surface was measured The relationship with the peak intensity (I C (220) ) of the (220) plane is
I S (220) / I C (220) ≦ 0.85
A Cu—Ni—Si based copper alloy strip excellent in bending workability, characterized by being.
Niを1.0〜4.5質量%(以下%とする)、Siを0.25〜1.5%、Zn、又はSn、のうち1種類以上を総量で0.005〜2.0%含有し、残部がCu及び不可避的不純物よりなる銅合金条において、X線回折により圧延面について測定した(220)面のピーク強度(IS(220))と圧延面の片側を厚さ中央部までエッチングで除去し、このエッチング面について測定した(220)面のピーク強度(IC(220))との関係が、
S(220)/IC(220)≦0.85
であることを特徴とする曲げ加工性に優れるCu−Ni−Si系銅合金条。
The Ni 1.0 to 4.5 mass% (hereinafter% to), 0.25 to 1.5% of Si, Zn, or Sn, one or more of a total amount from 0.005 to 2.0% In the copper alloy strip containing Cu and the inevitable impurities in the balance, the peak intensity (I S (220) ) of the (220) plane measured on the rolled surface by X-ray diffraction and one side of the rolled surface at the center of the thickness The relationship with the peak intensity (I C (220) ) of the (220) plane measured for this etched surface is
I S (220) / I C (220) ≦ 0.85
A Cu—Ni—Si based copper alloy strip excellent in bending workability, characterized by being.
Niを1.0〜4.5質量%(以下%とする)、Siを0.25〜1.5%、Mgを0.05〜0.3%含有し、Mnを総量で0.005〜2.0%含有し、残部がCu及び不可避的不純物よりなる銅合金条において、X線回折により圧延面について測定した(220)面のピーク強度(INi is contained in an amount of 1.0 to 4.5% by mass (hereinafter referred to as%), Si is contained in an amount of 0.25 to 1.5%, Mg is contained in an amount of 0.05 to 0.3%, and Mn is contained in a total amount of 0.005 to 0.005%. In a copper alloy strip containing 2.0% and the balance being Cu and inevitable impurities, the peak intensity (I) measured on the rolled surface by X-ray diffraction (I) S(220)S (220) )と圧延面の片側を厚さ中央部までエッチングで除去し、このエッチング面について測定した(220)面のピーク強度(I) And one side of the rolled surface were removed by etching to the center of the thickness, and the peak intensity (I) of the (220) surface measured for this etched surface was measured. C(220)C (220) )との関係が、)
I S(220)S (220) /I/ I C(220)C (220) ≦0.85≦ 0.85
であることを特徴とする曲げ加工性に優れるCu−Ni−Si系銅合金条。A Cu—Ni—Si based copper alloy strip excellent in bending workability, characterized by being.
請求項1〜3何れか1項に記載のCu−Ni−Si系銅合金条を用いた端子、コネクタ、またはリレー。 The terminal, connector, or relay using the Cu-Ni-Si-type copper alloy strip of any one of Claims 1-3.
JP2006095458A 2005-03-31 2006-03-30 Cu-Ni-Si copper alloy strip with excellent bending workability Active JP4574583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095458A JP4574583B2 (en) 2005-03-31 2006-03-30 Cu-Ni-Si copper alloy strip with excellent bending workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104059 2005-03-31
JP2006095458A JP4574583B2 (en) 2005-03-31 2006-03-30 Cu-Ni-Si copper alloy strip with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2006307340A JP2006307340A (en) 2006-11-09
JP4574583B2 true JP4574583B2 (en) 2010-11-04

Family

ID=37474547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095458A Active JP4574583B2 (en) 2005-03-31 2006-03-30 Cu-Ni-Si copper alloy strip with excellent bending workability

Country Status (1)

Country Link
JP (1) JP4574583B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306591B2 (en) * 2005-12-07 2013-10-02 古河電気工業株式会社 Wire conductor for wiring, wire for wiring, and manufacturing method thereof
JP5550856B2 (en) * 2009-06-12 2014-07-16 株式会社Shカッパープロダクツ Copper alloy material and method for producing copper alloy material
JP5734156B2 (en) * 2010-10-15 2015-06-10 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP2016084542A (en) * 2012-03-26 2016-05-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
CN115369282A (en) * 2022-10-25 2022-11-22 宁波兴业盛泰集团有限公司 Copper alloy material for high-precision etched lead frame and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255779A (en) * 1992-03-13 1993-10-05 Furukawa Electric Co Ltd:The Production of copper alloy for electrical and electronic equipment
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255779A (en) * 1992-03-13 1993-10-05 Furukawa Electric Co Ltd:The Production of copper alloy for electrical and electronic equipment
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability

Also Published As

Publication number Publication date
JP2006307340A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5475230B2 (en) Copper alloy for electronic materials
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4959141B2 (en) High strength copper alloy
JP5619389B2 (en) Copper alloy material
WO2009123140A1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
WO2013018228A1 (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP2011508081A (en) Copper-nickel-silicon alloy
JP4574583B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JPWO2009116649A1 (en) Copper alloy material for electrical and electronic parts
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
CN111868276B (en) Copper alloy sheet and method for producing same
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP6111028B2 (en) Corson alloy and manufacturing method thereof
KR100684095B1 (en) Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250