JP4573146B2 - Cordierite black-based dense sintered body and manufacturing method thereof - Google Patents

Cordierite black-based dense sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP4573146B2
JP4573146B2 JP2000113715A JP2000113715A JP4573146B2 JP 4573146 B2 JP4573146 B2 JP 4573146B2 JP 2000113715 A JP2000113715 A JP 2000113715A JP 2000113715 A JP2000113715 A JP 2000113715A JP 4573146 B2 JP4573146 B2 JP 4573146B2
Authority
JP
Japan
Prior art keywords
sintered body
cordierite
thermal expansion
black
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000113715A
Other languages
Japanese (ja)
Other versions
JP2001302341A (en
Inventor
明 石黒
潔 端山
貴広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2000113715A priority Critical patent/JP4573146B2/en
Publication of JP2001302341A publication Critical patent/JP2001302341A/en
Application granted granted Critical
Publication of JP4573146B2 publication Critical patent/JP4573146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超精密や超微細加工あるいは測定を行う機器の部材に適し、また、色感的にも優れた、コーディエライト黒色系緻密焼結体及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、半導体に代表される電子部品の精密化、微細化が急速に進み、これを製造する加工機や測定機にサブミクロンもしくはそれ以下の精度が要求されるようになっているが、このような加工機や測定機では、支持部材の自重などによる変形や僅かな温度変化による熱変形も問題になってきている。
また、これらの精密機器の運動精度を決定する重要要素の1つに案内面があるが、このような、超精密や超微細加工精度あるいは測定精度が要求されるような分野の案内面には、高位置決め精度の要求に合わせ、能率化のために、機器の高速化の強い要求もある。
また、これらの精密機器の運動精度を決定する重要要素の1つに位置センサーがあり、超精密や超微細加工精度あるいは測定精度が要求される分野のセンシングには、主としてレーザー光が使用され、上記レーザー光が当たる面にはミラーが設置されるが、上記ミラーには反射効率が高いことに合わせ、熱変形を起こさないことの強い要求もある。
また逆に、これら光源を使用する装置には、光の反射・散乱を嫌う箇所もあり、特に白色系の材料をこの箇所に使用する場合には反射防止を施すこともある。
【0003】
ここで、機械的特性に優れるセラミックスとしては、アルミナ、炭化珪素、窒化珪素などが知られており、これらは、従来から、種々の機械部品や構造用部材などに用いられ、露光装置の支持部材にも用いられてきた。
また、熱膨張の小さなセラミックスとしては、コーディエライト、β−スポジュメン、チタン酸アルミニウム、石英ガラスなどが知られおり、これらは、主として、耐熱衝撃性が要求される炉材や調理用器材などに用いられてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、アルミナを始めとする上記の高強度セラミックスは、いずれも、熱膨張係数が1×10-6/℃以上であり、近年の超精密や超微細加工あるいは測定を行う装置では、僅かな温度変化による熱変形さえも問題になってきた。
また、コーディエライトを始めとする上記の低熱膨張セラミックスは、いずれも、曲げ強度やヤング率などの機械的特性が劣っていることから、高強度や高剛性を要求される機械部品や構造用部材には適していなかった。
【0005】
さらにまた、コーディエライトを始めとする上記の低熱膨張素材は、低熱膨張と言えども、一般には、室温付近の熱膨張係数がゼロではなく、近年の超精密や超微細加工あるいは測定を行う装置用途への対応には、熱変形において十分とは言えなかった。
【0006】
また、コーディエライトを始めとする上記の低熱膨張素材は、特に純度を高くするほど、一般に、焼結体は白色を呈するため、光の反射・散乱が問題になる場合もあった。
【0007】
【課題を解決するための手段およびその作用・効果】
上記課題を解決するためになされた本発明は、コーディエライトを主結晶とし、且つ、黒色系に発色する少なくとも鉄とクロムとコバルトとが含まれるスピネル系結晶を焼結体の1〜10重量%含み、室温の熱膨張係数が−0.1〜+0.1×10-6/℃で、且つ、ヤング率を嵩比重で割った値(ヤング率/嵩比重)が5×1072/s2以上であることを特徴とするコーディエライト黒色系緻密焼結体である
あるいは、コーディエライトを主結晶とし、且つ、黒色系に発色する少なくとも鉄とクロムとコバルトとが含まれるスピネル系結晶と、ジルコン結晶と、を焼結体の1〜10重量%含み、室温の熱膨張係数が−0.1〜+0.1×10 -6 /℃で、且つ、ヤング率を嵩比重で割った値(ヤング率/嵩比重)が5×10 7 2 /s 2 以上であることを特徴とするコーディエライト黒色系緻密焼結体である。
【0008】
室温の熱膨張係数を−0.1〜+0.1×10-6/℃とすることにより、±1℃の温度変化があった場合にも、熱膨張による変位は±0.1ppm以下に抑えられ、極めて高い加工精度または測定精度が保たれるようになる。
【0009】
また、ヤング率を嵩比重で割った値を5×1072/s2以上にすることにより、支持部材の自重などによる変形も少なく、案内面の高速、高位置決め精度の要求も良好となる。ここで、ヤング率を嵩比重で割った値は、例えば、ヤング率が370GPa(=370×109kg/m・s2)で、嵩比重が3.9(=3.9×103kg/m3)の場合には、9.5×1072/s2と計算される。
【0010】
ヤング率を嵩比重で割った値は、高ければ高いほど好ましく、支持部材の自重による変形は少なくなり、また、案内面の位置決め性能は向上しするが、5×1072/s2以上であれば、比較的良好な性能が出せると計算された。ちなみに、ヤング率を嵩比重で割った値を、従来から構造部材に使用されている高純度アルミナや、純度約87%のアルミナで見ると、各々、約9.5×1072/s2、及び、約7×1072/s2となり、これらと比べると、本特許のコーディエライト緻密焼結体は劣るが、炭素鋼やステンレス鋼が約2.5×1072/s2、また、グラナイトが2×1072/s2程度であり、これらと比べると、本発明のコーディエライト緻密焼結体ははるかに優れている。
【0011】
また、黒色系にすることにより、材料に光が吸収され、反射・散乱を抑えることができる。また、黒色系部材の方が白色系より、色感的に頑強なイメージを与えられることから、好まれる場合もある。
【0012】
ここで、黒色系とは、黒色に近い色調を指し、黒色に近いほど反射率が小さくなり好ましいが、完全な黒色でなくとも、黒色に近い色調であれば良く、通常の用途では、L***表色系のL*(エルスター)が50以下であれば、反射、散乱は抑えられ、問題のないことを確認している。また、色感的には、完全な黒色より、多少暖かみのある、ダークグレー、ダークグリーンが好まれる場合も多い。
【0014】
また、さらに好ましくは、色系に発色する顔料を、成分の中に少なくとも鉄とクロムとコバルトが含まれるスピネル系結晶とし、上記黒色系に発色する顔料の量を焼結体の1〜10重量%にすることである。鉄のみでも黒色系になるが、鉄に加えてクロムとコバルトを加えることにより、より安定したスピネル結晶が形成され、安定した色調が出せる。しかし、鉄とクロムのみで、コバルトを入れない場合には茶色系になり、色感的に好ましくない。
【0015】
また、上記黒色系に発色する顔料の量が焼結体の1重量%未満の場合には、L*(エルスター)が50以上になり、また、10重量%以上になると、熱膨張係数が+0.1以上になり、共に好ましくない。なお、黒色系に発色する顔料の量を多くするほど、L*が小さくなる(黒に近づく)が、ヤング率を嵩比重で割った値は多少下がってくる。よって、黒色系に発色する顔料の量の、より好ましい範囲は、焼結体の1.5〜5重量%である。
【0016】
また、本発明の請求項に示すように、焼結体の相対密度が94%以上であることが、ヤング率を嵩比重で割った値を5×1072/s2以上にするために重要である。
【0017】
焼結体の相対密度が高いほど、ヤング率を嵩比重で割った値は大きくなり、焼結体の相対密度が94%以上であれば、通常、5×1072/s2以上になる。
【0018】
また、本発明の請求項に示すように、室温の熱膨張係数が−0.1〜+0.1×10-6/℃で、且つ、ヤング率を嵩比重で割った値を5×1072/s2以上にしたことに加えて、焼結体の相対密度が99.5%以上であるコーディエライト緻密焼結体が、ミラーなどの用途には特に好ましい。
【0019】
焼結体の相対密度が99.5%以上にすることにより、加工後の表面粗さを小さくすることができ、表面にアルミニウムや銀などの反射膜をコーティングすれば、高い反射率を有する、ミラーに適した材料が供給できるようになる。また、ヤング率を嵩比重で割った値も大きくなるため、支持部材の自重などによる変形はさらに少なくなり、案内面の運動をさらに高速化できるようになる。
【0020】
ここで、室温の熱膨張係数が−0.1〜+0.1×10-6/℃で、且つ、ヤング率を嵩比重で割った値を5×1072/s2以上にする方法として、本発明の請求項に示すように、焼結体の熱膨張係数が室温で負の値を持つコーディエライト粉末に、熱膨張係数が室温で正の値を持ち、黒色系に発色する少なくとも鉄とクロムとコバルトとを含むスピネル系結晶の粉末を1〜10重量%、または、焼成されることで少なくとも鉄とクロムとコバルトとを含むスピネル系結晶となる少なくとも鉄の酸化物粉末とクロムの酸化物粉末とコバルトの酸化物粉末とを合わせて1〜10重量%混合し、焼結体の熱膨張係数が室温で−0.1〜+0.1×10-6/℃になるように調節し、且つ、焼結体の相対密度が94%以上になるよう焼成温度を調節して焼成する方法が良い。
また、本発明の請求項9に示すように、焼結体の熱膨張係数が室温で負の値を持つコーディエライト粉末に、熱膨張係数が室温で正の値を持ち、黒色系に発色する少なくとも鉄とクロムとコバルトとを含むスピネル系結晶の粉末と、ジルコン粉末と、を合わせて1〜10重量%、または、焼成されることで少なくとも鉄とクロムとコバルトとを含むスピネル系結晶となる少なくとも鉄の酸化物粉末とクロムの酸化物粉末とコバルトの酸化物粉末と、ジルコン粉末と、を合わせて1〜10重量%混合し、焼結体の熱膨張係数が室温で−0.1〜+0.1×10 -6 /℃になるように調節し、且つ、焼結体の相対密度が94%以上になるよう焼成温度を調節して焼成する方法でも良い。
【0021】
純粋なコーディエライト粉末でも、焼結体の相対密度が94%以上の緻密焼結体にすれば、ヤング率を嵩比重で割った値は、通常、5×1072/s2以上にはなるが、室温の熱膨張係数は、通常、−0.1×10-6/℃以下になる。一方、純度の劣るコーディエライト粉末を用いた場合の焼結体は、ガラス相が多くなったり、例えばスピネルやエンスタタイトなどコーディエライト以外の結晶相が生成し、室温の熱膨張係数が+0.1×10-6/℃以上になるケースも多く、また、ガラス相の多いものでは、ヤング率を嵩比重で割った値が5×1072/s2以下になるケースも多い。
【0022】
また、本発明の請求項11に示すように、焼結体の相対密度が94%以上のコーディエライト焼結体を、相対密度が99.5%以上になるように、温度、圧力を調節して熱間等方圧加圧(HIP)することにより、ミラー用途には特に好ましいコーディエライト緻密焼結体が提供できる。
【0023】
なお、相対密度が93%以下の焼結体は、カプセルフリーの熱間等方圧加圧では、相対密度を99.5%以上にすることはできなかった。
【0024】
【発明の実施の形態】
本発明で使用されるコーディエライト粉末は、焼結体の熱膨張係数が室温で負の値を持つように、純度の高いコーディエライト結晶であることが重要である。
このため、組成は、酸化珪素(SiO2)50〜53重量%、酸化アルミニウム(Al23)33〜36重量%、酸化マグネシウム(MgO)13〜15重量%の範囲にする。
【0025】
このような純度の高いコーディエライト粉末を用いた焼結体は、室温の熱膨張係数が、通常、−0.1×10-6/℃以下になり、また、同コーディエライト焼結体で、相対密度を94%以上にした場合には、ヤング率を嵩比重で割った値が、通常、5×1072/s2以上の値になる。
【0026】
そこで、室温の熱膨張係数を−0.1〜+0.1×10-6/℃の範囲内に入れ、且つ、ヤング率を嵩比重で割った値は5×1072/s2以上を維持させるために、室温の熱膨張係数が正で、比較的ヤング率の高い、コーディエライト以外の粉末を少なくとも1種類以上含有させる。
【0027】
上記のコーディエライト以外に含有させる粉末の中に、黒色系に発色する顔料を少なくとも1種類以上は含有させる。ここで、コーディエライト以外に含有させる結晶としては、上記の黒色系に発色する顔料のみでも良く、また、黒色系に発色する顔料と、例えば、ジルコン、ジルコニア、アルミナなどの粉末を組合せても良いが、焼結を著しく阻害するものや、焼成中にガラス相を多く形成するものは好ましくない。このうち、コーディエライトと黒色系に発色する顔料以外に加える粉末としては、特にジルコンが適していた。
【0028】
ここで、上記黒色系に発色する顔料は、成分の中に、少なくとも鉄が含まれる酸化物、さらに好ましくは、少なくとも鉄とクロムとコバルトが含まれる酸化物である。黒色系に発色する顔料の量は、コーディエライト以外に含有させる粉末を、上記の黒色系に発色する顔料のみにした場合でも、最大で10重量%であり、また、ジルコンなどの他の粉末と合わせて加える場合には、室温の熱膨張係数が−0.1〜+0.1×10-6/℃に入るよう、黒色系に発色する顔料の量を減らし調節する。
【0029】
コーディエライト粉末と混合する際の上記黒色系に発色する顔料粉末の形態は、例えば、コーディエライト粉末との混合時に、酸化鉄と酸化クロムと酸化コバルトの3種類の粉末を加えても良く、また、あらかじめ酸化鉄と酸化クロムと酸化コバルトの粉末を混合仮焼して、鉄・クロム・コバルトのスピネル結晶にした粉末を加えても良い。
【0030】
なお、鉄のみでも黒色系になるが、鉄に加えてクロムとコバルトを加えることにより、より安定したスピネル結晶が形成され、安定した色調が出せる。しかし、成分が鉄とクロムのみで、コバルトを入れない場合には茶色系になり、色感的に好ましくない。なお、鉄とクロムとコバルト成分の好ましい比率は、Fe23:Cr23:CoOの重量%で、35〜65:10〜50:5〜40程度である。上記比率よりコバルトが多い場合には青色系に、また、少ない場合には茶色系に近づき、色感的には好ましくない。
【0031】
また、上記黒色系顔料は、鉄以外に、あるいは、鉄とクロムとコバルト以外に、例えば、ニッケルやマンガンなどの着色成分を加えても良く、これらも微量であれば焼結体は黒色系となる。
【0032】
上記の混合割合になるよう、コーディエライト粉末と黒色系顔料などを秤量し、ボールミルやアトライタなどで混合・粉砕する。
【0033】
上記の方法で混合・粉砕された粉末は、プレス成形、押出し成形、射出成形、鋳込成形などによって所望の形状に成形され、その後、必要に応じて、生加工や仮焼加工などを経て、焼結体の相対密度が94%以上になるような適当な温度で焼成する。
【0034】
これらは、ミラーなど、気孔がほとんどないような材料が要求される場合など、必要に応じ、上記のコーディエライト緻密焼結体を、適当な温度、圧力で熱間等方圧加圧すれば、焼結体の相対密度が99.5%以上にすることもできる。
【0035】
【実施例1】
以下、本発明の実施例を説明する。
SiO2が51重量%、Al23が35重量%、MgOが14重量%で、ほとんど全てがコーディエライト結晶から成る粉末に、表1のNo.3〜12ように、Fe23、及び、Fe23−Cr23−CoO系の顔料粉末を1〜13重量%添加した混合粉末を、ボールミルで湿式混合粉砕した。上記の各スラリーをスプレードライヤーで乾燥造粒した後、各造粒粉をプレス成形し、焼結体の相対密度が約98%になる温度まで大気中で焼成した。各焼成体は、13〜33℃の範囲における室温の熱膨張係数をレーザー測長式の熱膨張計で、ヤング率を曲げ共振法で、また、嵩比重をアルキメデス法で、各々測定した。
【0036】
【表1】

Figure 0004573146
【0037】
表2に示すように、Fe23、Fe23−Cr23−CoO系の顔料粉末を1〜10重量%加えた場合には、焼成体の呈色が黒またはダークグレー、ダークグリーンとなり、室温の熱膨張係数を−0.1〜+0.1×10-6/℃に入れることができた。なお、顔料の添加率が増えるほど、L*は下げられるが、ヤング率を嵩比重で割った値は多少下がる傾向があった。
【0038】
【表2】
Figure 0004573146
【0039】
【実施例2】
実施例1と同じコーディエライト粉末に、表1のNo.13〜14ように、Fe23−Cr23−CoO系の顔料粉末と、さらに加えて、ジルコン粉末添加した混合粉末を、実施例1と同様な方法で、焼結体を得た。
これも、表2に示すように、焼結体は黒に近い色を呈した、室温の熱膨張係数がほぼゼロの焼結体を作ることができ、また、コーディエライト粉末に顔料のみを加えた場合と比べて、ヤング率を嵩比重で割った値は高くすることができた。
【0040】
【実施例3】
表1のNo.16には、No.13の焼結体を、1000気圧、1300℃のアルゴン雰囲気中で、カプセルフリーの熱間等方圧加圧(HIP)を行った場合を示した。HIPにより相対密度99.5%以上の焼結体が得られ、ヤング率を嵩比重で割った値も大きくなった。
【0041】
【発明の効果】
以上に説明した如く、本発明によれば、室温付近の熱膨張係数がゼロに極めて近く、且つ、ヤング率を嵩比重で割った値が比較的大きい、コーディエライト黒色系緻密焼結体が製造できるため、熱変形や自重変形などがほとんどなく、且つ、光の反射・散乱のほとんどない、特に、超精密や超微細加工あるいは測定を行う機器の部材に適した素材が提供できるようになる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cordierite black dense sintered body suitable for a member of a device for performing ultraprecision, ultrafine processing or measurement, and excellent in color sensation, and a method for producing the same.
[0002]
[Prior art]
In recent years, electronic parts typified by semiconductors have been refined and miniaturized rapidly, and the processing machines and measuring machines that manufacture them have been required to have submicron or lower precision. In such processing machines and measuring machines, deformation due to the weight of the support member and thermal deformation due to slight temperature changes have become a problem.
One of the important factors that determine the motion accuracy of these precision instruments is the guide surface. In such fields where ultra-precision, ultra-fine processing accuracy or measurement accuracy is required, In response to the demand for high positioning accuracy, there is also a strong demand for high-speed equipment for efficiency.
In addition, position sensors are one of the important factors that determine the motion accuracy of these precision instruments, and laser light is mainly used for sensing in fields that require ultra-precision, ultra-fine processing accuracy, or measurement accuracy. Although a mirror is installed on the surface where the laser beam strikes, there is a strong demand for the mirror not to cause thermal deformation in accordance with high reflection efficiency.
Conversely, some devices using these light sources do not like the reflection / scattering of light. In particular, when a white material is used at this location, antireflection may be applied.
[0003]
Here, alumina, silicon carbide, silicon nitride, and the like are known as ceramics having excellent mechanical characteristics, and these are conventionally used for various mechanical parts and structural members, and are used as support members for exposure apparatuses. Has also been used.
As ceramics with small thermal expansion, cordierite, β-spodumene, aluminum titanate, quartz glass, etc. are known, and these are mainly used for furnace materials and cooking equipment that require thermal shock resistance. Has been used.
[0004]
[Problems to be solved by the invention]
However, all of the above high-strength ceramics including alumina have a coefficient of thermal expansion of 1 × 10 −6 / ° C. or higher, and in recent ultraprecision and ultrafine processing or measurement apparatuses, a slight temperature is required. Even thermal deformation due to change has become a problem.
In addition, cordierite and other low thermal expansion ceramics are inferior in mechanical properties such as bending strength and Young's modulus, so they are used for mechanical parts and structures that require high strength and high rigidity. It was not suitable for the member.
[0005]
Furthermore, although the above-mentioned low thermal expansion materials such as cordierite are low thermal expansion, in general, the coefficient of thermal expansion near room temperature is not zero, and recent ultra-precision and ultra-fine processing or measurement equipment It could not be said that thermal deformation was sufficient for the application.
[0006]
In addition, the above-mentioned low thermal expansion materials such as cordierite generally have a white color as the purity is increased. Therefore, reflection / scattering of light sometimes becomes a problem.
[0007]
[Means for solving the problems and their functions and effects]
The present invention made in order to solve the above-mentioned problems is characterized in that cordierite is a main crystal and a spinel crystal containing at least iron, chromium and cobalt that develops a black color is 1 to 10 weight of the sintered body. %, The coefficient of thermal expansion at room temperature is −0.1 to + 0.1 × 10 −6 / ° C., and the value obtained by dividing the Young's modulus by the bulk specific gravity (Young's modulus / bulk specific gravity) is 5 × 10 7 m 2 The cordierite black-based dense sintered body is characterized by being / s 2 or more .
Alternatively, cordierite as a main crystal, and containing 1 to 10% by weight of a sintered body of spinel-based crystals containing at least iron, chromium, and cobalt that develop a black color, and zircon crystals, The coefficient of thermal expansion is −0.1 to + 0.1 × 10 −6 / ° C. and the Young's modulus divided by the bulk specific gravity (Young's modulus / bulk specific gravity) is 5 × 10 7 m 2 / s 2 or more. It is a cordierite black-based dense sintered body characterized by being.
[0008]
By setting the thermal expansion coefficient at room temperature to -0.1 to + 0.1 × 10 -6 / ° C, even when there is a temperature change of ± 1 ° C, the displacement due to thermal expansion is kept to ± 0.1 ppm or less. Therefore, extremely high processing accuracy or measurement accuracy is maintained.
[0009]
In addition, by setting the value obtained by dividing the Young's modulus by the bulk specific gravity to 5 × 10 7 m 2 / s 2 or more, deformation due to the weight of the support member is small, and the requirements for high speed and high positioning accuracy of the guide surface are good. Become. Here, the value obtained by dividing the Young's modulus by the bulk specific gravity is, for example, a Young's modulus of 370 GPa (= 370 × 10 9 kg / m · s 2 ) and a bulk specific gravity of 3.9 (= 3.9 × 10 3 kg). / M 3 ), it is calculated as 9.5 × 10 7 m 2 / s 2 .
[0010]
The value obtained by dividing the Young's modulus by the bulk specific gravity is preferably as high as possible. The deformation due to the weight of the support member is reduced, and the positioning performance of the guide surface is improved, but 5 × 10 7 m 2 / s 2 or more. If so, it was calculated that relatively good performance could be achieved. By the way, the value obtained by dividing the Young's modulus by the bulk specific gravity is about 9.5 × 10 7 m 2 / s for high-purity alumina conventionally used for structural members and about 87% purity alumina, respectively. 2 and about 7 × 10 7 m 2 / s 2. Compared to these, the cordierite dense sintered body of this patent is inferior, but carbon steel and stainless steel are about 2.5 × 10 7 m 2. / S 2 , and granite is about 2 × 10 7 m 2 / s 2. Compared with these, the cordierite dense sintered body of the present invention is far superior.
[0011]
Moreover, by making it black, light is absorbed by the material and reflection / scattering can be suppressed. Also, the black member is sometimes preferred because it gives a more chromatically robust image than the white member.
[0012]
Here, the black color refers to a color tone close to black, and the closer to black, the lower the reflectance, which is preferable. However, the color tone may be close to black even if it is not completely black . When L * (Elster) of the a * b * color system is 50 or less, reflection and scattering are suppressed, and it is confirmed that there is no problem. In terms of color, dark gray and dark green, which are somewhat warmer than full black, are often preferred.
[0014]
Further, more preferably, the pigment coloring in black color system, a spinel crystal in which at least contains iron, chromium and cobalt in the components, from 1 to 10 the amount of pigment color to the black system of the sintered body It is to make it weight%. Even if only iron is used, it becomes black, but by adding chromium and cobalt in addition to iron, a more stable spinel crystal is formed and a stable color tone can be obtained. However, if only iron and chromium are used and cobalt is not added, the color becomes brown, which is not preferable in terms of color.
[0015]
In addition, when the amount of the pigment that develops a black color is less than 1% by weight of the sintered body, L * (Elster) is 50 or more, and when it is 10% or more, the thermal expansion coefficient is +0.1 or more, both are not preferable. Note that as the amount of pigment that develops black color increases, L * decreases (closer to black), but the value obtained by dividing the Young's modulus by the bulk specific gravity slightly decreases. Therefore, a more preferable range of the amount of the pigment that develops a black color is 1.5 to 5% by weight of the sintered body.
[0016]
Further, as shown in claim 3 of the present invention, the relative density of the sintered body is 94% or more, and the value obtained by dividing the Young's modulus by the bulk specific gravity is 5 × 10 7 m 2 / s 2 or more. Is important for.
[0017]
The higher the relative density of the sintered body, the larger the value obtained by dividing the Young's modulus by the bulk specific gravity. If the relative density of the sintered body is 94% or more, it is usually 5 × 10 7 m 2 / s 2 or more. Become.
[0018]
Further, as shown in claim 4 of the present invention, the coefficient of thermal expansion at room temperature is −0.1 to + 0.1 × 10 −6 / ° C., and the value obtained by dividing the Young's modulus by the bulk specific gravity is 5 × 10. In addition to 7 m 2 / s 2 or more, a cordierite dense sintered body in which the relative density of the sintered body is 99.5% or more is particularly preferable for applications such as mirrors.
[0019]
By making the relative density of the sintered body 99.5% or more, the surface roughness after processing can be reduced, and if the surface is coated with a reflective film such as aluminum or silver, it has a high reflectance. Materials suitable for mirrors can be supplied. Further, since the value obtained by dividing the Young's modulus by the bulk specific gravity is also increased, deformation due to the weight of the support member is further reduced, and the movement of the guide surface can be further increased.
[0020]
Here, the thermal expansion coefficient at room temperature is −0.1 to + 0.1 × 10 −6 / ° C., and the value obtained by dividing the Young's modulus by the bulk specific gravity is 5 × 10 7 m 2 / s 2 or more. as, as shown in claim 8 of the present invention, the cordierite powder thermal expansion coefficient of the sintered body has a negative value at room temperature, the thermal expansion coefficient of Chi lifting a positive value at room temperature, the blackish 1 to 10% by weight of a spinel crystal powder containing at least iron, chromium and cobalt that develops color , or at least an iron oxide powder that becomes a spinel crystal containing at least iron, chromium and cobalt by firing. The chromium oxide powder and the cobalt oxide powder are mixed in an amount of 1 to 10% by weight , and the thermal expansion coefficient of the sintered body becomes −0.1 to + 0.1 × 10 −6 / ° C. at room temperature. The firing temperature is adjusted so that the relative density of the sintered body is 94% or more. Then, the method of firing is good.
Further, as shown in claim 9 of the present invention, cordierite powder having a negative coefficient of thermal expansion at room temperature, a positive coefficient of thermal expansion at room temperature, and coloring in black Spinel crystals containing at least iron, chromium, and cobalt, and zircon powder in a total of 1 to 10% by weight, or by firing, spinel crystals containing at least iron, chromium, and cobalt At least iron oxide powder, chromium oxide powder, cobalt oxide powder, and zircon powder are mixed in an amount of 1 to 10% by weight, and the thermal expansion coefficient of the sintered body is -0.1 at room temperature. was adjusted to ~ + 0.1 × 10 -6 / ℃ , and the relative density of the sintered body may be a method of baking by adjusting the firing temperature so as to be 94% or more.
[0021]
Even if pure cordierite powder is made into a dense sintered body with a relative density of 94% or more, the Young's modulus divided by the bulk specific gravity is usually 5 × 10 7 m 2 / s 2 or more. However, the thermal expansion coefficient at room temperature is usually −0.1 × 10 −6 / ° C. or less. On the other hand, in the case of using cordierite powder with poor purity, the sintered body has a large glass phase or a crystalline phase other than cordierite, such as spinel or enstatite, and the thermal expansion coefficient at room temperature is +0. In many cases, the value becomes 1 × 10 −6 / ° C. or more, and in many cases where the glass phase is large, the value obtained by dividing the Young's modulus by the bulk specific gravity is 5 × 10 7 m 2 / s 2 or less.
[0022]
According to the eleventh aspect of the present invention, the temperature and pressure of the cordierite sintered body having a relative density of 94% or more are adjusted so that the relative density becomes 99.5% or more. By applying hot isostatic pressing (HIP), a cordierite dense sintered body particularly preferable for mirror applications can be provided.
[0023]
In the sintered body having a relative density of 93% or less, the relative density could not be increased to 99.5% or more by capsule-free hot isostatic pressing.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
It is important that the cordierite powder used in the present invention is a cordierite crystal having a high purity so that the thermal expansion coefficient of the sintered body has a negative value at room temperature.
For this reason, the composition is in the range of 50 to 53 wt% silicon oxide (SiO 2 ), 33 to 36 wt% aluminum oxide (Al 2 O 3 ), and 13 to 15 wt% magnesium oxide (MgO).
[0025]
The sintered body using such a cordierite powder having a high purity usually has a thermal expansion coefficient at room temperature of −0.1 × 10 −6 / ° C. or less, and the cordierite sintered body When the relative density is 94% or more, the value obtained by dividing the Young's modulus by the bulk specific gravity is usually 5 × 10 7 m 2 / s 2 or more.
[0026]
Therefore, the thermal expansion coefficient at room temperature is within the range of −0.1 to + 0.1 × 10 −6 / ° C., and the value obtained by dividing the Young's modulus by the bulk specific gravity is 5 × 10 7 m 2 / s 2 or more. In order to maintain the above, at least one powder other than cordierite having a positive thermal expansion coefficient at room temperature and a relatively high Young's modulus is contained.
[0027]
In the powder to be contained other than the above cordierite, at least one kind of pigment that develops a black color is contained. Here, the crystals to be contained in addition to cordierite may be only the above-mentioned black color pigment, or a combination of a black color pigment and, for example, a powder of zircon, zirconia, alumina or the like. Although it is good, the thing which inhibits sintering significantly and the thing which forms many glass phases during baking are not preferable. Of these, zircon was particularly suitable as a powder to be added in addition to cordierite and a pigment that develops a black color.
[0028]
Here, the pigment that develops a black color is an oxide containing at least iron, and more preferably an oxide containing at least iron, chromium, and cobalt. The amount of pigment that develops a black color is 10% by weight at the maximum even when the powder to be incorporated other than cordierite is only the pigment that develops a black color, and other powders such as zircon. When adding together, the amount of the pigment that develops black is adjusted so that the thermal expansion coefficient at room temperature falls within the range of -0.1 to + 0.1 × 10 -6 / ° C.
[0029]
For example, three types of powders of iron oxide, chromium oxide, and cobalt oxide may be added when mixing with cordierite powder. Alternatively, a powder obtained by mixing and calcining iron oxide, chromium oxide, and cobalt oxide powder in advance to form spinel crystals of iron, chromium, and cobalt may be added.
[0030]
In addition, although it becomes black type only with iron, by adding chromium and cobalt in addition to iron, a more stable spinel crystal is formed, and a stable color tone can be produced. However, when the components are only iron and chromium and no cobalt is added, the color becomes brown, which is not preferable in terms of color. A preferable ratio of iron and chromium and cobalt components, Fe 2 O 3: Cr 2 O 3: by weight% of CoO, 35 to 65: 10 to 50: is about 5-40. When the amount of cobalt is higher than the above ratio, it is blue, and when it is low, it approaches brown, which is not preferable in terms of color.
[0031]
In addition to iron or in addition to iron, chromium, and cobalt, the black pigment may contain a coloring component such as nickel or manganese. Become.
[0032]
Cordierite powder and black pigment are weighed so as to achieve the above mixing ratio, and mixed and pulverized with a ball mill or attritor.
[0033]
The powder mixed and pulverized by the above method is formed into a desired shape by press molding, extrusion molding, injection molding, cast molding, etc., and then, if necessary, through raw processing or calcination processing, Firing is performed at an appropriate temperature such that the relative density of the sintered body is 94% or more.
[0034]
These can be obtained by pressing the cordierite dense sintered body at an appropriate temperature and pressure with a hot isostatic pressure as required, such as when mirrors or other materials that have almost no pores are required. The relative density of the sintered body can be 99.5% or more.
[0035]
[Example 1]
Examples of the present invention will be described below.
No. 1 in Table 1 was added to a powder comprising 51% by weight of SiO 2, 35% by weight of Al 2 O 3 and 14% by weight of MgO. 3-12 As, Fe 2 O 3, and, a mixed powder prepared by adding the pigment powder of Fe 2 O 3 -Cr 2 O 3 -CoO system 1 to 13% by weight, and wet-mixed by a ball mill. Each of the above slurries was dried and granulated with a spray dryer, and then each granulated powder was press-molded and fired in the air to a temperature at which the relative density of the sintered body was about 98%. Each fired body was measured for a thermal expansion coefficient at room temperature in the range of 13 to 33 ° C. by a laser length measurement type thermal dilatometer, a Young's modulus by a bending resonance method, and a bulk specific gravity by an Archimedes method.
[0036]
[Table 1]
Figure 0004573146
[0037]
As shown in Table 2, when 1 to 10% by weight of Fe 2 O 3 or Fe 2 O 3 —Cr 2 O 3 —CoO pigment powder is added, the color of the fired body is black or dark gray, dark It became green and the thermal expansion coefficient at room temperature could be set to −0.1 to + 0.1 × 10 −6 / ° C. Note that as the pigment addition rate increases, L * decreases, but the value obtained by dividing the Young's modulus by the bulk specific gravity tends to decrease somewhat.
[0038]
[Table 2]
Figure 0004573146
[0039]
[Example 2]
In the same cordierite powder as in Example 1, No. 1 in Table 1 was used. 13-14 As a pigment powder of Fe 2 O 3 -Cr 2 O 3 -CoO system, in addition, the mixed powder was zircon powder addition, in the same manner as in Example 1., to obtain a sintered body .
Also, as shown in Table 2, the sintered body exhibited a color close to black, and a sintered body having a substantially zero thermal expansion coefficient at room temperature could be produced. Further, only the pigment was added to the cordierite powder. Compared with the case of adding, the value obtained by dividing the Young's modulus by the bulk specific gravity could be increased.
[0040]
[Example 3]
No. in Table 1 No. 16 is No. The case where 13 sintered bodies were subjected to capsule-free hot isostatic pressing (HIP) in an argon atmosphere of 1000 atm and 1300 ° C. is shown. A sintered body having a relative density of 99.5% or more was obtained by HIP, and the value obtained by dividing the Young's modulus by the bulk specific gravity was also increased.
[0041]
【The invention's effect】
As described above, according to the present invention, a cordierite black dense sintered body having a thermal expansion coefficient very close to zero near room temperature and a relatively large value obtained by dividing Young's modulus by bulk specific gravity is obtained. Because it can be manufactured, it will be possible to provide materials suitable for components of equipment that performs ultra-precision and ultra-fine processing or measurement, with little thermal deformation or dead weight deformation, and almost no light reflection / scattering. .

Claims (11)

コーディエライトを主結晶とし、且つ、黒色系に発色する少なくとも鉄とクロムとコバルトとが含まれるスピネル系結晶を焼結体の1〜10重量%含み、
室温の熱膨張係数が−0.1〜+0.1×10-6/℃で、且つ、ヤング率を嵩比重で割った値(ヤング率/嵩比重)が5×1072/s2以上であることを特徴とするコーディエライト黒色系緻密焼結体。
Cordierite as a main crystal, and containing 1 to 10% by weight of a sintered body of spinel crystal containing at least iron, chromium and cobalt that develops a black color,
The thermal expansion coefficient at room temperature is −0.1 to + 0.1 × 10 −6 / ° C., and the value obtained by dividing the Young's modulus by the bulk specific gravity (Young's modulus / bulk specific gravity) is 5 × 10 7 m 2 / s 2 A cordierite black dense sintered body characterized by the above.
コーディエライトを主結晶とし、且つ、黒色系に発色する少なくとも鉄とクロムとコバルトとが含まれるスピネル系結晶と、ジルコン結晶と、を焼結体の1〜10重量%含み、  Cordierite as a main crystal, and containing 1 to 10% by weight of a sintered body, a spinel crystal containing at least iron, chromium, and cobalt that develops a black color, and a zircon crystal,
室温の熱膨張係数が−0.1〜+0.1×10  Thermal expansion coefficient at room temperature is -0.1 to + 0.1 × 10 -6-6 /℃で、且つ、ヤング率を嵩比重で割った値(ヤング率/嵩比重)が5×10/ ° C and the Young's modulus divided by the bulk specific gravity (Young's modulus / bulk specific gravity) is 5 × 10 77 m 22 /s/ S 22 以上であることを特徴とするコーディエライト黒色系緻密焼結体。A cordierite black dense sintered body characterized by the above.
請求項1または2に記載のコーディエライト緻密焼結体において、前記焼結体の相対密度が94%以上であることを特徴とするコーディエライト黒色系緻密焼結体。The cordierite dense sintered body according to claim 1 or 2 , wherein the sintered compact has a relative density of 94% or more. 請求項1〜3のいずれか1つに記載のコーディエライト緻密焼結体において、前記焼結体の相対密度が99.5%以上であることを特徴とするコーディエライト黒色系緻密焼結体。In cordierite dense sintered body according to any one of claims 1 to 3, cordierite blackish dense sintered relative density of the sintered body is characterized in that 99.5 percent or more body. 請求項1〜4のいずれか1つに記載のコーディエライト緻密焼結体において、前記焼結体が大気中で焼成されてなることを特徴とするコーディエライト黒色系緻密焼結体。  The cordierite dense sintered body according to any one of claims 1 to 4, wherein the sintered body is fired in the air. 請求項1〜5のいずれか1つに記載のコーディエライト緻密焼結体において、前記焼結体がさらに熱間等方圧加圧されてなることを特徴とするコーディエライト緻密焼結体。  The cordierite dense sintered body according to any one of claims 1 to 5, wherein the sintered body is further subjected to hot isostatic pressing. . 請求項1〜6のいずれか1つに記載のコーディエライト緻密焼結体において、前記スピネル系結晶は、ニッケルおよびマンガンの少なくともいずれかをさらに含むこと、を特徴とするコーディエライト黒色系緻密焼結体。  The cordierite dense sintered body according to any one of claims 1 to 6, wherein the spinel crystal further includes at least one of nickel and manganese. Sintered body. 焼結体の熱膨張係数が室温で負の値を持つコーディエライト粉末に、熱膨張係数が室温で正の値を持ち、黒色系に発色する少なくとも鉄とクロムとコバルトとを含むスピネル系結晶の粉末を1〜10重量%、または、焼成されることで少なくとも鉄とクロムとコバルトとを含むスピネル系結晶となる少なくとも鉄の酸化物粉末とクロムの酸化物粉末とコバルトの酸化物粉末とを合わせて1〜10重量%混合し、焼結体の熱膨張係数が室温で−0.1〜+0.1×10-6/℃になるように調節し、且つ、焼結体の相対密度が94%以上になるよう焼成温度を調節して焼成することを特徴とするコーディエライト黒色系緻密焼結体の製造方法。Cordierite powder having a negative value of thermal expansion coefficient at room temperature of the sintered body, the thermal expansion coefficient of Chi lifting a positive value at room temperature, spinel containing at least iron, chromium, cobalt coloring in blackish 1 to 10% by weight of a crystal powder , or at least an iron oxide powder, a chromium oxide powder, and a cobalt oxide powder that are fired to form a spinel crystal containing at least iron, chromium, and cobalt. Are mixed so that the thermal expansion coefficient of the sintered body is −0.1 to + 0.1 × 10 −6 / ° C. at room temperature, and the relative density of the sintered body is adjusted. A method for producing a cordierite black-based dense sintered body, characterized in that firing is carried out by adjusting a firing temperature so as to be 94% or more. 焼結体の熱膨張係数が室温で負の値を持つコーディエライト粉末に、熱膨張係数が室温で正の値を持ち、黒色系に発色する少なくとも鉄とクロムとコバルトとを含むスピネル系結晶の粉末と、ジルコン粉末と、を合わせて1〜10重量%、または、焼成されることで少なくとも鉄とクロムとコバルトとを含むスピネル系結晶となる少なくとも鉄の酸化物粉末とクロムの酸化物粉末とコバルトの酸化物粉末と、ジルコン粉末と、を合わせて1〜10重量%混合し、焼結体の熱膨張係数が室温で−0.1〜+0.1×10  A spinel crystal containing at least iron, chromium and cobalt, which has a negative thermal expansion coefficient at room temperature and a black color, and cordierite powder having a negative thermal expansion coefficient at room temperature. 1 to 10% by weight of the powder and the zircon powder, or at least an iron oxide powder and a chromium oxide powder that are fired to form a spinel crystal containing at least iron, chromium, and cobalt. And the oxide powder of cobalt and the zircon powder are mixed in an amount of 1 to 10% by weight, and the thermal expansion coefficient of the sintered body is −0.1 to + 0.1 × 10 at room temperature. -6-6 /℃になるように調節し、且つ、焼結体の相対密度が94%以上になるよう焼成温度を調節して焼成することを特徴とするコーディエライト黒色系緻密焼結体の製造方法。A method for producing a cordierite black-based dense sintered body, characterized by adjusting the firing temperature so that the relative density of the sintered body is 94% or higher. 請求項8または9に記載のコーディエライト黒色系緻密焼結体の製造方法において、前記焼結体を大気中で焼成することを特徴とするコーディエライト黒色系緻密焼結体の製造方法。  10. The method for producing a cordierite black dense sintered body according to claim 8, wherein the sintered body is fired in the air. 請求項8〜10のいずれか1つに記載のコーディエライト緻密焼結体を、焼結体の相対密度が99.5%以上になるように、温度、圧力を調節して熱間等方圧加圧することを特徴とするコーディエライト緻密焼結体の製造方法。The cordierite dense sintered body according to any one of claims 8 to 10 , wherein the temperature and pressure are adjusted so that the relative density of the sintered body is 99.5% or more, and hot isotropy is performed. A method for producing a cordierite dense sintered body, characterized by pressurizing and pressing.
JP2000113715A 2000-04-14 2000-04-14 Cordierite black-based dense sintered body and manufacturing method thereof Expired - Fee Related JP4573146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113715A JP4573146B2 (en) 2000-04-14 2000-04-14 Cordierite black-based dense sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113715A JP4573146B2 (en) 2000-04-14 2000-04-14 Cordierite black-based dense sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001302341A JP2001302341A (en) 2001-10-31
JP4573146B2 true JP4573146B2 (en) 2010-11-04

Family

ID=18625635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113715A Expired - Fee Related JP4573146B2 (en) 2000-04-14 2000-04-14 Cordierite black-based dense sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4573146B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568979B2 (en) * 1999-09-17 2010-10-27 Toto株式会社 Cordierite dense sintered body and manufacturing method thereof
JP2002167267A (en) * 2000-11-28 2002-06-11 Kyocera Corp Low thermal expansion ceramic and method of manufacturing it
KR100719185B1 (en) * 2002-01-31 2007-05-16 엔지케이 스파크 플러그 캄파니 리미티드 Ceramic sintered body and process for producing the same
JP5019704B2 (en) * 2004-10-27 2012-09-05 京セラ株式会社 Ceramic sintered body and method for producing the same
JP4707591B2 (en) * 2005-09-26 2011-06-22 京セラ株式会社 Black ceramic sintered body, optical analysis cell using the same, and semiconductor / liquid crystal manufacturing apparatus member
US8052856B2 (en) 2006-12-26 2011-11-08 Kyocera Corporation Support for capillaries, case for constraining capillaries including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019540A (en) * 1999-06-29 2001-01-23 Nippon Steel Corp Black ceramic sintered body with low thermal expansion and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178038A (en) * 1985-02-04 1986-08-09 Ngk Insulators Ltd Purification catalyst carrier for combustion machinery
JPH11343168A (en) * 1998-05-29 1999-12-14 Kyocera Corp Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4139020B2 (en) * 1999-10-07 2008-08-27 京セラ株式会社 Capillary for wire bonding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019540A (en) * 1999-06-29 2001-01-23 Nippon Steel Corp Black ceramic sintered body with low thermal expansion and its production

Also Published As

Publication number Publication date
JP2001302341A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3133302B2 (en) Black low thermal expansion ceramics sintered body and method for producing the same
WO2012053312A1 (en) Cordierite sintered body
JPS61197464A (en) Manufacture of sintered formed body
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP4904465B2 (en) Ceramic optical component and manufacturing method thereof
EP2679562B1 (en) Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP4573146B2 (en) Cordierite black-based dense sintered body and manufacturing method thereof
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP5019380B2 (en) Translucent yttrium oxide aluminum garnet sintered body and manufacturing method thereof.
JP4568979B2 (en) Cordierite dense sintered body and manufacturing method thereof
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
JPH0725662A (en) Aluminum titanate ceramic powder and production of sintered product therefrom
JPH0987008A (en) Aluminous sintered compact and its production
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JP3873621B2 (en) Rod lens
JPH10188677A (en) Dielectric porcelain composition and dielectric resonator
JP2549976B2 (en) Heat-resistant mullite sintered body
JP3127514B2 (en) Furnace material for ceramic firing
JP3121996B2 (en) Alumina sintered body
JP3704424B2 (en) Dielectric material
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2001122661A (en) Sintered compact for thermistor and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees