JP4570232B2 - Plasma display protective film forming apparatus and protective film forming method - Google Patents

Plasma display protective film forming apparatus and protective film forming method Download PDF

Info

Publication number
JP4570232B2
JP4570232B2 JP2000321408A JP2000321408A JP4570232B2 JP 4570232 B2 JP4570232 B2 JP 4570232B2 JP 2000321408 A JP2000321408 A JP 2000321408A JP 2000321408 A JP2000321408 A JP 2000321408A JP 4570232 B2 JP4570232 B2 JP 4570232B2
Authority
JP
Japan
Prior art keywords
substrate
protective film
film forming
vapor deposition
plasma display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000321408A
Other languages
Japanese (ja)
Other versions
JP2002129311A (en
Inventor
倉内  利春
宗人 箱守
一也 内田
行男 増田
俊弘 岡田
裕人 池田
雄一 織井
栄一 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000321408A priority Critical patent/JP4570232B2/en
Priority to TW090125821A priority patent/TW550304B/en
Priority to CNB011370432A priority patent/CN1271241C/en
Priority to KR1020010064594A priority patent/KR100544407B1/en
Publication of JP2002129311A publication Critical patent/JP2002129311A/en
Application granted granted Critical
Publication of JP4570232B2 publication Critical patent/JP4570232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MgO膜等のプラズマディスプレイ用保護膜形成装置に関するものである。
【0002】
【従来の技術】
近年、大画面の壁掛けテレビ等の実用化に向け、プラズマディスプレイパネル(PDP)が注目を集めているが、このパネル用として、ガラス製の基板上に保護膜としてMgO成膜を形成することが行われている。また、このプラズマディスプレイパネルの成膜に限らず、基板上に皮膜を形成させることは、種々の分野に適用されている。この成膜には真空蒸着装置が用いられるが、その成膜作業を連続的に行うためには通常インライン式のものが使用される。
図7に従来一般に使用されている保護膜形成装置の蒸着室の概念図を示す。蒸着室1内において、基板4は搬送機構5にセットされ、さらにその上部に設置されたヒーターパネル6によって加熱されながら水平方向に移動する。一方、基板4の表面に蒸着されるMgOは、図8に示すように、2台の回転するリングハース3に充填され、同じく2台のピアス式電子ビーム(EB)ガン2から電子ビーム7をリングハース3上のMgOに照射し、基板の搬送方向に対して直角方向に1列に並んだ4箇所からMgOを蒸発させ、基板4上に蒸着・堆積する。例えば約1m×1.5mの大面積の基板4にMgO保護膜を形成させている。また、このとき基板4の下方にはMgOの入射角θを制限して、保護膜の膜質を維持するために開口制限板8を設置している。
ところで、MgOは昇華性の材料であるため、局所的に加熱すると、スプラッシュが発生し易い。そのため、スプラッシュなしに高い成膜レートを得るためには、電子ビームをスイープさせ、蒸発面積を広くし、高出力の電子ビームを投入しなければならない。
その結果、蒸発源からの輻射熱により、蒸着中に基板温度が大きく上昇し、しかも基板の面内で大きな温度分布が発生し、その結果ガラス製の基板が割れる問題が多発した。また、スプラッシュの発生と上記基板割れの問題により、生産可能な成膜レートは2500Å/minが限界であった。
図10は、上記の従来装置により、基板加熱温度200℃、成膜レート2500Å/minにおいて、厚さ7000ÅのMgO膜を形成させた場合の温度測定結果を示すものである。また図9は基板温度の測定位置を示す説明図である。図9において、5は搬送装置のキャリアで、ホルダー9により基板4を保持している。AおよびBは基板温度の測定位置である。なお10は盲板である。このような位置における測定の結果、図10に示すように、測定位置A−B間で最大80℃の温度差が発生していることが分かった。
【0003】
【発明が解決しようとする課題】
本発明は、蒸発ポイントを、基板の搬送方向に対し、直角方向に複数列配置すること、また、基板を加熱するヒーターを複数個分割して設けるとともに、各ヒーターに加熱温度設定用制御手段を個別に設けたこと、さらに、成膜ゾーンを限定するための開口制御板に冷却機構を設けたことにより、成膜時における基板の温度上昇の低減と、基板の温度分布の差を少なくでき、大面積基板に均一に成膜するとともに、温度上昇による基板の割れを防止し、従来装置における問題点を解消を図ったものである。
【0004】
【課題を解決するための手段】
請求項1記載の本発明のプラズマディスプレイ保護膜形成装置は、基板上に保護膜を形成する成膜室内に、基板搬送機構、該基板を加熱するヒーター、蒸着材料を充填したリングハース、前記リングハースに充填した蒸着材料に電子ビームを照射して蒸着材料を蒸発させ、基板上に蒸着させる電子ビームガンをそれぞれ設けた保護膜形成装置において、前記リングハースによる蒸発ポイントを基板の搬送方向に対して直角方向に複数列配置したことを特徴とする。
請求項2記載の本発明は、請求項1記載のプラズマディスプレイ保護膜形成装置において、基板を加熱するヒーターを複数個分割して設けるとともに、前記各ヒーターに加熱温度設定用制御手段を個別に設けたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載のプラズマディスプレイ保護膜形成装置において、成膜ゾーンを限定するための開口制御板に冷却機構を設けたことを特徴とする。
請求項4記載の本発明のプラズマディスプレイ保護膜形成方法は、基板を搬送しつつ成膜するに際し、基板の搬送方向に対し、直角方向に蒸発ポイントを複数列配置することにより、高成膜レートで均一に成膜させるようにしたことを特徴とする。
【0005】
【発明の実施の形態】
本発明の第1の実施の形態は、蒸着材料を充填したリングハースおよびリングハースに充填した蒸発材料に電子ビームを照射する電子ビームガンにより形成される蒸発ポイントを、基板の搬送方向に対し、直角方向に複数列配置したものである。その結果、大面積の基板に対して均一に成膜することが可能である。
【0006】
本発明の第2の実施の形態は,基板を加熱するヒーターを複数個分割して設け、かつ該ヒーターに加熱温度設定用制御手段を個別に設けたものである。その結果、成膜時における基板への入熱量の均一化を図り、基板の割れを防止することができる。
【0007】
本発明の第3の実施の形態は,成膜ゾーンを限定するための開口制御板に冷却機構を設けたものである。その結果、成膜時における基板の温度の上昇を低減することができる。
【0008】
本発明の第4の実施の形態は,基板を搬送しつつ成膜するに際し、基板の搬送方向に対し、直角方向に蒸発ポイントを複数列配置することにより、高成膜レートで均一に成膜させるようにしたプラズマディスプレイ保護膜形成方法である。
【0009】
【実施例】
(実施例1)
以下、図面により本発明の一実施例を説明する。既に従来例で説明した構成については同一符号を付してその説明の一部を省略する。図1および図2は本発明のMgO蒸着装置における電子ビームガンとリングハースの配置の一例を示す説明図で、図1は、蒸着室1に電子ビームガン2とリングハース3をそれぞれ4台設けた場合を示すものである。同図に示すように、本実施例は、リングハース3を基板の搬送方向に対して直角方向に2台づつ2列に配置している。また各列が4つの蒸発ポイントとなるように、各リングハース3は2つの蒸発ポイントを持つ。また、図2は、電子ビームガン2とリングハース3をそれぞれ2台設けた場合を示すものである。同図に示すように、本実施例は、2台のリングハース3を基板の搬送方向に対して直角方向に1列に配置し、各リングハース3には、4つの蒸発ポイントを基板の搬送方向に対して直角方向に2つづつ2列に形成している。その結果、基板の搬送方向に対して直角方向に4つづつ2列の蒸発ポイントを持つ。図3は本発明のMgO蒸着装置の概念図である。図3に示すように、前記の蒸着室1の内部には、下方にモーター等の駆動機構(図示せず)により回転するリングハース3が設けられており、側面には、電子ビームを放出する電子ビームガン2が設置されている。また、リングハース3の上方には、成膜されるガラス等の材料からなる基板4を保持した搬送機構のキャリア5が水平方向に移動可能に配置され、所定速度で基板4を搬送するように配置されている。
【0010】
上記構成において、基板4上に真空蒸着を行い、成膜を形成させるには、基板4を搬送機構のキャリア5にセットし、基板4の上方に分割設置されたヒーターパネル6によって基板4を加熱しながら水平方向に移動させる。なおそれぞれのヒーターパネル6は、独立に温度制御可能なように構成されている。一方、蒸着室1内に設けた前記4台のリングハース3を回転させつつ、蒸着室1の側壁に設けた4台の電子ビームガン2から前記リングハース3に充填したMgO等の蒸発材料の2箇所(図1参照)あるいは4箇所(図2参照)の蒸発ポイントに対して、基板の搬送方向に直角方向に電子ビーム7を照射すると、前記MgO等の蒸発材料は蒸発・飛散し、基板4上に蒸着・堆積して保護膜が形成される。このとき、基板4は、前記のように、分割設置されたヒーター6により加熱されるが、それぞれのヒーター6ごとに設けた温度制御手段により加熱温度を独立に制御することができるので、基板4における極端な温度分布差の発生を防止することができる。なお、開口制御板8は、基板4に対するMgOの入射角θを制限し、保護膜の膜質を維持するものである。
【0011】
図4は、上記装置により、基板加熱温度200℃において、厚さ7000ÅのMgO膜を基板上に形成させた場合の温度測定結果を示す。図4において、曲線AおよびBは、図9に示した測定点AおよびBにおける基板の温度と蒸着時間との関係を示すものであるが、この測定値から明らかなように、各測定点において蒸着が開始されるまでの温度上昇 (ΔT)と、各測定点の温度上昇 (ΔT)による測定点A−B間の温度差が最大でも45℃まで低減され、その結果、基板割れの危険性を大幅に低減することが可能となった。また、成膜レートについては、スプラッシュの発生なしに、従来装置の2倍の5000Å/minが得られ、生産性が2倍に向上した。
【0012】
(実施例2)
図5は、蒸着室1内に分割したヒーターパネル6を設置し、また、基板4の下方に水冷開口制限板8を取り付けた装置を示すものである。基板4に保護膜を形成させるための蒸着の態様は上記実施例1の場合と同様であるため同一符号を付して説明を省略する。図6は、本実施例における基板の温度と蒸着時間との関係を示すものである。基板温度の測定条件は実施例1の場合と同じであったが、リングハース3の直上のヒーターパネル6の設定温度を他のヒーターより50℃低く設定することにより、各測定点の温度上昇 (ΔT)をさらに低減することができた。また、水冷開口制限板8を用いて基板4の温度上昇を防止することにより、各測定点において蒸着が開始されるまでの温度上昇 (ΔT)が極めて小さくなった。ここで、水冷開口制限板8には、直接堆積膜が付着しないように防着カバー8’が設けられている。
【0013】
なお、上記の各実施例においては、電子ビームによる蒸着の場合についてのみ説明したが、本発明は、プラズマガンを用いた蒸着やホローカソードガンを用いた反応性蒸着にも適用することが可能である。また、MgO以外の成膜にも適用可能である。
【0014】
【発明の効果】
以上説明したように、本発明においては、蒸着室内の基板の搬送方向に対して直角方向に複数列の蒸発ポイントを設置することにより、成膜ゾーンを広くすることができ、また基板面内の温度分布の差を小さくすることができる。その結果、基板の搬送速度を高くすることができ、しかも、熱による基板の割れの機会を減少することができ、生産性を大幅に向上することができる。
また、蒸発室に分割したヒーターを設置して、独立に温度制御を行い、かつ、水冷された開口制限板を設置したので、基板に対する入熱量を制御して、その温度上昇を更に低減することができる。
さらに、基板に対する蒸着材料の入射角を制限するために、リングハースと基板との間に設置している開口制限板を、水冷等適宜の手段を用いて冷却することにより、成膜時における基板の温度上昇を防止することができ、基板の割れの機会を少なくすることができる。
【図面の簡単な説明】
【図1】本発明における電子ガンとリングハースの構成の実例を示す説明図
【図2】本発明における電子ガンとリングハースの構成の他の実例を示す説明図
【図3】本発明の保護膜形成装置の実例を示す概念図
【図4】本発明における基板温度と時間との測定結果を示す特性図
【図5】本発明の保護膜形成装置の他の実例を示す説明図
【図6】本発明における基板温度と時間との測定結果を示す特性図
【図7】従来の保護膜形成装置の実例を示す概念図
【図8】従来の保護膜形成装置における電子ガンとリングハースの構成の実例を示す説明図
【図9】基板温度と時間との測定位置を示す説明図
【図10】従来の保護膜形成装置における基板温度と時間との測定結果を示す特性図
【符号の説明】
1 蒸着室
2 電子ビームガン
3 リングハース
4 基板
5 搬送機構
6 ヒーター
7 電子ビーム
8 開口制限板
9 ホルダー
10 盲板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protective film forming apparatus for a plasma display such as an MgO film.
[0002]
[Prior art]
In recent years, plasma display panels (PDPs) have attracted attention for the practical application of large-screen wall-mounted televisions, etc. For this panel, it is possible to form a MgO film as a protective film on a glass substrate. Has been done. Further, not only the film formation of the plasma display panel but also the formation of a film on the substrate is applied in various fields. A vacuum vapor deposition apparatus is used for this film formation, but an in-line type is usually used in order to perform the film forming operation continuously.
FIG. 7 shows a conceptual diagram of a vapor deposition chamber of a protective film forming apparatus generally used conventionally. In the vapor deposition chamber 1, the substrate 4 is set in the transport mechanism 5 and further moved in the horizontal direction while being heated by the heater panel 6 installed on the upper portion thereof. On the other hand, MgO deposited on the surface of the substrate 4 is filled in two rotating ring hearts 3 as shown in FIG. 8, and the electron beam 7 is similarly emitted from two pierce-type electron beam (EB) guns 2. The MgO on the ring hearth 3 is irradiated to evaporate MgO from four places arranged in a line in a direction perpendicular to the substrate transport direction, and is vapor deposited and deposited on the substrate 4. For example, the MgO protective film is formed on the substrate 4 having a large area of about 1 m × 1.5 m. At this time, an opening limiting plate 8 is provided below the substrate 4 in order to limit the incident angle θ of MgO and maintain the quality of the protective film.
By the way, since MgO is a sublimable material, splashing is likely to occur when locally heated. Therefore, in order to obtain a high deposition rate without splashing, it is necessary to sweep the electron beam, widen the evaporation area, and to input a high-power electron beam.
As a result, due to the radiant heat from the evaporation source, the substrate temperature greatly increased during vapor deposition, and a large temperature distribution occurred in the plane of the substrate, resulting in frequent problems of breaking the glass substrate. Further, due to the occurrence of splash and the above-mentioned problem of substrate cracking, the film forming rate that can be produced was limited to 2500 kg / min.
FIG. 10 shows the temperature measurement results when an MgO film having a thickness of 7000 mm is formed by the above-described conventional apparatus at a substrate heating temperature of 200 ° C. and a film formation rate of 2500 mm / min. FIG. 9 is an explanatory diagram showing the measurement position of the substrate temperature. In FIG. 9, reference numeral 5 denotes a carrier of the transfer device, which holds the substrate 4 by the holder 9. A and B are measurement positions of the substrate temperature. In addition, 10 is a blind board. As a result of the measurement at such a position, it was found that a temperature difference of a maximum of 80 ° C. occurred between the measurement positions AB as shown in FIG.
[0003]
[Problems to be solved by the invention]
In the present invention, evaporation points are arranged in a plurality of rows in a direction perpendicular to the substrate transport direction, and a plurality of heaters for heating the substrate are provided, and heating temperature setting control means is provided for each heater. By providing the cooling mechanism on the opening control plate for limiting the film formation zone individually and reducing the temperature rise of the substrate during film formation, the difference in the temperature distribution of the substrate can be reduced, In addition to uniformly forming a film on a large area substrate, the substrate is prevented from cracking due to a temperature rise, thereby solving the problems in the conventional apparatus.
[0004]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a plasma display protective film forming apparatus comprising a substrate transport mechanism, a heater for heating the substrate, a ring hearth filled with a deposition material, and the ring in a film forming chamber for forming a protective film on the substrate. In the protective film forming apparatus provided with the electron beam gun for evaporating the evaporation material by irradiating the evaporation material filled in the hearth to evaporate the evaporation material, and evaporating the evaporation material on the substrate, the evaporation point by the ring hearth is set to the transport direction of the substrate A plurality of rows are arranged in a perpendicular direction.
According to a second aspect of the present invention, in the plasma display protective film forming apparatus according to the first aspect, the heater for heating the substrate is divided into a plurality of heaters, and the heating temperature setting control means is individually provided for each heater. It is characterized by that.
According to a third aspect of the present invention, in the plasma display protective film forming apparatus according to the first or second aspect, a cooling mechanism is provided on the opening control plate for limiting the film formation zone.
According to the plasma display protective film forming method of the present invention as set forth in claim 4, when the film is formed while transporting the substrate, a plurality of evaporation points are arranged in a direction perpendicular to the transport direction of the substrate, thereby providing a high film formation rate. The method is characterized in that a uniform film is formed.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment of the present invention, a ring hearth filled with a deposition material and an evaporation point formed by an electron beam gun that irradiates an electron beam onto the evaporation material filled in the ring hearth are perpendicular to the substrate transport direction. A plurality of rows are arranged in the direction. As a result, it is possible to form a film uniformly on a large-area substrate.
[0006]
In the second embodiment of the present invention, a plurality of heaters for heating the substrate are provided in a divided manner, and heating temperature setting control means are individually provided in the heaters. As a result, the amount of heat input to the substrate during film formation can be made uniform, and cracking of the substrate can be prevented.
[0007]
In the third embodiment of the present invention, a cooling mechanism is provided on an opening control plate for limiting the film formation zone. As a result, an increase in the temperature of the substrate during film formation can be reduced.
[0008]
In the fourth embodiment of the present invention, when forming a film while transporting a substrate, a plurality of evaporation points are arranged in a direction perpendicular to the transport direction of the substrate, thereby forming a film uniformly at a high deposition rate. This is a method for forming a protective film for a plasma display.
[0009]
【Example】
Example 1
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The components already described in the conventional example are denoted by the same reference numerals and a part of the description is omitted. 1 and 2 are explanatory views showing an example of the arrangement of electron beam guns and ring hearths in the MgO vapor deposition apparatus of the present invention. FIG. 1 shows the case where four electron beam guns 2 and four ring hearths 3 are provided in the vapor deposition chamber 1 respectively. Is shown. As shown in the figure, in this embodiment, the ring hearths 3 are arranged in two rows, two in a direction perpendicular to the substrate transport direction. Each ring hearth 3 has two evaporation points so that each row has four evaporation points. FIG. 2 shows a case where two electron beam guns 2 and two ring hearths 3 are provided. As shown in the figure, in this embodiment, two ring hearths 3 are arranged in a line perpendicular to the substrate transport direction, and four evaporation points are transported on each ring hearth 3. Two rows are formed in a direction perpendicular to the direction. As a result, there are two rows of evaporation points, four in a direction perpendicular to the substrate transport direction. FIG. 3 is a conceptual diagram of the MgO vapor deposition apparatus of the present invention. As shown in FIG. 3, a ring hearth 3 that is rotated by a drive mechanism (not shown) such as a motor is provided inside the vapor deposition chamber 1 and emits an electron beam on the side surface. An electron beam gun 2 is installed. Above the ring hearth 3, a carrier 5 of a transport mechanism that holds a substrate 4 made of a material such as glass to be deposited is disposed so as to be movable in the horizontal direction so that the substrate 4 is transported at a predetermined speed. Has been placed.
[0010]
In the above configuration, in order to form a film by vacuum deposition on the substrate 4, the substrate 4 is set on the carrier 5 of the transport mechanism, and the substrate 4 is heated by the heater panel 6 that is divided and installed above the substrate 4. While moving horizontally. Each heater panel 6 is configured so that the temperature can be controlled independently. On the other hand, while rotating the four ring hearths 3 provided in the vapor deposition chamber 1, 2 evaporating materials such as MgO filled in the ring hearth 3 from the four electron beam guns 2 provided on the side wall of the vapor deposition chamber 1. When the electron beam 7 is irradiated in a direction perpendicular to the substrate transport direction with respect to the evaporation points at four locations (see FIG. 1) or four locations (see FIG. 2), the evaporation material such as MgO evaporates and scatters. A protective film is formed by vapor deposition and deposition. At this time, as described above, the substrate 4 is heated by the heaters 6 provided in a divided manner. However, since the heating temperature can be independently controlled by the temperature control means provided for each heater 6, the substrate 4 is heated. It is possible to prevent the occurrence of an extreme temperature distribution difference in. The opening control plate 8 limits the incident angle θ of MgO with respect to the substrate 4 and maintains the quality of the protective film.
[0011]
FIG. 4 shows a temperature measurement result when an MgO film having a thickness of 7000 mm is formed on a substrate at a substrate heating temperature of 200 ° C. using the above apparatus. In FIG. 4, curves A and B show the relationship between the substrate temperature and the deposition time at the measurement points A and B shown in FIG. 9, but as is apparent from this measurement value, at each measurement point, The temperature difference between the measurement points A and B due to the temperature rise (ΔT 1 ) until the deposition is started and the temperature rise (ΔT 2 ) at each measurement point is reduced to 45 ° C. at the maximum. It became possible to greatly reduce the risk. In addition, the film formation rate was 5000 Å / min, twice that of the conventional apparatus, without the occurrence of splash, and the productivity was improved twice.
[0012]
(Example 2)
FIG. 5 shows an apparatus in which a heater panel 6 divided in the vapor deposition chamber 1 is installed, and a water-cooling opening limiting plate 8 is attached below the substrate 4. Since the mode of vapor deposition for forming the protective film on the substrate 4 is the same as that in the case of Example 1, the same reference numerals are given and the description thereof is omitted. FIG. 6 shows the relationship between the substrate temperature and the deposition time in this example. The measurement conditions for the substrate temperature were the same as in Example 1, but the temperature at each measurement point increased by setting the set temperature of the heater panel 6 immediately above the ring hearth 3 to 50 ° C. lower than the other heaters ( ΔT 2 ) could be further reduced. Further, by preventing the temperature rise of the substrate 4 using the water-cooled aperture limiting plate 8, the temperature rise (ΔT 2 ) until the deposition is started at each measurement point is extremely small. Here, the water-cooled opening limiting plate 8 is provided with an anti-adhesion cover 8 ′ so that the deposited film does not adhere directly.
[0013]
In each of the above embodiments, only the case of vapor deposition by an electron beam has been described. However, the present invention can also be applied to vapor deposition using a plasma gun or reactive vapor deposition using a hollow cathode gun. is there. Moreover, it is applicable also to film deposition other than MgO.
[0014]
【The invention's effect】
As described above, in the present invention, the deposition zone can be widened by installing a plurality of evaporation points in a direction perpendicular to the direction of transport of the substrate in the vapor deposition chamber. The difference in temperature distribution can be reduced. As a result, the substrate transport speed can be increased, and the chances of cracking of the substrate due to heat can be reduced, so that productivity can be greatly improved.
Also, a heater divided into the evaporation chamber is installed, temperature control is performed independently, and a water-cooled opening restriction plate is installed, so the amount of heat input to the substrate is controlled to further reduce the temperature rise. Can do.
Furthermore, in order to limit the incident angle of the vapor deposition material with respect to the substrate, the aperture limiting plate installed between the ring hearth and the substrate is cooled using an appropriate means such as water cooling, so that the substrate at the time of film formation Temperature increase of the substrate can be prevented, and the chance of cracking the substrate can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of the configuration of an electron gun and a ring hearth in the present invention. FIG. 2 is an explanatory diagram showing another example of the configuration of an electron gun and a ring hearth in the present invention. FIG. 4 is a characteristic diagram showing measurement results of substrate temperature and time in the present invention. FIG. 5 is an explanatory diagram showing another example of the protective film forming apparatus of the present invention. FIG. 7 is a characteristic diagram showing measurement results of substrate temperature and time in the present invention. FIG. 7 is a conceptual diagram showing an example of a conventional protective film forming apparatus. FIG. 8 is a configuration of an electron gun and a ring hearth in the conventional protective film forming apparatus. FIG. 9 is an explanatory diagram showing measurement positions of substrate temperature and time. FIG. 10 is a characteristic diagram showing measurement results of substrate temperature and time in a conventional protective film forming apparatus.
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Electron beam gun 3 Ring hearth 4 Substrate 5 Transfer mechanism 6 Heater 7 Electron beam 8 Opening restriction plate 9 Holder 10 Blind plate

Claims (4)

基板上に保護膜を形成する成膜室内に、基板搬送機構、該基板を加熱するヒーター、蒸着材料を充填したリングハース、前記リングハースに充填した蒸着材料に電子ビームを照射して蒸着材料を蒸発させ、基板上に蒸着させる電子ビームガンをそれぞれ設けた保護膜形成装置において、前記リングハースによる蒸発ポイントを基板の搬送方向に対して直角方向に複数列配置したことを特徴とするプラズマディスプレイ保護膜形成装置。In a film formation chamber for forming a protective film on the substrate, a substrate transport mechanism, a heater for heating the substrate, a ring hearth filled with a vapor deposition material, and a vapor deposition material by irradiating the vapor deposition material filled in the ring hearth with an electron beam A protective film forming apparatus provided with an electron beam gun for evaporation and vapor deposition on a substrate, wherein a plurality of rows of evaporation points by the ring hearth are arranged in a direction perpendicular to the substrate transport direction. Forming equipment. 基板を加熱するヒーターを複数個分割して設けるとともに、前記各ヒーターに加熱温度設定用制御手段を個別に設けたことを特徴とする請求項1記載のプラズマディスプレイ保護膜形成装置。2. The plasma display protective film forming apparatus according to claim 1, wherein a plurality of heaters for heating the substrate are provided separately, and a heating temperature setting control means is provided for each heater individually. 成膜ゾーンを限定するための開口制御板に冷却機構を設けたことを特徴とする請求項1又は請求項2に記載のプラズマディスプレイ保護膜形成装置。The plasma display protective film forming apparatus according to claim 1, wherein a cooling mechanism is provided on the opening control plate for limiting the film forming zone. 基板を搬送しつつ成膜するに際し、基板の搬送方向に対し、直角方向に蒸発ポイントを複数列配置することにより、高成膜レートで均一に成膜させるようにしたことを特徴とするプラズマディスプレイ保護膜形成方法。A plasma display characterized in that, when a film is formed while the substrate is being transferred, a plurality of evaporation points are arranged in a direction perpendicular to the substrate transfer direction so that the film is uniformly formed at a high film formation rate. Method for forming protective film.
JP2000321408A 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method Expired - Fee Related JP4570232B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000321408A JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method
TW090125821A TW550304B (en) 2000-10-20 2001-10-18 Apparatus and method of forming protection coating for plasma display
CNB011370432A CN1271241C (en) 2000-10-20 2001-10-19 Apparatus and method for forming protective film on plasma display
KR1020010064594A KR100544407B1 (en) 2000-10-20 2001-10-19 Protective film forming apparatus and protective film forming method for plasma display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321408A JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method

Publications (2)

Publication Number Publication Date
JP2002129311A JP2002129311A (en) 2002-05-09
JP4570232B2 true JP4570232B2 (en) 2010-10-27

Family

ID=18799536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321408A Expired - Fee Related JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method

Country Status (4)

Country Link
JP (1) JP4570232B2 (en)
KR (1) KR100544407B1 (en)
CN (1) CN1271241C (en)
TW (1) TW550304B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698159B (en) * 2003-04-04 2010-08-18 松下电器产业株式会社 Method for manufacturing plasma display panel
RU2401881C2 (en) * 2005-03-18 2010-10-20 Улвак, Инк. Coating method and device, permanent magnet and method of making said magnet
CN100454475C (en) * 2005-03-31 2009-01-21 西安交通大学 Plasma display screen medium protection film forming apparatus with angle control
US7989021B2 (en) * 2005-07-27 2011-08-02 Global Oled Technology Llc Vaporizing material at a uniform rate
WO2008035587A1 (en) * 2006-09-22 2008-03-27 Ulvac, Inc. Vacuum processing system
JP5078903B2 (en) * 2006-10-27 2012-11-21 株式会社アルバック Method and apparatus for manufacturing plasma display panel
JPWO2010032817A1 (en) * 2008-09-19 2012-02-16 株式会社アルバック Method of forming protective film on substrate of plasma display panel and apparatus for forming protective film
JPWO2010038384A1 (en) * 2008-09-30 2012-02-23 キヤノンアネルバ株式会社 Film forming apparatus, film forming method and film manufacturing method using the same
US20120060758A1 (en) * 2011-03-24 2012-03-15 Primestar Solar, Inc. Dynamic system for variable heating or cooling of linearly conveyed substrates
US8247741B2 (en) * 2011-03-24 2012-08-21 Primestar Solar, Inc. Dynamic system for variable heating or cooling of linearly conveyed substrates
JP5734079B2 (en) * 2011-04-28 2015-06-10 株式会社アルバック Electron beam evaporation system
KR102372878B1 (en) * 2019-01-10 2022-03-08 가부시키가이샤 아루박 deposition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176262A (en) * 1996-12-17 1998-06-30 Ulvac Japan Ltd Vapor deposition device
JPH11315370A (en) * 1998-05-07 1999-11-16 Ulvac Corp Ion plating device for forming sublimable metallic compound thin film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213869A (en) * 1998-01-21 1999-08-06 Asahi Glass Co Ltd Method for forming protective film of ac-type plasma display panel, and device thereof
JPH11335820A (en) * 1998-05-20 1999-12-07 Fujitsu Ltd Vapor deposition and vapor deposition device
JP2000001771A (en) * 1998-06-18 2000-01-07 Hitachi Ltd Production of dielectric protective layer and apparatus for production thereof as well as plasma display panel and image display device using the same
JP4197204B2 (en) * 1998-10-23 2008-12-17 キヤノンアネルバ株式会社 Magnesium oxide production equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176262A (en) * 1996-12-17 1998-06-30 Ulvac Japan Ltd Vapor deposition device
JPH11315370A (en) * 1998-05-07 1999-11-16 Ulvac Corp Ion plating device for forming sublimable metallic compound thin film

Also Published As

Publication number Publication date
TW550304B (en) 2003-09-01
KR20020031071A (en) 2002-04-26
KR100544407B1 (en) 2006-01-23
CN1271241C (en) 2006-08-23
JP2002129311A (en) 2002-05-09
CN1351193A (en) 2002-05-29

Similar Documents

Publication Publication Date Title
JP4570232B2 (en) Plasma display protective film forming apparatus and protective film forming method
KR100796148B1 (en) Vertical movement type effusion cell for depositing material and deposition system having it
US9174250B2 (en) Method and apparatus for cleaning organic deposition materials
US8709837B2 (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
JP4685404B2 (en) Organic electroluminescent element vertical vapor deposition method, apparatus thereof, and vapor deposition source used in organic electroluminescent element vertical vapor deposition apparatus
CN212223086U (en) Electron beam evaporation table
JPH11229132A (en) Sputter film forming device and sputter film forming method
JP2004238663A (en) Vapor deposition apparatus
KR101925064B1 (en) Manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
JP4175815B2 (en) Thin film forming equipment
JP3865841B2 (en) Electron beam evaporation system
JPH11335820A (en) Vapor deposition and vapor deposition device
JP4142765B2 (en) Ion plating apparatus for forming sublimable metal compound thin films
JP4156891B2 (en) Thin film forming equipment
JP4242114B2 (en) Formation method of vapor deposition film
JPH06235061A (en) Continuous vacuum deposition device
JP4457809B2 (en) Vacuum deposition system
KR20030047630A (en) Vacuum deposition apparatus and method for improving large area deposition uniformity
JP4128794B2 (en) Film forming apparatus and film forming method
JPH01263265A (en) Vacuum arc deposition method
JPH04191360A (en) Method and device for vapor deposition
JPH1036959A (en) Thin coating forming device
JPH09143723A (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
JPS60183721A (en) Thin film evapolating apparatus
KR20170111780A (en) Multi Source Mixture Ratio Supporting Apparatus for Multi Source Co-Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees