JP4569995B2 - X-ray CT system - Google Patents

X-ray CT system Download PDF

Info

Publication number
JP4569995B2
JP4569995B2 JP2000267867A JP2000267867A JP4569995B2 JP 4569995 B2 JP4569995 B2 JP 4569995B2 JP 2000267867 A JP2000267867 A JP 2000267867A JP 2000267867 A JP2000267867 A JP 2000267867A JP 4569995 B2 JP4569995 B2 JP 4569995B2
Authority
JP
Japan
Prior art keywords
ray
voltage
circuit
scanner
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000267867A
Other languages
Japanese (ja)
Other versions
JP2002065657A (en
JP2002065657A5 (en
Inventor
浩和 飯嶋
拓也 堂本
博司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2000267867A priority Critical patent/JP4569995B2/en
Publication of JP2002065657A publication Critical patent/JP2002065657A/en
Publication of JP2002065657A5 publication Critical patent/JP2002065657A5/ja
Application granted granted Critical
Publication of JP4569995B2 publication Critical patent/JP4569995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検体の診断部位にX線を放射しその透過X線像を検出して断層像を再構成し画像として表示するX線CT装置に関し、特に連続的に回転するスキャナ回転部に電源からX線管側へ電力を供給する手段を備えたものにおいて、上記電力供給手段の保守点検を容易にすると共に信頼性を向上することができるX線CT装置に関する。
【0002】
【従来の技術】
X線CT装置は、X線管から扇状のX線ビームを被検体に照射し、該被検体を透過したX線を前記X線管と対向する位置に配置したX線検出器で検出し、この検出したデータを画像処理して前記被検体の断層像を得るものである。
【0003】
前記X線検出器は、円弧状に配列された数百にも及ぶ検出素子群で構成され、被検体を挟んでX線管に対向して配置されており、検出器素子の数に対応した数の放射状に分布するX線通路を形成し、X線管と検出器が一体となって被検体の周りを少なくとも180度以上回転させて一定の角度ごとに被検体の透過X線を検出する。
【0004】
このX線CT装置において、近年、“短時間で広い範囲のスキャンが可能”、“体軸方向に連続したデータが得られ、これによって三次元画像の生成が可能になる”などの特徴により、ヘリカルスキャンやスパイラルスキャンと呼ばれるら旋CTが急激に普及した。
このら旋CTは、撮影中に積極的に撮影位置を移動させることで広範囲に亘る多層の撮影にかかる時間を大幅に短縮して、三次元のCT撮影を可能としたものである。
【0005】
このような特徴のあるら旋CTは、固定したスキャナ本体が連続回転スキャンを行うと同時に被検体を載置したテーブルを体軸方向に移動させることによって、X線管を被検体に対し相対的にら旋運動をさせる。このように、ら旋スキャンは撮影中、連続回転スキャンと並行して撮影位置も変えているため、全体の撮影時間が短縮される。また、撮影中に体軸方向にも連続走査しているため、三次元データを収集していることになる。
【0006】
このら旋スキャンを実現するためには、スキャナ回転部を連続して回転させる必要があり、そのためにはスキャナ回転部に搭載したX線管に連続して電力を供給するための手段が必要となる。この手段とし、スリップリングとブラシから成る電力供給機構が用いられ、前記スキャナ回転部にX線管と共に該X線管に高電圧(以下、この電圧を管電圧と呼ぶことにする)を印加するための高電圧発生装置などを搭載し、この高電圧発生装置などに前記電力供給機構を介して前記X線管から所要のX線を発生するための電力を供給する。このように、高電圧発生装置はスキャナ回転盤に搭載されて高速に回転されるために、その重量はできるだけ軽い方が望ましい。このため、X線高電圧装置には、前記高電圧発生装置の高電圧変圧器を小型、軽量化でき、かつ管電圧の脈動を小さくできるインバータ式X線高電圧装置が用いられる。
【0007】
しかし、このようなスリップリングとブラシによる電力供給機構による従来のX線CT装置は、スリップリングとブラシの機械的摺接による電力供給方法であるので、前記スリップリングとブラシとの間に大電流が流れることによって、その接触部分に摩耗や腐食が生じるものであった。すなわち、上記スキャナ回転部に搭載されている高電圧変圧器は、出力側に百数十kVもの高電圧を発生させるもので、入力側との絶縁のために内部に十分な絶縁距離を設けてあり、このために数μH〜数十μHの漏れインダクタンスが存在する。また、上記スリップリングとブラシとを介して流れる電流は、最大で約400Aにもなる。このような状態で、上記スキャナ回転部が回転するときにスリップリングとスキャナ固定部に設けたブラシとの間に小さな隙間が生じると、上記漏れインダクタンスの影響で電流は流れ続けようとし、上記隙間にアークが発生して局所的に高温になることがある。そして、この高温によって上記スリップリングやブラシが摩耗したり腐食することがあるので、上記スリップリングの研磨やブラシの交換などの保守点検を定期的に行わなければならず、保守点検に多くの労力と費用とを要するものである。また、この問題は、近年心臓等の動きの激しい臓器の診断を効果的に行うことを目的に、より高速スキャンのX線CT装置が市場から求められていることから、益々深刻になりつつある。
【0008】
そこで、このような問題点に対処する方法として、電源からX線管側へ電力を機械的摺接によらない非接触で供給する電磁誘導作用を利用した方法が特開平7-204192号に開示されている。これは、スキャナ回転部に設けられ電源からX線管側へ電力を供給する手段として、上記インバータ式X線高電圧装置のインバータ回路の出力側に接続されると共にスキャナ回転部の固定枠の周上に第一の巻線を配置し、この第一の巻線に対向して上記スキャナ回転部の回転枠の周上に配置されると共に上記高電圧変圧器の入力側に接続された第二の巻線とを組み合わせて成る電磁誘導送電手段を設けたものである。
【0009】
また、X線検出器から画像処理装置へ検出信号を送る手段として発光素子と受光素子を組み合わせた光通信を利用した非接触伝送手段を用いたX線CT装置について特開平9-313473号に開示されている。
【0010】
これらにより、非接触でX線管に高電圧を供給し、X線検出信号を画像処理装置に伝送することができ、スリップリングとブラシによる機械的摺接による前記電力伝送手段及び信号伝送手段の摩耗や腐食を防止し、保守点検を容易にすると共に、装置全体の信頼性を向上することができる。
【0011】
【発明が解決しようとしている課題】
しかし、上記特開平7-204192号には、X線管のフィラメントを加熱するフィラメント加熱回路や、X線管の陽極を回転駆動するX線管の陽極回転駆動回路などの、X線発生に必要な前記高電圧発生回路以外の前記各種回路への電力供給については言及していない。
このため、前記各種回路への電力供給なしではX線CT装置として機能しないので、この各種回路への電力供給も大きな課題である。
【0012】
この場合、前記各種回路への電力供給に従来と同じスリップリングとブラシの機械的摺接による電力供給方法を用いることが考えられるが、前記各種回路に必要な電力は高電圧発生回路よりも非常に小さいとは言え、数十アンペアの電流が流れるので、この方法でも摩耗や腐食の問題は残る。さらに、上記特開平7-204192号に開示されているX線CT装置の管電圧の制御はスキャナ回転部の固定側のインバータ回路で行う方式であるために、このインバータ回路の出力電圧、すなわちスキャナ回転部の回転側に搭載した高電圧変圧器の一次側に供給される電圧は前記管電圧に応じて変化するので、上記各種回路への電力供給源とすることができない。したがって、上記各種回路に対して個別に電磁誘導送電手段を設ける必要が生じるので、システム全体が一層複雑化し、コスト上昇やサイズ・重量の増加は著しいものとなる。
【0013】
そこで、本発明の目的は、高電圧発生回路だけでなく、該高電圧発生回路以外のX線管のフィラメント加熱回路やX線管の陽極回転駆動回路などのX線発生に必要な回路にも非接触で電力を供給し、電源からX線管側へ電力を供給する電力供給手段の保守点検を容易とすると共に装置全体の信頼性を向上し、高速スキャンに対応可能なX線CT装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的は、X線を放射するX線管と、このX線管から放射されたX線が被検体を透過した透過X線量分布を検出すると共にこの検出信号を増幅するX線検出部と、前記X線管とX線検出部とを対向させて被検体の周りに回転させるスキャナ回転部と、前記X線検出部からの出力信号を処理して診断部位の断層像を再構成する画像処理装置と、この画像処理装置からの出力信号を入力して断層像を表示する画像表示装置とを有するX線CT装置であって、2つ以上の異なる周波数の交流電圧を発生する交流電圧発生手段と、前記2つ以上の異なる周波数の交流電圧を重畳して入力する記スキャナ回転部の固定枠の周上に配置された第一の巻線と前記第一の巻線に対向して前記スキャナ回転部の回転枠の周上に配置された第二の巻線とを組み合わせて成る電磁誘導送電手段と、前記第二の巻線に誘起される2つ以上の異なる周波数の交流電圧を弁別する手段前記弁別された異なる周波数の交流電圧が入力される前記スキャナ回転部に搭載され複数の回路とを備えることによって達成される。
【0015】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて詳細に説明する。
【0016】
図1は本発明によるX線CT装置の第一の実施例を示す全体構成のブロック図である。
このX線CT装置は、被検体の診断部位にX線を放射しその透過X線量分布を検出して断層像を再構成し画像として表示するもので、図1に示すように、直流電源部1と少なくとも2つのインバータ回路210,220と、このインバータ回路210,220の出力側に接続されスキャナ回転部5に電力を非接触で供給する特開平7-204192号に開示されている公知の電磁誘導送電手段3と、直流の高電圧を発生する高電圧発生回路520と、この高電圧発生回路520の出力電圧を印加してX線を放射するX線管560と、このX線管560の陰極フィラメント562を加熱するフィラメント加熱回路530と、前記X線管560の回転陽極563を回転させる陽極回転機構に電力を供給する陽極回転駆動回路510と、さらに前記X線管520から放射され被検体6を透過した透過X線量分布を検出すると共にその検出信号を増幅するX線検出部7と、前記フィラメント加熱回路530,陽極回転駆動回路510,X線検出部7を制御する回路の電源を供給する制御電源回路540を有し、被検体6を挟んで上記X線管560とX線検出部7とを対向させてこれらを前記被検体6の周りに回転させるキャナ回転部5と、スキャナ回転部5に搭載したX線検出部7からの出力信号を光に変換する発光素子703とこの光を電気信号に変換するスキャナ固定部に搭載された受光素子704と、この受光素子704の出力電気信号を処理して診断部位の断層像を再構成する画像処理装置11と、この画像処理装置11からの出力信号を入力して断層像を表示する画像表示装置12とを備えて構成される。
【0017】
上記直流電源部1は、インバータ回路210,220にそれぞれ異なる系統の直流電圧、例えば直流電源部11は200V系の電力を、直流電源部12は100V系の電力を供給するもので、三相あるいは単相の商用の交流電源を入力として所望の直流電圧を発生するコンバータ回路とこのコンバータ回路の出力電圧を平滑するコンデンサにより構成するものや(図示省略)、バッテリでも良い。
【0018】
上記インバータ回路210,220は、上記直流電源1から出力された直流電圧を高周波の交流に変換するもので、この変換された高周波交流電圧を共振インダクタンス211,221,共振コンデンサ212,222および回路のインダクタンスとの共振作用によって発生する高周波の交流電圧を電磁誘導送電手段3の第一の巻線301に入力する。
【0019】
ここで,インバータ回路210の出力側に接続する共振コンデンサ212,共振インダクタンス211,および回路のインダクタンスから成る共振周波数を20kHzとし、インバータ回路220の出力側に接続する共振コンデンサ222,共振インダクタンス221,および回路のインダクタンスから成る共振周波数を100kHzとすると、前記インバータ回路で210,220で直流電源部11および直流電源部12から供給される2系統の直流電圧を20kHzと100kHzの高周波交流電圧に変換し、これらの異なる周波数の交流電圧を重畳して前記電磁誘導送電手段3の第一の巻線301に入力し、該電磁誘導送電手段3の第二の巻線302に誘起される電圧をスキャナ回転部5に搭載されている各種回路に供給する。
【0020】
この電磁誘導送電手段3の第二の巻線302に、高電圧発生回路520と陽極駆動回路510を含むインダクタンス311とコンデンサ312が直列に接続された第一のフィルタ回路と、フィラメント加熱回路530と制御電源回路540を含むインダクタンス321とコンデンサ322が直列に接続された第二のフィルタ回路とを並列に接続し、前記第一のフィルタ回路の共振周波数を20kHzに、前記第二のフィルタ回路の共振周波数を100kHzになるようにインダクタンス311,321及びコンデンサ312,322などの回路定数を設定する。そして、前記第二の巻線302に誘起される20kHzと100kHzの交流電圧を前記フィルタにより弁別し、この弁別された20kHzの交流電圧を高電圧発生回路520と陽極駆動回路510に供給し、100kHzの交流電圧をフィラメント加熱回路530と制御電源回路540に供給する。
【0021】
上記高電圧発生回路520は、弁別された20kHzの交流電圧を直流電圧に変換するコンバータ回路521と、このコンバータ回路521の出力電圧を平滑するコンデンサ522と、この直流電圧を高周波の交流電圧に変換するインバータ回路523と、このインバータ回路523の出力電圧を昇圧する高電圧変圧器524と、この出力電圧を整流して直流の高電圧に変換する高電圧整流器525とから成り、この高電圧整流器525によって変換された直流高電圧をX線管560の陽極と陰極間に印加する。
【0022】
前記X線管560の陽極と陰極間に印加する管電圧の制御は、前記電磁誘導送電手段3の第二の巻線302に誘起する電圧を一定にし、インバータ回路522の周波数や位相制御あるいはこれらとコンバータ回路521の両方の制御により行われる。したがって、前記電磁誘導送電手段3の第一の巻線301に入力する20kHzの交流電圧、すなわち直流電源部11の直流電圧を20kHzの交流電圧に変換するインバータ回路210から出力される電圧は一定とする必要がある。
【0023】
X線管の陽極回転駆動回路510は、X線放射時におけるX線管560の陽極ターゲットの負荷を軽減するために該X線管の陽極回転駆動機構の固定子コイル561に三相交流電圧を供給するための回路で、前記高電圧発生回路520のコンバータ回路521の出力直流電圧を平滑コンデンサ512で平滑してこの電圧をインバータ回路513で設定した周波数の三相交流電圧に変換し、これを前記固定子コイル561に供給して、前記X線管560の陽極を所定の回転数で回転させる。
【0024】
フィラメント加熱回路530は、X線管の陽極と陰極間に電流(以下、この電流を管電流と呼ぶことにする)を流して所要のX線照射量を発生すためのX線管のフィラメントを加熱する回路で、前記第二のフィルタ回路で弁別された100kHzの交流電圧をコンバータ回路531で直流に変換し、これを平滑コンデンサ532で平滑してこの電圧をインバータ回路533で所定周波数の単相交流電圧に変換し、この電圧を加熱トランス535を介してX線管560のフィラメントに印加して該フィラメントを所定の温度に加熱する。制御電源回路540は、高電圧発生回路520,陽極回転駆動回路510,フィラメント加熱回路530及びその他のスキャナ回転部に搭載された各回路の制御回路へ直流電源を供給する回路で、前記第二のフィルタ回路で弁別された100kHzの交流電圧を上整流回路で直流電圧に変換する回路である。
【0025】
X線管560は、前記陽極駆動回路510から出力された交流電圧が供給されて陽極が回転し、前記加熱回路530によってフィラメント562が加熱され、前記高電圧発生回路520からの直流高電圧が印加されて被検体6に向けてX線を放射するものである。
【0026】
そして、この被検体を透過したX線は、X線検出部7へ入射する。このX線検出部7は、上記X線管560から放射され被検体を透過した透過X線量分布を検出すると共にその検出信号を増幅するもので、上記の透過X線量分布を検出する検出器701と、この検出器701からの検出信号を増幅するプリアンプ702とから成る。このX線検出部7で検出し増幅した検出信号は、発光素子703で光に変換され、この光信号をスキャナ固定部に搭載した受光素子704で電気信号に変換し、この変換された電気信号を画像処理装置11に入力して診断部位の断層像を再構成して、この再構成された断層像を画像表示装置12に表示する。
【0027】
図2は本発明によるX線CT装置の第二の実施例を示す全体構成のブロック図である。
この第二の実施例は、図1に示した第一の実施例の変形例で、陽極駆動回路510のインバータ回路513に入力する直流電圧をフィラメント加熱回路530のコンバータ回路531から入力し、高電圧発生回路520を構成しているコンバータ回路521,コンデンサ522,およびインバータ回路523を不要にしたものである。したがって、陽極駆動回路510にはフィラメント加熱回路530のコンバータ回路531の出力電圧が入力されるので、高電圧発生回路520に入力する電圧を一定にする必要がなく、管電圧の制御は、インバータ回路210の周波数や位相を制御して行う。
このような構成にすることにより、図1の第一の実施例よりもスキャナ回転部の搭載物の重量が軽くすることができる。
【0028】
図3に電磁誘導送電手段3の第一の巻線301に異なる周波数の電力を供給する他の実施例を示す。この図3において、2つの変圧器213と223の2次巻線を電磁誘導送電手段3の第一の巻線301に直列に接続し、前記2つの変圧器213,223の一次側にはそれぞれ異なる共振周波数を発生するためのコンデンサ212,222とインダクタンス211,221を用いてこれらのコンデンサとインダクタンスとを共振させることにより、電磁誘導送電手段3に異なる周波数の2系統の電力を重畳して送電することができる。また、上記実施例は,直列共振を用いてインバータ回路210,220の出力を電磁誘導送電手段3の第一の巻線301に入力する例について説明したが、本発明は図4に示すような並列共振を用いる構成でも良い。さらに、本発明は、以下のような様々な実施形態が考えられる。
【0029】
(1)上記実施例のインバータ回路210,220の直流電源部の直流電源は、それぞれのインバータ回路に対応させて二つの直流電源11と12を設ける例をあげたが、これは一つの直流電源から前記インバータ回路210,220に供給する方式でも良い。
【0030】
(2)電磁誘導送電手段3の第二の巻線302から特定の周波数の交流電圧を弁別する手段は、図1,図2に示した構成に限らず、所望の周波数の交流電圧を弁別できる手段であれば、どのような構成でも良い。
【0031】
(3)上記実施例では、2系統の交流電圧を送電する手段の例をあげたが、本発明はこれに限るものではなく、2系統の以上の異なる周波数を送電することも可能である。
【0032】
以上のように本発明の主旨は、スキャナ回転部の固定枠の周上に配置された第一の巻線と前記スキャナ回転部の回転枠の周上に前記第一の巻線に対向して配置された第二の巻線とを組み合わせて成る電磁誘導送電手段により上記電源からX線管側へ電力を供給する手段を備えて成るX線CT装置において、2つ以上の異なる周波数の交流電圧を重畳して前記第一の巻線に入力し、前記第二の巻線に誘起される2つ以上の異なる周波数の交流電圧を弁別して、この弁別した異なる周波数の交流電圧をX線発生に必要な高電圧発生回路を含む前記スキャナ回転部に搭載された各回路に供給可能であれば、上記実施例に限らず、どのような実施形態でも良い。
【0033】
【発明の効果】
以上に説明したように、本発明によれば、スキャナ回転部の固定枠の周上に配置された第一の巻線に2つ以上の異なる周波数の交流電圧を重畳して入力し、前記スキャナ回転部の回転枠の周上に前記第一の巻線に対向して配置された第二の巻線に誘起される2つ以上の異なる周波数の交流電圧を弁別して、この弁別した異なる周波数の交流電圧をX線発生に必要な高電圧発生回路を含む前記スキャナ回転部に搭載された各回路に非接触で供給するようにしたので、スキャナ回転部に搭載された各回路に電力を供給する手段の保守点検が容易になり、かつ信頼性が向上するX線CT装置を提供できる。
【図面の簡単な説明】
【図1】本発明によるX線CT装置の第一の実施例を示す全体構成のブロック図。
【図2】本発明によるX線CT装置の第二の実施例を示す全体構成のブロック図。
【図3】電磁誘導送電手段の第一の巻線に直列共振を用いて異なる二つの周波数の交流電圧を重畳して入力する他の実施例の回路図。
【図4】電磁誘導送電手段の第一の巻線に並列共振を用いて異なる二つの周波数の交流電圧を重畳して入力する実施例の回路図。
【符号の説明】
1,11,12…直流電源部 210,220,513,523,533…インバータ回路 211,221,311,321…共振用インダクタンス 212,222,312,322…共振コンデンサ
3…電磁誘導送電手段 301…第一の巻線 302…第二の巻線 5…スキャナ回転部
510…陽極回転駆動回路 520…高電圧発生回路 530…フィラメント加熱回路
540…制御電源回路 521,531…コンバータ回路 512,522,532…平滑コンデンサ 213,223…変圧器 524…高電圧変圧器 535…加熱変圧器 560…X線管
561…固定子コイル 562…陰極フィラメント 563…回転陽極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray CT apparatus that emits X-rays to a diagnostic region of a subject, detects a transmitted X-ray image thereof, reconstructs a tomographic image, and displays the image as an image, and particularly to a scanner rotating unit that rotates continuously. The present invention relates to an X-ray CT apparatus that includes means for supplying electric power from a power source to the X-ray tube side and that facilitates maintenance and inspection of the electric power supply means and improves reliability.
[0002]
[Prior art]
The X-ray CT apparatus irradiates a subject with a fan-shaped X-ray beam from an X-ray tube, detects X-rays transmitted through the subject with an X-ray detector disposed at a position facing the X-ray tube, The detected data is image-processed to obtain a tomographic image of the subject.
[0003]
The X-ray detector is composed of hundreds of detection element groups arranged in an arc shape, and is arranged to face the X-ray tube with the subject interposed therebetween, corresponding to the number of detector elements. A plurality of radially distributed X-ray passages are formed, and the X-ray tube and the detector are integrated to rotate around the subject by at least 180 degrees to detect transmitted X-rays of the subject at certain angles. .
[0004]
In recent years, this X-ray CT apparatus has features such as “a wide range of scanning is possible in a short time” and “continuous data can be obtained in the body axis direction, thereby enabling generation of a three-dimensional image”. Rotational CT called helical scan or spiral scan has spread rapidly.
In this rotation CT, the time taken for multilayer imaging over a wide range is greatly reduced by actively moving the imaging position during imaging, and three-dimensional CT imaging is possible.
[0005]
The spiral CT having such a feature makes the X-ray tube relative to the subject by moving the table on which the subject is placed in the body axis direction at the same time that the fixed scanner body performs continuous rotational scanning. Make a spiral movement. In this way, the spiral scan changes the shooting position in parallel with the continuous rotation scan during shooting, so that the overall shooting time is shortened. Further, since continuous scanning is also performed in the body axis direction during photographing, three-dimensional data is collected.
[0006]
In order to realize this spiral scanning, it is necessary to continuously rotate the scanner rotating part, and for that purpose, means for continuously supplying power to the X-ray tube mounted on the scanner rotating part is required. Become. As this means, a power supply mechanism consisting of a slip ring and a brush is used, and a high voltage (hereinafter referred to as a tube voltage) is applied to the X-ray tube together with the X-ray tube to the scanner rotating portion. The high voltage generator for mounting is supplied, and the high voltage generator is supplied with electric power for generating required X-rays from the X-ray tube via the power supply mechanism. Thus, since the high voltage generator is mounted on the scanner turntable and rotated at a high speed, it is desirable that the weight be as light as possible. For this reason, an inverter type X-ray high voltage apparatus that can reduce the size and weight of the high voltage transformer of the high voltage generator and reduce the pulsation of the tube voltage is used for the X-ray high voltage apparatus.
[0007]
However, since the conventional X-ray CT apparatus using the power supply mechanism using the slip ring and the brush is a power supply method by mechanical sliding contact between the slip ring and the brush, a large current is generated between the slip ring and the brush. As a result of flowing, wear and corrosion occurred at the contact portion. That is, the high-voltage transformer mounted on the scanner rotating unit generates a high voltage of hundreds of kV on the output side, and has a sufficient insulation distance inside for insulation from the input side. For this reason, a leakage inductance of several μH to several tens μH exists. Further, the current flowing through the slip ring and the brush is about 400 A at the maximum. In this state, if a small gap is generated between the slip ring and the brush provided on the scanner fixing part when the scanner rotating part rotates, current tends to continue to flow due to the influence of the leakage inductance. In some cases, an arc is generated and the temperature is locally increased. Since the slip ring and brush may be worn or corroded by this high temperature, maintenance inspection such as polishing of the slip ring and replacement of the brush must be periodically performed. And cost. In addition, this problem is becoming more serious in recent years because an X-ray CT apparatus for scanning at a higher speed has been demanded from the market for the purpose of effectively diagnosing organs such as the heart that are moving rapidly. .
[0008]
Therefore, as a method of dealing with such problems, a method using electromagnetic induction that supplies power from the power source to the X-ray tube side in a non-contact manner without mechanical sliding contact is disclosed in Japanese Patent Laid-Open No. 7-204192. Has been. This is connected to the output side of the inverter circuit of the inverter type X-ray high-voltage device as a means for supplying power from the power source to the X-ray tube side provided in the scanner rotation unit, and around the fixed frame of the scanner rotation unit. A first winding is disposed on the second winding, and is disposed on the circumference of the rotating frame of the scanner rotating portion so as to face the first winding and connected to the input side of the high-voltage transformer. The electromagnetic induction power transmission means comprising a combination of windings is provided.
[0009]
Japanese Patent Laid-Open No. 9-313473 discloses an X-ray CT apparatus using non-contact transmission means using optical communication combining a light emitting element and a light receiving element as means for sending a detection signal from an X-ray detector to an image processing apparatus. Has been.
[0010]
As a result, a high voltage can be supplied to the X-ray tube in a non-contact manner, and an X-ray detection signal can be transmitted to the image processing apparatus, and the power transmission means and the signal transmission means by mechanical sliding contact with a slip ring and a brush can be transmitted. Wear and corrosion can be prevented, maintenance and inspection can be facilitated, and the reliability of the entire apparatus can be improved.
[0011]
[Problems to be solved by the invention]
However, in the above Japanese Patent Application Laid-Open No. 7-204192, it is necessary for generating X-rays such as a filament heating circuit for heating the filament of the X-ray tube and an anode rotation driving circuit for the X-ray tube for rotating the anode of the X-ray tube. No mention is made of power supply to the various circuits other than the high voltage generating circuit.
For this reason, since it does not function as an X-ray CT apparatus without power supply to the various circuits, power supply to the various circuits is also a big problem.
[0012]
In this case, it is conceivable to use the same power supply method by mechanical sliding contact between the slip ring and the brush for power supply to the various circuits, but the power required for the various circuits is much higher than that of the high voltage generation circuit. Even though it is small, a current of several tens of amperes flows, and this method still has problems of wear and corrosion. Further, since the tube voltage of the X-ray CT apparatus disclosed in the above-mentioned JP-A-7-204192 is controlled by an inverter circuit on the fixed side of the scanner rotation unit, the output voltage of this inverter circuit, that is, the scanner Since the voltage supplied to the primary side of the high-voltage transformer mounted on the rotating side of the rotating unit changes according to the tube voltage, it cannot be used as a power supply source for the various circuits. Therefore, it is necessary to provide electromagnetic induction power transmission means for each of the various circuits. Therefore, the entire system is further complicated, and the cost increase and size / weight increase become significant.
[0013]
Therefore, the object of the present invention is not only to the high voltage generation circuit, but also to circuits necessary for X-ray generation such as filament heating circuit of X-ray tube and anode rotation drive circuit of X-ray tube other than the high voltage generation circuit. An X-ray CT system that can supply power in a non-contact manner, facilitates maintenance and inspection of power supply means that supplies power from the power source to the X-ray tube side, improves the reliability of the entire device, and supports high-speed scanning It is to provide.
[0014]
[Means for Solving the Problems]
The object is to detect an X-ray tube that emits X-rays, an X-ray detector that detects the transmitted X-ray dose distribution through which the X-rays emitted from the X-ray tube pass through the subject, and amplifies the detection signal; A scanner rotation unit that rotates the X-ray tube and the X-ray detection unit so as to face each other, and an image process that reconstructs a tomographic image of a diagnostic region by processing an output signal from the X-ray detection unit apparatus and, an X-ray CT apparatus and an image display device enter to display the tomographic image of the output signal from the image processing apparatus, two or more different frequency AC voltage generation means for generating an AC voltage of When the to face the two or more different frequencies first winding and the first winding disposed in front Symbol scanner rotation unit of the fixed frame of the circumference on which superimposed to the input AC voltage set a second winding disposed on the circumference of the rotary frame of the scanner rotation unit An electromagnetic induction transmission means comprising Te Align, the scanner rotating said means for discriminating an alternating voltage of two or more different frequencies that are induced in the second winding, an AC voltage of the discrimination have been different frequencies are input and a plurality of circuits mounted in part achieved by Rukoto.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
FIG. 1 is a block diagram of an overall configuration showing a first embodiment of an X-ray CT apparatus according to the present invention.
This X-ray CT apparatus emits X-rays to a diagnosis site of a subject, detects the transmitted X-ray dose distribution, reconstructs a tomographic image, and displays it as an image. As shown in FIG. 1 and at least two inverter circuits 210 and 220, and a known electromagnetic wave disclosed in Japanese Patent Laid-Open No. 7-204192, which is connected to the output side of the inverter circuits 210 and 220 and supplies power to the scanner rotating unit 5 in a contactless manner. Inductive power transmission means 3, a high voltage generation circuit 520 that generates a high DC voltage, an X-ray tube 560 that applies an output voltage of the high voltage generation circuit 520 to emit X-rays, and the X-ray tube 560 A filament heating circuit 530 that heats the cathode filament 562, an anode rotation drive circuit 510 that supplies power to an anode rotating mechanism that rotates the rotating anode 563 of the X-ray tube 560, and the X-ray tube 52 The X-ray detector 7 that detects the transmitted X-ray dose distribution emitted from the object 6 and transmitted through the subject 6 and amplifies the detection signal, the filament heating circuit 530, the anode rotation drive circuit 510, and the X-ray detector 7 are controlled. A control unit 540 for supplying power to the circuit, and a canister rotating unit that rotates the X-ray tube 560 and the X-ray detection unit 7 facing each other with the subject 6 interposed therebetween, and rotates them around the subject 6. 5, a light emitting element 703 that converts an output signal from the X-ray detection unit 7 mounted on the scanner rotating unit 5 into light, a light receiving element 704 mounted on a scanner fixing unit that converts this light into an electrical signal, An image processing device 11 that processes an electrical signal output from the element 704 to reconstruct a tomographic image of a diagnostic region, and an image display device 12 that receives an output signal from the image processing device 11 and displays a tomographic image. The Composed.
[0017]
The DC power supply unit 1 supplies DC voltages of different systems to the inverter circuits 210 and 220, for example, the DC power supply unit 11 supplies 200V power and the DC power supply unit 12 supplies 100V power. A converter circuit that generates a desired DC voltage using a single-phase commercial AC power supply as an input and a capacitor that smoothes the output voltage of the converter circuit (not shown) or a battery may be used.
[0018]
The inverter circuits 210 and 220 convert a DC voltage output from the DC power source 1 into a high-frequency AC, and the converted high-frequency AC voltage is converted into resonance inductances 211 and 221, resonance capacitors 212 and 222, and circuit A high-frequency AC voltage generated by a resonance action with the inductance is input to the first winding 301 of the electromagnetic induction power transmission means 3.
[0019]
Here, the resonance frequency composed of the resonance capacitor 212, the resonance inductance 211, and the circuit inductance connected to the output side of the inverter circuit 210 is set to 20 kHz, and the resonance capacitor 222, the resonance inductance 221 and the connection connected to the output side of the inverter circuit 220, and Assuming that the resonance frequency consisting of the inductance of the circuit is 100 kHz, the two DC voltages supplied from the DC power supply unit 11 and the DC power supply unit 12 by the inverter circuit 210 and 220 are converted into high frequency AC voltages of 20 kHz and 100 kHz, These alternating voltages of different frequencies are superimposed and input to the first winding 301 of the electromagnetic induction power transmission means 3, and the voltage induced in the second winding 302 of the electromagnetic induction power transmission means 3 is converted into the scanner rotation unit. 5 is supplied to various circuits mounted on the board.
[0020]
A first filter circuit in which an inductance 311 including a high voltage generation circuit 520 and an anode drive circuit 510 and a capacitor 312 are connected in series to the second winding 302 of the electromagnetic induction power transmission means 3, a filament heating circuit 530, An inductance 321 including a control power supply circuit 540 and a second filter circuit in which a capacitor 322 is connected in series are connected in parallel. The resonance frequency of the first filter circuit is set to 20 kHz, and the resonance of the second filter circuit. Circuit constants such as inductances 311 and 321 and capacitors 312 and 322 are set so that the frequency becomes 100 kHz. Then, the AC voltage of 20 kHz and 100 kHz induced in the second winding 302 is discriminated by the filter, and the discriminated 20 kHz AC voltage is supplied to the high voltage generation circuit 520 and the anode driving circuit 510, and 100 kHz Is supplied to the filament heating circuit 530 and the control power supply circuit 540.
[0021]
The high voltage generation circuit 520 includes a converter circuit 521 that converts the discriminated 20 kHz AC voltage into a DC voltage, a capacitor 522 that smoothes the output voltage of the converter circuit 521, and converts the DC voltage into a high-frequency AC voltage. The inverter circuit 523, the high voltage transformer 524 that boosts the output voltage of the inverter circuit 523, and the high voltage rectifier 525 that rectifies the output voltage and converts it into a DC high voltage. The DC high voltage converted by the above is applied between the anode and the cathode of the X-ray tube 560.
[0022]
The tube voltage applied between the anode and cathode of the X-ray tube 560 is controlled by making the voltage induced in the second winding 302 of the electromagnetic induction power transmission means 3 constant, and controlling the frequency and phase of the inverter circuit 522 or these. And the converter circuit 521. Therefore, the 20 kHz AC voltage input to the first winding 301 of the electromagnetic induction power transmission means 3, that is, the voltage output from the inverter circuit 210 that converts the DC voltage of the DC power supply unit 11 into a 20 kHz AC voltage is constant. There is a need to.
[0023]
The X-ray tube anode rotation drive circuit 510 applies a three-phase AC voltage to the stator coil 561 of the X-ray tube anode rotation drive mechanism in order to reduce the load on the anode target of the X-ray tube 560 during X-ray emission. The output DC voltage of the converter circuit 521 of the high voltage generation circuit 520 is smoothed by a smoothing capacitor 512 and converted into a three-phase AC voltage having a frequency set by an inverter circuit 513. Supplying to the stator coil 561, the anode of the X-ray tube 560 is rotated at a predetermined rotational speed.
[0024]
The filament heating circuit 530 supplies an X-ray tube filament for generating a required X-ray irradiation amount by passing a current (hereinafter referred to as a tube current) between the anode and the cathode of the X-ray tube. In the circuit to be heated, the 100 kHz AC voltage discriminated by the second filter circuit is converted into DC by the converter circuit 531, smoothed by the smoothing capacitor 532, and this voltage is single-phased at a predetermined frequency by the inverter circuit 533. The AC voltage is converted, and this voltage is applied to the filament of the X-ray tube 560 via the heating transformer 535 to heat the filament to a predetermined temperature. The control power supply circuit 540 is a circuit that supplies DC power to the control circuit of each circuit mounted on the high voltage generation circuit 520, the anode rotation drive circuit 510, the filament heating circuit 530, and other scanner rotation units. This is a circuit that converts the 100 kHz AC voltage discriminated by the filter circuit into a DC voltage by the upper rectifier circuit.
[0025]
The X-ray tube 560 is supplied with the AC voltage output from the anode driving circuit 510 and rotates the anode, the filament 562 is heated by the heating circuit 530, and the DC high voltage from the high voltage generating circuit 520 is applied. Then, X-rays are emitted toward the subject 6.
[0026]
Then, the X-ray transmitted through the subject enters the X-ray detection unit 7. The X-ray detector 7 detects the transmitted X-ray dose distribution emitted from the X-ray tube 560 and transmitted through the subject and amplifies the detection signal. The detector 701 detects the transmitted X-ray dose distribution. And a preamplifier 702 that amplifies the detection signal from the detector 701. The detection signal detected and amplified by the X-ray detection unit 7 is converted into light by the light emitting element 703, and the optical signal is converted into an electric signal by the light receiving element 704 mounted on the scanner fixing unit. Is input to the image processing device 11 to reconstruct a tomographic image of the diagnostic region, and the reconstructed tomographic image is displayed on the image display device 12.
[0027]
FIG. 2 is a block diagram of the overall configuration showing a second embodiment of the X-ray CT apparatus according to the present invention.
This second embodiment is a modification of the first embodiment shown in FIG. 1, and a DC voltage input to the inverter circuit 513 of the anode drive circuit 510 is input from the converter circuit 531 of the filament heating circuit 530, and the high voltage is increased. The converter circuit 521, the capacitor 522, and the inverter circuit 523 constituting the voltage generation circuit 520 are unnecessary. Therefore, since the output voltage of the converter circuit 531 of the filament heating circuit 530 is input to the anode driving circuit 510, the voltage input to the high voltage generation circuit 520 does not need to be constant, and the tube voltage is controlled by the inverter circuit. This is done by controlling the frequency and phase of 210.
By adopting such a configuration, it is possible to reduce the weight of the mounted object of the scanner rotation unit as compared with the first embodiment of FIG.
[0028]
FIG. 3 shows another embodiment for supplying power of different frequencies to the first winding 301 of the electromagnetic induction power transmission means 3. In FIG. 3, the secondary windings of the two transformers 213 and 223 are connected in series to the first winding 301 of the electromagnetic induction power transmission means 3, and the primary sides of the two transformers 213 and 223 are respectively connected to the primary winding 301. By using capacitors 212 and 222 for generating different resonance frequencies and inductances 211 and 221 to resonate these capacitors and the inductance, power of two systems having different frequencies is superimposed on the electromagnetic induction power transmission means 3 for power transmission. can do. Moreover, although the said Example demonstrated the example which inputs the output of the inverter circuits 210 and 220 into the 1st coil | winding 301 of the electromagnetic induction power transmission means 3 using series resonance, this invention is as shown in FIG. A configuration using parallel resonance may also be used. Furthermore, various embodiments as described below are conceivable for the present invention.
[0029]
(1) The DC power supply of the DC power supply unit of the inverter circuits 210 and 220 in the above embodiment is an example in which two DC power supplies 11 and 12 are provided corresponding to the respective inverter circuits. The method of supplying to the inverter circuits 210 and 220 may be used.
[0030]
(2) The means for discriminating the AC voltage having a specific frequency from the second winding 302 of the electromagnetic induction power transmission means 3 is not limited to the configuration shown in FIGS. 1 and 2 and can discriminate the AC voltage having a desired frequency. Any configuration is possible as long as it is a means.
[0031]
(3) In the above-described embodiment, an example of means for transmitting two lines of AC voltage has been described. However, the present invention is not limited to this, and it is also possible to transmit two or more different frequencies.
[0032]
As described above, the gist of the present invention is that the first winding disposed on the circumference of the fixed frame of the scanner rotating portion and the first winding on the circumference of the rotating frame of the scanner rotating portion are opposed to the first winding. In an X-ray CT apparatus comprising means for supplying electric power from the power source to the X-ray tube side by electromagnetic induction power transmitting means in combination with a second winding arranged, an AC voltage having two or more different frequencies Is input to the first winding, and AC voltages of two or more different frequencies induced in the second winding are discriminated, and the discriminated AC voltages of different frequencies are generated for X-ray generation. As long as it can be supplied to each circuit mounted on the scanner rotation unit including the necessary high voltage generation circuit, the present invention is not limited to the above example, and any embodiment may be used.
[0033]
【The invention's effect】
As described above, according to the present invention, two or more alternating voltages having different frequencies are superimposed and input to the first winding disposed on the circumference of the fixed frame of the scanner rotating unit, and the scanner Distinguishing two or more alternating voltages of different frequencies induced in the second winding disposed opposite to the first winding on the circumference of the rotating frame of the rotating portion, Since AC voltage is supplied in a non-contact manner to each circuit mounted on the scanner rotation unit including a high voltage generation circuit necessary for X-ray generation, power is supplied to each circuit mounted on the scanner rotation unit. It is possible to provide an X-ray CT apparatus that facilitates maintenance and inspection of the means and improves reliability.
[Brief description of the drawings]
FIG. 1 is a block diagram of an overall configuration showing a first embodiment of an X-ray CT apparatus according to the present invention.
FIG. 2 is a block diagram of an overall configuration showing a second embodiment of the X-ray CT apparatus according to the present invention.
FIG. 3 is a circuit diagram of another embodiment in which AC voltages of two different frequencies are superimposed and input to the first winding of the electromagnetic induction power transmission means using series resonance.
FIG. 4 is a circuit diagram of an embodiment in which AC voltages of two different frequencies are superimposed and input to the first winding of the electromagnetic induction power transmission means using parallel resonance.
[Explanation of symbols]
1, 11, 12 ... DC power supply 210,220,513,523,533 ... Inverter circuit 211,221,311,321 ... Resonance inductance 212,222,312,322 ... Resonance capacitor
3 ... Electromagnetic induction power transmission means 301 ... First winding 302 ... Second winding 5 ... Scanner rotating part
510 ... Anode rotation drive circuit 520 ... High voltage generation circuit 530 ... Filament heating circuit
540 ... Control power supply circuit 521,531 ... Converter circuit 512,522,532 ... Smoothing capacitor 213,223 ... Transformer 524 ... High voltage transformer 535 ... Heating transformer 560 ... X-ray tube
561 ... Stator coil 562 ... Cathode filament 563 ... Rotating anode

Claims (2)

X線を放射するX線管と、このX線管から放射されたX線が被検体を透過した透過X線量分布を検出すると共にこの検出信号を増幅するX線検出部と、前記X線管とX線検出部とを対向させて被検体の周りに回転させるスキャナ回転部と、前記X線検出部からの出力信号を処理して診断部位の断層像を再構成する画像処理装置と、この画像処理装置からの出力信号を入力して断層像を表示する画像表示装置とを有するX線CT装置であって、
2つ以上の異なる周波数の交流電圧を電力として発生する交流電圧発生手段と、前記2つ以上の異なる周波数の交流電圧を重畳して入力する前記スキャナ回転部の固定枠の周上に配置された第一の巻線と、前記第一の巻線に対向して前記スキャナ回転部の回転枠の周上に配置された第二の巻線と、を組み合わせて成る電磁誘導送電手段と、前記第二の巻線に誘起される2つ以上の異なる周波数の交流電圧を弁別する手段と、前記弁別された異なる周波数の交流電圧が入力される前記スキャナ回転部に搭載された複数の回路と、前記スキャナ回転部に搭載した前記X線検出部からの出力信号を光に変換する発光素子と、スキャナ固定部に搭載した前記光を電気信号に変換する受光素子と、を備えることを特徴とするX線CT装置。
An X-ray tube that emits X-rays, an X-ray detector that detects a transmitted X-ray dose distribution in which the X-rays emitted from the X-ray tube pass through the subject and amplifies the detection signal; and the X-ray tube A scanner rotation unit that rotates the X-ray detection unit to face each other, an image processing apparatus that processes an output signal from the X-ray detection unit and reconstructs a tomographic image of a diagnostic region, and An X-ray CT apparatus having an image display device that inputs an output signal from an image processing device and displays a tomogram,
AC voltage generating means for generating AC voltage of two or more different frequencies as power, and arranged on the periphery of the fixed frame of the scanner rotating unit for inputting the AC voltages of two or more different frequencies in a superimposed manner Electromagnetic induction power transmission means comprising a combination of a first winding and a second winding disposed on the circumference of the rotating frame of the scanner rotating portion so as to face the first winding; Means for discriminating two or more alternating voltages of different frequencies induced in two windings; a plurality of circuits mounted on the scanner rotating unit to which the distinguished alternating voltages of different frequencies are input; A light emitting element that converts an output signal from the X-ray detection unit mounted on a scanner rotation unit into light, and a light receiving element that converts the light into an electric signal mounted on a scanner fixing unit. Line CT device.
前記スキャナ回転部に搭載された複数の回路は、コンバータ回路と、平滑コンデンサと、インバータ回路と、を有し、該コンバータ回路の出力電圧を陽極駆動回路に入力すると共に前記X線管のフィラメントを加熱させるフィラメント加熱回路と、前記2つ以上の異なる周波数の交流電圧を発生する交流電圧発生手段のうち、1つの交流電圧発生手段によって、前記X線管に印加する管電圧を制御する高電圧発生回路と、を備えることを特徴とする請求項1記載のX線CT装置。The plurality of circuits mounted on the scanner rotating unit includes a converter circuit, a smoothing capacitor, and an inverter circuit. The output voltage of the converter circuit is input to the anode driving circuit and the filament of the X-ray tube is input. High voltage generation for controlling the tube voltage applied to the X-ray tube by one AC voltage generating means among the filament heating circuit to be heated and the AC voltage generating means for generating the AC voltage of the two or more different frequencies The X-ray CT apparatus according to claim 1, further comprising a circuit.
JP2000267867A 2000-09-05 2000-09-05 X-ray CT system Expired - Fee Related JP4569995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267867A JP4569995B2 (en) 2000-09-05 2000-09-05 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267867A JP4569995B2 (en) 2000-09-05 2000-09-05 X-ray CT system

Publications (3)

Publication Number Publication Date
JP2002065657A JP2002065657A (en) 2002-03-05
JP2002065657A5 JP2002065657A5 (en) 2007-10-18
JP4569995B2 true JP4569995B2 (en) 2010-10-27

Family

ID=18754708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267867A Expired - Fee Related JP4569995B2 (en) 2000-09-05 2000-09-05 X-ray CT system

Country Status (1)

Country Link
JP (1) JP4569995B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696722B2 (en) * 2007-03-30 2010-04-13 General Electric Company Battery powered X-ray detector power system and method
JP5193530B2 (en) 2007-08-29 2013-05-08 株式会社東芝 X-ray CT system
JP2011192410A (en) * 2010-03-12 2011-09-29 Hitachi Medical Corp X-ray high voltage device and x-ray ct device using the same
DE102011005446A1 (en) * 2011-03-11 2012-09-13 Siemens Aktiengesellschaft Circuit arrangement with inverter for powering an X-ray tube and associated method
US9722429B2 (en) 2011-09-30 2017-08-01 Analogic Corporation Power delivery to a moving unit
KR101427555B1 (en) * 2014-05-09 2014-08-07 오준호 X-ray device to reduce the weight and Radiation Exposure
US10034361B2 (en) * 2016-02-15 2018-07-24 Smiths Detection, Llc Line-frequency rotary transformer for computed tomography gantry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204192A (en) * 1994-01-24 1995-08-08 Hitachi Medical Corp X-ray ct system
JPH08126639A (en) * 1994-10-31 1996-05-21 Shimadzu Corp X-ray ct

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271806A (en) * 1985-05-27 1986-12-02 Nippon Denzai Kogyo Kenkyusho:Kk Power transmission control apparatus
JPS63287335A (en) * 1987-05-19 1988-11-24 Toshiba Corp Power transmission device
JPH0734796B2 (en) * 1988-04-16 1995-04-19 株式会社東芝 X-ray CT scanner
JP2902047B2 (en) * 1990-05-11 1999-06-07 株式会社東芝 X-ray CT system
JPH0620845A (en) * 1992-06-30 1994-01-28 Shimadzu Corp Feeding mechanism to rotator
JPH0761350A (en) * 1993-08-26 1995-03-07 Sumitomo Electric Ind Ltd Information transmitting device for non-contact feeding device for moving body
US5600697A (en) * 1995-03-20 1997-02-04 General Electric Company Transmission line using a power combiner for high data rate communication in a computerized tomography system
JPH08336521A (en) * 1995-06-12 1996-12-24 Hitachi Medical Corp X-ray ct system
JPH09326736A (en) * 1996-06-03 1997-12-16 Mitsubishi Electric Corp Secondary side circuit equipment for wireless transmission/reception system and induction coil for wireless transmission/reception system
JP3473455B2 (en) * 1998-11-12 2003-12-02 三菱電機株式会社 Power line communication system for mobile objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204192A (en) * 1994-01-24 1995-08-08 Hitachi Medical Corp X-ray ct system
JPH08126639A (en) * 1994-10-31 1996-05-21 Shimadzu Corp X-ray ct

Also Published As

Publication number Publication date
JP2002065657A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
JP4460958B2 (en) X-ray generator and slip ring for CT system
US7899150B2 (en) Computed tomography device including transmitters for contactless transmission of data and electrical power
US7054411B2 (en) Multichannel contactless power transfer system for a computed tomography system
NL1034519C2 (en) Methods and equipment for scanners with high rotational speed.
US8379797B2 (en) Power management of CT systems
JP5193530B2 (en) X-ray CT system
JP2004103345A (en) X-ray generating device and x-ray ct device using the same
JP4569995B2 (en) X-ray CT system
JP4474009B2 (en) X-ray CT system
JP4643797B2 (en) Transformer with gap, non-contact power supply device using the same, and X-ray CT device
JP3827335B2 (en) X-ray CT system
JP4785126B2 (en) X-ray CT system
JP5910951B2 (en) Method and apparatus for transmitting power to moving parts
JP2001269330A (en) X-ray ct device
JP4526107B2 (en) X-ray CT system
JP4526103B2 (en) X-ray CT system
JP5314692B2 (en) X-ray CT system
JP2002065656A (en) X ray ct device
JP4676810B2 (en) Multi-channel contactless power transmission system for computed tomography system
CN1853563B (en) Multi-channel contactless power transmission system for computer tomograph system
WO2014097951A1 (en) X-ray high-voltage device and x-ray ct device using same
JP5089834B2 (en) X-ray generator and X-ray CT apparatus using the same
JP2003070777A (en) X-ray ct unit
JP2003079608A (en) X-ray ct system
JP4231648B2 (en) X-ray high voltage apparatus and X-ray diagnostic imaging apparatus using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees