JP4569735B2 - Method for producing polymer compound having stable radical - Google Patents

Method for producing polymer compound having stable radical Download PDF

Info

Publication number
JP4569735B2
JP4569735B2 JP2003332174A JP2003332174A JP4569735B2 JP 4569735 B2 JP4569735 B2 JP 4569735B2 JP 2003332174 A JP2003332174 A JP 2003332174A JP 2003332174 A JP2003332174 A JP 2003332174A JP 4569735 B2 JP4569735 B2 JP 4569735B2
Authority
JP
Japan
Prior art keywords
polymer
formula
represented
side chain
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003332174A
Other languages
Japanese (ja)
Other versions
JP2005097409A (en
Inventor
憲司 磯
義和 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003332174A priority Critical patent/JP4569735B2/en
Publication of JP2005097409A publication Critical patent/JP2005097409A/en
Application granted granted Critical
Publication of JP4569735B2 publication Critical patent/JP4569735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は立体障害性ニトロキシルラジカルを側鎖に持つ高分子の製造方法に関する。立体障害性ニトロキシルラジカルを側鎖に持つ高分子は、蓄電デバイス電極材料として有用である。   The present invention relates to a method for producing a polymer having a sterically hindered nitroxyl radical in the side chain. A polymer having a sterically hindered nitroxyl radical in the side chain is useful as an electricity storage device electrode material.

立体障害性ニトロキシルラジカルを側鎖に持つ高分子は安定ラジカルを持つ高分子であり、有機ラジカル電池電極材料として有用である。例えば特許文献1にはポリ(2,2,6,6-テトラメチルピペリジノキシ メタクリレート)、ポリ(2,2,5,5-テトラメチルピロリジノキシ メタクリレート)またはポリ(2,2,5,5-テトラメチルピロリノキシ メタクリレート)を電池正極材料として用いることが提案されている。
これらの立体障害性ニトロキシルラジカルを持つ高分子は、例えば、非特許文献1に記載されたように、対応する立体障害性2級アミン高分子(N−H化合物)を、メタノール溶媒中、過酸化水素水によって酸化し、エーテルを加えて沈殿することにより製造できることが知られている。しかし、この方法では十分なラジカル濃度を得られないばかりか、その後の精製工程において触媒が高分子に混入するといった問題や触媒の再利用が困難といった問題が発生する。水−メタノール−エーテル混合液の処理に多大のコストを要する問題もある。
A polymer having a sterically hindered nitroxyl radical in the side chain is a polymer having a stable radical, and is useful as an organic radical battery electrode material. For example, Patent Document 1 discloses poly (2,2,6,6-tetramethylpiperidinoxy methacrylate), poly (2,2,5,5-tetramethylpyrrolidinoxy methacrylate) or poly (2,2,5 , 5-tetramethylpyrrolinoxy methacrylate) has been proposed as a battery cathode material.
These polymers having a sterically hindered nitroxyl radical are prepared by, for example, reacting a corresponding sterically hindered secondary amine polymer (N—H compound) in methanol solvent as described in Non-Patent Document 1. It is known that it can be produced by oxidizing with hydrogen oxide water and adding ether to precipitate. However, in this method, not only a sufficient radical concentration cannot be obtained, but there are problems that the catalyst is mixed into the polymer in the subsequent purification process and that the catalyst is difficult to reuse. There is also a problem that requires a great deal of cost for the treatment of the water-methanol-ether mixture.

また、特許文献1には酸化剤としてメタクロロ過安息香酸を用いる方法が提案されているが、コストの面、安全性の面から有利とは言い難く、また精製に煩雑な工程を要する。
特開2002-304996号公報 J.Polym. Sci. Polym. Chem. Ed., 10, 3295 (1972)
Patent Document 1 proposes a method using metachloroperbenzoic acid as an oxidizing agent, but it is not advantageous from the viewpoint of cost and safety, and requires complicated steps for purification.
JP 2002-304996 A J. Polym. Sci. Polym. Chem. Ed., 10, 3295 (1972)

本発明は、高いラジカル濃度を持った立体障害性ニトロキシルラジカルを側鎖に持つ高分子を製造し、また簡単な精製で単離提供することを目的とする。   An object of the present invention is to produce a polymer having a sterically hindered nitroxyl radical having a high radical concentration in the side chain, and to provide it by simple purification.

本発明者はかかる現状に鑑み、立体障害性2級アミンを側鎖に持つ高分子(N−H化合物)を過酸化水素水によって酸化して立体障害性ニトロキシルラジカルを側鎖に持つ高分子を得る方法について種々検討を重ねた結果、立体障害性2級アミンを側鎖に持つ高分子を水への溶解度が低く、かつ水と2相系を形成する有機溶媒に溶解させ、水溶性触媒存在下、過酸化水素水と反応させることで十分なラジカル濃度のニトロキシルラジカルを側鎖に持つ高分子を得ることが可能であり、かつ水相を触媒液として再利用できることを見いだし本発明に到達した。   In view of the present situation, the present inventor oxidizes a polymer (N—H compound) having a sterically hindered secondary amine in a side chain with a hydrogen peroxide solution and has a sterically hindered nitroxyl radical in a side chain. As a result of various studies on the method for obtaining a water-soluble catalyst, a polymer having a sterically hindered secondary amine in the side chain is dissolved in an organic solvent having low solubility in water and forming a two-phase system with water. In the present invention, it was found that by reacting with aqueous hydrogen peroxide in the presence, a polymer having a nitroxyl radical having a sufficient radical concentration in the side chain can be obtained and the aqueous phase can be reused as a catalyst solution. Reached.

本発明は、立体障害性環状2級アミン構造を側鎖に持つ高分子を、水への溶解度が低くかつ水と2相系を形成する有機溶媒に溶解し、水溶性酸化触媒を含む触媒液の存在下、過酸化水素によって酸化することを特徴とする、立体障害性ニトロキシルラジカルを側鎖にもつ高分子の製造方法に関する。   The present invention relates to a catalyst solution containing a water-soluble oxidation catalyst in which a polymer having a sterically hindered cyclic secondary amine structure in the side chain is dissolved in an organic solvent having low solubility in water and forming a two-phase system with water. The present invention relates to a method for producing a polymer having a sterically hindered nitroxyl radical in the side chain, which is oxidized with hydrogen peroxide in the presence of.

本発明によれば、高いラジカル濃度を持った安定ラジカルを側鎖に持つ高分子を、過酸化水素を用いて安価に、触媒の混入なく効率よく製造する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing efficiently the polymer which has a stable radical with a high radical concentration in a side chain at low cost using hydrogen peroxide without mixing of a catalyst can be provided.

以下に本発明を詳細に説明する。
本発明は、立体障害性環状2級アミン構造を側鎖に持つ高分子(N−H化合物)を出発原料として、これを過酸化水素水によって酸化することで立体障害性ニトロキシルラジカルを側鎖に持つ高分子を効率よく製造する方法である。
The present invention is described in detail below.
The present invention uses a polymer (N—H compound) having a sterically hindered cyclic secondary amine structure in the side chain as a starting material, and oxidizes this with hydrogen peroxide to thereby convert the sterically hindered nitroxyl radical into the side chain This is a method for efficiently producing a polymer having

主鎖となる高分子は特に制限がなく、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリデセン、ポリドデセン、ポリヘプテン、ポリイソブテン、ポリオクタデセン等のポリアルキレン系高分子;ポリブタジエン、ポリクロロプレン、ポリイソプレン、ポリイソブテン等のジエン系高分子;ポリ(メタ)アクリル酸;ポリ(メタ)アクリル酸;ポリ(メタ)アクリルニトリル;ポリ(メタ)アクリルアミド、ポリメチル(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド等のポリ(メタ)アクリルアミド類高分子;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート類;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系高分子;ポリスチレン、ポリブロモスチレン、ポリクロロスチレン、ポリメチルスチレン等のポリスチレン系高分子;ポリビニルアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルメチルエーテル、ポリビニルカルバゾール、ポリビニルピリジン、ポリビニルピロリドン等のビニル系高分子;ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブテンオキサイドポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビニルエーテル、ポリプロピルビニルエーテル、ポリブチルビニルエーテル、ポリベンジルビニルエーテル等のポリエーテル系高分子;   The main chain polymer is not particularly limited, and examples thereof include polyalkylene polymers such as polyethylene, polypropylene, polybutene, polydecene, polydodecene, polyheptene, polyisobutene, and polyoctadecene; polybutadiene, polychloroprene, polyisoprene, polyisobutene, and the like. Diene polymer; poly (meth) acrylic acid; poly (meth) acrylic acid; poly (meth) acrylonitrile; poly (meth) acrylamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropyl (meth) Poly (meth) acrylamide polymers such as acrylamide; polyalkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate; polyfluorination Fluorine polymers such as nilidene and polytetrafluoroethylene; polystyrene polymers such as polystyrene, polybromostyrene, polychlorostyrene, and polymethylstyrene; polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride, polyvinyl methyl ether, polyvinyl carbazole, Vinyl polymers such as polyvinyl pyridine and polyvinyl pyrrolidone; polyether polymers such as polyethylene oxide, polypropylene oxide, polybutene oxide polyoxymethylene, polyacetaldehyde, polymethyl vinyl ether, polypropyl vinyl ether, polybutyl vinyl ether, polybenzyl vinyl ether;

ポリメチレンスルフィド、ポリエチレンスルフィド、ポリエチレンジスルフィド、ポリプロピレンスルフィド、ポリフェニレンスルフィド、ポリエチレンテトラスルフィド、ポリエチレントリメチレンスルフィド等のポリスルフィド系高分子;ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレンパラフェニレンジアセテート、ポリエチレンイソプロピリデンジベンゾエート等のポリエステル類;ポリトリメチレンエチレンウレタン等のポリウレタン類;ポリエーテルケトン、ポリアリルエーテルケトン類のポリケトン類高分子;ポリオキシイソフタロイル等のポリ無水物系高分子;ポリエチレンアミン、ポリヘキサメチレンアミン、ポリエチレントリメチレンアミン等のポリアミン系高分子;ナイロン、ポリグリシン、ポリアラニン等のポリアミド系高分子;ポリアセチルイミノエチレン、ポリベンゾイルイミノエチレン等のポリイミン系高分子;ポリエステルイミド、ポリエーテルイミド、ポリベンズイミド、ポリピロメルイミド等のポリイミド系高分子;   Polysulfide polymers such as polymethylene sulfide, polyethylene sulfide, polyethylene disulfide, polypropylene sulfide, polyphenylene sulfide, polyethylene tetrasulfide, polyethylene trimethylene sulfide; polyethylene terephthalate, polyethylene adipate, polyethylene isophthalate, polyethylene naphthalate, polyethylene paraphenylene diacetate Polyesters such as polyethylene isopropylidene dibenzoate; polyurethanes such as polytrimethylene ethylene urethane; polyketone polymers such as polyether ketone and polyallyl ether ketone; polyanhydride polymers such as polyoxyisophthaloyl; Polyethyleneamine, polyhexamethyleneamine, polyethylene trimethylene Polyamine polymers such as nylon; Polyamide polymers such as nylon, polyglycine, and polyalanine; Polyimine polymers such as polyacetyliminoethylene and polybenzoyliminoethylene; Polyesterimide, polyetherimide, polybenzimide, poly Polyimide polymers such as pyromelimide;

ポリアリレン、ポリアリレンアルキレン、ポリアリレンアルケニレン、ポリフェノール、フェノール樹脂、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリベンゾキサジン、ポリベンゾキサゾール、ポリカルボラン、ポリジベンゾフラン、ポリオキソイソインドリン、ポリフランテトラカルボキシル酸ジイミド、ポリオキサジアゾール、ポリオキシンドール、ポリフタラジン、ポリフタライド、ポリシアヌレート、ポリイソシアヌレート、ポリピペラジン、ポリピペリジン、ポリピラジノキノキサン、ポリピラゾール、ポリピリダジン、ポリピリジン、ポリピロメリチミン、ポリキノン、ポリピロリジン、ポリキノキサリン、ポリトリアジン、ポリトリアゾール等のポリアロマティック系高分子;セルロース等の多糖類;ポリジシロキサン、ポリジメチルシロキサン等のシロキサン系高分子;ポリシラン系高分子;ポリシラザン系高分子;ポリホスファゼン系高分子;ポリチアジル系高分子;およびポリアセチレン、ポリピロール、ポリアニリン等の共役系高分子を挙げることができる。これら高分子の共重合体も使用できる。   Polyarylene, polyarylene alkylene, polyarylene alkenylene, polyphenol, phenol resin, polybenzimidazole, polybenzothiazole, polybenzoxazine, polybenzoxazole, polycarborane, polydibenzofuran, polyoxoisoindoline, polyfurantetracarboxyl Acid diimide, polyoxadiazole, polyoxindole, polyphthalazine, polyphthalide, polycyanurate, polyisocyanurate, polypiperazine, polypiperidine, polypyrazinoquinoxane, polypyrazole, polypyridazine, polypyridine, polypyromellitimine, polyquinone, Polyaromatic polymers such as polypyrrolidine, polyquinoxaline, polytriazine, and polytriazole; polysaccharides such as cellulose; polydisiloxane Siloxane polymers such as styrene and polydimethylsiloxane; polysilane polymers; polysilazane polymers; polyphosphazene polymers; polythiazyl polymers; and conjugated polymers such as polyacetylene, polypyrrole, and polyaniline. . Copolymers of these polymers can also be used.

特に電気化学的な耐性に優れている点で、ポリアルキレン系高分子、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類高分子、ポリアルキル(メタ)アクリレート、ポリ(メタ)アクリルアミド類高分子、ポリアルキル(メタ)アクリレート類、ポリスチレン系高分子が好ましい。   Polyalkylene polymers, poly (meth) acrylic acid, poly (meth) acrylamide polymers, polyalkyl (meth) acrylates, poly (meth) acrylamide polymers, especially because of their excellent electrochemical resistance Polyalkyl (meth) acrylates and polystyrene polymers are preferred.

高分子と立体障害性環状2級アミン構造または立体障害性ニトロキシルラジカルをつなぐ側鎖の結合基としては、例えば、・CO・、・COO・、・CONR5・(R5は、水素または炭素数1〜18のアルキル基を示す。)、・O・、・S・、置換基を有していてもよい炭素数1〜18のアルキレン基、置換基を有していてもよい炭素数1〜18のアリーレン基、およびこれらの基の2つ以上を結合させたものが挙げられる。   Examples of the side chain linking group that connects the polymer to the sterically hindered cyclic secondary amine structure or sterically hindered nitroxyl radical include: · CO ·, · COO ·, · CONR5 · (R5 is hydrogen or carbon number 1) -O., -S., An optionally substituted alkylene group having 1 to 18 carbon atoms, and optionally having 1 to 18 carbon atoms. And an arylene group having two or more of these groups bonded to each other.

立体障害性環状2級アミン構造は、水素との結合を有しない炭素2個が窒素に隣接した環状のものであり、環員を構成する原子は、炭素,酸素,窒素及び硫黄から選ばれる。環には、アルキル基やハロゲン基,=O基,シアノ基,エステル基等の置換基がついていてもかまわない。
特に好ましい立体障害性環状2級アミン構造としては、式(1)で示される2,2,6,6−テトラメチルピペリジン、式(2)で示される2,2,6,6−テトラメチルピロリジン、または式(3)で示される2,2,6,6−テトラメチルピロリンである。
The sterically hindered cyclic secondary amine structure is a cyclic structure in which two carbons having no bond with hydrogen are adjacent to nitrogen, and the atoms constituting the ring members are selected from carbon, oxygen, nitrogen and sulfur. The ring may have a substituent such as an alkyl group, a halogen group, a ═O group, a cyano group, or an ester group.
Particularly preferred sterically hindered cyclic secondary amine structures include 2,2,6,6-tetramethylpiperidine represented by the formula (1) and 2,2,6,6-tetramethylpyrrolidine represented by the formula (2). Or 2,2,6,6-tetramethylpyrroline represented by the formula (3).

Figure 0004569735
Figure 0004569735

(式(1)〜(3)において、R1、R2、R3およびR4はすべてメチル基を示す。)(In formulas (1) to (3), R1, R2, R3 and R4 all represent a methyl group.)

立体障害性ニトロキシラジカルは、環状のものであり、環員を構成する原子は、炭素,酸素,窒素及び硫黄から選ばれる。環には、アルキル基やハロゲン基,=O基,シアノ基,エステル基等の置換基がついていてもかまわない。
特に好ましい立体障害性ニトロキシルラジカルとしては、式(4)で示される2,2,6,6−テトラメチルピペリジノキシルラジカル、式(5)で示される2,2,6,6−テトラメチルピロリジノキシルラジカル、または式(6)で示される2,2,6,6−テトラメチルピロリノキシルラジカルである。
The sterically hindered nitroxy radical is cyclic, and the atoms constituting the ring members are selected from carbon, oxygen, nitrogen and sulfur. The ring may have a substituent such as an alkyl group, a halogen group, a ═O group, a cyano group, or an ester group.
Particularly preferred sterically hindered nitroxyl radicals are 2,2,6,6-tetramethylpiperidinoxyl radicals represented by formula (4), 2,2,6,6-tetrams represented by formula (5) It is a methylpyrrolidinoxyl radical or a 2,2,6,6-tetramethylpyrrolinoxyl radical represented by the formula (6).

Figure 0004569735
Figure 0004569735

(式(4)〜(6)において、R1、R2、R3およびR4はすべてメチル基を示す。)(In formulas (4) to (6), R1, R2, R3 and R4 all represent a methyl group.)

本発明の代表例は、式(7)で示されるポリ(2,2,6,6−テトラメチルピペリジン メタクリレート)を過酸化水素酸化して、式(9)で示される(2,2,6,6−テトラメチルピペリジノキシ メタクリレート)単位を含む高分子を製造する方法である。
本発明の他の代表例は、式(8)で示されるポリ(2,2,6,6−テトラメチルピペリジン アクリレート)を過酸化水素酸化して、式(10)で示される(2,2,6,6−テトラメチルピペリジノキシ アクリレート)単位を含む高分子を製造する方法である。
In a typical example of the present invention, poly (2,2,6,6-tetramethylpiperidine methacrylate) represented by the formula (7) is oxidized with hydrogen peroxide to obtain (2,2,6) represented by the formula (9). , 6-Tetramethylpiperidinoxymethacrylate) units.
In another representative example of the present invention, poly (2,2,6,6-tetramethylpiperidine acrylate) represented by the formula (8) is oxidized with hydrogen peroxide to produce (2,2) represented by the formula (10). , 6,6-tetramethylpiperidinoxy acrylate) units.

Figure 0004569735
Figure 0004569735

Figure 0004569735
Figure 0004569735

立体障害性環状2級アミン構造を側鎖に持つ高分子として、式(11)または式(12)で表されるモノマー単位を有する共重合体も使用できる。   As a polymer having a sterically hindered cyclic secondary amine structure in the side chain, a copolymer having a monomer unit represented by formula (11) or formula (12) can also be used.

Figure 0004569735
Figure 0004569735

反応に使われる水溶性酸化触媒としては、タングステン酸塩類、酸化バナジウム類、アルカリ土類金属塩類、または亜鉛の塩を使用することができる。タングステン酸塩類としては、例えばタングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、リンタングステン酸リチウム、リンタングステン酸ナトリウム、ケイタングステン酸リチウムおよびケイタングステン酸ナトリウム、酸化バナジウム類としては、例えば一酸化バナジウム、三酸化二バナジウム、二酸化バナジウムおよび五酸化二バナジウム、アルカリ土類金属塩類としては、例えば塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化ストロンチウム、臭化マグネシウム、臭化カルシウム、臭化バリウム、臭化ストロンチウムなどのハロゲン化アルカリ土類金属、硫酸マグネシウム、硫酸カルシウムなどの硫酸アルカリ土類金属、硝酸マグネシウム、硝酸カルシウム、硝酸バリウム、硝酸ストロンチウムなどの硝酸アルカリ土類金属、リン酸マグネシウム、リン酸カルシウム、リン酸バリウム、リン酸ストロンチウムなどのリン酸アルカリ土類金属、亜鉛の塩としては、例えば塩化亜鉛、硫酸亜鉛、硝酸亜鉛、リン酸亜鉛および水酸化亜鉛などを使用することができる。
好ましい水溶性酸化触媒はタングステン酸塩であり、タングステン酸ナトリウム,リンタングステン酸ナトリウム,ケイタングステン酸ナトリウムである。
As the water-soluble oxidation catalyst used in the reaction, tungstates, vanadium oxides, alkaline earth metal salts, or zinc salts can be used. Examples of tungstates include lithium tungstate, sodium tungstate, potassium tungstate, lithium phosphotungstate, sodium phosphotungstate, lithium silicate tungstate and sodium silicate tungstate, and vanadium oxides such as vanadium monoxide, Examples of divanadium trioxide, vanadium dioxide and divanadium pentoxide, and alkaline earth metal salts include magnesium chloride, calcium chloride, barium chloride, strontium chloride, magnesium bromide, calcium bromide, barium bromide, and strontium bromide. Alkaline earth metal halides, magnesium sulfate, calcium sulfate and other alkaline earth metals, magnesium nitrate, calcium nitrate, barium nitrate, strontium nitrate Alkaline earth metal nitrates such as magnesium phosphate, alkaline earth metal phosphates such as magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and zinc salts include, for example, zinc chloride, zinc sulfate, zinc nitrate, zinc phosphate And zinc hydroxide can be used.
A preferred water-soluble oxidation catalyst is tungstate, which is sodium tungstate, sodium phosphotungstate, and sodium silicotungstate.

本発明で水溶性酸化触媒の使用量は特に制限されないが、通常は、酸化される立体障害性環状2級アミン構造を側鎖に持つ高分子に対して0.01〜10重量%、好ましくは0.1〜2重量%であり、使用量が0.01%以下である場合には反応の進行が緩慢となり、また10重量%以上用いても反応速度は改善されない。ただし、本発明の場合、使用する触媒は次の酸化反応へリサイクルすることができるので、使用量に対しての経済性は何ら問題にならない。   In the present invention, the amount of the water-soluble oxidation catalyst used is not particularly limited, but is usually 0.01 to 10% by weight with respect to the polymer having a sterically hindered cyclic secondary amine structure in the side chain to be oxidized, When the amount used is 0.1 to 2% by weight and the amount used is 0.01% or less, the progress of the reaction becomes slow, and the reaction rate is not improved even when 10% by weight or more is used. However, in the case of the present invention, since the catalyst used can be recycled to the next oxidation reaction, the economy with respect to the amount used is not a problem.

本発明で用いる過酸化水素は10〜60重量%濃度の過酸化水素水を使用することができるが、好ましくは30〜60重量%である。使用する過酸化水素水の濃度が10重量%よりにも低い場合には、反応の進行が緩慢になる。過酸化水素水の使用量は酸化される立体障害性環状2級アミン構造に対して十分に多いことが好ましい。通常は酸化される立体障害性環状2級アミン構造に対して5〜50倍モル当量、好ましくは10〜30倍モル当量であり、使用量が5倍モル以下である場合には反応の進行が緩慢となり、また50重量倍モル当量以上用いても反応速度は改善されない。反応後に未反応の過酸化水素水および触媒は、有機相と分液し、そのまま次に酸化反応に使用することができる。そのために等倍モル以上の過酸化水素水を用いることは経済的に何ら不利益にはならない。   The hydrogen peroxide used in the present invention may be a hydrogen peroxide solution having a concentration of 10 to 60% by weight, preferably 30 to 60% by weight. When the concentration of the hydrogen peroxide solution used is lower than 10% by weight, the reaction proceeds slowly. It is preferable that the amount of hydrogen peroxide used is sufficiently large relative to the sterically hindered cyclic secondary amine structure to be oxidized. Usually, the sterically hindered cyclic secondary amine structure to be oxidized is 5 to 50 times molar equivalent, preferably 10 to 30 times molar equivalent, and when the amount used is 5 times or less, the reaction proceeds. The reaction rate does not improve even when the molar equivalent is 50 weight times or more. After the reaction, the unreacted hydrogen peroxide solution and the catalyst can be separated from the organic phase and used as they are for the subsequent oxidation reaction. Therefore, it is not economically disadvantageous to use a hydrogen peroxide solution having an equimolar amount or more.

反応に用いられる溶媒としては、水への溶解度が低く、かつ水と2相系を形成し、また酸化される立体障害性2級アミンを側鎖に持つ高分子を溶解する有機溶媒であればいずれでもよい。例えば塩化メチレン、クロロホルムなどのハロゲン化炭化水素、ベンゼン、塩化ベンゼンなどの(置換)芳香族炭化水素を挙げることができる。反応に用いられる高分子化合物の濃度としてはいずれでもよいが、有機溶媒中5〜30重量%が好ましい。
反応は、反応温度は0〜120℃、好ましくは20〜100℃で、通常、1〜24時間行う。
The solvent used in the reaction is an organic solvent that has a low solubility in water, forms a two-phase system with water, and dissolves a polymer having a sterically hindered secondary amine to be oxidized in the side chain. Either is acceptable. Examples thereof include halogenated hydrocarbons such as methylene chloride and chloroform, and (substituted) aromatic hydrocarbons such as benzene and chlorobenzene. The concentration of the polymer compound used in the reaction may be any, but is preferably 5 to 30% by weight in the organic solvent.
The reaction is carried out at a reaction temperature of 0 to 120 ° C., preferably 20 to 100 ° C., usually for 1 to 24 hours.

反応は、有機相と水相の混合状態で行われる。反応に際して、相関移動触媒を添加しても何ら差し支えない。添加する相関移動触媒としてはいずれでもよく、例えば塩化セチルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムおよび塩化テトラブチルアンモニウムなどが使用できる。使用量は酸化される立体障害性2級アミンを側鎖に持つ高分子に対して0.01〜10重量%、好ましくは0.1〜2重量%である。   The reaction is performed in a mixed state of an organic phase and an aqueous phase. During the reaction, a phase transfer catalyst may be added. Any phase transfer catalyst may be added. For example, cetyltrimethylammonium chloride, benzyltriethylammonium chloride, and tetrabutylammonium chloride can be used. The amount used is 0.01 to 10% by weight, preferably 0.1 to 2% by weight, based on the polymer having a sterically hindered secondary amine to be oxidized in the side chain.

反応後は、反応液を静置分離や遠心分離といった分液手段によって、過酸化水素水相と有機相を分離すればよい。有機相は、必要により水洗後、溶媒を蒸発等により除去して、立体障害性ニトロキシルラジカルを側鎖にもつ高分子を得ることが出来る。
水溶性触媒は水相に分配するので、水相を必要により濃縮後、酸化反応に再使用することができる。水相に未反応の過酸化水素が残っている場合、前記方法により過酸化水素を酸化反応に再使用することができる。有機溶媒は回収して、立体障害性環状2級アミン構造を側鎖に持つ高分子を溶解し、酸化反応に再使用することができる。
After the reaction, the hydrogen peroxide aqueous phase and the organic phase may be separated by a separation means such as stationary separation or centrifugation. The organic phase can be washed with water if necessary, and the solvent can be removed by evaporation or the like to obtain a polymer having a sterically hindered nitroxyl radical in the side chain.
Since the water-soluble catalyst is partitioned into the aqueous phase, the aqueous phase can be reused in the oxidation reaction after being concentrated if necessary. When unreacted hydrogen peroxide remains in the aqueous phase, hydrogen peroxide can be reused in the oxidation reaction by the above method. The organic solvent can be recovered and the polymer having a sterically hindered cyclic secondary amine structure in the side chain can be dissolved and reused in the oxidation reaction.

以下に実施例によって本発明の方法を具体的に説明するが、本発明は、これら実施例に限定されるものではない。
<実施例1>
還流塔を付けた100mlナスフラスコ中に、ポリ(2,2,6,6−テトラメチルピペリジン メタクリレート)3.0gを入れ、クロロホルム30gに溶解させた。そこへ、タングステン酸ナトリウム2水和物0.04gを溶解させた60重量%過酸化水素水20gを加え、20〜30℃で15時間攪拌反応した。反応後1時間静置し有機相を分離、クロロホルムを留去した。残った固形分を粉砕し、得られた粉末を減圧乾燥させて、(2,2,6,6−テトラメチルピペリジノキシ メタクリレート)単位を含む高分子からなる暗赤色粉末2.5gを得た。ESRスペクトルにより求めたスピン濃度は1.44×1021spins / gであり、N・H基のN・Oラジカルへの転化率は57%であった。触媒の混入はなかった。
EXAMPLES The method of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<Example 1>
In a 100 ml eggplant flask equipped with a reflux tower, 3.0 g of poly (2,2,6,6-tetramethylpiperidine methacrylate) was placed and dissolved in 30 g of chloroform. Thereto was added 20 g of 60 wt% aqueous hydrogen peroxide in which 0.04 g of sodium tungstate dihydrate was dissolved, and the mixture was stirred at 20-30 ° C. for 15 hours. The reaction was allowed to stand for 1 hour, the organic phase was separated, and chloroform was distilled off. The remaining solid was pulverized, and the resulting powder was dried under reduced pressure to obtain 2.5 g of a dark red powder composed of a polymer containing (2,2,6,6-tetramethylpiperidinoxy methacrylate) units. It was. The spin concentration determined by ESR spectrum was 1.44 × 10 21 spins / g, and the conversion rate of N · H groups to N · O radicals was 57%. There was no catalyst contamination.

<実施例2>
還流塔を付けた100mlナスフラスコ中に、ポリ(2,2,6,6−テトラメチルピペリジン メタクリレート)3.0gを入れ、クロロホルム30gに溶解させた。そこへ、実施例1で反応後に分離した水相(過酸化水素水)を添加し、20〜30℃で15時間攪拌反応した。反応後1時間静置、有機相を分離、クロロホルムを留去した。残った固形分を粉砕し、得られた粉末を減圧乾燥させて、(2,2,6,6−テトラメチルピペリジノキシ メタクリレート)単位を含む高分子からなる暗赤色粉末2.4gを得た。ESRスペクトルにより求めたスピン濃度は1.35×1021spins / gであり、N・H基のN・Oラジカルへの転化率は53%であった。触媒の混入はなかった。
<Example 2>
In a 100 ml eggplant flask equipped with a reflux tower, 3.0 g of poly (2,2,6,6-tetramethylpiperidine methacrylate) was placed and dissolved in 30 g of chloroform. The aqueous phase (hydrogen peroxide solution) separated after the reaction in Example 1 was added thereto, and the reaction was stirred at 20 to 30 ° C. for 15 hours. The reaction was allowed to stand for 1 hour, the organic phase was separated, and chloroform was distilled off. The remaining solid was pulverized, and the resulting powder was dried under reduced pressure to obtain 2.4 g of a dark red powder composed of a polymer containing (2,2,6,6-tetramethylpiperidinoxy methacrylate) units. It was. The spin concentration determined by ESR spectrum was 1.35 × 10 21 spins / g, and the conversion rate of N · H groups to N · O radicals was 53%. There was no catalyst contamination.

<実施例3>
還流塔を付けた100mlナスフラスコ中に、ポリ(2,2,6,6−テトラメチルピペリジン アクリレート)3.0gを入れ、クロロホルム30gに溶解させた。そこへ、タングステン酸ナトリウム2水和物0.04gを溶解させた60重量%過酸化水素水20gを加え、20〜30℃で15時間攪拌反応した。反応後1時間静置、有機相を分離、クロロホルムを留去した。残った固形分を粉砕し、得られた粉末を減圧乾燥させて、(2,2,6,6−テトラメチルピペリジノキシ アクリレート)単位を含む高分子からなる暗赤色粉末2.4gを得た。ESRスペクトルにより求めたスピン濃度は1.41×1021spins / gであり、N・H基のN・Oラジカルへの転化率は56%であった。触媒の混入はなかった。
<Example 3>
In a 100 ml eggplant flask equipped with a reflux tower, 3.0 g of poly (2,2,6,6-tetramethylpiperidine acrylate) was placed and dissolved in 30 g of chloroform. Thereto was added 20 g of 60 wt% aqueous hydrogen peroxide in which 0.04 g of sodium tungstate dihydrate was dissolved, and the mixture was stirred at 20-30 ° C. for 15 hours. The reaction was allowed to stand for 1 hour, the organic phase was separated, and chloroform was distilled off. The remaining solid was pulverized, and the resulting powder was dried under reduced pressure to obtain 2.4 g of a dark red powder composed of a polymer containing (2,2,6,6-tetramethylpiperidinoxy acrylate) units. It was. The spin concentration determined by ESR spectrum was 1.41 × 10 21 spins / g, and the conversion rate of N · H groups to N · O radicals was 56%. There was no catalyst contamination.

<比較例1>
実施例1の溶媒をメタノールに変更し同条件で反応を行った。反応後メタノール溶液をエーテルに加えることで高分子を析出させた。得られた高分子は粉砕、水洗により触媒成分除去後、減圧乾燥させ、(2,2,6,6−テトラメチルピペリジノキシ メタクリレート)単位を含む高分子からなる暗赤色粉末2.0gを得た。ESRスペクトルにより求めたスピン濃度は0.87×1021spins / gであり、N・H基のN・Oラジカルへの転化率は35%と実施例に比べラジカル化率が低かった。しかも、触媒の混入を防ぐために、ハンドリング上入念な水洗工程を加えなければならなかった。
<Comparative Example 1>
The solvent of Example 1 was changed to methanol and the reaction was carried out under the same conditions. After the reaction, a polymer solution was precipitated by adding a methanol solution to ether. The obtained polymer was pulverized and washed with water to remove the catalyst component, followed by drying under reduced pressure to obtain 2.0 g of a dark red powder composed of a polymer containing (2,2,6,6-tetramethylpiperidinoxy methacrylate) units. Obtained. The spin concentration determined by ESR spectrum was 0.87 × 10 21 spins / g, and the conversion rate of N · H groups to N · O radicals was 35%, which was lower than that of the examples. In addition, in order to prevent the catalyst from being mixed, a careful water washing process has to be added.

<比較例2>
比較例1の反応時間を96時間まで延長し、(2,2,6,6−テトラメチルピペリジノキシ メタクリレート)単位を含む高分子からなる暗赤色粉末2.1gを得た。ESRスペクトルにより求めたスピン濃度は1.22×1021spins / gであり、N・H基のN・Oラジカルへの転化率は49%であり、反応時間を延長したがラジカルへの転化率は50%未満であった。
<Comparative Example 2>
The reaction time of Comparative Example 1 was extended to 96 hours to obtain 2.1 g of a dark red powder composed of a polymer containing (2,2,6,6-tetramethylpiperidinoxy methacrylate) units. The spin concentration obtained by ESR spectrum is 1.22 × 10 21 spins / g, the conversion rate of N / H groups to N / O radicals is 49%, and the reaction time is extended but the conversion rate to radicals Was less than 50%.

Claims (2)

式(1)で示される2,2,6,6−テトラメチルピペリジン、式(2)で示される2,2,6,6−テトラメチルピロリジン、または式(3)で示される2,2,6,6−テトラメチルピロリン構造を側鎖に持つ高分子を、水への溶解度が低くかつ水と2相系を形成する有機溶媒に溶解し、水溶性酸化触媒を含む触媒液の存在下、過酸化水素によって酸化することを特徴とする、式(4)で示される2,2,6,6−テトラメチルピペリジノキシルラジカル、式(5)で示される2,2,6,6−テトラメチルピロリジノキシルラジカル、または式(6)で示される2,2,6,6−テトラメチルピロリノキシルラジカルを側鎖にもつ高分子の製造方法。
Figure 0004569735
(式(1)〜(3)において、R1、R2、R3およびR4はすべてメチル基を示す。)

Figure 0004569735

(式(4)〜(6)において、R1、R2、R3およびR4はすべてメチル基を示す。)
2,2,6,6-tetramethylpiperidine represented by the formula (1), 2,2,6,6-tetramethylpyrrolidine represented by the formula (2), or 2,2,6 represented by the formula (3) In the presence of a catalyst solution containing a water-soluble oxidation catalyst, a polymer having a 6,6-tetramethylpyrroline structure in the side chain is dissolved in an organic solvent having a low solubility in water and forming a two-phase system with water. 2,2,6,6-tetramethylpiperidinoxyl radical represented by formula (4), which is oxidized by hydrogen peroxide, 2,2,6,6- A method for producing a polymer having a tetramethylpyrrolidinoxyl radical or a 2,2,6,6-tetramethylpyrrolinoxyl radical represented by the formula (6) as a side chain.
Figure 0004569735
(In formulas (1) to (3), R1, R2, R3 and R4 all represent a methyl group.)

Figure 0004569735

(In formulas (4) to (6), R1, R2, R3 and R4 all represent a methyl group.)
酸化反応後の水相を、触媒液として再利用することを特徴とする請求項1記載の製造方法。   The production method according to claim 1, wherein the aqueous phase after the oxidation reaction is reused as a catalyst solution.
JP2003332174A 2003-09-24 2003-09-24 Method for producing polymer compound having stable radical Expired - Fee Related JP4569735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332174A JP4569735B2 (en) 2003-09-24 2003-09-24 Method for producing polymer compound having stable radical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332174A JP4569735B2 (en) 2003-09-24 2003-09-24 Method for producing polymer compound having stable radical

Publications (2)

Publication Number Publication Date
JP2005097409A JP2005097409A (en) 2005-04-14
JP4569735B2 true JP4569735B2 (en) 2010-10-27

Family

ID=34460595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332174A Expired - Fee Related JP4569735B2 (en) 2003-09-24 2003-09-24 Method for producing polymer compound having stable radical

Country Status (1)

Country Link
JP (1) JP4569735B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226986A1 (en) * 2004-02-16 2008-09-18 Kentaro Nakahara Power Storage Device
EP1752474B1 (en) 2004-05-31 2013-06-12 Sumitomo Seika Chemicals Co., Ltd. Method for producing crosslinked poly(meth)acrylate compound
JP4737365B2 (en) * 2004-08-31 2011-07-27 日本電気株式会社 Electrode active material, battery and polymer
JP5124084B2 (en) * 2005-08-05 2013-01-23 住友精化株式会社 Method for producing crosslinked poly (meth) acrylic acid nitroxide compound for electrode material of secondary battery
JP2007089301A (en) * 2005-09-21 2007-04-05 Nec Fielding Ltd Uninterruptible power supply system and output control method thereof
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
FR2911723A1 (en) * 2007-01-19 2008-07-25 Arkema France Electrode, for electrochemical energy storage system, which is useful as a battery for a computer, a server/a portable telephone, or a supercapacitor, comprises a triazinic polynitroxide
FR2913979A1 (en) * 2007-03-20 2008-09-26 Arkema France PROCESS FOR THE PREPARATION OF POLYMERS WITH NITROXIDE FUNCTIONS
WO2009038125A1 (en) * 2007-09-21 2009-03-26 Waseda University Pyrroline nitroxide polymer and battery using the same
JP5332251B2 (en) * 2008-03-21 2013-11-06 日本電気株式会社 Polymer radical material / conductive material composite, method for producing the same, and power storage device
JP5413710B2 (en) * 2008-06-11 2014-02-12 日本電気株式会社 Electrode active material, method for producing the same, and battery using the same
KR102409624B1 (en) * 2015-06-10 2022-06-16 국민대학교산학협력단 Olefin polymerization reaction using alkylboronoxide radical

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507318A (en) * 1993-03-03 1996-08-06 ビーエーエスエフ アクチエンゲゼルシャフト Production of polyvinyl pyridine N-oxide
JP2000247955A (en) * 1998-12-28 2000-09-12 Koei Chem Co Ltd Production of organic compound having nitroxide free radical
JP2001083672A (en) * 1999-09-08 2001-03-30 Fuji Photo Film Co Ltd Production of polymer and dye fixing element containing same
JP2001278825A (en) * 2000-03-30 2001-10-10 Council Scient Ind Res Modified method for manufacturing tetrabromobisphenol a
JP2001521017A (en) * 1997-10-29 2001-11-06 フレクシス アメリカ エル. ピー. Method for producing quinone diimine from phenylenediamine using hydrogen peroxide and catalyst
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2002371113A (en) * 2001-04-13 2002-12-26 Kuraray Co Ltd Method for epoxidized polymer production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507318A (en) * 1993-03-03 1996-08-06 ビーエーエスエフ アクチエンゲゼルシャフト Production of polyvinyl pyridine N-oxide
JP2001521017A (en) * 1997-10-29 2001-11-06 フレクシス アメリカ エル. ピー. Method for producing quinone diimine from phenylenediamine using hydrogen peroxide and catalyst
JP2000247955A (en) * 1998-12-28 2000-09-12 Koei Chem Co Ltd Production of organic compound having nitroxide free radical
JP2001083672A (en) * 1999-09-08 2001-03-30 Fuji Photo Film Co Ltd Production of polymer and dye fixing element containing same
JP2001278825A (en) * 2000-03-30 2001-10-10 Council Scient Ind Res Modified method for manufacturing tetrabromobisphenol a
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2002371113A (en) * 2001-04-13 2002-12-26 Kuraray Co Ltd Method for epoxidized polymer production

Also Published As

Publication number Publication date
JP2005097409A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4569735B2 (en) Method for producing polymer compound having stable radical
Jankova et al. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators
Yokozawa et al. Scope of controlled synthesis via chain-growth condensation polymerization: from aromatic polyamides to π-conjugated polymers
Mespouille et al. One‐pot synthesis of well‐defined amphiphilic and adaptative block copolymers via versatile combination of “click” chemistry and ATRP
GB2355464A (en) Aromatic polyetherketones
Konyushenko et al. Polyaniline prepared in ethylene glycol or glycerol
JPH0656987A (en) Produciton of conductive polymer
JP3149290B2 (en) Method for producing conductive polymer
Nakabayashi et al. Synthesis of sulfur-rich nanoparticles using self-assembly of amphiphilic block copolymer and a site-selective cross-linking reaction
Leuninger et al. Novel approach to ladder‐type polymers: polydithiathianthrene via the intramolecular acid‐induced cyclization of methylsulfinyl‐substituted poly (meta‐phenylene sulfide)
Antoun et al. A Simple Route to Rod‐Coil Block Copolymers of Oligo‐and Polythiophenes with PMMA and Polystyrene
JP4506955B2 (en) Method for producing copolymer composition having stable radical
JPH0757802B2 (en) Method for producing polyaniline derivative
CN109320443A (en) Method for preparing compound and method for preparing polymer containing compound
Huang et al. Synthesis of Sulfur‐Containing Polymers Through Multicomponent Polymerizations
JP6179945B2 (en) Process for producing polyarylene sulfide
JP3717687B2 (en) Optically active polymer and method for producing the same
Lee et al. Synthesis and properties of poly (oxyethylene) s containing thioether, sulfoxide, or sulfone groups
JP4088666B2 (en) Monomer and sulfonic acid resin
Orgeret‐Ravanat et al. Poly (propylene sulfoxide)—a first approach to a dipolar aprotic, water‐soluble and reactive polymer
Lv et al. Chemical synthesis and characterization of conducting poly (2-Aminothiazole)
Kakde et al. Exploring SiliaCat Pd-DPP as a recyclable heterogeneous catalyst for the multi-batch direct heteroarylation polymerization for P (NDI2OD-T2)
JP6179946B2 (en) Process for producing polyarylene sulfide
JP6052631B2 (en) Process for producing polyarylene sulfide
JP7385509B2 (en) Method for producing aromatic polyether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4569735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees