JP4569353B2 - Manufacturing method of unidirectional electrical steel sheet - Google Patents

Manufacturing method of unidirectional electrical steel sheet Download PDF

Info

Publication number
JP4569353B2
JP4569353B2 JP2005097885A JP2005097885A JP4569353B2 JP 4569353 B2 JP4569353 B2 JP 4569353B2 JP 2005097885 A JP2005097885 A JP 2005097885A JP 2005097885 A JP2005097885 A JP 2005097885A JP 4569353 B2 JP4569353 B2 JP 4569353B2
Authority
JP
Japan
Prior art keywords
annealing
less
steel sheet
weight
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097885A
Other languages
Japanese (ja)
Other versions
JP2006274394A (en
Inventor
広朗 戸田
敬 寺島
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005097885A priority Critical patent/JP4569353B2/en
Publication of JP2006274394A publication Critical patent/JP2006274394A/en
Application granted granted Critical
Publication of JP4569353B2 publication Critical patent/JP4569353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、磁気特性と被膜特性に優れた一方向性電磁鋼板を、低コストで製造することができる方法に関するものである。   The present invention relates to a method capable of producing a unidirectional electrical steel sheet having excellent magnetic properties and coating properties at a low cost.

方向性電磁鋼板は、主として変圧器その他の電気機器の鉄心材料として使用され、磁束密度および鉄損値などの磁気特性に優れることが必要である。その一般的な製造方法としては、厚さ:100〜300mmのスラブを約1350℃以上の高温に加熱後、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、脱炭焼鈍後、焼鈍分離剤を塗布してから、二次再結晶および純化を目的とした最終仕上げ焼鈍を行うという複雑な工程が採られており、最終仕上げ焼鈍時の二次再結晶によって{110}<001>方位の結晶粒を成長させている。   The grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric devices, and is required to have excellent magnetic properties such as magnetic flux density and iron loss value. As a general manufacturing method, a slab having a thickness of 100 to 300 mm is heated to a high temperature of about 1350 ° C. or more, hot-rolled, and then subjected to hot-rolled sheet annealing as necessary, or once or A complex process in which the final sheet thickness is obtained by cold rolling at least twice with intermediate annealing, and after decarburization annealing, an annealing separator is applied, followed by final finishing annealing for the purpose of secondary recrystallization and purification. The crystal grains of {110} <001> orientation are grown by secondary recrystallization during final finish annealing.

このような二次再結晶を効果的に発現させるためには、まず一次再結晶粒の成長を抑制するインヒビターと呼ばれる析出分散相を、均一かつ適切なサイズに分散させることが必要とされている。このようなインヒビターとしては、MnS,MnSe,AlNおよびBNに代表される硫化物、Se化合物、窒化物のような鋼中への溶解度が低いものが用いられており、熱間圧延前のスラブ加熱時にインヒビターを完全に固溶させ、その後の工程で微細に析出させる方法が採用されている。この場合、インヒビターを十分に固溶させるためには、約1350〜1400℃程度の温度でスラブ加熱を行う必要があり、普通鋼のスラブ加熱温度に比べると約200℃も高温である。   In order to effectively develop such secondary recrystallization, it is necessary to first disperse a precipitated dispersed phase called an inhibitor that suppresses the growth of primary recrystallized grains to a uniform and appropriate size. . As such an inhibitor, those having low solubility in steel such as sulfides, Se compounds and nitrides represented by MnS, MnSe, AlN and BN are used, and slab heating before hot rolling is used. At times, a method in which the inhibitor is completely dissolved and finely precipitated in the subsequent steps is employed. In this case, in order to sufficiently dissolve the inhibitor, it is necessary to perform slab heating at a temperature of about 1350 to 1400 ° C., which is about 200 ° C. higher than the slab heating temperature of ordinary steel.

しかしながら、上記したような高温スラブ加熱には、以下のような欠点がある。
(a)高温加熱を行うためにエネルギー原単位が高い。
(b)溶融スケールが発生し易く、またスラブ垂れも生じ易いため、製品の表面欠陥を生じ易い。
(c)スラブ表層の過脱炭が生じ易い。
However, high temperature slab heating as described above has the following drawbacks.
(A) The energy intensity is high for high temperature heating.
(B) Melt scale is likely to occur and slab sag is likely to occur, so that surface defects of the product are likely to occur.
(C) Overdecarburization of the slab surface layer is likely to occur.

上記(b),(c)の問題を解決するために、誘導加熱炉が採用されているが、エネルギーコストの増大という問題は残されたままである。従って、省エネルギー化と低コスト化のために、スラブ加熱温度の低温化を図る研究がこれまで数多くなされてきた。   In order to solve the above problems (b) and (c), an induction heating furnace is employed, but the problem of an increase in energy cost remains. Therefore, many studies have been made to reduce the slab heating temperature in order to save energy and reduce costs.

例えば、特許文献1には、Mnを0.08〜0.45%、Sを0.007%以下とすることによってスラブ加熱を低温化する技術が開示され、また特許文献2には、これにCrを添加することによって二次再結晶の安定化を図る技術が開示されている。これらはいずれも、S量を低減してスラブ加熱時のMnSの固溶を図るのが特徴である。しかしながら、これらの技術は、コイル幅方向や長手方向での磁気特性のバラツキが生じ易いという問題があり、研究室規模の製造手段に止まっていた。その原因としては、MnSに代替するインヒビターの機能不足による二次再結晶の不安定化が挙げられる。上記の技術は、酸可溶Alを0.010〜0.060%,Nを0.0030〜0.0130%含有し、インヒビターとしてAlNを用いるものであったが、スラブ加熱温度が低くAlNを完全固溶させることができないため、インヒビターの抑制力不足あるいは部分的な抑制力の変動が大きいことにより、磁気特性は安定化しなかった。   For example, Patent Document 1 discloses a technique for lowering the slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less, and Patent Document 2 discloses adding Cr to this. A technique for stabilizing secondary recrystallization is disclosed. All of these are characterized in that the amount of S is reduced to achieve solid solution of MnS during slab heating. However, these techniques have a problem that variations in magnetic characteristics in the coil width direction and the longitudinal direction are likely to occur, and have been limited to laboratory-scale manufacturing means. The cause is destabilization of secondary recrystallization due to insufficient function of an inhibitor that substitutes for MnS. The above-mentioned technique contains 0.010 to 0.060% of acid-soluble Al and 0.0030 to 0.0130% of N and uses AlN as an inhibitor. However, since the slab heating temperature is low and AlN cannot be completely dissolved. The magnetic properties were not stabilized due to insufficient inhibitory force of the inhibitor or large fluctuations in the partial inhibitory force.

かような欠点を補う手段として、特許文献3には、二次再結晶焼鈍中に窒素吸収を促進させて、二次再結晶を安定化させる技術が開示されている。焼鈍分離剤中に窒化物を添加することで二次再結晶焼鈍中に窒化させ、二次再結晶を安定化させる同様な技術は、特許文献4にも開示されている。しかしながら、二次再結晶焼鈍中に窒化させる技術は、コイルの長手方向や幅方向で窒化量に差が生じるために、依然として、十分に二次再結晶の発現を安定化させることはできなかった。   As means for making up for such drawbacks, Patent Document 3 discloses a technique for stabilizing secondary recrystallization by promoting nitrogen absorption during secondary recrystallization annealing. A similar technique for nitriding during secondary recrystallization annealing by adding nitride in the annealing separator and stabilizing secondary recrystallization is also disclosed in Patent Document 4. However, the technique of nitriding during secondary recrystallization annealing still cannot sufficiently stabilize the expression of secondary recrystallization due to differences in the amount of nitriding in the longitudinal and width directions of the coil. .

上記問題を解決するために、脱炭焼鈍後、二次再結晶焼鈍前に鋼板を窒化処理して二次再結晶を安定化させる技術が、特許文献5や特許文献6、特許文献7において開示された。しかしながら、二次再結晶焼鈍前に窒化処理を施す方法は 、新たな設備を必要とし、コストが増大するという問題があった。   In order to solve the above problems, Patent Document 5, Patent Document 6, and Patent Document 7 disclose techniques for stabilizing secondary recrystallization by nitriding a steel plate after decarburization annealing and before secondary recrystallization annealing. It was done. However, the method of performing the nitriding treatment before the secondary recrystallization annealing has a problem of requiring new equipment and increasing the cost.

一方、これまで必要不可欠とされてきたインヒビターを使用せずに方向性電磁鋼板を製造する試みも種々行われてきた。例えば、特許文献8、特許文献9、特許文献10および特許文献11には、三次再結晶を利用する技術が開示されているが、これらはいずれも表面エネルギー差を利用する方法であるため、板厚が薄いものに限られる。従って、現在、製品として使用されている方向性電磁鋼板の板厚は0.20mm以上がほとんどであるため、通常の製品を上記の方法で製造することは困難である。   On the other hand, various attempts have been made to produce grain-oriented electrical steel sheets without using inhibitors that have been considered essential so far. For example, Patent Literature 8, Patent Literature 9, Patent Literature 10, and Patent Literature 11 disclose techniques that utilize tertiary recrystallization. However, since these are all methods that utilize a surface energy difference, Limited to thin thickness. Therefore, the thickness of the grain-oriented electrical steel sheet currently used as a product is almost 0.20 mm or more, and it is difficult to manufacture a normal product by the above method.

ところが、近年になって、二次再結晶発現の重要なポイントして、インヒビターの存在の他に、一次再結晶組織において隣り合う結晶粒の方位差角が注目されるようになってきた。すなわち、方位差角が20〜45°である粒界(高エネルギー粒界)が重要な役割を果たしていることが、非特許文献1で報告され、これに基づいて、インヒビターを使用しない方向性電磁鋼板の研究が再び盛んに行われるようになってきた。
例えば、特許文献12において、鋼スラブ中にインヒビター成分を含有させなくても、工業的に方向性電磁鋼板が製造できる技術(インヒビターレス法)が開示されている。
However, in recent years, as an important point in the development of secondary recrystallization, in addition to the presence of an inhibitor, the orientation difference angle between adjacent crystal grains in the primary recrystallization structure has attracted attention. That is, it is reported in Non-Patent Document 1 that a grain boundary (high energy grain boundary) having an azimuth difference angle of 20 to 45 ° plays an important role, and based on this, a directional electromagnetic without using an inhibitor is reported. Steel plate research has been actively conducted again.
For example, Patent Document 12 discloses a technique (inhibitorless method) capable of industrially producing a grain-oriented electrical steel sheet without including an inhibitor component in a steel slab.

このインヒビターレス法で製造する方向性電磁鋼板の特性向上・安定化を図るために、特許文献13では、NおよびSの含有量を〔ppmN〕2+[ppmS]2≦6400に従って抑制すると共に、脱炭焼鈍の600℃から750℃にかけての昇温速度を15℃/s以上に制御し、かつ脱炭焼鈍の均熱過程の水素分圧に対する水蒸気分圧の比である雰囲気酸化性P(H2O)/P(H2)を0.6以下の範囲に制御する技術が、また特許文献14では、焼鈍分離剤として、MgO:100重量部に対してTi酸化物を0.1〜9.0重量部含有するものを用い、最終仕上げ焼鈍は、900℃以上1050℃以下の温度域における5時間以上15時間以下の保持を不活性ガスの含有率が50vol%以上の雰囲気中にて行う工程を含み、かつこの工程における950℃以上の温度域に2時間以上10時間以下で滞留させる技術が、さらに特許文献15では、一次再結晶焼鈍後の鋼板における結晶粒径を8〜25μm の範囲とし、二次再結晶焼鈍の昇温過程における 800〜900℃の平均昇温速度を0.5〜5℃/hの範囲とし、二次再結晶焼鈍の昇温過程にて、900℃と800℃での鋼板窒素量差を−10ppm〜+25ppmの範囲とすることを特徴とする技術が開示されている。 In order to improve and stabilize the properties of the grain-oriented electrical steel sheet produced by this inhibitorless method, Patent Document 13 suppresses the contents of N and S according to [ppmN] 2 + [ppmS] 2 ≦ 6400, The rate of temperature increase from 600 ° C. to 750 ° C. in decarburization annealing is controlled to 15 ° C./s or more, and the atmospheric oxidizing property P (H, which is the ratio of water vapor partial pressure to hydrogen partial pressure in the soaking process of decarburization annealing 2 O) / P (H 2 ) is a technique for controlling the range to 0.6 or less, and Patent Document 14 contains 0.1 to 9.0 parts by weight of Ti oxide as an annealing separator with respect to 100 parts by weight of MgO. And the final finish annealing includes a step of holding in the temperature range of 900 ° C. to 1050 ° C. for 5 hours to 15 hours in an atmosphere having an inert gas content of 50 vol% or more. A technology that retains in the temperature range of 950 ° C or higher in the process for 2 hours or more and 10 hours or less is more special. In Reference 15, the crystal grain size in the steel sheet after the primary recrystallization annealing is in the range of 8 to 25 μm, and the average heating rate of 800 to 900 ° C. in the temperature raising process of the secondary recrystallization annealing is 0.5 to 5 ° C./h. A technique is disclosed in which the difference in the amount of nitrogen in the steel sheet between 900 ° C. and 800 ° C. is set in the range of −10 ppm to +25 ppm in the temperature raising process of the secondary recrystallization annealing.

特開昭59−56522号公報JP 59-56522 特開昭59−190325号公報JP 59-190325 A 特開昭62−70521号公報JP 62-70521 A 特開昭62−40315号公報Japanese Patent Laid-Open No. 62-40315 特開平2−200732号公報JP-A-2-200732 特開平4−183817号公報JP-A-4-183817 特開平4−235222号公報JP-A-4-235222 特開昭64−55339号公報JP-A-64-55339 特開平2−57635号公報JP-A-2-57635 特開平7−76732号公報Japanese Unexamined Patent Publication No. 7-76732 特開平7−197126号公報Japanese Unexamined Patent Publication No. 7-197126 特開2000−129356号公報JP 2000-129356 JP 特開2001−158919号公報Japanese Patent Laid-Open No. 2001-158919 特開2004−190053号公報Japanese Patent Laid-Open No. 2004-190053 特開2004−218024号公報JP 2004-218024 A Act Material 45巻 (1997) 1285頁Act Material 45 (1997) 1285

しかしながら、従来のインヒビターを利用して製造した方向性電磁鋼板と比べた場合、その磁気特性や被膜特性の安定性には依然として劣るものがあり、特に鋼板をコイル状に巻き取って最終仕上げ焼鈍を行うことに起因して、ストリップの幅方向あるいは長手方向で磁気特性や被膜特性が劣化する場合があり、優れた品質を有する製品を安定して生産し、さらなる歩留り向上を図るためには、いまだ改善の余地を残すものであった。   However, when compared with grain-oriented electrical steel sheets manufactured using conventional inhibitors, there are still inferior magnetic properties and stability of the coating properties, especially when the steel sheet is wound into a coil and subjected to final finish annealing. Due to the fact that the magnetic properties and film properties may deteriorate in the width direction or longitudinal direction of the strip, it is still necessary to stably produce products with excellent quality and further improve the yield. It left room for improvement.

この発明は、上記の現状に鑑み開発されたもので、コイルの全幅および全長にわたって欠陥のない均一で密着性に優れたフォルステライト質絶縁被膜を有し、かつ磁気特性にも優れた方向性電磁鋼板を、低コストで製造することができる方法を提案することを目的とする。   The present invention has been developed in view of the above-described situation, and has a uniform forsterite insulating coating having no defects over the entire width and length of the coil and having excellent adhesion, and has excellent magnetic properties. It aims at proposing the method which can manufacture a steel plate at low cost.

以下、本発明の解明経緯について説明する。
さて、発明者らは、まず既に提案した特許文献14と特許文献15の技術を基に、さらに磁気特性と被膜特性を改善・安定化することを試みた。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
The elucidation process of the present invention will be described below.
The inventors first tried to improve and stabilize the magnetic characteristics and film characteristics based on the techniques of Patent Documents 14 and 15 already proposed. Unless otherwise specified, “%” in relation to ingredients means mass%.

第1に素材成分についてであるが、酸可溶性AlおよびNの上限は上記技術と同様、各100ppm未満、60ppm未満にする必要があったが、酸可溶性Alについては40ppm以上の微量を含有させることにより、脱炭焼鈍時に鋼板表面に形成される酸化膜が緻密になり、二次再結晶焼鈍時の窒素の増減が抑制されて、二次再結晶粒のゴス方位への集積が向上し、磁気特性が改善されることが判明した。従って、酸可溶性Alの成分範囲は40ppm以上 100ppm未満とした。また、Nについても二次再結晶焼鈍時の窒素の増減を抑制するためには、30ppm以上含有させた方がよいことが判明したので、その成分範囲は30ppm以上 60ppm未満とした。さらに、インヒビターレス法で方向性電磁鋼板を製造するためには、(S+0.405Se)の上限は50ppm未満にする必要がある。この理由は、これらの合計量が50ppm以上になると、二次再結晶が困難となり、磁気特性が劣化するからである。   First, regarding the material components, the upper limit of acid-soluble Al and N was required to be less than 100 ppm and less than 60 ppm, respectively, as in the above technology, but for acid-soluble Al, a trace amount of 40 ppm or more should be included. Therefore, the oxide film formed on the steel sheet surface during decarburization annealing becomes dense, the increase and decrease in nitrogen during secondary recrystallization annealing is suppressed, and the accumulation of secondary recrystallized grains in the Goss orientation improves, and the magnetic It has been found that the properties are improved. Therefore, the component range of acid-soluble Al is set to 40 ppm or more and less than 100 ppm. Further, N was found to be contained in an amount of 30 ppm or more in order to suppress the increase or decrease in nitrogen during secondary recrystallization annealing, so the component range was set to 30 ppm or more and less than 60 ppm. Furthermore, in order to produce a grain-oriented electrical steel sheet by the inhibitorless method, the upper limit of (S + 0.405Se) needs to be less than 50 ppm. This is because, when the total amount of these is 50 ppm or more, secondary recrystallization becomes difficult and the magnetic properties deteriorate.

さらに、Sbは二次再結晶焼鈍時の鋼板窒素量の増加を非常に効果的に抑制するので、優れた磁気特性を得るためおよび磁気特性を安定化させるためには必須の元素であり、その効果を充分に発揮させるには0.03%以上添加する必要がある。しかしながら、0.30%を超えて含有させると脱炭焼鈍時の脱炭性が非常に悪くなり、工業的大量生産には不適となるので、その成分範囲は0.03%以上 0.30%以下とする必要がある。
しかしながら、一方でSbは、脱炭焼鈍時の鋼板の酸化速度を低減する効果が非常に大きいので、Sb添加量が増すと、脱炭焼鈍板サブスケールの酸化物量が少なくなることに起因すると思われる製品被膜の欠陥が増大した。
Furthermore, Sb very effectively suppresses the increase in the amount of steel sheet nitrogen during secondary recrystallization annealing, so it is an indispensable element for obtaining excellent magnetic properties and stabilizing magnetic properties. In order to exert the effect sufficiently, it is necessary to add 0.03% or more. However, if it exceeds 0.30%, the decarburization at the time of decarburization annealing becomes very bad and unsuitable for industrial mass production, so the component range must be 0.03% or more and 0.30% or less. .
However, Sb, on the other hand, is very effective in reducing the oxidation rate of the steel sheet during decarburization annealing, so increasing the amount of Sb is thought to result from a decrease in the amount of oxide in the decarburized annealing plate subscale. Increased product coating defects.

そこで、この被膜欠陥を抑制する手段について鋭意検討を重ねた結果、この欠陥を抑制するには、Sb量に応じて鋼中Mn量を増すことが効果的であることを新たに見出した。
すなわち、Sb:0.03%以上 0.30%以下で、Mn:{0.04+Sb(%)}%以上 0.50%以下の時に、優れた磁気特性と被膜特性を有する方向性電磁鋼板を安定的に製造できることを見出したのである。なお、Mn量の上限は、Sb量の上限値が0.30%であるので、Mn量の上限は少なくともその場合の下限値(0.34%)以上であればよいこと、また一定量以上の添加はコスト面で不利なだけでなく、磁束密度の低下を招くことから、0.50%とした。
Thus, as a result of intensive studies on means for suppressing the coating defects, it has been newly found that increasing the Mn content in steel according to the Sb content is effective for suppressing the defects.
That is, when Sb: 0.03% or more and 0.30% or less and Mn: {0.04 + Sb (%)}% or more and 0.50% or less, it is found that a grain-oriented electrical steel sheet having excellent magnetic properties and film properties can be stably produced. It was. Since the upper limit of the Mn amount is 0.30%, the upper limit of the Mn amount should be at least the lower limit (0.34%) in that case, and addition of a certain amount or more is a cost. This is not only disadvantageous in terms of surface, but also causes a decrease in magnetic flux density.

第2に焼鈍分離剤の組成であるが、特許文献14にも開示されているように、インヒビターレス成分系においても、マグネシアにTi化合物を配合することは被膜特性改善に有効である。従って、本発明の成分系においてもTi化合物の適正配合量について検討した結果、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8重量部を含有する焼鈍分離剤を塗布することが被膜特性の改善に有効であることが判明した。   Secondly, regarding the composition of the annealing separator, as disclosed in Patent Document 14, even in the inhibitorless component system, it is effective to improve the film properties by adding a Ti compound to magnesia. Therefore, as a result of examining the proper blending amount of the Ti compound in the component system of the present invention, as a result of applying an annealing separator containing 0.3 to 8 parts by weight of the Ti compound in terms of Ti with respect to 100 parts by weight of magnesia. Has been found to be effective in improving coating properties.

最後に、二次再結晶焼鈍パターンであるが、特許文献15に開示の「二次再結晶焼鈍の昇温過程における、800℃から900℃までの平均昇温速度を0.5〜5℃/hの範囲にすること」という技術をベースに、本発明の成分系において二次再結晶焼鈍の昇温パターンを検討した結果、800℃以上 900℃以下の滞留時間を40時間以上 150時間以下にすることが磁性改善に効果的であることが判明した。   Finally, as for the secondary recrystallization annealing pattern, disclosed in Patent Document 15 is “the average temperature increase rate from 800 ° C. to 900 ° C. in the temperature increase process of secondary recrystallization annealing is 0.5 to 5 ° C./h. Based on the technology of `` within the range '', as a result of examining the temperature increase pattern of secondary recrystallization annealing in the component system of the present invention, the residence time at 800 ° C to 900 ° C should be 40 hours to 150 hours Was found to be effective in improving magnetic properties.

これらに加え、発明者らは、インヒビターレス成分系における脱炭焼鈍板酸化物層(サブスケール)の量および質と焼鈍分離剤の配合物がフォルステライト質絶縁被膜の特性および磁気特性に及ぼす影響について、さらに鋭意研究を進めた。
というのは、脱炭焼鈍板サブスケールの形成条件や酸化膜の量および質を制御することによって被膜特性や磁気特性を改善する技術として、多くの提案がこれまでになされているが、そのほとんどは、MnS,MnSe,AlNなどのインヒビターを用いるものや脱炭焼鈍後の窒化処理によって(Al,Si)Nなどのインヒビターを形成させるものに関してであり、インヒビターレス成分系では、これらに関する研究がほとんどなされていなかったからである。
In addition to these, the inventors have determined the effect of the amount and quality of decarburized annealed plate oxide layer (subscale) and the composition of annealing separator on the properties and magnetic properties of forsterite insulating coatings in inhibitorless component systems. Further research has been carried out.
This is because many proposals have been made to improve the coating properties and magnetic properties by controlling the formation conditions of the decarburized and annealed plate subscale and the amount and quality of the oxide film. Is related to those using inhibitors such as MnS, MnSe, and AlN, and those that form inhibitors such as (Al, Si) N by nitriding after decarburization annealing. Because it was not done.

さらに、フォルステライト質絶縁被膜は脱炭焼鈍時に生成するサブスケールを一方の原料として、マグネシアを主体とする焼鈍分離剤を他方の原料として生成するものであるから、それら両者がフォルステライト質絶縁被膜の品質のばらつきおよび磁気特性のばらつきに大きく影響すると考えられる。   Furthermore, the forsterite insulation coating is produced by using the subscale produced during decarburization annealing as one raw material and the annealing separator mainly composed of magnesia as the other raw material. It is thought that it greatly affects the quality variation and magnetic property variation.

発明者らは、この観点に基づき、脱炭焼鈍板サブスケールの量および質が被膜特性および磁気特性に及ぼす影響を詳細に調査した結果、脱炭焼鈍後の鋼板表層の酸素目付け量が片面当たり0.5g/m2以上 0.8 g/m2以下で、かつ脱炭焼鈍板酸化物の抽出分析によるファイヤライト/シリカ比が0.03以上 0.15以下の場合に、優れた磁気特性と被膜特性の製品を安定して製造できることを見出した。また、焼鈍分離剤中に配合するTi化合物以外の添加物についても検討したところ、Ti化合物に加え、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部を配合することで、磁気特性および被膜特性の更なる向上が達成されることを見出した。 Based on this viewpoint, the inventors conducted a detailed investigation on the effect of the amount and quality of the decarburized annealed plate subscale on the coating properties and magnetic properties. 0.5 g / m 2 or more 0.8 g / m 2 or less, and when fayalite / silica ratio by extraction analysis of decarburization annealed sheets oxide is 0.03 to 0.15, a stable product with excellent magnetic properties and coating properties And found that it can be manufactured. In addition, when the additive other than the Ti compound to be blended in the annealing separator was also examined, in addition to the Ti compound, magnesia: 100 parts by weight, and 0.2 to 5 parts by weight of the Sr compound in terms of Sr Thus, it has been found that further improvement in magnetic properties and film properties can be achieved.

すなわち、鋼板をコイル状に巻き取って最終仕上げ焼鈍をする以上、コイルの内・中・外巻き部では、熱履歴や雰囲気などの焼鈍条件にある程度の差が生じてしまう。しかしながら、その差に起因する磁気特性や被膜特性の差をできるだけ抑制し、更なる特性の向上を図るためには、脱炭焼鈍板サブスケールの量および質の制御および焼鈍分離剤中の添加物の制御が効果的であることが判明したのである。   That is, as long as the steel sheet is wound into a coil shape and subjected to final finish annealing, there is a certain difference in annealing conditions such as heat history and atmosphere in the inner, middle, and outer winding portions of the coil. However, in order to suppress the difference in magnetic properties and film properties due to the difference as much as possible and to further improve the properties, the amount and quality of the decarburized annealing plate subscale and the additive in the annealing separator are added. It has been found that the control of is effective.

この発明は、以上の知見に基づいて開発されたものであり、その要旨構成は次のとおりである。
(1)質量%で、C:0.01〜0.10%,Si:2.5〜4.5%,酸可溶性Al:40ppm以上 100ppm未満,N:30ppm以上 60ppm未満,Sb:0.03〜0.30%,Mn:{0.04+Sb(%)}%以上 0.50%以下および(S+0.405Se):50ppm未満を含有し、残部はFeおよび不可避的不純物の成分になるけい素鋼スラブを、1250℃以下の温度で加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、ついで脱炭・一次再結晶焼鈍後、マグネシアを主成分とする焼鈍分離剤を塗布してから、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施す一連の工程からなる一方向性電磁鋼板の製造方法において、
a) 脱炭焼鈍後の鋼板表層の酸素目付け量を片面当たり0.5g/m2以上 0.8 g/m2以下とし、かつ脱炭焼鈍板酸化物の抽出分析によるファイヤライト/シリカ比を0.03以上 0.15以下とすること、
b) 焼鈍分離剤中に、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8.0 重量部含有させること、
c) 二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を40時間以上150時間以下とすること
を特徴とする一方向性電磁鋼板の製造方法。
This invention was developed based on the above knowledge, and the gist composition is as follows.
(1) By mass%, C: 0.01 to 0.10%, Si: 2.5 to 4.5%, acid-soluble Al: 40 ppm to less than 100 ppm, N: 30 ppm to less than 60 ppm, Sb: 0.03 to 0.30%, Mn: {0.04 + Sb ( %)}% Or more and 0.50% or less and (S + 0.405Se): containing less than 50ppm, the remainder is a component of Fe and inevitable impurities, heat the silicon steel slab at a temperature of 1250 ℃ or less, then hot rolling Then, after performing hot-rolled sheet annealing as necessary, perform cold rolling at least once with intermediate or intermediate annealing, followed by decarburization and primary recrystallization annealing, followed by annealing separation with magnesia as the main component In the method for producing a unidirectional electrical steel sheet comprising a series of steps for applying a final finishing annealing consisting of secondary recrystallization annealing and purification annealing after applying the agent,
a) Oxygen weight of the steel sheet surface after decarburization annealing is 0.5 g / m 2 or more and 0.8 g / m 2 or less per side, and the firelite / silica ratio is 0.03 or more by extraction analysis of decarburized annealing plate oxide 0.15 To be
b) In the annealing separator, magnesia: 0.3 to 8.0 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight,
c) In the Atsushi Nobori process of secondary recrystallization annealing, manufacturing method of an oriented electrical steel sheet characterized in that the 800 ° C. or higher 900 ° C. or less of the residence time to 40 hours or more 150 hours.

(2)上記(1)において、焼鈍分離剤中にさらに、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部含有させることを特徴とする一方向性電磁鋼板の製造方法。 In (2) above (1), further in the annealing separator, magnesia with respect to 100 parts by weight of the Sr compound one oriented electrical steel sheet you characterized by the inclusion 0.2-5 parts by weight Sr terms Production method.

(3)上記(1)または(2)において、けい素鋼スラブが、さらに質量%で、Sn:0.03〜0.50%,Cu:0.03〜0.50%,Ni:0.03〜0.50%,Cr:0.03〜0.30%,P:0.01〜0.10%およびMo:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする一方向性電磁鋼板の製造方法。 (3) In the above (1) or (2), the silicon steel slab is further mass%, Sn: 0.03-0.50%, Cu: 0.03-0.50%, Ni: 0.03-0.50%, Cr: 0.03-0.30 %, P: 0.01~0.10% and Mo: 0.005 to 0.10% 1 kind or production method of an oriented electrical steel sheet you characterized by containing two or more kinds selected from among.

本発明によれば、鋼スラブにインヒビター成分が含有されない、すなわちAl,S等が不純物レベルである素材を用いて、低温スラブ加熱により、磁気特性と被膜特性に優れた方向性電磁鋼板を安価に製造することができる。   According to the present invention, steel slabs do not contain an inhibitor component, that is, using a material in which Al, S, etc. are at an impurity level, low-temperature slab heating makes it possible to inexpensively produce a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties. Can be manufactured.

以下、本発明を由来するに至った実験結果について説明する。
(実験1)
C:0.02〜0.06%,Si:3.0〜3.5%,酸可溶性Al:40ppm以上 100ppm未満, N:30ppm以上 60ppm未満,Sb:0.01〜0.30%,Mn:0.05%以上 0.50%以下,(S+0.405Se):50ppm未満,Cu:0.01〜0.50%,Cr:0.01〜0.30%,P:0.002〜0.10%の成分範囲であり、残部はFeおよび不可避的不純物の組成になる多数の真空鋼塊を、1200℃に加熱後、熱間圧延し、950〜1100℃の熱延板焼鈍を施したのち、冷間圧延にて最終板厚:0.29mmまで圧延した。その後、H2−H2O−N2中、800〜900℃の温度で脱炭・一次再結晶焼鈍を施した後、マグネシアを主成分とし、マグネシア:100重量部に対して0.1〜20.0重量部のTiO2を含有する焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を10時間以上 200時間以下とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施した。その後、水洗して未反応の焼鈍分離剤を除去し、試料の被膜外観を調査した後、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた試料の磁気特性(磁束密度B8,鉄損W17/50 )と被膜密着性について調査した。なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Hereinafter, the experimental results that led to the present invention will be described.
(Experiment 1)
C: 0.02 to 0.06%, Si: 3.0 to 3.5%, acid-soluble Al: 40 ppm to less than 100 ppm, N: 30 ppm to less than 60 ppm, Sb: 0.01 to 0.30%, Mn: 0.05% to 0.50%, (S + 0.405Se ): Less than 50 ppm, Cu: 0.01 to 0.50%, Cr: 0.01 to 0.30%, P: 0.002 to 0.10% of the component range, with the balance being a large number of vacuum steel ingots with a composition of Fe and inevitable impurities, 1200 After heating to ° C., hot rolling was performed, and after hot-rolled sheet annealing at 950 to 1100 ° C., the final sheet thickness was rolled to 0.29 mm by cold rolling. Then, after decarburization and primary recrystallization annealing at a temperature of 800 to 900 ° C. in H 2 —H 2 O—N 2 , magnesia is the main component, and magnesia: 0.1 to 20.0 weight with respect to 100 parts by weight Secondary recrystallization annealing with a residence time of 800 ° C or more and 900 ° C or less of 10 hours or more and 200 hours or less in the temperature rising process of secondary recrystallization annealing after applying an annealing separator containing a part of TiO 2 And a final finish annealing consisting of purification annealing. Thereafter, the sample was washed with water to remove the unreacted annealing separator, and after the appearance of the coating film of the sample was examined, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) and film adhesion of the samples thus obtained were investigated. The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.

まず、多数の試料のうち、Mnが0.08〜0.14%、Sbが0.04〜0.06%を満足する成分で、焼鈍分離剤中に添加したTiO2が被膜密着性に及ぼす影響について調べた結果を図1に示す。
同図に示したとおり、一部の例外はあるものの、マグネシア:100重量部に対して TiO2をTi換算で0.3〜8重量部添加した場合に、比較的良好な被膜密着性が得られていることが分かる。
First, among the many samples, Mn is 0.08 to 0.14% and Sb is 0.04 to 0.06%. The results of examining the effect of TiO 2 added to the annealing separator on the film adhesion are shown in FIG. Shown in
As shown in the figure, although there are some exceptions, magnesia: When TiO 2 is added 0.3 to 8 parts by weight in terms of Ti with respect to 100 parts by weight, relatively good film adhesion is obtained. I understand that.

同様に、Mn:0.08〜0.14%かつSb:0.04〜0.06%を満足する成分で、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域での滞留時間が磁気特性に及ぼす影響について調べた結果を図2に示す。
同図に示したとおり、一部の例外はあるものの、800℃以上 900℃以下の滞留時間が40時間以上 150時間以下の場合に、比較的優れた磁気特性が得られていることが分かる。
Similarly, it is a component that satisfies Mn: 0.08-0.14% and Sb: 0.04-0.06%. During the temperature increase process of secondary recrystallization annealing, the residence time in the temperature range of 800 ° C or higher and 900 ° C or lower becomes the magnetic property. The result of investigating the effect is shown in FIG.
As shown in the figure, although there are some exceptions, it can be seen that relatively excellent magnetic properties are obtained when the residence time between 800 ° C. and 900 ° C. is between 40 hours and 150 hours.

上記の解析結果を踏まえ、マグネシア:100重量部に対してTiO2をTi換算で0.3〜8重量部添加し、かつ二次再結晶焼鈍の昇温過程において 800℃以上 900℃以下の滞留時間を40時間以上 150時間以下とした条件で、素材中のMn,Sb量が磁気特性と被膜特性に及ぼす影響について調査した。得られた結果を図3(a), (b)に示す。
同図によれば、Sb:0.03%以上で、かつMn:{0.04+Sb(%)}%以上の場合に、磁気特性と被膜特性の両者に優れた方向性電磁鋼板が得られることがわかる。
なお、上記した優れた磁気特性と被膜特性が得られた鋼板について、脱炭焼鈍後の鋼板表層の酸素目付け量と表層酸化物の抽出分析によるファイヤライト/シリカ比(赤外吸収分光法による)を測定したところ、酸素目付け量は片面当たり0.5g/m2以上 0.8 g/m2以下であり、またファイヤライト/シリカ比は0.03以上 0.15以下であった。
Based on the above analysis results, magnesia: 0.3 to 8 parts by weight of TiO 2 in terms of Ti is added to 100 parts by weight, and a residence time of 800 ° C. or more and 900 ° C. or less in the temperature raising process of secondary recrystallization annealing. The effect of the amount of Mn and Sb in the material on the magnetic properties and coating properties was investigated under the conditions of 40 hours to 150 hours. The obtained results are shown in FIGS. 3 (a) and 3 (b).
According to the figure, it is understood that a grain-oriented electrical steel sheet excellent in both magnetic properties and film properties can be obtained when Sb: 0.03 % or more and Mn: {0.04 + Sb (%)}% or more.
In addition, about the steel plate from which the above-mentioned excellent magnetic properties and coating properties were obtained, the amount of oxygen per unit area of the steel plate after decarburization annealing and the firelite / silica ratio by extraction analysis of the surface layer oxide (by infrared absorption spectroscopy) As a result, the basis weight of oxygen was 0.5 g / m 2 or more and 0.8 g / m 2 or less per side, and the firelite / silica ratio was 0.03 or more and 0.15 or less.

なお、鋼中Mn量を増すことで被膜特性を改善する技術としては、特許文献3等に開示の技術があるが、実施例をみると、これらは酸可溶性Alを0.02〜0.03%含みインヒビターとしてAlNを用いるもの、酸可溶性Alを0.02〜0.03%含む素材で脱炭焼鈍後に窒化処理を行う、あるいは二次再結晶中に窒素吸収を促進させてAlNをインヒビターとして利用するものであった。また、Mn量を増やす目的は、仕上げ焼鈍中、鋼板表層に高温酸化によるMnOを適正量形成させることで、フォルステライト被膜の張力や密着性などを改善するところにあった。   In addition, as a technique for improving the film properties by increasing the amount of Mn in steel, there is a technique disclosed in Patent Document 3 and the like. However, according to examples, these contain 0.02 to 0.03% of acid-soluble Al as an inhibitor. A material using AlN, a material containing 0.02 to 0.03% of acid-soluble Al was subjected to nitriding after decarburization annealing, or nitrogen absorption was promoted during secondary recrystallization to use AlN as an inhibitor. The purpose of increasing the amount of Mn was to improve the tension and adhesion of the forsterite film by forming an appropriate amount of MnO by high-temperature oxidation on the steel sheet surface layer during finish annealing.

しかしながら、本発明のインヒビターレス成分系は、上記技術とは異なり、素材成分中の酸可溶性Alは100ppm未満である。酸可溶性Alが0.02%程度以上含まれた場合の被膜形成過程は、「Journal of Materials Engineering and performance Vol.3 (1994) 214頁(“Glass Film Structure of Grain-Oriented Silicon Steel Using Aluminum Nitride as Inhibitor”)」や「材料とプロセス CAMP-ISIJ, Vol.6 (1993)-676(方向性珪素鋼板の仕上げ焼鈍皮膜の構造解析)」に報告されているように、酸可溶性Alがほとんどないあるいは少ない場合と異なる。従って、鋼中Mn量の影響についても、酸可溶性Alが0.02〜0.03%含まれる場合とそうでない場合とでは異なると推定できる。
すなわち、前記した知見は、従来のインヒビターを用いた方向性電磁鋼板の素材成分とは異なるインヒビターレス成分系の下で、特にSb量との関係で得られた新規知見である。
However, unlike the above technique, the inhibitor-less component system of the present invention contains less than 100 ppm of acid-soluble Al in the raw material component. The film formation process when acid-soluble Al is contained in an amount of about 0.02% or more is described in “Journal of Materials Engineering and performance Vol.3 (1994) p. 214 (“ Glass Film Structure of Grain-Oriented Silicon Steel Using Aluminum Nitride as Inhibitor ” ) ”And“ Materials and Processes CAMP-ISIJ, Vol.6 (1993) -676 (Structural Analysis of Finished Annealed Film of Oriented Silicon Steel Sheet) ”, when there is little or little acid-soluble Al And different. Therefore, it can be estimated that the influence of the amount of Mn in steel is different between the case where the acid-soluble Al content is 0.02 to 0.03% and the case where it is not.
That is, the above-described findings are novel findings obtained particularly in relation to the amount of Sb under an inhibitorless component system different from the material component of the grain-oriented electrical steel sheet using the conventional inhibitor.

さらに、インヒビターレス成分系で、Sb量に応じて鋼中Mn量を増した時に、被膜特性が改善する理由も上記した従来技術の機構とは異なる。すなわち、前述したように、Sbは脱炭焼鈍時の鋼板の酸化速度を低減する効果が非常に大きいので、Sb量が増加すると、図4に示すように、脱炭焼鈍板サブスケールの酸化物量が少なくなり、それに起因すると推定される製品被膜の欠陥が増大した。
これに対して、鋼中Mn量を増加すると、図5に示すように、脱炭焼鈍時に生成する酸化物量が増すので、Sb量増によるサブスケール量の低減を補うことができる。
Furthermore, in the inhibitorless component system, when the amount of Mn in steel is increased in accordance with the amount of Sb, the reason why the coating properties are improved is also different from the mechanism of the prior art described above. That is, as described above, Sb is very effective in reducing the oxidation rate of the steel sheet during decarburization annealing. Therefore, when the amount of Sb increases, as shown in FIG. And the defects of the product coating presumed to have increased.
On the other hand, when the amount of Mn in steel is increased, the amount of oxide generated during decarburization annealing increases as shown in FIG.

また、サブスケールの酸化物として、Mn増によりファイヤライトとシリカの生成量が増大するが、特に(S+0.405Se)量が50ppm未満である成分系では、Mn量を増加した場合、(Fe,Mn)2SiO4の化学式で表されるファイヤライト生成量が増すことも被膜改善に寄与する。すなわち、本発明の構成要件のひとつである昇温過程800℃以上 900℃以下の滞留時間を40時間以上 150時間以下にする二次再結晶焼鈍では、800℃以上 900℃以下の温度域での被膜形成の主反応は、マグネシアとシリカが直接に反応してフォルステライトを形成する下記(1)式の反応ではなく、ファイヤライト中のFeあるいはMnの一部がMgに置換する下記(2)式の反応(オリビン形成反応)なので、脱炭焼鈍板サブスケール中にある程度のファイヤライトが存在した方が被膜形成が進行し易く、最終的な被膜特性が向上すると考えられる。
さらに、(Fe,Mn)2SiO4でMn比が増した方が、上記オリビン形成反応において、Mgの置換が進行し易い、すなわちオリビン形成反応が進行し易いことも、鋼中Mn量が増すと被膜特性が向上する理由の一つと考えられる。なお、Mn量を一定にしてSb量を増すと、オリビン形成反応は遅くなる。従って、Sb量を増すと被膜特性が劣化する原因は、脱炭焼鈍板サブスケールの酸化物量が減少することと、二次再結晶焼鈍過程でオリビン形成反応が遅くなることの二点と考えられるが、Mn量を増すことにより両者を同時に改善できることが、Sb増量による被膜特性の劣化をMn増量により補える理由と考えられる。
2MgO+SiO2→Mg2SiO4 --- (1)
(Fe,Mn)2SiO4+MgO→(Fe,Mn)2-XMgXSiO4+[Mg1-X, (Fe,Mn)X]O --- (2)
In addition, as sub-scale oxides, the amount of firelite and silica produced increases as Mn increases. Especially in the component system in which the amount of (S + 0.405Se) is less than 50 ppm, when the amount of Mn is increased, (Fe, An increase in the amount of firelite generated represented by the chemical formula of Mn) 2 SiO 4 also contributes to the improvement of the coating. That is, in the secondary recrystallization annealing in which the residence time of the temperature rising process of 800 ° C. or more and 900 ° C. or less, which is one of the constituent elements of the present invention, is 40 hours or more and 150 hours or less, in the temperature range of 800 ° C. or more and 900 ° C. or less. The main reaction of film formation is not the reaction of the following formula (1) in which magnesia and silica react directly to form forsterite, but a part of Fe or Mn in the firelite is substituted with Mg (2) Since the reaction is an olivine formation reaction (olivine formation reaction), it is considered that the formation of a film is more likely to proceed when a certain amount of firelite is present in the decarburized annealed plate subscale, and the final film characteristics are improved.
Further, when the Mn ratio is increased in (Fe, Mn) 2 SiO 4 , the substitution of Mg is more likely to proceed in the olivine formation reaction, that is, the olivine formation reaction is likely to proceed, and the amount of Mn in the steel is increased. This is considered to be one of the reasons why the film properties are improved. In addition, when the amount of Sb is increased while keeping the amount of Mn constant, the olivine formation reaction becomes slower. Therefore, the reason why the coating properties deteriorate when the Sb content is increased is thought to be due to the fact that the oxide content of the decarburized annealing plate subscale decreases and the olivine formation reaction slows down during the secondary recrystallization annealing process. However, the fact that both can be improved at the same time by increasing the Mn content is considered to be a reason why the increase in Mn can compensate for the deterioration of the coating properties due to the increase in Sb.
2MgO + SiO 2 → Mg 2 SiO 4 --- (1)
(Fe, Mn) 2 SiO 4 + MgO → (Fe, Mn) 2-X Mg X SiO 4 + [Mg 1-X , (Fe, Mn) X ] O --- (2)

図6は、素材成分の異なる脱炭焼鈍板にマグネシアを主体とする焼鈍分離剤を塗布してから、850℃で50時間保持した後、引き出した試料表面をフーリエ変換赤外線吸収スペクトル法(FT-IR)で測定した結果である。
(a)Mn:0.09%+Sb:0.04%の試料に比べて、(b)Mn:0.09%+Sb:0.06%の試料では、(a)で約1030cm-1にみられるピークが低波数側に止まっていてオリビン形成が遅いことが分かるが、(c)Mn:0.12%+Sb:0.06%の試料では、オリビン形成が(b)よりも進行し、(a)並み以上になっていることが分かる。
Fig. 6 shows that after applying an annealing separator mainly composed of magnesia to a decarburized annealing plate with different raw material components, holding the sample at 850 ° C for 50 hours, and then extracting the sample surface by Fourier transform infrared absorption spectroscopy (FT- (IR).
(a) Compared to the sample with Mn: 0.09% + Sb: 0.04%, the sample at (b) Mn: 0.09% + Sb: 0.06% stopped at the low wavenumber side at about 1030cm -1 in (a). It can be seen that olivine formation is slow, but in the sample of (c) Mn: 0.12% + Sb: 0.06%, olivine formation progresses more than (b), and it is understood that (a) is equal to or higher.

なお、特開平6−184638号公報には、脱炭焼鈍工程において生成する酸化膜成分{(Fe,Mn)O}a・{SiO2}b中のFe,Mn分が(FeO+MnO)/酸化膜中全SiO2として0.10〜0.50、かつ酸化膜中全SiO2が0.6〜1.7 g/m2となるようにして脱炭焼鈍することで、均一なグラス被膜を有し、磁気特性の優れた方向性電磁鋼板を製造する技術が開示されているが、この技術の目的は、脱炭焼鈍後に窒化処理を行い、(Al,Si)N主体のインヒビターを形成する方向性電磁鋼板の製造法で良好な被膜特性と磁気特性を得ることにあり、インヒビターレス成分系で優れた磁気特性と被膜特性を有する方向性電磁鋼板を製造しようとする本発明とは技術内容が異なる。 In JP-A-6-184638, the Fe and Mn content in the oxide film component {(Fe, Mn) O} a · {SiO 2 } b generated in the decarburization annealing step is (FeO + MnO) / oxide film. among by total SiO 2 as 0.10 to 0.50, and the oxide film in the total SiO 2 is decarburization annealing as a 0.6 to 1.7 g / m 2, it has a uniform glass film, excellent direction of the magnetic properties Although the technology for producing a tempered electrical steel sheet is disclosed, the purpose of this technique is good in the method of producing a directional electrical steel sheet in which a nitriding treatment is performed after decarburization annealing to form an (Al, Si) N-based inhibitor. Therefore, the technical contents are different from those of the present invention which is intended to produce a grain-oriented electrical steel sheet having excellent magnetic characteristics and film characteristics in an inhibitorless component system.

(実験2)
表1に鋼記号A,Bで示す成分で、残部はFeおよび不可避的不純物からなる2つの方向性けい素鋼板用スラブを、1200℃に加熱後、熱間圧延により板厚:2.2 mmの熱延板としたのち、1025℃で30秒間の熱延板焼鈍を行ってから、冷間圧延により最終冷延板厚:0.29mmとした。ついで、これらの冷延板を脱脂して表面を清浄化したのち、H2−H2O−N2雰囲気中にて脱炭焼鈍を施した。この脱炭焼鈍の際、均熱温度や雰囲気酸化性などを種々に変化させて、脱炭焼鈍板サブスケールの量および質を変化させた。そして、得られた試料の酸素目付け量(鋼板表層の片面当たり)と表層酸化物のファイヤライト/シリカ比について調べた。
(Experiment 2)
In Table 1, the steel symbols A and B are used, and the balance is composed of Fe and inevitable impurities. Two directional slabs for grain-oriented silicon steel are heated to 1200 ° C and hot rolled to a thickness of 2.2 mm. After forming the rolled sheet, hot-rolled sheet annealing was performed at 1025 ° C. for 30 seconds, and then the final cold-rolled sheet thickness was 0.29 mm by cold rolling. Subsequently, these cold-rolled sheets were degreased to clean the surface, and then decarburized and annealed in an H 2 —H 2 O—N 2 atmosphere. During the decarburization annealing, the amount and quality of the decarburized annealing plate subscale were changed by variously changing the soaking temperature, the atmospheric oxidation property, and the like. Then, the oxygen basis weight (per one surface of the steel sheet surface) of the obtained sample and the firelite / silica ratio of the surface oxide were examined.

Figure 0004569353
Figure 0004569353

得られた結果を図7に示すが、Mn:{0.04+Sb(%)}%以上 0.50%以下の本発明範囲を満足するMn,Sbを含有する鋼Bに比べて、鋼Aでは酸素目付け量に対するファイヤライト/シリカ比が少ないことが分かる。   The obtained results are shown in FIG. 7, and the amount of oxygen per unit area of steel A is higher than that of steel B containing Mn and Sb satisfying the present invention range of Mn: {0.04 + Sb (%)}% to 0.50%. It can be seen that the ratio of firelite / silica is small.

その後、マグネシアを主成分とし、マグネシア:100重量部に対してTiO2をTi換算で4重量部の配合した焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を60時間とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍に供した。その後、水洗して未反応の焼鈍分離剤を除去した後、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた各製品コイルの磁気特性(磁束密度B8、鉄損W17/50)、被膜外観および被膜密着性を評価した。なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
得られた結果を、横軸を脱炭焼鈍板の酸素目付け量、縦軸を脱炭焼鈍板・表層酸化物のファイヤライト/シリカ比として、図8に示す。
Then, after applying an annealing separator containing magnesia as a main component and magnesia: 4 parts by weight of TiO 2 in terms of Ti to 100 parts by weight, 800 ° C in the temperature increase process of the secondary recrystallization annealing It was subjected to final finish annealing consisting of secondary recrystallization annealing and purification annealing with a residence time of 900 ° C. or less for 60 hours. Then, after washing with water to remove the unreacted annealing separator, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product coil thus obtained were evaluated. The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.
The obtained results are shown in FIG. 8 with the horizontal axis representing the oxygen weight per unit area of the decarburized annealed plate and the vertical axis representing the decarburized annealed plate / fibre oxide / silica ratio of the surface oxide.

同図によれば、酸素目付け量が片面当たり0.5g/m2以上 0.8 g/m2以下で、かつファイヤライト/シリカ比が0.03以上 0.15以下の場合に、良好な製品特性が得られることが分かる。また、図7との比較から明らかなように、良好な製品特性が得られたのは、鋼Bにおいてのみである。 According to the figure, good product characteristics can be obtained when the oxygen areal weight is 0.5 g / m 2 or more and 0.8 g / m 2 or less per side and the firelite / silica ratio is 0.03 or more and 0.15 or less. I understand. Further, as is clear from the comparison with FIG. 7, good product characteristics were obtained only in the steel B.

(実験3)
C:0.05%,Si:3.35%,酸可溶性Al:80ppm,N:45ppm,Sb:0.07%,Mn:0.13%,(S+0.405Se):20ppm,Cu:0.05%,Cr:0.08%,P:0.03%の成分であり、残部はFeおよび不可避的不純物の組成になる多数の方向性けい素鋼板用スラブを、1200℃に加熱後、熱間圧延により板厚:2.0mmの熱延板とした後、1025℃で30秒間の熱延板焼鈍を行ってから、冷間圧延により最終冷延板厚:0.285mmとした。このとき、最終冷間圧延は、 少なくとも2パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。ついで、これらの冷延板を脱脂して表面を清浄化したのち、H2−H2O−N2雰囲気中にて脱炭焼鈍を施した。この脱炭焼鈍の際、均熱温度や雰囲気酸化性などを種々に変化させて、酸素目付け量が片面当たり0.5g/m2以上 0.8 g/m2以下で、かつファイヤライト/シリカ比が0.03以上 0.15以下となるように調整した。
(Experiment 3)
C: 0.05%, Si: 3.35%, acid-soluble Al: 80ppm, N: 45ppm, Sb: 0.07%, Mn: 0.13%, (S + 0.405Se): 20ppm, Cu: 0.05%, Cr: 0.08%, P: Many directional slabs for directional silicon steel sheets with a composition of 0.03% with the balance being Fe and unavoidable impurities are heated to 1200 ° C and hot rolled to a hot rolled sheet with a thickness of 2.0 mm. Thereafter, hot-rolled sheet annealing was performed at 1025 ° C. for 30 seconds, and then the final cold-rolled sheet thickness was 0.285 mm by cold rolling. At this time, the final cold rolling was performed such that at least two passes, the steel plate temperature immediately after the rolling roll exit side was 150 to 250 ° C. Subsequently, these cold-rolled sheets were degreased to clean the surface, and then decarburized and annealed in an H 2 —H 2 O—N 2 atmosphere. During this decarburization annealing, the soaking temperature and atmospheric oxidizability are variously changed so that the oxygen basis weight is 0.5 g / m 2 or more and 0.8 g / m 2 or less per side and the firelite / silica ratio is 0.03. It was adjusted to be 0.15 or less.

その後、マグネシアを主成分とし、マグネシア:100重量部に対しTi換算で0〜10重量部のTiO2およびSr換算で0〜8重量部のSrSO4あるいはSr(OH)2・8H2Oを配合した焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を70時間とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍に供した。その後、水洗して未反応の焼鈍分離剤を除去した後、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた各製品コイルの磁気特性(磁束密度B8,鉄損W17/50)、被膜外観および被膜密着性を評価した。なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
得られた結果を、横軸をマグネシア:100重量部に対するTiO2配合量(Ti換算)、縦軸をマグネシア100重量部に対するSr化合物配合量(Sr換算)にして、図9に示す。
同図より、マグネシア:100重量部に対してTiO2をTi換算で0.3〜8重量部配合した場合に優れた製品特性が得られていることが分かる。中でも、マグネシア:100重量部に対してSr化合物をSr換算で0.2〜5重量部併用して配合した場合に、とりわけ優れた製品特性が得られていることが分かる。
Then, magnesia as the main component, magnesia: 100 parts by weight, 0-10 parts by weight of TiO 2 in terms of Ti and 0-8 parts by weight of SrSO 4 or Sr (OH) 2 · 8H 2 O in terms of Sr After the applied annealing separator, it is used for the final finish annealing consisting of secondary recrystallization annealing and purification annealing with a residence time of 800 ° C or more and 900 ° C or less of 70 hours in the temperature increase process of secondary recrystallization annealing. did. Then, after washing with water to remove the unreacted annealing separator, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product coil thus obtained were evaluated. The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.
The obtained results are shown in FIG. 9 with the horizontal axis representing magnesia: TiO 2 content relative to 100 parts by weight (Ti conversion) and the vertical axis representing Sr compound content relative to 100 parts by weight magnesia (Sr conversion).
From the figure, it can be seen that excellent product characteristics are obtained when 0.3 to 8 parts by weight of TiO 2 in terms of Ti is added to 100 parts by weight of magnesia. In particular, it is found that particularly excellent product characteristics are obtained when the Sr compound is used in combination with 0.2 to 5 parts by weight in terms of Sr with respect to 100 parts by weight of magnesia.

次に、本発明の電磁鋼板において、成分組成を前記の範囲に限定した理由について説明する。
C:0.01〜0.10%
Cは、一次再結晶組織を改善するために必要な元素であり、含有量が0.01%に満たないと良好な一次再結晶組織が得られず、一方0.10%を超えると脱炭焼鈍時の脱炭負荷が増大して生産性が低下することから、C量は0.01〜0.10%に限定する。
Next, the reason why the component composition is limited to the above range in the electrical steel sheet of the present invention will be described.
C: 0.01-0.10%
C is an element necessary for improving the primary recrystallized structure. If the content is less than 0.01%, a good primary recrystallized structure cannot be obtained. On the other hand, if it exceeds 0.10%, decarburization annealing is performed. Since carbon load increases and productivity falls, C amount is limited to 0.01 to 0.10%.

Si:2.5〜4.5%
Siは、鋼の電気抵抗を高くして渦電流損を低下させるために有用な元素であり、本発明では2.5%以上含有させる必要がある。しかしながら、4.5%を超えると冷間圧延が著しく困難になるため、Si量は2.5〜4.5%に限定する。
Si: 2.5-4.5%
Si is an element useful for increasing the electrical resistance of steel and reducing eddy current loss, and in the present invention, it is necessary to contain 2.5% or more. However, if it exceeds 4.5%, cold rolling becomes extremely difficult, so the Si content is limited to 2.5-4.5%.

酸可溶性Al:40ppm以上 100ppm未満
インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、不純物元素であるAlは100ppm未満にする必要がある。しかしながら、40ppm以上の微量な酸可溶性Alは、脱炭焼鈍時に鋼板表面に形成される酸化膜を緻密にし、二次再結晶焼鈍時の窒素の増減を抑制して、二次再結晶粒のゴス方位への集積を向上させ、磁気特性を改善するのに有効なので、本発明では酸可溶性Alを40ppm以上 100ppm未満の範囲で含有させるものとする。
Acid-soluble Al: 40 ppm or more and less than 100 ppm In order to produce a grain-oriented electrical steel sheet by producing secondary recrystallization by an inhibitorless method, the impurity element Al needs to be less than 100 ppm. However, a small amount of acid-soluble Al of 40 ppm or more densifies the oxide film formed on the steel sheet surface during decarburization annealing, suppresses the increase and decrease of nitrogen during secondary recrystallization annealing, and reduces the gossip of secondary recrystallized grains. Since it is effective for improving the accumulation in the orientation and improving the magnetic properties, in the present invention, the acid-soluble Al is contained in the range of 40 ppm or more and less than 100 ppm.

N:30ppm以上 60ppm未満
同様に、インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、不純物元素であるNは60ppm未満にする必要がある。但し、二次再結晶焼鈍時における窒素の増減を抑制するためには、30ppm以上含有させた方がよいので、本発明ではNは30ppm以上 60ppm未満の範囲で含有させるものとする。
N: 30 ppm or more and less than 60 ppm Similarly, in order to produce a grain-oriented electrical steel sheet by causing secondary recrystallization by an inhibitorless method, N as an impurity element needs to be less than 60 ppm. However, in order to suppress the increase and decrease of nitrogen during the secondary recrystallization annealing, it is better to contain 30 ppm or more. Therefore, in the present invention, N is contained in the range of 30 ppm or more and less than 60 ppm.

Sb:0.03〜0.30%
Sbは、二次再結晶焼鈍時の鋼板窒素量の増加を非常に効果的に抑制するので、優れた磁気特性を得るためおよび磁気特性を安定化させるためには必須の元素であり、その効果を十分に発揮させるには0.03%以上添加する必要がある。しかしながら、含有量が0.30%を超えると脱炭焼鈍時の脱炭性が非常に悪くなり、工業的大量生産には不適となるので、Sb量は0.03〜0.30%に限定する。
Sb: 0.03-0.30%
Sb very effectively suppresses the increase in the amount of steel sheet nitrogen during secondary recrystallization annealing, so it is an indispensable element for obtaining excellent magnetic properties and stabilizing magnetic properties. It is necessary to add 0.03% or more in order to fully exhibit. However, if the content exceeds 0.30%, the decarburization property at the time of decarburization annealing becomes very bad and unsuitable for industrial mass production, so the Sb content is limited to 0.03 to 0.30%.

Mn:{0.04+Sb(%)}%以上 0.50%以下
インヒビターレス成分系でSbを利用して優れた磁気特性と被膜特性を有する方向性電磁鋼板を製造する際の問題点は、Sb添加量を増した時の被膜特性の劣化にある。この問題を解決するのには、Sb量に応じてMn量を増すことが効果的であるので、Mn量の下限は{0.04+Sb(%)}%とした。なお、上限は、Sb量の上限値が0.30%であるので、Mn量の上限は少なくともその場合の下限値(0.34%)以上であればよいこと、また一定量以上の添加はコスト面で不利なだけでなく、磁束密度の低下を招くことから、0.50%とした。
Mn: {0.04 + Sb (%)}% or more and 0.50% or less The problem with producing grain-oriented electrical steel sheets with excellent magnetic properties and coating properties using Sb in an inhibitorless component system is the amount of Sb added. It is in the deterioration of the film properties when increased. In order to solve this problem, it is effective to increase the amount of Mn according to the amount of Sb, so the lower limit of the amount of Mn was set to {0.04 + Sb (%)}%. Since the upper limit of the Sb amount is 0.30%, the upper limit of the Mn amount should be at least the lower limit (0.34%) in that case, and addition of a certain amount or more is disadvantageous in terms of cost. Not only that, but also caused a decrease in magnetic flux density, so 0.50%.

(S+0.405Se):50ppm未満
不純物元素であるSおよびSeは、インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、(S+0.405Se)で50ppm未満にする必要がある。というのは、(S+0.405Se)量が50ppm以上である場合には、二次再結晶が困難となり、磁気特性の劣化を招くからである。
(S + 0.405Se): less than 50 ppm Impurity elements S and Se are made less than 50 ppm with (S + 0.405Se) in order to produce a grain-oriented electrical steel sheet by producing secondary recrystallization by an inhibitorless method. There is a need. This is because when the amount of (S + 0.405Se) is 50 ppm or more, secondary recrystallization becomes difficult and the magnetic properties are deteriorated.

以上、基本成分について説明したが、本発明では、磁気特性および被膜特性の向上を目的として以下の元素を適宜含有させることができる。
Sn:0.03〜0.50%
Snは、磁気特性の向上・安定化作用を有する元素であるが、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えると良好な一次再結晶組織が得られないので、Sn量は0.03〜0.50%の範囲にするのが好ましい。
The basic components have been described above. In the present invention, the following elements can be appropriately contained for the purpose of improving magnetic properties and film properties.
Sn: 0.03-0.50%
Sn is an element that improves and stabilizes magnetic properties. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if it exceeds 0.50%, a good primary recrystallized structure cannot be obtained. , Sn content is preferably in the range of 0.03-0.50%.

Cu:0.03〜0.50%
Cuは、鋼板表層の酸窒化を抑制することによって、磁気特性の劣化を抑制する作用を有する元素である。しかしながら、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えると表面に「へげ」と呼ばれる欠陥が発生し易くなるので、Cu量は0.03〜0.50%の範囲にするのが好ましい。
Cu: 0.03-0.50%
Cu is an element having an action of suppressing deterioration of magnetic properties by suppressing oxynitriding of the steel sheet surface layer. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if it exceeds 0.50%, defects called “baldness” tend to occur on the surface, so the Cu content is in the range of 0.03 to 0.50%. Is preferred.

Ni:0.03〜0.50%
Niは、集合組織を改善して磁束密度を向上させる作用効果を有する元素である。しかしながら、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えて添加してもそれ以上の効果に乏しいばかりか、圧延性も劣化するおそれがあるので、Ni量は0.03〜0.50%の範囲にするのが好ましい。
Ni: 0.03-0.50%
Ni is an element having an effect of improving the texture and improving the magnetic flux density. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, even if added over 0.50%, not only the effect is poor, but also the rollability may be deteriorated. It is preferable to be in the range of ~ 0.50%.

Cr:0.03〜0.30%
Crは、被膜特性の改善に有効な元素であるが、0.03%未満では目立った改善効果が得られず、一方0.30%を超えると磁気特性が劣化する傾向にあるので、Cr量は0.03〜0.30%の範囲にするのが好ましい。
Cr: 0.03-0.30%
Cr is an element effective for improving the film properties, but if it is less than 0.03%, a remarkable improvement effect cannot be obtained. On the other hand, if it exceeds 0.30%, the magnetic properties tend to deteriorate, so the Cr content is 0.03 to 0.30. % Is preferable.

P:0.01〜0.10%
Pは、粒界偏析により冷延−再結晶後の集合組織を改善して磁束密度を向上させる働きがある。しかしながら、含有量が0.01%未満では十分な効果が得られず、一方0.10%を超えると良好な一次再結晶組織が得られないので、P量は0.01〜0.10%の範囲にするのが好ましい。
P: 0.01-0.10%
P has a function of improving the magnetic flux density by improving the texture after cold rolling and recrystallization by grain boundary segregation. However, if the content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.10%, a good primary recrystallized structure cannot be obtained. Therefore, the P content is preferably in the range of 0.01 to 0.10%.

Mo:0.005〜0.10%
Moは、表面性状を改善する効果がある。しかしながら、含有量が0.005%未満では十分な効果が得られず、一方0.10%を超えると脱炭焼鈍時の脱炭性が劣化するので、Mo量は0.005〜0.10%の範囲にするのが好ましい。
Mo: 0.005-0.10%
Mo has the effect of improving the surface properties. However, if the content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.10%, the decarburization property during decarburization annealing deteriorates, so the Mo amount is preferably in the range of 0.005 to 0.10%. .

次に、この発明の方向性電磁鋼板の好適製造条件について説明する。
従来から用いられている製鋼法で、上記成分に調整した溶鋼を、連続鋳造法あるいは造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブを製造する。また、直接鋳造法を用いて100mm以下の厚さの薄鋳片を直接製造してもよい。
Next, preferred production conditions for the grain-oriented electrical steel sheet according to the present invention will be described.
The molten steel adjusted to the above components is cast by a continuous steel casting method or an ingot-making method by a steel making method conventionally used, and a slab is produced with a lump process interposed as necessary. Further, a thin cast piece having a thickness of 100 mm or less may be directly produced using a direct casting method.

ついで、スラブを、通常の方法に従い加熱した後、熱間圧延により熱延コイルとする。この時のスラブ加熱温度は、エネルギーコスト低減のために1250℃以下とする。というのは、1250℃を超える高温スラブ加熱は、インヒビターレス法による本発明では無意味であり、コストアップとなるばかりだからである。   Next, the slab is heated according to a normal method, and then hot rolled to form a hot rolled coil. The slab heating temperature at this time is set to 1250 ° C. or lower in order to reduce energy costs. This is because high-temperature slab heating exceeding 1250 ° C. is meaningless in the present invention by the inhibitorless method and only increases the cost.

上記の熱間圧延後、必要に応じて熱延板焼鈍を行ったのち、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。冷間圧延は、常温で行っても良いし、あるいは常温よりも高い温度、例えば150〜300℃程度に上げて圧延する温間圧延としてもよい。また、冷間圧延途中で150〜300℃の範囲での時効処理を1回または複数回行ってもよい。   After the above-described hot rolling, hot-rolled sheet annealing is performed as necessary, and then a cold-rolled sheet having a final thickness is obtained by one or more cold rolling or two or more cold rollings sandwiching intermediate annealing. Cold rolling may be performed at room temperature, or may be warm rolling in which the rolling is performed at a temperature higher than room temperature, for example, about 150 to 300 ° C. Moreover, you may perform the aging treatment in the range of 150-300 degreeC in the middle of cold rolling once or several times.

その他、薄鋳片の場合には、熱間圧延を省略あるいは簡略化するなどの圧延工程を採用してもよい。   In addition, in the case of a thin cast slab, a rolling process such as omitting or simplifying hot rolling may be employed.

ついで、最終冷間圧延板に一次再結晶・脱炭焼鈍を施す。この脱炭焼鈍は、湿水素雰囲気中で行うが、昇温速度や雰囲気酸化性(P(H2O)/P(H2))、均熱温度、均熱時間などを制御して、脱炭焼鈍後の鋼板表層の酸素目付け量を片面当たり0.5g/m2以上 0.8 g/m2以下で、かつ脱炭焼鈍板酸化物の抽出分析によるファイヤライト/シリカ比を0.03以上 0.15以下とすることが肝要である。
ちなみに、上記した酸素目付け量およびファイヤライト/シリカ比を得るための好適条件は、昇温速度:5〜35℃/s、P(H2O)/P(H2):0.40〜0.60、均熱温度:800〜860℃、均熱時間:100〜200秒であり、この範囲で適宜調整することが重要である。
Next, primary recrystallization and decarburization annealing are performed on the final cold rolled sheet. This decarburization annealing is performed in a wet hydrogen atmosphere, and decarburization is controlled by controlling the rate of temperature rise, atmospheric oxidation (P (H 2 O) / P (H 2 )), soaking temperature, soaking time, etc. The surface area of oxygen on the steel sheet after carbon annealing is 0.5g / m 2 or more and 0.8 g / m 2 or less per side, and the firelite / silica ratio is 0.03 or more and 0.15 or less by extraction analysis of decarburized annealing plate oxide. It is important.
Incidentally, the preferred conditions for obtaining the above-mentioned oxygen weight per unit area and the ratio of firelite / silica are as follows: temperature increase rate: 5 to 35 ° C./s, P (H 2 O) / P (H 2 ): 0.40 to 0.60, average The heat temperature is 800 to 860 ° C., the soaking time is 100 to 200 seconds, and it is important to adjust appropriately within this range.

その後、この脱炭焼鈍を施した鋼板表面に、マグネシアを主体とした焼鈍分離剤をスラリー状にして塗布した後、乾燥させる。ここで、良好な被膜特性を得るためには、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8重量部配合した焼鈍分離剤を塗布する必要がある。ここに、Ti化合物としては、TiO2、TiO3・H2O、TiO・(OH)2、Ti(OH)4などを用いることができる。また、マグネシア:100重量部に対してSr換算で0.2〜5重量部のSr化合物を併用して配合することは、更なる磁気特性と被膜特性の向上・安定化に効果がある。かようなSr化合物としては、SrSO4、Sr(OH)2・8H2O、SrCO3、Sr(NO)3などを用いることができる。 Thereafter, an annealing separator mainly composed of magnesia is applied to the surface of the steel plate subjected to the decarburization annealing as a slurry, and then dried. Here, in order to obtain good film properties, it is necessary to apply an annealing separator containing 0.3 to 8 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight of magnesia. Here, as the Ti compound, TiO 2 , TiO 3 .H 2 O, TiO. (OH) 2 , Ti (OH) 4 or the like can be used. In addition, combining 0.2 to 5 parts by weight of an Sr compound in terms of Sr with respect to 100 parts by weight of magnesia is effective in further improving and stabilizing magnetic properties and film properties. As such an Sr compound, SrSO 4 , Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO) 3 and the like can be used.

なお、被膜特性の均一性の一層の向上を目的として、焼鈍分離剤中に、さらにCaOのような酸化物、MgSO4・7H2OやSnSO4のような硫化物、Na2B4O7のようなB系化合物、Sb2O3やSb2(SO4)3のようなSb系化合物のうちから選んだ1種または2種以上を適宜添加することもできる。 In addition, for the purpose of further improving the uniformity of the film properties, in the annealing separator, oxides such as CaO, sulfides such as MgSO 4 .7H 2 O and SnSO 4 , Na 2 B 4 O 7 One or more selected from B compounds such as Sb 2 O 3 and Sb 2 (SO 4 ) 3 can also be added as appropriate.

また、焼鈍分離剤に用いるマグネシアは、水和量(20℃,60分間にて水和後、1000℃,1時間の強熱による減量)が1〜5%の範囲のものを用いるのが好ましい。というのは、マグネシアの水和量が1%未満ではフォルステライト質被膜の生成が不十分となり、一方5%を超えるとコイル層間への持込み水分量が多くなりすぎて鋼板の追加酸化量が多くなるため、良好なフォルステライト質被膜が得られなくなるおそれが生じるからである。また、30℃でのクエン酸活性度(CAA40)は30秒から160秒のものを用いることが好ましい。というのは、クエン酸活性度(CAA40)が30秒未満では反応性が強すぎてフォルステライトが急激に生成して剥離し易くなり、一方160秒を超えると反応性が弱すぎてフォルステライト生成が進行しないからである。   Moreover, it is preferable to use the magnesia used for the annealing separator in the range of 1 to 5% of hydration amount (reduced by ignition at 1000 ° C. for 1 hour after hydration at 20 ° C. for 60 minutes). . This is because if the amount of hydration of magnesia is less than 1%, the formation of forsterite film is insufficient, while if it exceeds 5%, the amount of moisture brought between the coil layers becomes too large and the amount of additional oxidation of the steel sheet is large. Therefore, there is a possibility that a good forsterite film cannot be obtained. The citric acid activity (CAA40) at 30 ° C. is preferably 30 to 160 seconds. The reason is that if the citric acid activity (CAA40) is less than 30 seconds, the reactivity is too strong and the forsterite is generated abruptly and easily peels off. On the other hand, if it exceeds 160 seconds, the reactivity is too weak and the forsterite is generated. This is because does not progress.

さらに、焼鈍分離剤は、鋼板片面当たり4〜10 g/m2程度の範囲で塗布するのが好ましい。というのは、塗布量が4g/m2より少ないとフォルステライトの生成が不十分となり、一方10g/m2を超えるとフォルステライト質被膜が過剰に生成し厚くなるため、占積率の低下を招くからである。 Further, the annealing separator is preferably applied in a range of about 4 to 10 g / m 2 per one side of the steel sheet. This is because if the coating amount is less than 4 g / m 2, the formation of forsterite becomes insufficient. On the other hand, if it exceeds 10 g / m 2 , the forsterite film is excessively formed and becomes thick. Because it invites.

その後、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を行うが、ここで、二次再結晶焼鈍は、昇温過程において 800℃以上 900℃以下での滞留時間を40時間以上 150時間以下とする必要がある。
というのは、800℃以上 900℃以下での滞留時間が上記の範囲を外れると、前掲図2に示したように、磁気特性の低下を招くからである。
After that, final finish annealing consisting of secondary recrystallization annealing and purification annealing is performed. Here, secondary recrystallization annealing is performed at a temperature rising process of 800 ° C to 900 ° C with a residence time of 40 hours to 150 hours. It is necessary to.
This is because, if the residence time at 800 ° C. or more and 900 ° C. or less is out of the above range, the magnetic characteristics are deteriorated as shown in FIG.

その後、鋼板表面に、りん酸塩系の絶縁コーティング好ましくは張力を付与する絶縁コーティングを施して製品とする。絶縁被膜の種類については、特に限定されないが、従来公知のあらゆる絶縁被膜が適合する。例えば、特開昭50−79442号公報や特開昭48−39338号公報に記載されている、りん酸塩−クロム酸−コロイダルシリカを含有する塗布液を鋼板に塗布し、800℃程度で焼き付ける方法が好適である。
さらに、最終冷延後、最終仕上げ焼鈍後あるいは絶縁コーティングの被成後に、既知の磁区細分化処理を行うことは、更なる鉄損の低減に有効である。
Thereafter, a phosphate-based insulating coating, preferably an insulating coating that imparts tension, is applied to the steel sheet surface to obtain a product. The type of insulating coating is not particularly limited, but any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. The method is preferred.
Furthermore, performing a known magnetic domain refinement after the final cold rolling, after the final finish annealing, or after forming the insulating coating is effective in further reducing iron loss.

実施例1
表2に示す成分組成になる鋼スラブを、ガス加熱炉により1200℃に加熱した後、熱間圧延により板厚:2.0mmの熱延板とした。ついで、1050℃で30秒間の熱延板焼鈍後、冷間圧延にて最終板厚:0.29mmにした。その後、昇温速度、雰囲気酸化性(P(H2O)/P(H2))、均熱温度および均熱時間を種々に変更して脱炭焼鈍を行った。その際に形成された酸化層(サブスケール)の酸素目付け量およびファイヤライト/シリカ比を表3に示す。ついで、マグネシアを主体とする焼鈍分離剤を塗布した後、二次再結晶焼鈍と純化焼鈍からなる最終仕上げ焼鈍を行った。表3には、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以 上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Example 1
A steel slab having the component composition shown in Table 2 was heated to 1200 ° C. in a gas heating furnace, and then hot rolled into a hot rolled sheet having a thickness of 2.0 mm. Then, after hot-rolled sheet annealing at 1050 ° C. for 30 seconds, the final sheet thickness was 0.29 mm by cold rolling. Thereafter, decarburization annealing was performed by variously changing the heating rate, atmospheric oxidizability (P (H 2 O) / P (H 2 )), soaking temperature and soaking time. Table 3 shows the oxygen basis weight and the firelite / silica ratio of the oxide layer (subscale) formed at that time. Subsequently, after applying an annealing separator mainly composed of magnesia, final finishing annealing including secondary recrystallization annealing and purification annealing was performed. Table 3 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (residence time of 800 ° C or higher and 900 ° C or lower). Thereafter, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表3に併記する。
なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 3 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance and coating adhesion of each product thus obtained.
The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.

Figure 0004569353
Figure 0004569353

Figure 0004569353
Figure 0004569353

表3から明らかなように、この発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性が得られている。   As is apparent from Table 3, all of the inventive examples produced under the conditions according to the present invention have good magnetic properties and coating properties.

実施例2
表4に示す成分組成になる鋼スラブを、ガス加熱炉により1200℃に加熱した後、熱間圧延により板厚:2.2mmの熱延板とした。ついで、1000℃で60秒間の熱延板焼鈍後、冷間圧延にて最終板厚:0.29mmにした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。その後、昇温速度、雰囲気酸化性(P(H2O)/P(H2))、均熱温度および均熱時間を種々に変更して脱炭焼鈍を行った。その際に形成された酸化層(サブスケール)の酸素目付け量およびファイヤライト/シリカ比を表5に示す。ついで、マグネシアを主体とする焼鈍分離剤を塗布した後、二次再結晶焼鈍と純化焼鈍からなる最終仕上げ焼鈍を行った。表5には、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Example 2
A steel slab having the component composition shown in Table 4 was heated to 1200 ° C. in a gas heating furnace, and then hot rolled into a hot rolled sheet having a sheet thickness of 2.2 mm. Subsequently, after hot-rolled sheet annealing at 1000 ° C. for 60 seconds, the final sheet thickness was 0.29 mm by cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least one pass. Thereafter, decarburization annealing was performed by variously changing the heating rate, atmospheric oxidizability (P (H 2 O) / P (H 2 )), soaking temperature and soaking time. Table 5 shows the oxygen basis weight and the firelite / silica ratio of the oxide layer (subscale) formed at that time. Subsequently, after applying an annealing separator mainly composed of magnesia, final finishing annealing including secondary recrystallization annealing and purification annealing was performed. Table 5 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (retention time of 800 ° C. or more and 900 ° C. or less). Thereafter, an insulating coating composed mainly of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表5に併記する。 Table 5 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance and coating adhesion of each product thus obtained.

Figure 0004569353
Figure 0004569353

Figure 0004569353
Figure 0004569353

表5から明らかなように、この発明に従う条件で製造した適合例は、いずれも良好な磁気特性および被膜特性が得られた。   As is apparent from Table 5, all of the conforming examples manufactured under the conditions according to the present invention obtained good magnetic properties and coating properties.

実施例3
表6に示す成分組成になる鋼スラブを、ガス加熱炉により1240℃に加熱した後、熱間圧延により板厚:2.6mmの熱延板とした。ついで、冷間圧延により中間板厚:1.7mmとした後、1025℃で30秒間の中間焼鈍を行ってから、冷間圧延にて最終板厚:0.22mmにした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。その後、昇温速度、雰囲気酸化性(P(H2O)/P(H2))、均熱温度および均熱時間などを変更して脱炭焼鈍を行った。その際に形成された酸化層(サブスケール)の酸素目付け量およびファイヤライト/シリカ比を表7に示す。ついで、マグネシアを主体とする焼鈍分離剤を塗布した後、二次再結晶焼鈍と純化焼鈍からなる最終仕上げ焼鈍を行った。表7には、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Example 3
A steel slab having the composition shown in Table 6 was heated to 1240 ° C. in a gas heating furnace, and then hot rolled to form a hot rolled sheet having a thickness of 2.6 mm. Next, after the intermediate plate thickness was set to 1.7 mm by cold rolling, intermediate annealing was performed at 1025 ° C. for 30 seconds, and then the final plate thickness was set to 0.22 mm by cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least one pass. After that, decarburization annealing was performed by changing the heating rate, atmospheric oxidizability (P (H 2 O) / P (H 2 )), soaking temperature and soaking time. Table 7 shows the oxygen basis weight and the firelite / silica ratio of the oxide layer (subscale) formed at that time. Subsequently, after applying an annealing separator mainly composed of magnesia, final finishing annealing including secondary recrystallization annealing and purification annealing was performed. Table 7 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (retention time of 800 ° C. or more and 900 ° C. or less). Thereafter, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表7に併記する。 Table 7 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance and coating adhesion for each product thus obtained.

Figure 0004569353
Figure 0004569353

Figure 0004569353
Figure 0004569353

表7から明らかなように、この発明に従う条件で製造した適合例は、いずれも良好な磁気特性および被膜特性を示している。   As is apparent from Table 7, all the conforming examples manufactured under the conditions according to the present invention show good magnetic properties and coating properties.

焼鈍分離剤中のTi化合物添加量が被膜密着性に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of Ti compound addition in an annealing separation agent has on film adhesion. 二次再結晶焼鈍の昇温過程において、800℃以上900℃以下の滞留時間が磁気特性に及ぼす影響を示す図である。It is a figure which shows the influence which the residence time of 800 to 900 degreeC has on a magnetic characteristic in the temperature rising process of secondary recrystallization annealing. 素材中のMn,Sb量が磁気特性と被膜特性に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of Mn and Sb in a raw material has on a magnetic characteristic and a film characteristic. 素材Sb量が脱炭焼鈍板サブスケールの酸素目付け量に及ぼす影響を示す図である。It is a figure which shows the influence which the raw material Sb amount has on the oxygen basis weight of a decarburized annealing board subscale. 素材Mn量が脱炭焼鈍板サブスケールの酸素目付け量に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of raw materials Mn has on the oxygen basis weight of a decarburized annealing board subscale. 二次再結晶焼鈍中、850℃で50時間焼鈍した後の鋼板表面のFT-IR測定結果を示す図である。It is a figure which shows the FT-IR measurement result of the steel plate surface after annealing for 50 hours at 850 degreeC during secondary recrystallization annealing. 素材成分(Mn,Sb量)の違いが、脱炭焼鈍板サブスケールの組成(酸素目付け量とファイヤライト/シリカ比)に及ぼす影響を示す図である。It is a figure which shows the influence which the difference in a raw material component (Mn, Sb amount) has on the composition (oxygen weight per unit area and a firelite / silica ratio) of a decarburized annealing board subscale. 脱炭焼鈍板サブスケールの酸素目付け量とファイヤライト/シリカ比が製品特性に及ぼす影響を示す図である。It is a figure which shows the influence which the oxygen basis weight of a decarburized annealing board subscale and a firelite / silica ratio have on a product characteristic. 焼鈍分離剤中のTi化合物およびSr化合物添加量が製品特性に及ぼす影響を示す図である。It is a figure which shows the influence which the addition amount of Ti compound and Sr compound in an annealing separation agent has on a product characteristic.

Claims (3)

質量%で、C:0.01〜0.10%,Si:2.5〜4.5%,酸可溶性Al:40ppm以上 100ppm未満,N:30ppm以上 60ppm未満,Sb:0.03〜0.30%,Mn:{0.04+Sb(%)}%以上 0.50%以下および(S+0.405Se):50ppm未満を含有し、残部はFeおよび不可避的不純物の成分になるけい素鋼スラブを、1250℃以下の温度で加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、ついで脱炭・一次再結晶焼鈍後、マグネシアを主成分とする焼鈍分離剤を塗布してから、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施す一連の工程からなる一方向性電磁鋼板の製造方法において、
a) 脱炭焼鈍後の鋼板表層の酸素目付け量を片面当たり0.5g/m2以上 0.8 g/m2以下とし、かつ脱炭焼鈍板酸化物の抽出分析によるファイヤライト/シリカ比を0.03以上 0.15以下とすること、
b) 焼鈍分離剤中に、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8.0 重量部含有させること、
c) 二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を40時間以上150時間以下とすること
を特徴とする一方向性電磁鋼板の製造方法。
In mass%, C: 0.01-0.10%, Si: 2.5-4.5%, acid-soluble Al: 40ppm or more, less than 100ppm, N: 30ppm or more, less than 60ppm, Sb: 0.03-0.30%, Mn: {0.04 + Sb (%)} % To 0.50% and (S + 0.405Se): Less than 50ppm, the balance is Fe and unavoidable impurities, silicon steel slab is heated at a temperature of 1250 ° C or less, then hot-rolled, necessary Depending on the condition, after hot-rolled sheet annealing is performed, cold rolling is performed once or two or more times with intermediate annealing, followed by decarburization and primary recrystallization annealing, and then an annealing separator mainly composed of magnesia is applied. Then, in the method for producing a unidirectional electrical steel sheet comprising a series of steps of performing final finishing annealing consisting of secondary recrystallization annealing and purification annealing,
a) Oxygen weight of the steel sheet surface after decarburization annealing is 0.5 g / m 2 or more and 0.8 g / m 2 or less per side, and the firelite / silica ratio is 0.03 or more by extraction analysis of decarburized annealing plate oxide 0.15 To be
b) In the annealing separator, magnesia: 0.3 to 8.0 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight,
c) In the Atsushi Nobori process of secondary recrystallization annealing, manufacturing method of an oriented electrical steel sheet characterized in that the 800 ° C. or higher 900 ° C. or less of the residence time to 40 hours or more 150 hours.
請求項1において、焼鈍分離剤中にさらに、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部含有させることを特徴とする一方向性電磁鋼板の製造方法。 According to claim 1, further in the annealing separating agent, magnesia To 100 parts by weight, manufacturing method of an oriented electrical steel sheet you characterized by the inclusion 0.2-5 parts by weight of Sr compound Sr terms. 請求項1または2において、けい素鋼スラブが、さらに質量%で、Sn:0.03〜0.50%,Cu:0.03〜0.50%,Ni:0.03〜0.50%,Cr:0.03〜0.30%,P:0.01〜0.10%およびMo:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする一方向性電磁鋼板の製造方法。 3. The silicon steel slab according to claim 1, wherein the silicon steel slab is further mass%, Sn: 0.03-0.50%, Cu: 0.03-0.50%, Ni: 0.03-0.50%, Cr: 0.03-0.30%, P: 0.01- 0.10% and Mo: 0.005 to 0.10% manufacturing method of an oriented electrical steel sheet you characterized in that it contains one or more kinds selected from among.
JP2005097885A 2005-03-30 2005-03-30 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4569353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097885A JP4569353B2 (en) 2005-03-30 2005-03-30 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097885A JP4569353B2 (en) 2005-03-30 2005-03-30 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006274394A JP2006274394A (en) 2006-10-12
JP4569353B2 true JP4569353B2 (en) 2010-10-27

Family

ID=37209426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097885A Expired - Fee Related JP4569353B2 (en) 2005-03-30 2005-03-30 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4569353B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674136B (en) * 2013-11-28 2017-11-14 Posco公司 The excellent non-oriented electromagnetic steel sheet of permeability and its manufacture method
KR101693516B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae
JP6939766B2 (en) * 2018-12-27 2021-09-22 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheets and manufacturing method of grain-oriented electrical steel sheets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158919A (en) * 1999-12-01 2001-06-12 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2003193133A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2004169179A (en) * 2002-10-29 2004-06-17 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet of excellent bend characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158919A (en) * 1999-12-01 2001-06-12 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2003193133A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2004169179A (en) * 2002-10-29 2004-06-17 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet of excellent bend characteristic

Also Published As

Publication number Publication date
JP2006274394A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5011711B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
KR102057126B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4258349B2 (en) Method for producing grain-oriented electrical steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP4569353B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4604827B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2012057190A (en) Method of manufacturing grain-oriented magnetic steel sheet
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP2001158919A (en) Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5011712B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3329641B2 (en) Method for producing Al-containing grain-oriented electrical steel sheet with excellent magnetic properties and steel sheet edge shape
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JPH05295441A (en) Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees